
?

1 2

0 00

0 0

causes

?

e e

L � L � � � � �

Introduction

Event Logic for Specifying

Abstract Dynamic Data Types

Dipartimento di Informatica e Scienze dell'Informazione

Universit�a di Genova { Italy

This work has been supported by \Progetto Finalizzato Sistemi Informatici e Cal-

colo Parallelo" of C.N.R. (Italy), COMPASS-Esprit-BRA-W.G. n 3264 and by a grant

ENEL/CRA (Milano Italy).

Gianna Reggio

Abstract and concrete dynamic data types, have been introduced by the author and

others in several previous papers (e.g., [2, 3, 6, 10]).

A concrete dynamic data type (dynamic algebra) is just a many-sorted algebra

with predicates such that for some of the sorts (sorts of dynamic elements, or dynamic

sorts) there is a special predicate de�ning a labelled transition relation; thus the

dynamic elements are modelled by means of labelled transition systems. An abstract

dynamic data type (addt) is an isomorphism class of dynamic algebras.

To obtain speci�cations for addt's in some papers (e.g., [2, 3]) we have used �rst-

order logic; however such logic is not suitable for expressing all interesting abstract

properties of dynamic elements. Extensions of �rst-order logic, particularly suitable

to such purpose, have been proposed in other papers; in [6] by adding branching-

time temporal logic combinators for expressing abstract properties on the activity

of dynamic elements and in [10, 4] by adding special combinators for expressing

abstract properties on the concurrent/distributed structure of the dynamic elements

(e.g. no multilevel parallelism).

In this paper we present an \event logic" for specifying addt's; the name \event"

comes from \event structures" (see, e.g., [13]). Event structures are a nice formal-

ism for abstractly modelling dynamic elements, which allows to express properties

such as causality and true concurrency; but they lack well-developed techniques for

structuring detailed descriptions of complex systems. Event logic is an attempt at

building up an integrated speci�cation framework for:

{ expressing abstract properties of dynamic elements by giving some \relation-

ships" between events;

{ modelling dynamic elements in a simple and intuitive way as labelled transition

systems.

The basic idea is that, given a labelled transition system, an \event" is just a set

of partial execution paths (those corresponding to occurrences of that event). Thus,

for example, a causality relationship holds on a labelled transition

system i� for all execution paths of , if = , where is a partial path



2 3 4

e � � � � �

e

e e

e e e

e e e

e e

0 00 00

00

0 00

0 00

0 00 00

0 0

non-classical event structures

SP

corresponding to an occurrence of , then = , where is a partial path

corresponding to an occurrence of .

As a consequence, we have that in this framework events are not considered

instantaneous and so we can also express �ner relationships between them, as:

{ there is no instant at which and occur simultaneously,

{ is the sequential composition of and ,

{ each occurrence of includes an occurrence of (i.e., starts either together

or after and terminates either before or together ).

It is important to note that the use of non-instantaneous events for specifying

labelled transition systems allows us to give very abstract speci�cations without

�xing the atomic grain of the activity of the dynamic elements.

Moreover, in this algebraic framework events are not just a set of names; they

are instead elements of particular sorts of a dynamic data type (one sort of events

for each sort of dynamic elements) and so it is possible to de�ne operations and

predicates having arguments and/or results of event sort. As a consequence:

{ we have events of di�erent sort and thus we can relate, for example, the events of

compound dynamic elements with the events of their dynamic subcomponents;

{ complex events may be described by composing several simpler events, and that

helps in writing modular and readable speci�cations.

Event logic includes as a sublanguage the temporal logic of [6] (the only di�erence

is that here we consider also the past); in some sense the formalism of [6] considers

only \instantaneous" events (i.e., events whose occurrences are just paths consisting

either of one state or of one transition); while here we still use the same temporal

combinators for expressing temporal relationships between non-instantaneous events.

In the literature there are other attempts to combine events and logic (see, e.g.,

[8]); the main di�erence with our work is that they use logic to specify classical event

structures; while here we consider as models labelled transition systems equipped

with non-instantaneous events.

However there are still some points about our event logic, which are worth to be

further investigated.

First of all we need a rigorous de�nition of a kind of ,

di�erent from those of [13], where events are non-instantaneous and the relationships

between events are not simply causality and con
ict. Then, we are interested to study

the relationships between non-classical and classical event structures. For example,

can the �rst be \simulated" by the latter ?

Moreover it seems that we can associate with each labelled transition system

equipped with non-instantaneous events a non-classical event structure and so a

speci�cation given using our event logic may have models at two di�erent levels:

{ a kind of non-classical event structures;

{ labelled transition systems equipped with non-instantaneous events.

Then, we can de�ne an \implementation relationship" between a non-classical event

structure and a labelled transition system equipped with non-instantaneous events

s.t. given an event logic speci�cation :



0

DA

( )

�

00

0 00

t

ds

lab ds

�

� �

� 2 2 �

� �! � � � 2

ut

! � � �!

!

2

! !

1 Abstract Dynamic Data Types and their Speci�cation

1.1 Dynamic Algebras and Speci�cations

De�nition1.

{

{

L

L

L L

L

D� �;

� S; ;

S

ds lab ds S

ds ds lab ds ds

ds

D� D� �

ds lab ds ds t t

t; t ; t

D� ds ds

lab ds

ds

ES ES SP

SP

SP

ES SP

Dynamic Algebras.

dynamic signature DS

OP PR

DS DS dynamic sorts

DS DS

PR

dynamic algebra

DA DS DA

DA

for all event structures , if is a model of and it is implemented by ,

then is a model of ;

for all labelled transition systems , if is a model of , there exists an event

structure which is a model of and is implemented by .

In this paper we present the event logic; in Sect. 1 we shortly introduce concrete

and abstract dynamic data types and show how to integrate the notion of non-

instantaneous event; the logic is formally de�ned in Sect. 2; �nally in Sect. 3 we

report some simple illustrative examples. It is worth noticing that the resulting

speci�cation formalism is an institution (see [5]). For lack of room we cannot report

neither the proof that the event logic is an institution, nor a sound deductive system

nor more interesting examples of speci�cations; these parts are reported in the full

paper [11].

First we brie
y report the essential de�nitions about concrete and abstract dynamic

data types and their speci�cation (see, e.g., [3, 6]); and then show how events may

be introduced in this framework.

A dynamic algebra (concrete dynamic data type) is just a many-

sorted algebra with predicates (see [7]) such that for some of the sorts (sorts of

dynamic elements, or dynamic sorts) there is a special predicate de�ning a labelled

transition relation; thus the dynamic elements are modelled by means of labelled

transition systems.

A is a couple ( ) where:

= ( ) is a predicate signature,

(the elements in are the ),

for all there exists a sort ( ) (labels of the transitions

of the elements of sort ) and a predicate : ( )

(the transition relation of the dynamic elements of sort ).

A on (shortly -algebra) is just a -algebra.

In this paper, for some of the operation and predicate symbols, we use a mix�x

notation. For instance, : ( ) means that we shall write instead

of ( ); i.e. terms of appropriate sorts replace underscores.

If is a -algebra and , then the carrier of sort , , the

carrier of sort ( ), , and the interpretation of the predicate , , are

respectively the states, the labels and the transition relation of a labelled transition

system describing the activity of the dynamic elements of sort .



3

� �

� �

� �

� �

2 1

0 1

2 1

0 1

2 1 1 2

2 1

1 2

l

ds

l l

l l

l l

l l

DA DA DA DA

DA DA

DA DA

6 9 �! ^

2

��! ��! �! �!

��! ��!

�! �!

4

5

�

�; � �

�

D�;

l; s : t s P s

t s P s

ds

d

: : :d d d d d : : :

: : :d d d

d d d : : :

d d

t; �s:P s

t s P s t; <�l:Q l >

t l

Q l

Dynamic Speci�cations.

abstract data type adt

(simple) speci�cation

SP AX AX

axioms SP models SP

AX

initial algebra approach SP

Mod SP loose

SP

Mod SP

abstract

dynamic data type addt

(simple) dynamic speci�cation DSP AX

AX

DA

DA execution

paths

Following a widely accepted idea (see e.g. [14]) a (static)

(shortly ) is an isomorphism class of -algebras (note that

[14] considers only term-generated algebras). A is a couple

= ( ), where is a signature and a set of �rst-order formulae on

(the of ); the of are the -algebras satisfying the axioms in

.

In the de�nes the adt consisting of the (isomorphism

class of the) initial elements, if any, of the class ( ). In the approach,

instead, is viewed as a description of the main properties of an adt; thus it

represents a class, consisting of all the adt's satisfying the properties expressed by the

axioms (more formally: the class of all isomorphism classes included in ( )).

The above de�nitions can be easily adapted to the dynamic case: an

(shortly ) is an isomorphism class of dynamic algebras and

a is a couple = ( ). In this case the set

of axioms must express both usual \static" properties of the data and prop-

erties about the activity of the dynamic elements; the problem is, now, to �nd an

appropriate logic for expressing such properties.

In some previous papers (see e.g., [3]) we have used �rst-order logic; since dynamic

signatures include explicitly a predicate corresponding to the transition relation, we

can formalize several properties about the activity of the dynamic elements using

�rst-order logic. For example ( ) requires that the dynamic ele-

ment represented by the term cannot pass into a state s.t. ( ) holds. However,

these are only \local" properties on the activity of the dynamic elements (about the

immediate future and past). In general we want to express \global properties" as

liveness and safety properties.

Given a dynamic algebra and a dynamic sort , a global view of the activity

of a dynamic element may be represented by the set of all its

, i.e. maximal sequences of labelled transitions of the form:

(clearly such sequences may be either bounded or unbounded both at the left and

at the right); a sequence as above represents a possible behaviour of d; the partial

execution path represents the past and

the future of such behaviour. A graphic representation of

the activity of a dynamic element is reported in Fig. 1. Thus a property on the

activity of may be formalized as a property of the execution paths for .

The temporal logic for speci�cations of addt's of [6] already allows to do that;

however it permits only to express properties about the \points" of the paths (i.e. on

the states and on the labels of the paths). For example, the formula ( [ ( )])

requires that each execution path of the dynamic element represented by the term

contains a state s.t. ( ); while ( ( ) ) requires that the dynamic

element represented by the term has at least one execution path with labels

s.t. ( ). But in that formalism it is rather hard to require that after receiving in

input a value eventually the system will output some other value, when inputting



d

DA

�

2 2 2!

Fig. 1.

� � � �

� � � �

n

i ds i
lab ds

i i i

1.2 Event Algebras

The activity of a dynamic element

2 2 1 1 0 0 1 1 2 2

0 0 1 1 2 2

2 2 1 1 0

0 0 1 1 2 2

( )
+1

Paths and Events. DA

DA partial execution paths

DA DA

D� ds D�

; ds

ds

: : :

: : : d l d l d l d l d l : : :

d l d l d l : : :

: : : d l d l d

d l d l d l : : : d n

i d ; l d ; l ; d

and outputting a value consists of several transitions (e.g., because each transition

corresponds to move one bit).

Given a -dynamic algebra and a dynamic sort of ,

PAR PATH( ) denotes the set of the for the dynamic

elements of sort , i.e. it is the set of all sequences having either form either (1),

or (4) below:

(1) (unbounded path),

(2) (right-unbounded path),

(3) (left-unbounded path),

(4) 0 (bounded path),

where for all integer and ( ) .



P

1 2

2

Fig. 2. ES ES

A A A

0 0

0 0 0

0 0 0

0

0

De�nition2.

{

{

def n n n n n n n n n

ds p f p f

n n

event ds

� � � � !

�

f j 2

2 6 g

� � �

�

2 � � 2

�

6

2

2 �

2 P

+1 +1 +1 +1 +1

1 2 1 2 1

2

1

1

1 2 3 2

1

2 3 2 2 3

3 2

( )

2

Two classical event structures and

If is a set, then ( ) denotes the set of the parts of .

; ds

; ds ; ds ; ds

� � � : : : d l d � d l : : : : : : d l d l : : :

; ds ds

� � ; ds

� ; ds : : � � � �

� � � ; � � � � � � � �

� � �

d d <� ; d; � > � d �

; ds

E E

E

e

R e

: : : e R e : : : e

E E E

E E E E

E E

E� �; ds

event ds S

E� E� E�

ds ; ds

composition operation DA

DA DA DA

DA execution paths

DA

DA

subpath

DA execution path for

DA

ES

ES

ES

Event Signatures and Algebras.

event signature DS DS

DS

event algebra EA

DS EA EA

A (partial) is de�ned on the elements of PAR PATH( ):

: PAR PATH( ) PAR PATH( ) PAR PATH( )

= if = and = then

else unde�ned.

PATH( ) denotes the set of the for elements of sort , i.e.:

PAR PATH( ) and there does not exist

PAR PATH( ) s t = and is a subpath of

where is a of i� there exist s.t. either = or =

or = .

Given , an is a triple s.t.

PATH( ).

In brief, we recall that a classical event structure of instantaneous events (see

[13]) consists of a set of events plus a partial order on (causality relation)

and a binary relation = on (con
ict relation); see e.g. Fig. 2.

Now we have to connect events and labelled transition systems; the basic idea is

that an event corresponds to the set of its occurrences i.e. to the set of the partial

execution paths corresponding to its occurrences; and that a relation among ,

, corresponds to a relation among the occurrences of , , . For example

in Fig. 1 we have outlined some partial execution paths corresponding to occurrences

of the three events , , ; notice that the relationships described by are

satis�ed, while those of are not. But, note that here the relationship between

and is �ner than the one formalized by : terminates with (i.e., each

occurrence of terminates with an occurrence of ).

Event algebras are particular dynamic algebras where

with each dynamic sort a special event sort is associated, whose elements are events,

i.e. sets of event occurrences, i.e. sets of partial execution paths.

An is a dynamic signature ( ) where for all

there exists a sort ( ) .

An on ( -algebra) is an -dynamic algebra s.t. for all

= (PAR PATH( )) .



i

DS

and

not

� �

� �

0 0

2

2 2

2 Event Logic

{

2.1 Syntax and Informal Semantics

De�nition3.

( )

1 1 +1 +1

1 1 +1 +1

( )

1

1

1 2
( )

1 2
( )

1 2
( )

1 2
( )

+

( ) ( )

( )

( ) ( )

!

2 2 �

f j

2 g ut

2

�! ��!

X

X ! f g

f j 2 X g

f g f g

2 2

�

�

2

� � ! 2 2

2 2

2 2

2 2

2 2 2

2 2 2

EA EB event morphism EA

EB EA EB

DS EA

DS

occurrence

EA EB

EA

EB

EAlg

DS OP PR

sort assignment

terms path formulae event logic formulae

PF

EF

DS

terms

OP

EF

EF

event ds

i i i i i i

i i i i i i

l

p l

s s S

s

E� s s S E� ds ds

E�

s E� s

n E� s

n i E� s

E�
event ds

E�
event ds

E�
event ds

E�
event ds

!

E�
event ds

E�
event ds

E�
event ds

ds E�

E�
event ds lab ds

E�

E� E� p

p �

ds e p e

: : : p d p l p d p l p d p l : : :

: : : d l d l d l : : : e :

ds event ds

ds

d d p d p d

e �

� p

E�

E�

E� �; � S; ;

E�

X S S X

X x x X x s

E�

X E�

T X X

X

s S ds

X T X

Op t ; : : : ; t T X

Op s : : : s s t T X i ; : : : ; n

e e T X e ; e T X

e e T X e ; e T X

e; e ; e T X e T X

�x:� T X x X � X

<�x:�> T X x X � X

Given two -algebras and , an - from into

(written : ) is a -morphism of total algebras with predicates s.t.

for all , ( )

( ) ( ) ( ) ( ) ( ) ( )

For a dynamic sort each element of sort ( ) represents an event

suitable for the dynamic elements of sort ; such an event consists of the set of

all partial execution paths corresponding to its occurrences; every such path will be

called an of the event.

Event morphisms are particular morphisms of algebras with predicates; thus

they preserve the truth of predicates (see [7]) and so also the activity of the dynamic

elements: if in , then ( ) ( ) in . For this reason they also

preserve the partial paths, i.e. if an event has an occurrence in , then the

image of by is a partial path in .

Event algebras and morphisms on a signature constitute a category, denoted

by ( ).

Here we introduce a minimal set of combinators for the event logic; several other

interesting derived combinators are reported in Appendix A.

In the following let = ( ), with = ( ), be an event signature

and an in�nite set of variable symbols. We recall that a for

is a partial function : and it will be seen as an -indexed family ,

where = and ( ) = .

The , the and the on

and a sort assignment for are de�ned as follows. We denote respectively by

( ) (the family of the sets of terms), ( ) (the family of

sets of path formulae) and ( ) (the set of the event logic formulae). For all

,

{ ( )

{ ( ) ( )

for all : , ( ) = 1

{ ; ( ) for all ( )

{ ( ) for all ( )

{ ( ) for all ( )

{ [ ] ( ) for all , ( )

{ ( ) for all , ( )



i

\ ; "

\ "

\ "

\ "

\ "

\ "

\ "

until since

and and

not not

0

0 0 00 0 00

0 00

0 0 0

0 0 00 0 00

00 0

( )

1 2 1 2 1 2

1 1 2 1

1

1

1 2 1 2

1 1 2 1 1 2

1 2 1 2
( )

1 2

1 2

1 2

1 2

+ +

�

2 2

2 2

: � 8 2 2 2

�

2

� � 2 2

2 2

: � 8 2 2 2

) 2 2

4 2 2 2 ut

2

�

�

6

� �

� �

�

E� ds E�
event ds

E� ds E� ds

E� ds E� ds

n E�

n i E� s

E� E� s

E� E�

E� E�
event ds

E� E� ds E� ds

! !

p f

path formulae

PF

PF PF

PF PF

formulae

EF

PR

EF

EF EF

EF

EF PF

DA

last element

�rst element

pre�x post�x

proper

>e; e< X e T X

� � ; � � X � ; � X

� ; � � ; x:� X � X ; x X

Pr t ; : : : ; t X

Pr s : : : s t T X i ; : : : ; n

t t X t ; t T X

� ; � � ; x:� X � ; � X ; x X

e e X e ; e T X

t; � X t T X ; � X

�; � ; ds

� Last � � �

F irst � �

� � � � � � � �

� � �

� � � � � �

� � � � � � � �

� � � � � �

F irst � � � Last � �

e e

e e

e e

e e

e

e

e

e

e

e

: : : �x:�

�

< : : :> <�x:�>

�

d � <� ; d; � >

{ ( ) for all ( )

{ ( ) for all ( )

{ ( ) for all ( )

{ ( ) ( )

for all : , ( ) = 1

{ = ( ) for all ( )

{ ( ) for all ( )

{ ( ) for all ( )

{ ( ) ( ) for all ( ) ( )

The semantics of the various combinators is informally described below and de-

�ned formally in Def. 4. To do that we need the following de�nitions on paths. Given

PAR PATH( ):

{ if is right-bounded, ( ) denotes the of ; analogously if is

left-bounded, ( ) denotes the of ;

{ is a ( ) of i� either = or there exists s.t. =

( = );

{ is a pre�x (post�x) of i� is a pre�x (post�x) of and = ;

{ if is a pre�x (post�x) of , then denotes the path s.t. =

( = ), if it exists. Notice that if is left (right) bounded, then =

( ) ( = ( )) since is both a pre�x and a post�x of itself.

The special operators, which represent events, are described by giving the occur-

rences of the represented events.

sequential composition of two events: an occurrence of ; is a partial path

consisting of the composition of an occurrence of and of an occurrence of .

conjunction of events: an occurrence of is a partial path which is

an occurrence of and of .

negation of an event: an occurrence of is a partial path which is not an

occurrence of .

�nite repetition of an event: an occurrence of is a �nite (non-null) sequence

of occurrences of .

in�nite repetition of an event: an occurrence of is a countably in�nite

sequence of occurrences of .

[ ] conditional state event: an occurrence of [ ] is a partial path consisting

of one state satisfying the condition expressed by the formula .

conditional atomic event: an occurrence of is a partial path con-

sisting of one transition labelled with a label satisfying .

Path formulae express properties of the execution paths for some dynamic ele-

ment; thus, given an execution path for a dynamic element , say = ,

we have that:



Fig. 3.

0 0 0 0 0

0

f

p

f

p f

f p f

f f

P

1 2

2

1

1

1 2

1 2 1 2

1 2 1 2

The until operator

� �

� � �

�

� :

8

4

)

EV j

P j

until

until

since until

\ "

\ "

{

{

2.2 The Institution of Event Logic

ESig

PSig

> >e � �

e �

< e< � �

e �

� � � � �

� <� � � ; F irst � ; �>

� d �

� � � � <� � ; Last � ; � � > �

� � �

� �

� � � � � � �

t; � t

�

e e e e

; ; ;

; ; ;

occurrence of an event in the future: holds on i� there exists occurrence

of which is a pre�x of ;

occurrence of an event in the past: holds on i� there exists occurrence

of which is a post�x of ;

is de�ned analogously to the homonymous temporal logic combinator;

holds on i� there exists post�x of s.t.

holds on ( ) ( ) ,

holds in each point between and the beginning of , i.e. for all proper

pre�xes of , holds on ( ) (notice that

is also a pre�x of so we can consider ).

The above condition is graphically represented in Fig. 3.

is the analogous of for the past.

holds on i� either does not hold on or holds on ; analogously

and are de�ned as the analogous �rst order combinators.

( ) holds i� each execution path for the element represented by the term

satis�es the condition expressed by the path formula .

holds i� each occurrence of is also an occurrence of .

In this section we state (without proof which is in [11]) that the logical formalism

de�ned in the previous section constitutes an institution (see [5])

= ( ESen EMod =)

whose components are de�ned below.

In [5] the concept of institution has been advocated as a rigorous presentation

of a logical formalism; being an institution means that a a formalism has an intrin-

sic coherence and of course various results are at hand for building speci�cations,

speci�cation languages, transferring results from an institution to another (see, e.g.

[12, 5, 1, 9]).

In the following = ( PSen PMod = ) denotes the institution of the total

(many-sorted) algebras with predicates and �rst-order formulae (see [5]).



;V ;V

� �

P P

2

and

not

EA

EA

EA EA EA EA

EA EA EA

EA

EA EA

EA EA

EA

EA

EA EA

EA

1 1 1 2 2 2

1 2 1 2 1

2

1 1 2 2 2 3

1 2 1 2

1 2 1 2

1

1 2

1

1 1

1 2 1 2 1 1 2 2 1 2

1 2

1 2

+

1 1

1 1

E� �

E�

E�

s s S s s s

;V

;V

n

;V ;V

n

;V

;V ;V ;V

;V

;V ;V

;V

n i

;V

n

! ;V

n i

;V

n

;V

ds

ESig

{

{

ESig PSig

{

{

PSig

ESig Set

{

{

ESig Cat

OP

{

{

Validity relation:

De�nition4.

2 2 2

� 2

�

�

� � �! � � � � �! � � �

P

! !

� � �

!

f j 2 g

! !

!

!

f g 2 !

j

j

�

f � j 2 2 � g

\

�

f � � j � 2 � � g

f � � � j � 2 � � � g

f j 2 j g

DS DS

DS

DS

DS

EF

EF

EAlg EAlg

EA valuation of the variables EA

EA

EA EA

EA

EA EA

EA EA

Interpretation of terms

EA

EA EA

E� � ; E� � ;

� E� ;E� � � ;� ds

� ds

� lab ds lab � ds

� event ds event � ds

� ds lab ds ds � ds lab � ds � ds

E� �; I I �

� E� E� � E� E�

� � � �

X

E� X;� X E� � X

� E� E� E� E�

� �

Sym E� � Sym

E� E� E�

� E� E� � �

E�

E� X

V V s S V X

E� V X

t V t

� �

V �; ; V �

� V ; V �

x V x

Op t ; : : : ; t Op t ; : : : ; t

e e � � � e ; � e � �

e e e e

e ; ds e

e

� : : : � n ; i ; : : : ; n � e � : : : �

e � : : : � : : : i � e � : : : � : : :

�x:� d d ; V d=x �

is the category de�ned as follows.

The objects are the event signatures (see Def. 2);

The morphisms: given = ( ) and = ( ),

( ) i� ( ) and for all

( ) ,

( ( )) = ( ( )),

( ( )) = ( ( )),

( : ( ) ) = : ( ) ( ( )) ( ).

The identities: given = ( ) = (identity of in ).

The morphism composition: given : , :

= , where is the morphism composition of .

ESen: is the functor de�ned as follows.

On objects ( ( ) has been given in Def. 3):

ESen( ) = ( ) is a sort assignment for and ( ) .

On morphisms: ESen( : ): ESen( ) ESen( ) is the func-

tor associating with the formula obtained by replacing in each symbol

of with ( ).

EMod: is the functor de�ned as follows.

On objects: EMod( ) = ( ) (the category ( ) has been

de�ned in Sect. 1.2).

On morphisms: given : EMod( ) is the restriction of PMod( )

to EMod( ).

it is given in the following de�nition.

We recall that given an -algebra , a in into

is a family of total functions = s.t. for all : .

Let be an -algebra and a valuation of into ; then we

de�ne by multiple induction:

{ the interpretation of a term in under ( ),

{ when a path formula holds on (an execution path for a dynamic element) in

under (written = ),

{ when a formula holds in under (written = )

in the following way (where we assume that each formula is well-formed).

{ = ( )

{ ( ) = ( )

{ ( ; ) = and is de�ned

{ ( ) =

{ ( ) = PAR PATH( )

{ ( ) =

1 for = 1 and is de�ned

{ ( ) = for 1 and is de�ned

{ [ ] = and [ ] =



3 Examples

until

since

0 0 0

0

0 0 0

0

0 0 0

�

EA

EA

EA

EA

EA EA EA

EA EA

EA EA

EA

( )

1 2

2

1

1 2

2

1

1 2 1 2

1 1

1 2 1 2

1 2 1 2

1 2 1 2

Proposition5.

sorts dsorts opns preds

enrich by

;V

ds
lab ds

p f

;V

f

;V

p

f

p f

f

p f

p

p f

p

p f

s

n

;V

n

;V

;V ;V

s

;V ;V

;V

E�

f j 2 2 2! j g

�

j 2

j 2

j

� � j

�

� � j

j

� � j

�

� � j

j : 6j

j � 6j j

j 8 2 j

�

j 2

j

j : 6j

j � 6j j

j 8 2 j

j ) �

j 4 j

2 j j ut

EV ut

[ [ f j 2 g

[ f� �! � � � j 2 g

EA EA EA

Validity of path formulae

EA

EA

EA

EA

EA

EA

EA

EA

EA EA

EA EA EA

EA EA EA

Validity of event logic formulae

EA

EA

EA EA

EA EA EA

EA EA EA

EA

EA EA

EF valid EA EA EA

is an institution.

DS OP PR DS

DS DS OP

PR DS

<�x:�>

d l d d; d ; l ; d; l; d ; V l=x �

� <� ; d; � >

�; ; V >e � e � �

�; ; V e< � e � �

�; ; V � � � �

? <� � � ; F irst � ; �>; ; V �

? � � �

<� � ; Last � ; � � >; ; V �

�; ; V � � � �

? <�;Last � ; � � � >; ; V �

? � � �

<� � ; F irst � ; � � >; ; V �

�; ; V � �; ; V �

�; ; V � � �; ; V � �; ; V �

�; ; V x:� v �; ; V v=x �

; V Pr t ; : : : ; t <t ; : : : ; t > Pr

; V t t t t

; V � ; V �

; V � � ; V � ; V �

; V x:� v ; V v=x �

; V e e e e

; V t; � � t �; ; V �

� X � ; V � V

S �;

�

S lab ds ; event ds ds ; ;

ds lab ds ds ds ;

: : : : : :

: : : : : : : : : : : : : : :

{ =

( ) and [ ] =

In the following we assume = .

{ = i� there exists s.t. is a pre�x of

{ = i� there exists s.t. is a post�x of

{ = i� there exists post�x of s.t.

( ) ( ) =

for all proper pre�xes of

( ) =

{ = i� there exists pre�x of s.t.

( ) ( ) =

for all proper post�xes of

( ) =

{ = i� =

{ = i� either = or =

{ = i� for all [ ] =

{ = ( ) i�

{ = = i� =

{ = i� =

{ = i� either = or =

{ = i� for all [ ] =

{ = i�

{ = ( ) i� for all execution paths for = .

( ) is in ( = ) i� = for all valuations .

Here we give two simple examples illustrating the main features of our speci�cation

formalism; in [11] more interesting speci�cations of well-known examples in the �eld

of concurrency are given (e.g., alternating bit protocol, serializable data base).

In this section for keeping the speci�cations simpler and more readable, we

{ use the derived combinators of the event logic given in the appendix A;

{ write for the event signature ( ),

where is:

( ( ) ( )

: ( ) )

i.e. we leave the canonical sorts and predicates implicit;

{ use the following well-known constructs for structuring speci�cations: +

(sum of speci�cations), and [ / ] (renaming of either sort

or operation or predicate symbols), see e.g., [14].



� � � !

�

0 00 0 00

input input input

Atomic input

i i i i i i

output=input

Corr input output

: : : Corr : : :

Corr

Static Properties.

INPUT

OUTPUT INPUT

CORRECTNESS

INPUT OUTPUT

Dynamic Properties.

input events

output events

PROG

CORRECTNESS

3.1 Speci�cation of a Sequential Nondeterministic Program with

Interactive I/O.

spec

sorts

opns

preds

axioms

spec

spec

enrich by

preds

axioms

spec

enrich by

In this paragraph we abstractly specify a nondeterministic sequential program with

interactive I/O, i.e. where I/O is realized by dynamically interacting with an external

environment (e.g., a terminal).

We operationally model the program by means of a labelled transition system,

with labels correspond to input and output actions. Specifying such a programmeans

to require some relationship between the receiving of some input and the returning

of some output: precisely some relationship among the \values" which constitute the

inputs and the outputs and \temporal"/\causal" relationships among the transitions

corresponding to inputting and outputting.

First we abstractly qualify what are the inputs and the outputs

of the program by giving two classical (static) speci�cations. For example, if

=

input

& :

:

&( & ) = ( & )&

= [ ]

we only require that there are \atomic" inputs (not further speci�ed) and an asso-

ciative composition operation; analogously for outputs.

Using algebraic speci�cations we can also describe which are the correct outputs

for the various inputs (i.e., what the program calculates).

=

+

:

properties about

Notice that we use a predicate and not an operation from inputs to outputs,

since we consider nondeterministic programs.

We consider two kind of events:

{ (the inputting of some value) and

{ (the outputting of some value).

=



l

3�

�

�

1 2 1 2

0 0

0 0

0

is finite

P

dsorts

opns

axioms

!

!

!

!

!

6 9 �!

�

6 � 4 � : 4 � :

6

4 � :

4 � 9 ^

IN

OUT

PROG

Properties About Events.

IN

IN IN IN

IN

Relationships Between Events.

IN IN IN IN

IN IN

OUT IN

Init prog

Input input lab prog

Output output lab prog

input event prog

output event prog

p; l:p Init

Init

: : : : : :

i

i i i i

Atomic i i <Input i >

i i p; > i > i p; > i i

i

i i i i

Init; > i > i

Corr

p; > o i:Corr i; o > i

o i

i

prog

:

: ( )

: ( )

: ( )

: ( )

{ is truly the initial state

axioms expressing dynamic properties

Here we do not give just one speci�cation , but instead show how to express

various sample dynamic properties of the program.

Recall that events are particular data of our speci�cation,

so we can express properties about them \in isolation".

{ Input events are �nite. ( )

{ Inputting a compound value is the same that inputting the component values.

( & ) = ( ); ( )

{ The input event of an atomic value consists in performing one transition labelled

in a particular way.

( ) ( ) = ( )

For the output events we can give either similar or di�erent properties.

{ During the activity of the program at most one input event may happen.

= ( ( ) ( )) ( ( ) ( ))

If at a certain moment the inputting of starts, then in the future (including

now) s.t. = will never be input and in the future (excluding now) will

never be input.

Notice that the axiom ( ( ) ( )) does not formalize this

property; indeed it would prevent any occurrence of the the input events.

{ The so called \partial correctness" with respect to the requirement expressed by

, i.e., whatever output is the result of a correct elaboration of some input

(output events are caused by appropriate input events).

( ( ) ( ( ) ( )))

If at a certain moment the output of starts, then there exists an appropriate

s.t. the input of started sometimes in the past.

In Fig. 4 we report a graphical representation of the activity of two programs

with occurrences of input and output events satisfying and not the above axiom.



�4 � 9 ^

Fig. 4.

3.2 A bu�er

IN OUT

IN OUTdisjoint with

Corr

p; > i o:Corr i; o o

i o

o

i o

m m

Programs respecting and not the partial correctness requirement

{ The so called \total correctness" with respect to the requirement expressed by

, i.e. the reception of some input will result in the outputting of a correct

output (input events cause appropriate output events).

( ( ) ( ( ) ( )))

If at a certain moment the input of starts, then there exists an appropriate

s.t. the output of eventually will start. The �rst case of Fig. 4 does not satisfy

the above axiom, while the second does.

Notice that these axioms do not require that the input event ends before the output

event; so the speci�cation has models corresponding to programs which terminate

by inputting a special value.

{ Input and output events are mutually exclusive.

( ) ( )

Without this axiom the speci�cation has models where, for example, while part

of the output is printed, part of the input is received (e.g., programs which go on

receiving one value, processing it and then printing the result) see second case

of Fig. 4.

Here we specify an unbounded bu�er with the following properties: it

{ preserves the order of the received messages;

{ is safe (it cannot corrupt any message);

{ cannot loose nor duplicate any message (where \cannot loose" is not to be in-

tended that it will deliver each received message, but only that if it delivers a

message , then it has already delivered all messages received before );



�

( )

0 0

all

l

?

?

Rec m

! � � � !

!

!

!

!

6 9 �!

6 9

6 9

)

4 9 �����!

spec sorts

SEQ

spec

enrich SEQ by

dsorts

opns

axioms

MESSAGE

BUFFER

MESSAGE

bu�er

bu�er

bu�er

bu�er

bu�er

message

Rec m

Del m

REC LIST DEL LIST

� seq elem seq elem elem seq elem

Init

Rec;Del message lab

NOT REC;NOT DEL message event

REC LIST;DEL LIST seq message event

c; l:c Init

Init

NOT REC < m:l Rec m >

REC LIST � NOT REC

REC LIST sm m REC LIST sm NOT REC < Rec m >

NOT DEL < m:l Del m >

DEL LIST � NOT DEL

DEL LIST sm m DEL LIST sm NOT DEL < Del m >

Init DEL LIST sm Init REC LIST sm

Init

c; > x :x x

{ interacts synchronously with the users (it delivers a message only i� there is a

user ready to accept it);

{ cannot receive and/or deliver simultaneously several messages.

We have no information about the nature of the messages, thus they are described

by the (static) speci�cation:

=

The interesting events, which may happen during the activity of a bu�er, are re-

ceiving and delivering a message. Since the bu�er interacts with the users in a

synchronous way, such events correspond to perform transitions labelled by ( )

and ( ) respectively. Notice that in this way we have that receiving and deliv-

ering cannot occur simultaneously. For expressing the bu�er properties we use the

complex events corresponding to receive and deliver in an orderly way a sequence of

messages (de�ned by the operations and ).

is the parametric speci�cation of �nite sequences with the operations

: ( ) (empty sequence) and & : ( ) ( ) (adding

an element at the end of a sequence).

=

( )

:

{ the initial state of the bu�er

: ( )

: ( )

: ( ) ( )

{ auxiliary event operations

{ is truly the initial state

= = ( )

( ) =

( & ) = ( ); ; ( )

= = ( )

( ) =

( & ) = ( ); ; ( )

{ de�nition of the auxiliary event operations

[ ]; ( ) [ ]; ( );

{ a partial path starting from corresponding to deliver a sequence

of messages always has a pre�x corresponding to receive the same

sequence of values this axiom correspond to require all the bu�er

properties (ordered, safety, no lost messages, no duplications)

( [ ])

{ responsiveness (the bu�er cannot refuse forever to receive a message)



{

4 �

1 2

1 2

1 2 def 1 2

or

or not not and not

m c; ><Rec m >

m

IN OUT

x � �x:� �

x t t

< : : :>

e e

e e

e e e e

4 Conclusions

A Derived Event Operations and Logical Combinators

In this framework we can specify dynamic elements modelled as labelled transition

systems without �xing the atomicity grain of the system transitions.

PROG

we can �rst describe

complex events and then we can express relationships between such events.

we can express relationship between events �ner than causality and

con
ict

PROG

Notice that the last axiom requires that eventually the bu�er will have the capability

of receiving the message and that is strongly di�erent from ( ( ) )

requiring that eventually the bu�er will receive the message .

By looking at the examples of Sect. 3 we can see some of the advantages of the use

of event logic with respect to �rst-order/temporal logic.

In the exam-

ple of Sect. 3.1 we do not �x the atomicity grain of the transitions of the system

representing the program. Thus we can have a speci�cation having models

where non-internal transitions correspond to inputting/outputting respectively �les,

atomic values and bits. However by the same formalism we can give also \less ab-

stract" speci�cations, by qualifying the system transitions (for example in Sect. 3.2

where receiving and delivering a message is an atomic transition).

Since in our algebraic formalism events are particular data,

For ex-

ample, in Sect. 3.2, the \being caused and ending before" relation between the two

events \delivering a sequence of messages" and \receiving the same sequence" de-

scribes the main properties of the bu�er. In Sect. 3.1 we can simply express prop-

erties as partial/total correctness also in the case of programs performing I/O bit

after bit (just add axioms qualifying the events and ); while using only

instantaneous events (corresponding to perform one transition) such properties are

very hard to express.

On the other hand, our event logic considers non-instantaneous events and so

there are also some advantages with respect to classical event structures; for example

in our framework

. In Sect. 3.1 the causality property between input and output events (total

correctness) does not mean that the second event must occur after the �rst one is

terminated. Thus, we can give a speci�cation having very reasonable models,

where inputs events terminate after the caused output events. Think, for example, of

programs which go on receiving a value, processing it and then returning the result,

until they receive a special value, signalling the end of the activity.

Whenever is the only variable occurring free in , [ ] is shortened in [ ]; more-

over [ = ] is further shortened in [ ] . Analogous abbreviations are de�ned for

.

Nondeterministic choice between two events: an occurrence of is either

an occurrence of or an occurrence of .

= (( ) ( ))



3 3

3 3

?

?

?

! ?

!

� �

� �

�

�

{

{

{

{

{

{

{

{

{

{

{

{

�

�

,

�

�

) )

: :

: :

^ : : :

^ : : :

Temporal Logical Combinators

e e e

e

e e e e

e

e

e e

< >

e e

e e

e e e e

e e

e e e e

e e

e e

e

e e e e

� � � �

� � � �

� � � � �

� � � � �

1 2 1

2

1 2 def 1 2

def

def

+

def

def

def

1 2

1 2 def

1 2 1

+

2

1 2

2 1 2

+

1

2 1

def def

def def

def def

def def

def def

and not

inst

inst true

inst or

step

step true

steps

steps step

all

all step or step

not all

disjoint with

steps and steps step or

and steps steps or

steps and steps step or

and steps steps not all

is finite is infinite

is finite steps is infinite step

true until

P true since P P

P P P P

Di�erence between two events: an occurrence of is an occurrence of

which is not an occurrence of .

=

The universal instantaneous event: an occurrence of is a partial path

consisting of one state.

= [ ]

Either null or �nite repetition of an event: an occurrence of is a �nite or null

sequence of occurrences of .

=

The universal atomic event: an occurrence of is a partial path consisting

of one transition.

=

The �nite universal event: an occurrence of is a �nite partial path.

=

The universal event: an occurrence of is a partial path

=

Test of (weak) disjunction between two events: and are (weakly) disjoint i�

there is no transition where both events are occurring ( is the impossible

event, i.e. the one without occurrences).

[(( ; ) ( ; )) ( ; ; )]

[ ( ; ; )]

[(( ; ) ( ; )) ( ; ; )]

[ ( ; ; )] =

Check of �niteness/in�niteness of an event: ( ) i�

all occurrences of are �nite (in�nite).

= =

Eventually and always in the future including the present.

= =

Sometimes and always in the past including the present.

= =

Eventually and always in the future excluding the present.

= =

Sometimes and always in the past excluding the present.

= =



a

References

Proc. TAPSOFT'87, Vol. 1

Logics of Programming Workshop

Proc. MFCS'91

Proc.

TAPSOFT'87, Vol. 2

Proceeding of ICALP'87

Logic Colluqium'87

Recent Trends in Data Type Speci�cation

Information

and Computation

Linear Time, Branching Time and Partial Order in Logics

and Models for Concurrency

Handbook of Theo-

ret. Comput. Sci.

1. E. Astesiano and M. Cerioli. Relationships between logical frameworks. In the same

volume, 1992.

2. E. Astesiano and G. Reggio. SMoLCS-driven concurrent calculi. In H. Ehrig,

R. Kowalski, G. Levi, and U. Montanari, editors, , num-

ber 249 in Lecture Notes in Computer Science, pages 169{201, Berlin, 1987. Springer

Verlag.

3. E. Astesiano and G. Reggio. A structural approach to the formal modelization and

speci�cation of concurrent systems. Technical Report 0, Formal Methods Group, Di-

partimento di Matematica, Universit�a di Genova, Italy, 1991.

4. E. Astesiano and G. Reggio. Entity institutions: Frameworks for dynamic systems. in

preparation, 1992.

5. R.M. Burstall and J.A. Goguen. Introducing institutions. In E. Clarke and D. Kozen,

editors, , number 164 in Lecture Notes in Computer

Science, pages 221{255, Berlin, 1984. Springer Verlag.

6. G. Costa and G. Reggio. Abstract dynamic data types: a temporal logic approach. In

A. Tarlecki, editor, , number 520 in Lecture Notes in Computer Science,

pages 103{112, Berlin, 1991. Springer Verlag.

7. J. Gouguen and J. Meseguer. Models and equality for logic programming. In

, number 250 in Lecture Notes in Computer Science, pages 1{22,

Berlin, 1987. Springer Verlag.

8. K. Lodaya and P. S. Thiagarajan. A modal logic for a subclass of event structures. In

T. Ottmann, editor, , number 267 in Lecture Notes in Com-

puter Science, pages 290{303, Berlin, 1987. Springer Verlag.

9. J. Meseguer. General logic. In , Amsterdam, 1989. North-Holland.

10. G. Reggio. Entities: an istitution for dynamic systems. In H. Ehrig, K.P. Jantke,

F. Orejas, and H. Reichel, editors, , number

534 in Lecture Notes in Computer Science, pages 244{265, Berlin, 1991. Springer Ver-

lag.

11. G. Reggio. Event logic for specifying abstract dynamic data types { Extended version.

Technical Report 13, Formal Methods Group, Dipartimento di Matematica, Universit�a

di Genova, Italy, 1991.

12. D. Sannella and A. Tarlecki. Speci�cations in an arbitrary institution.

, 76, 1988.

13. G. Winskel. An introduction to event structures. In J.W. de Bakker, W.-P. de Roever,

and G. Rozemberg, editors,

, number 354 in Lecture Notes in Computer Science, pages

364{397, Berlin, 1989. Springer Verlag.

14. M. Wirsing. Algebraic speci�cations. In van Leeuwen Jan, editor,

, volume B, pages 675{788. Elsevier, 1990.

This article was processed using the LT

E

X macro package with LLNCS style


