
?

?

1 Introduction

reactive systems

A Metalanguage for the Formal Requirement

Speci�cation of Reactive Systems

Universit�a di Genova { Dipartimento di Informatica e Scienze dell'Informazione

Viale Benedetto XV,3 16132, Genova, Italy

astes, reggio cisi.unige.it

This work has been supported by \Progetto Finalizzato Sistemi Informatici e Calcolo

Parallelo" of C.N.R. (Italy), Esprit-BRA W.G. COMPASS n. 6112 and by a grant ENEL-

SPA/CRA (Milano Italy).

Egidio Astesiano { Gianna Reggio

Various formalisms have been proposed for the speci�cation of software / hardware

systems characterized by the possibility of performing some dynamic activities in-

teracting with an external world, called reactive systems; however in the literature

sometimes also terms as: concurrent, parallel, distributed, . . . systems have been used

for pointing out to some particualr features of the systems; here we simply use the

term . Some of these formalisms deal with properties at what we may

call design level, when already architectural decisions have been taken and a speci�-

cation determines essentially one structure, though still at a rather abstract level (we

say abstract speci�cations). Among these, some, like CCS, CSP and variations, are

more languages for describing elegant models than speci�cation formalisms; others

are instead suitable for expressing, with more or less generality, abstract properties

about the static data, like PSF [12], LOTOS [10] and algebraic Petri nets [20] or

about both the static data and the concurrent architecture, like SMoLCS [1, 2, 5].

The interested reader may wish to look at [3] for a survey dealing mainly with

abstract speci�cations at the design level.

At the requirement level, the proposed formalisms are dealing with the abstract

dynamic properties, i.e. those related to the possible events in a system life, usually

classi�ed in safety and liveness properties. There is a literature on formalisms based

on temporal, deontic, event logic and others (see e.g. [15, 9, 17], also for references).

Now the experience shows that also the structural properties of a system (including

the static data) and their relationships with dynamic features of a system are fun-

damental also at the requirement level; however the speci�cation mechanism should

be able to avoid overspeci�cation, not confusing requirements and design.

We intend in this paper to propose an approach, supported by a metalanguage

(schema), for dealing, at the requirement level, with both static and dynamic prop-

erties.

The approach is based on a speci�cation formalism which, according to the in-

stitution paradigm (see [6]), consists in models (semantic structures), sentences or

formulae (syntax) and validity (semantics of sentences). A speci�cation is a set of for-

mulae determining a class of models, all those satisfying the formulae. The new and

l

0 0

; ;

s; l; s s s

!

!� � �

2 ! �!

2 The Models

2.1 Entity Algebras

The models should allow to represent the dynamic activity of the entities.

entity algebras entity

labelled transition system lts STATE LAB

STATE LAB states

labels STATE LAB STATE transition relation

transition

central idea of this paper is the proposed models, that we call entity algebras. Those

models can support statements about the structure of reactive systems, dealing with

the subcomponents of a system, without referring to detailed structuring combina-

tors, which are essential at the design level, but here would spoil the generality of

requirements.

In the �rst section we give a rather informal presentation of entity algebras,

illustrated by a small example. In the second we present the syntax of a speci�cation

language and in the third section the notion of validity of a formula and the semantic

of a speci�cation; some examples concerning also the application to an industrial test

case are reported in the fourth section. The used algebraic notions and notations are

reported in Appendix A.

Two important comments are in order. First our metalanguage is rather schematic,

in the sense that we can choose various formalisms for expressing the dynamic prop-

erties. Here, we give just a set of combinators, taken from the branching time logic,

su�cient for expressing some common interesting requirements on reactive systems;

for other choices, see e.g. [8] which uses a richer choice of branching time combi-

nators and [17], which presents an event logic, where the properties on the activity

of the elements are expressed in terms of relationships among occurrences of non-

instantaneosus events. In general, depending on the speci�c application �eld (e.g.,

industrial plants handled by automatisms, software / hardware architectures and

so on) one can choose a minimal set of combinators getting a formalism powerful

enough but rather simple. The important point is that now the dynamic formulae

are \anchored" to a term representing a dynamic element and so we have a formal-

ism where it is possible to express requirements involving properties on the activity

either of di�erent systems or of a system and some of its components; for example

we can express properties of the form \a new component which can eventually reach

a certain situation cannot be added to a system satisfying some condition".

Second, though we do not insist on the more formal aspects, it can be shown for-

mally (not a trivial task) that indeed we get an institution; the interested reader may

look at [16, 4, 7] for a more formal presentation of entity algebras and speci�cations.

Here we introduce our models for reactive systems called (is

the word that we use for possibly structured dynamic elements).

We adopt the well-known and accepted technique which consists in viewing entities

as labelled transition trees de�ned by a labelled transition system (see [13, 14]).

A (shortly) is a triple (), where

and are sets, whose elements represent respectively the and the

of the system and is the ;

() is said a and is usually denoted by .

n1

ES

0

0

1

1 1

1 1

1 1

2

0

0

2

0 0 0 0

0 0 0

2

�!

f g

2

!

� � ! �

� � !

2

l

es es

es es es es

n

es es es

es

n n

n

k

k

n

i i

The models should allow to represent the structure of the entities.

E s

s

E

E

s s E s

s

E l l

;

es

; ;

es : : : es es n

n >

Ec : : :

n

Ec :

e Ec e ; : : : ; e e e e

e Ec e ; : : : ; e e Ec e ; : : : ; e e

e e e i k e Ec j

LTS STATE

LTS

LTS

capability

LTS

ES ES

LTS STATE LAB

entity composers

STATE STATE STATE

STATE

(immediate) subcomponents

An entity can be represented by an lts and an initial state ;

then the states of reachable by a sequence of transitions from represent the

intermediate (interesting) situations of the activity of and the transition relation

of the possibilities of of passing from one situation to another. Note that

here a transition has the following meaning: in the state (situation)

has the of passing into the state (situation) by performing a transition

whose interaction with the external (to) world is represented by the label ; thus

contains both information on the conditions on the external world for the capability

to become e�ective, and on the transformation of the external world induced by the

execution of the transition.

Usu-

ally most of the reactive systems of interest are structured, i.e. are systems where

dynamic subcomponents interact among them for determining the activity of the

whole system (in general the dynamic subcomponents may be in turn structured

systems). Think for example of the Ada programs (whose subcomponents are the

tasks, while tasks have no subcomponents, they are simple) or a net of workstations

on which UNIX is running (the subcomponents of the nets are the workstations,

while the subcomponents of the workstations are the UNIX processes, which may be

simple or have as subcomponents other processes). So in general in a system there

are di�erent \sorts" (types) of entities, all of them modelled by lts's. In the Ada

case there are entities of sort \program" and \task", while in the workstation case

of sort \net", \workstation" and \process". Thus the �rst component of our model

is

where is the set of the various sorts of entities and for each

= () is an lts.

Then the models should allow to know which are the subcomponents of an entity

(possibly none) with their sorts and how they are organized to get the whole entity;

to this end we have , i.e. partial functions taking as arguments

entities, also of di�erent sorts, and returning an entity of a certain sort; precisely an

entity composer of arity \ ", for 0 is:

{ when 0, a partial function

: ;

{ when = 0, a constant

If = (), then , . . . , are the of .

By giving a set of entity composers, we get the complete views of the structure

of the entities.

For example, assume = (), = () and that , . . . ,

, , . . . , have no subcomponents, i.e. for = 1, . . . , = and for = 2,

�

{

ES ES

0 0

00

2 2

1

2

1 1 +1

+1

� 2

2

�! � � 2

f g

j j

k

n

n n n

n

w;es w ;es

w;es w;es

n e Ec Ec Ec Ec Ec

e

e

e Ec e ; : : : ; e Ec e ; : : : ; e ; e

e

e

E� �; � S; ;

S es

l es S es

es l es es

es

E�

E� ;

w es

a

view of the structure

a the

entity sorts

entity signature ES OP PR

ES ES

PR

entity composers

EC EC

EC OP

. . . , = with ,. . . , , , . . . , zero-ary entity composers; thus

of is given by the following graph

Notice that we have spoken of view of the structure of and not of view of

the structure, since there may be di�erent views of the structure of an entity; think

for example of a system where the subcomponents which reach an error situation do

not a�ect any more the activity of the system, thus we can have, e.g.,

= () = ()

where corresponds to an error situation and so there are two di�erent views of

the structure of .

Clearly, in general, the activity of a structured entity is determined by the activity

of its subcomponents, see the examples in the following subsection.

Since we are interested in having an algebraic framework, for getting a speci�-

cation formalism integrating the speci�cations of abstract data types, we precisely

de�ne the models, whose main features have been introduced above, as algebras; see

the Appendix A for a summary of algebraic de�nitions and notations.

Entity signatures should provide syntactic elements for representing all parts of

the models, so they are particular signatures with predicates having:

{ sorts for the various types of entities (),

{ predicate symbols corresponding to the transition relations of the entities and

sorts for the associated labels,

{ operation symbols corresponding to the entity composers;

obviously also sorts, operation and predicate symbols for representing and manipu-

lating the data handled by the entities. Entity algebras will be partial algebras with

predicates on entity signatures s.t. we can �nd at least a view of the structure of

each element of entity sort. Entity signatures and algebras are formally given below.

An is a pair (), where = () is a signature

with predicates, (the set of the entity sorts) s.t. for each

there exists a sort - (labels of the transitions of entities of sort) and

a predicate symbol : - (representing the transitions of

entities of sort) .

For a given , the family of the is

() =

where for all , = .

CL

CL

CL

es

n

n

n

n n

n

1

1

1

1 1 1

1 2 1 2

1 2 1 2

2 2

� � !

j j j j j

�

jj � !

jj jj

{

{

2.2 A Small Example

esorts sorts

opns preds

sig

esorts

entity algebra ES

ES

structure views

view of the structure

(proper) subentity

E� �; �

e es

Ec s : : : s s n

s s

Ec e e Ec

e e e

e Ec e ; : : : ; e ev ev e

e

e ev

ev e

com com com sig sig com com seq

sig seq

C�

proc proc proc

p p p ; p

C�

prog; proc

An EA on = () is just a -many-sorted partial algebra

with predicates s.t. each EA , with , is representable by a composi-

tion of interpretations of entity composer (more precisely, it is the interpretation

of a term built using only the entity composer operations).

The on EA are the ordered trees with the nodes labelled by

entity composers s.t. a node labelled by : , has exactly sons

whose roots are labelled by composers with result sorts , . . . , respectively.

Now we de�ne by induction when one of such trees is a of

an entity:

* is a view of the structure of i� = .

* is a view of the structure of i� there exist , . . . , s.t.

= () and , . . . , are views of the structures of , . . . ,

respectively.

{ We say that is a of a view i� there exists a (proper)

subtree of which is a view for .

For illustrating the models introduced before we give an entity algebra represent-

ing the reactive system modelling the executions of the programs of a very simple

concurrent language .

In programs whatever number of sequential processes perform commands,

whose syntax is given below, and evolve in an interleaving way interacting among

them by exchanging signals in a synchronous way (handshaking communication).

: : = skip ; send-signal() rec-signal() +

skip is the null command, send-signal and rec-signal are the commands for the sig-

nal exchange and \+" is the nondeterministic choice, where and are the

nonterminals for signals and sequential commands not further detailed.

Let be the entity signature given below, where \ " precedes comments, the

key word \ " the list of the entity sorts, \ " the list of the remaining sorts

and \ ", \ " the list of the operations and predicate symbols respectively

with their functionalities. Moreover for some of the operation and predicate symbols,

we use a mix�x notation; for instance,

:

means that we shall write instead of (); i.e. terms of appropriate sorts

replace underscores.

=

{ in this case there are two kinds of entities:

{ programs and processes and so two entity sorts

| {z }

| {z }

TAU

SEND REC

0

0

0

0

0

0

0

0 0

0 0

sorts

opns

preds

{

{

{

TAU

SEND REC

TAU

SEND REC

n

n

prog proc

n n

s s

l

l

l

l

n

�

n

s s

n

�

n

times

times

CL

1 1

() ()

1

1

1 2

1

2

1

1

1 2

1

1

1

1 2

1

2

1

()

1

2

()

2

1 2 3

1 2

3

!

!

!

!

jj jj � � ! �

!

�! � �

) � �

jj jj f g �

���!

������! �����!

�!

�!

�!

�!

���!

jj jj jj) jj jj jj

������! �����!

jj jj jj jj) jj jj jj jj

�

l prog; l proc; sig

C proc C

proc

l proc

; sig l proc

�; �; : : : sig

: : : proc : : : proc prog n

� l prog

proc l proc proc

prog l prog prog

C�

sig l proc l prog

C� proc

proc

Symb

Symb

t t

p : : : p p ; : : : ; p n

sq p

sq

s s

p p

p p p p

p p

p p p

p p

p p : : : p p p : : : p

p p p p

p p p : : : p p p p : : : p

n

- -

: for all commands de�ned by the above BNF

{ entity composers for entities of sort

{ (they are simple entities, i.e. without dynamic subcomponents)

: - { process internal activity

: -

{ for labelling the process transitions corresponding to sending and

{ receiving signals

: { the signals are just Greek letters

: 1

{ entity composers for programs

: - { program internal activity

: - { transition predicate for processes

= : - { transition predicate for programs

Let CL be the term-generated -algebra s.t.:

the carriers of sorts , - and - are the sets of the ground terms of

the corresponding sorts on ; the carrier of is the set of the quotient

of the ground terms of sort w.r.t. the identi�cations requiring that \;" is

associative, \+" is associative, commutative and both have \skip" as identity;

while CL is the set of the �nite non-empty parts of CL .

Here for simplicity the interpretation in CL of , either a predicate or an op-

eration symbol, will be simply written and analogously for ground terms,

thus will be written .

= for all 1, while the interpretations of the other

operations are de�ned in the obvious way;

the interpretations of the transition predicates are de�ned by the following in-

ductive rules.

sequential command

send-signal() skip rec-signal() skip

; ; +

=

=

2

prog

0

0

00

1

1

1 1

1 2 1 3

CL

CL

CL

CL CL

jj

jj 2

jj

jj jj jj

jj

! jjj � !

jjj jjj jjj

pg � �

pg

� �

pg

pg � � �

pg

C�

C�

proc prog prog prog prog

C�

prog proc

prog

pg p p p p ;

Di�erent ways of composing some entities may be equivalent.

Compositions of di�erent groups of entities may be equivalent.

Sharing of subentities.

Notice that since the interpretations of + and are commutative, the above

rules fully describe the activity of the programs.

The following examples show that our de�nition of entity algebras allows to

formally describe several interesting situations occurring in reactive systems.

= send-signal() rec-signal() CL

is an entity whose structure may be seen in two di�erent ways; indeed is also

equal to

rec-signal() send-signal();

that means that in programs the order of the processes in parallel is not relevant.

The two views of the structure of are graphically represented by

It is possible that an

entity has some views of its structure with di�erent number of subentities; indeed,

for example,

= send-signal() = send-signal() skip = send-signal() skip skip = . . .

Thus in the programs the processes which cannot perform any action (skip)

do not matter.

Various views of the structure of are graphically represented by:

Consider a language di�ering from only for having

a multilevel parallelism instead of a
at one; we just take a new signature

obtained from by replacing the various operations \ " (entity composers for

programs) with

: : ,

and give a -entity algebra CL in the same way of CL. In this case an entity of

sort has either one subentity of sort or two subentities of the same sort

.

= () ()

0

0

0

CL

CL

CL

p

n

�

n

p

n

�

n

TERM

CREATE

TERM

CREATE

1

1 2 1 3

2

2

2

()

1

1

1 2 2

1

()

1

1 2

1

2

p

p p p p

p C�

C�

l proc proc l proc

p

p p

p p : : : p p : : : p

p p

p p : : : p p p p : : : p

Entities may terminate and new entities may be created.

TERM CREATE

jjj jjj

! !

����!

��������!

����!

jj jj jj) jj jj

��������!

jj jj jj) jj jj jj jj

is an entity where the subentity represented by is shared between the subentities

\ " and \ "; a view of its structure is graphically represented by

Consider a language

di�ering from only for having commands corresponding to creation and termi-

nation of processes (terminate, create()). We take a new signature obtained

by adding to operations corresponding to the new commands and

: - : - ;

and give the algebra in the same way as CL; where the transitions due to the

new commands are given by

terminate skip

create() skip

=

=

Graphically an example of a creation and of a termination of a process are shown

by the transitions:

0

s s

CL

SEND REC

0 00 0 0 00

1 2 2 1

() ()

:

jj jj

6 9 ������! ^ �����!

jj

�

3 The Syntax of the Metalanguage

C�

� �

� �

p p p p

p ; p ; s; s : tp p tp p

tp

AllSub

AllSub es ent set eset e es

eset e

These last examples show also that an entity can modify its structure during a

transition.

Now we look for an appropriate language for expressing abstract requirements on

reactive systems formally described by entity algebras.

As a �rst attempt we could use �rst-order formulae on entity signatures (see Ap-

pendix A); with this language we can express some interesting properties. Consider

the signature introduced in Section 2.2; the axiom

(=)

requires that the signals (static elements) represented by and should be di�erent;

while

=

requires that the order of the process components of a program does not matter;

and

requires that the process represented by the term cannot both receive and send

signals.

However �rst-order logic on entity algebras has several limits:

1. concerning static properties: it cannot express properties about the structure

of the entities without introducing some entity composers (as for the parallel

composer before);

2. concerning dynamic properties: it can only express properties about the local

activity (immediate future/past) of entities, but not e.g. liveness properties.

For overcoming these limits we extend �rst-order logic with:

1. Special predicates \ " for checking which are the subentities of an entity.

: - , given a set of entities and an entity of sort ,

returns true i� is the set of all subentities (proper and not) of w.r.t.

some view of its structure. (Obviously we have also to introduce operations and

predicates for handling set of entities.) We have found that such predicates are

enough for expressing all properties of interest on the structure of entities (e.g.

an entity is simple [has no subcomponents], there is an upper bound to the

number of subcomponents, the activity of an entity is completely determined by

the activity of its subcomponents and so on).

3

1 2

{

{

{

{

{

{

l l

E�

E�

n

n E�

E�

E� E�

�! �!

4 4

5 5

4 5

� 2

; [f g �

2

2

2

: 2 2

EA

1

EA

2

ST

ST

1

ST

1

ST

1 2

1 1 2 1 2

execution paths

S OP PR ES

ES

DF dynamic formulae

path formulae ES

dynamic formulae

DF

DF

DF DF

e

e e e : : :

e

e

e e

et

et; � �

et � �

et; � �

et �

�x : � � � �

<�x : �> � � �

< : : :>

: : : < : : :>

E�

; ; ; E�

E� E�

AllSub ent set es es

ent set

X E� X

P X; es es

t t t E� X

Pr t ; : : : ; t X Pr E�

t t X

� � > � X � ; � X

2. Classical temporal logic combinators similar to those of the branching time logic

CTL (see [21]); brie
y introduced below.

Given an entity in an entity algebra EA, a global view of its activity is given by

the set of all its , i.e. maximal sequences of labelled transitions

of the form:

(clearly such sequences may be either �nite or in�nite); a sequence as above

represents a possible behaviour of . Thus a branching time-style property on

the activity of may be given saying either that all paths (there exists a path) for

satis�es some condition or there exists a path for satisfying some condition.

In our metalanguage we have the following combinators, where we assume that

is a term of entity sort:

(for all paths) s.t. () holds i� \for every execution path starting

from the entity represented by the path formula holds on ";

(exists a path) s.t. () holds i� \exists an execution path starting

from the entity represented by on which the path formula holds".

We have borrowed and from [21].

For the path formulae we have the combinators

(always), (eventually), for safety and liveness properties;

[] which holds on a path whenever holds of the �rst state of ;

which holds on whenever holds of the �rst label of (if it exits)

and the usual �rst-order combinators.

Notice that, due to the combinator our logic includes also the so called

\edge formulae" see [11].

Here, for lack of room we consider only such simple combinators; see [8] and [17]

for other combinators, [8] presents also some examples motivating the introduc-

tion of [] and . Notice that the choice of the metalanguage combinators

for dynamic properties is in some sense orthogonal w.r.t. those for the structural

properties.

Our metalanguage is then de�ned by putting together �rst-order logic with the

formulae brie
y introduced in 1. and 2. Formally, let be an entity signature

(()); then the axioms on are a subclass of the dynamic formulas

of [8] on a new signature , obtained by enriching with:

{ the predicates : - for all ,

{ the sort - , whose elements are the �nite sets of elements of any entity sort,

{ the usual operations and predicates on �nite sets of entities: , , , .

Given a sort assignment on the sets () of

and () of of sort are inductively de�ned as follows

(where , , . . . , denote terms of appropriate sort on , and we assume

that sorts are respected).

() () if is a predicate of

= ()

, = () if ()

3

ST

ST

ST ST

ST ST

4 Validity of Formulae and Semantics of a Speci�cation

8 2 2 2

4 2 2 2

2 2 2

2 2 2

: 2 2

8 2 2 2

2 2

9 _ �

: : 5 :4 :

2

�

2 2 2 2!

2!

j

!

2

j 2

2 j

j 2

j

j : 6j

j 6j j

1 1 2 1 2

def def

ST

ST

ST

EA

ST

0 0 1 1 2 2

0 0 1 1 2 2

+1

EA

EA

0

0

+1 +1 +2 +2

1

EA

1

EA EA

1 2

EA

1

EA

2

1 2 1 2

E� E�

E� E�

E� es E�

E� l es E�

E� E�

E� E�

E� E�

E�

n n

n n k

n es n l es n n n

k

n n n n n n n

E�

E�

n

;V

;V

n

;V ;V

DF DF

DF ES

path formulae

DF

DF

DF

PATH

DF holds in

under holds on a

path PATH under

dynamic formulae

x : � X � X x X

t; � X t es � P X; es es

�x : � P X; es x X � X

<�x : �> P X; es x X � X

� ; � > � P X; es � ; � P X; es

x : � P X; es � P X; es x X

� P X; es � P X; es

� � t; � t; �

� X E�

� E� �

E�

eset AllSub e ev

e eset ev

; es

es

e l e l e l e l

e l e l e l e l e k

n e l e ; l ; e

e l e ; l; e

�

S � � e

L � � l

� e l e l e l

E� V X

� X

V ; V � � P X; es

� ; es V ; �; V �

; V Pr t ; : : : ; t t ; : : : ; t P r

; V t t t t

; V � ; V �

; V � > � ; V � ; V �

() if (),

() () if has sort , (), with

[] () if , ()

() if

-

, ()

= () if ()

() if (),

() if ()

Moreover we consider the following derived combinators: , , de�ned as

usual; = and () = ().

Since () is built on the richer signature , �rst of all the validity of

in an -entity algebra EA is the validity of in EA , an appropriate extension

of EA to an -algebra, where the added sorts, operations and predicates are

interpreted in the obvious way (e.g.: holds i� there exists a

view of the structure of s.t. is the set of all subentities of), see [4] for a

complete de�nition of EA .

Moreover we need some preliminary de�nitions. We denote by (EA)

the set of the execution paths for the entities of sort , i.e. the set of all sequences

having either of the two forms below:

(1) (in�nite path)

(2) 0 (�nite path)

where for all IN: EA , EA

-

and () ; moreover,

in (2) for no , : () (there are no transitions starting from the �nal

element of a �nite path).

If is either (1) or (2) above, then

{ () denotes the �rst element of : ;

{ () denotes the second element of : (if it exists);

{ denotes the path . . . (if it exists).

Let EA be an -entity algebra and : EA be a variable evaluation; we

de�ne by multiple induction when a dynamic formula () EA

(written EA =) and when a path formula ()

(EA) (written EA =).

EA = () i� ()

EA = = i� =

(both sides must be de�ned and equal)

EA = i� EA =

EA = = i� either EA = or EA =

ST

ST

s

;V

;V

s

j

E�

E�

ST

EA

EA

1 2 1 2

1 2 1 2 1 2 1 2

sig

esorts

sorts

preds

j 8 2

j

j 4

2

j

j j

j j

j : 6j

j j j

j 8 2

j

j � j

j j

2 j j

�

f g

�! � �

) � �

9 6 ^ 6 ^ 6 ^ f g

j f g

PATH

path formulae

DF valid

Ax Ax DF

Ax

TWO SIMPLE

TWO SIMPLE

TWO SIMPLE

; V x : � v s x

; V v=x �

; V et; � et

� ; es es et

S � et ; �; V �

; �; V �x : � ; V S � =x �

; �; V <�x : �> ; V L � =x �

L �

; �; V � ; �; V �

; �; V � > � ; �; V � ; �; V �

; �; V x : � v s x

; �; V v=x �

; �; V � j �

; � j; V �

� X � ; V �

V

E�; X

E�

S�; �

S�

S�

syst; proc

l syst; l proc

proc l proc proc

syst l syst syst

�

eset AllSub e > p ; p proc : p p p e p e eset p ; p ; e

syst

proc

S� �

syst S�

S�

eset AllSub e eset e :

EA = i� for all EA , with sort of ,

EA [] =

EA = () i� is de�ned and for all

(EA), with sort of ,

s.t. () = ,EA =

EA = [] i� EA [()] =

EA = i� either EA [()] = or

() is not de�ned

EA = i� EA =

EA = = i� either EA = or EA =

EA = i� for all EA , with sort of ,

EA [] =

EA = i� for all 0 s.t. is de�ned,

EA = .

A formula () is in EA (written EA =) i� EA = for all

variable evaluations .

A speci�cation is a pair (), where (), and usually its se-

mantics is the class of its models, i.e. of the -algebras satisfying all formulae in

. But, consider the speci�cation

= ()

where is the entity signature:

=

{ there are entities of two kinds: systems and processes

- -

: -

= : -

and the following formula of our metalanguage

= : = = = =

which formalizes the requirement \the entities of sort are the parallel compo-

sition of two simple (i.e., without internal parallelism) entities of sort " (recall

that an entity is always a subentity of itself). The models of are the

-entity algebras EA s.t. holds in EA; but no such algebras exist. Indeed, since

there are no operations of sort in , there are no entity composers and so, for

each -entity algebra EA

EA = i� =

Thus the speci�cation has no models. However it is easy to

exhibit various entity algebras describing concurrent systems with two and only two

def

0

0

0 0

0

0 0 0

S� P� P� S�

TWO SIMPLE

Ax

Ax

Ax

Ax

Is Sub

5 Examples and Applications

!

� � !

� !

!

jj � !

�

f j � 2 j g

�

9 ^ 2 ^ 6

5.1 Requirements Speci�cation of a Net of Workstations

Nil proc

l proc proc proc

proc proc proc

� l proc

proc proc system

E�;

E� E�

E� E�

E�;

E� E� E� � �

e e

e e eset : eset AllSub e e eset e e

simple process subcomponents; but they are entity algebras on signatures richer

than . For example, all -entity algebras, where is the entity signature

enriched by the operations

:

: -

+ :

: -

:

seem sensible models of .

Our solution is to take as models of a speci�cation () the entity algebras on a

signature , extending , satisfying the axioms in ; the extra syntactic elements in

(entity composers) allow us to describe the structure of the entities. Then the

class of the models of an entity speci�cation () is

EA EA is an -entity algebra, where and for all EA = .

Assume that we need to specify the initial requirements for a net of workstations; for

simplicity we list only some of them, choosing the more interesting.

The net consists of several workstations and on each workstation several processes may

run in parallel; moreover processes may be moved from a workstation to another. Some

relevant properties of the net are informally listed below.

P1) Each workstation is deadlock free, i.e. if it is unable to perform any activity, then also

each process component is so.

P2) Each workstation has only simple subcomponents (i.e., without internal parallelism).

P3) If a workstation receives a process from some other one, then such process should never

reach some error situation, never create other processes and cannot go on forever to

perform some activity.

P4) The net includes either a workstation with a cartridge reader or a workstation with a

CD player but not both.

P5) The processes on a workstation perform their activity in an interleaving way (i.e. it

cannot happen that two processes perform some activity simultaneously).

Now we formalize the above requirements in a very abstract way using our metalan-

guage, i.e. formalizing exactly only the above properties and thus without any kind of

overspeci�cation; e.g., we do not �x the topology of the net, nor the architecture of the

workstations, nor the policy followed by the process scheduler, nor the commands exe-

cuted by processes and so on, since these features are not a consequence of the informal

requirements.

Note that in several usual speci�cation formalisms, properties about the dynamic ac-

tivity of the workstations, as P1) and P3), cannot be expressed also making some overspec-

i�cation, since it is not possible to speak of the dynamic components of a systems and of

their dynamic properties

Below the lines preceded by are line-by-line comments of the axioms, where the word

in boldface directly corresponds to some logical combinators, and we use the following

abbreviation for the formula checking whether is a proper subcomponent of .

= =

l

REC

l

l

p

l

0 0

0 0

0

0 0

0 0

1

()

1 2

1 1 2 2

!

!

�! � �

) � �

��� � �

6 9) ^

6 9 �!

6 9

)

4 : ^

4 6 9 ^

4 6 9 �!

9 ^ _ ^

:9

^ ^ ^

spec

esorts

sorts

opns

preds

axioms

if and

then

if then

if then

in each case and

in each case and

in each case

and

A NET

CREATE

REC

Has Cartridge Has CD

Is Sub

Is Sub Is Sub

CREATE

Is Sub Has Cartridge Has CD

Is Sub Has Cartridge Is Sub Has CD

net;workstat; proc

l net; l workstat; l proc

proc l proc

proc l workstat

Error proc

; workstat

proc l proc proc

workstat l workstat workstat

> net l net net

w ; l :w w

w

p w >

p

p ; l : p p

p

p w > e : e p

p w p

w w >

p w

p; �x : Error x

p

p; <�l : p : l p >

p

p; �x : x ; l : x x

p

w :w n w w

n w

w ;w :

w n w w n w

=

{ there are three kinds of entities

- - -

: -

{ labels for the transitions corresponding to create new processes

: -

{ labels for the transitions corresponding to receive a process from another

{ workstation

: { determines the process error situations

:

{ determines the workstations having a cartridge reader and a CD player

{ respectively

: -

= : -

: -

{ P1)

=

{ is unable to perform any activity

=

{ is one of its proper subcomponents

{ is unable to perform any activity

{

{ P2)

=

{ is a proper subcomponent of has not proper subcomponents

{

{ P3)

====== =

{ is received by ,

([()])

{ will never reach an error situation

(= ())

{ will never create a new process

([])

{ cannot go on for ever to act (i.e., eventually it will

{ reach a state where it cannot perform any activity)

{

{ P4)

(() ())

{ a net has a proper subcomponent having either a cartridge reader or

{ a CD player

{ has not both

() ())

{ a subcomponent having a cartridge and one having a CD player

0

l

l

0

0 0 0

0 0

)

9 ^ 2 ^ 6 ^ �! ^

� f g [

if then

and

Level 1:

5.2 An Industrial Case Study

w w >

w

eset; p; p ; l : esetAllSubw p eset p w p p

p

es p p AllSub w

{ P5)

= =

{ perform some activity

(=

{ it has a proper subcomponent performing some local activity

())

{ such subcomponents is the only one which has modi�ed its state

{ during the transition (i.e. such activity consists of some activity of only

{ one of its subcomponents)

We have experimented the above line-by-line natural language comments in some in-

dustrial applications ([18, 19]) and fairly believe that this device is an essential ingredient

for making formal speci�cations acceptable to a wide community of users.

Our metalanguage for expressing the requirements of reactive system has been used in

two industrial case studies in a project in cooperation with ENEL - SPA (the Italian

national board for electric power). The two cases concern respectively the speci�cation of

a hydro-electric central for the production of electricity and a high-voltage substation for

the distribution of electricity handled by automatisms (see [18, 19]). Here we brie
y try to

sketch the speci�cation of the �rst case enlightening the role of the metalanguage.

The high-voltage substation has been speci�ed at three di�erent levels of abstraction.

It formalizes the most relevant properties of the substation; this speci�cation

could be used e.g. in a contract with a �rm realizing the plant. The substation is made

by \functional units" of several kinds (Ae, Dd and Fa) and of two metallic bars, Ae's

are put on one bar, while Dd's and Fa's are conneted to both bars; below there is a

graphical representation of the structure of a substation having 6 functional units.

In this case the dynamic subcomponents are the functional units and using our fram-

work we can describe how they are organized in a substation; the possibility of describ-

ing sharing of subcomponents (see section 2.2) allows to formalize the fact that Dd's

and Fa's are connected to both bars.

The substation can receive orders of performing operations on the component functional

units from an operator and informs such operator about the result of the required

operations.

The abstract requirements specify what should happen when an order is received, but

do not completely describe the execution of such orders. A sample property is:

0

0

� �

()

1
1 +1

1

6 Conclusion

����������! ^

_ ^

4

^

_

^

Order Close;id

i nI
n i

m

Is Ae Is Dd Is Open

Is Closed

Performed Operation

Failure In Station

st st

id

st; id st; id st; id >

id

st ;

�x : x; id

id

<�l : l >

�x : x

� > � i ; : : : ; n �

Pr t ; : : : ; t

if and

then

in each case

eventually and

eventually

or

eventually

Level 2:

Level 3:

{ the substation receives the order of closing

(() ()) () =

{ is either an Ae or a Dd that is open,

(

{

(([()]

{ the functional unit will become closed

=)

{ it will inform the operator that the operation has

{ been performed

[()]))

{ there will be a failure in the substation

Here the design of the substation is re�ned by introducing an automatism for

handling the operation received from the operator. Here the abstract requirements are

only about the dynamic activity of the automatism while there are no requirements

on its structure; instead the structure of the plant is fully speci�ed by completely

describing an appropriate realization of the functional units using standard devices

and also the interactions of the automatism with the devices are completely de�ned.

Clearly this speci�cation is an implementation of the �rst one: i.e. all of its models are

models of the �rst.

Here the design of the substation is completed by de�ning a particular automa-

tism. This is not a requirement speci�cation, but instead a design speci�cation, i.e.

a formal de�nition of one very speci�c reactive system, so we do not need to use all

metalanguage; it is su�cient to use a small subset, precisley only the conditional ax-

ioms (i.e., formulae of the form = , where for = 1 + 1 is

either an equation or an atom of the form ()) and to take as models of a

speci�cations the initial ones, see e.g. [1, 2, 3, 5]. Thus we have a uniform framework

where to give speci�cations of reactive systems at di�erent levels of abstraction.

The essential novelty of what we have presented lies in the possibility of specifying within

the same formalism requirements about the static structure and the dynamic activity of a

system.

Compared to the many formalisms using various forms of temporal logics, we have two

distinguished features: the possibility of dealing both with di�erent entities (of di�erent

sorts) and with the subcomponents of an entity, without lowering the abstraction level of

a speci�cation; moreover our formalism includes the usual speci�cations of abstract data

types and it allows also to give integrate speci�cations of the dynamic and of the static

features of a system.

The formalism has a clean mathematical support in the de�nition of an appropriate

institution; to this end a key role is played by the de�nition of the class of models, which

are entity algebras over extended signatures.

There is no room here for illustrating the possibility of relating such abstract require-

ment speci�cations to the design level speci�cations (e.g. the SMoLCS speci�cations of [2]);

this can be done following an algebraic approach based on a notion of implementation, due

to Sannella-Wirsing [22] (see [8, 4] for some examples).

�

�

1 1

1

1

1

2 2

2

2 2 2

�

n n

n

n

i
n

�

�

S S

S

S OP PR

X

X

A Algebras with Predicates

2

1 1

1

1

1 1

1

()

1 1

()

1

1

1

1

1 2

1 1 2 1 2

2

f g 2

f g 2

� � ! 2 � � 2

f g f g f g

2

� � ! � � !

� � � � �

2

2 2

2 2

2 2 2

2

; 2

; 2

2 !

2 2 2

2 2

2

: 2 2

8 2 2 2

!

2 j

w;s w ;s w;s

w w w

n s :::s ;s n s :::s

s s

A

Op

A

Pr

s

n

A

s s s

n

A

s s

A

n n

A

�

s � s

�;s � s

i � s s :::s ;s n � s

T

n n

T

s � �

�

A;V

A;V

A;V A

n

A;V A

A;V

A;V

n

A

s � s

A

�

n

n �

�

� �

� �

�

� ; ;

Op

w s

Pr w

Op s : : : s s Op Pr s : : : s Pr

� �

A A ; Op ; Pr

s A

Op s : : : s s Op A : : : A A

Pr s : : : s Pr A : : : A

Pr a ; : : : ; a a ; : : : ; a Pr

T �

x x T

Op Op T

t T i n Op Op t ; : : : ; t T

Op t ; : : : ; t Op t ; : : : ; t Op

Pr Pr

s T T

A � t T V A

A

t A V t

x V x

Op Op

Op t ; : : : ; t Op t ; : : : ; t

t t � A

s a A t T a t

F �

t t

Pr t ; : : : ; t F Pr

t t F

� ; � > � F � ;� F

x : � F � F x

A � V A

� F A V A;V �

signature with predicates S OP PR

S sorts

OP OP OP operation symbol

PR PR PR predicate symbol

OP PR

partial -algebra with predicates

S

S X term algebra X

X X

OP X

X OP X

OP

PR

X S X

ground terms X X variable evaluation

X interpretation of

in w.r.t.

term-generated

S

X �rst-order formulae X

X PR

X

X X

X X X

X

X holds in under

X X X

Finally it may be of interest to mention the fact that the approach presented here

is currently being used in some industrial case studies for relating requirements to more

concrete design speci�cations, which have been already given (see Section 5.2).

A is a triple = (), where

{ is a set (the set of the);

{ is a family of sets: ; is an (of arity

and result);

{ is a family of sets: ; is a (of arity).

We write : for and : for .

A (shortly a -algebra) is a triple

= ())

consisting of the carriers associated with the sorts, the interpretations of the operation

symbols and the interpretations of the predicate symbols; i.e.:

{ if , then is a set;

{ if : , then : is a partial function;

{ if : , then .

Usually we write () instead of () .

Given an -indexed family of sets of variables , the () is the -

algebra de�ned as follows:

{ implies () ;

{ implies () ;

{ () for = 1, . . . , and imply () () ;

{ () = () for all ;

{ = for all .

If = for all , then () is simply written and its elements are called

. If is a -algebra, () and : is a , i.e.

a sort-respecting assignment of values in to all variables in , then the

, denoted by , is de�ned by induction as follows:

{ = ();

{ = ;

{ () = ().

if is a ground term, then we use the notation . A -algebra is i� for

all , for all there exists () s.t. = .

The sets () of on and are inductively de�ned as follows

(where , . . . , denote terms of appropriate sort and we assume that sorts are respected):

{ () () if

{ = ()

{ = () if ()

{ () if (),

Let be a -algebra and : be a variable evaluation we de�ne by induction

when a formula () (written =)

Given a set , denotes the set of the strings (�nite sequences) over .

1

1

1 2

1 2

1 2 1 2

References

n

A;V

A;V

n

A

A;V A;V

s

�

d

j 2

j

j : 6j

j 6j j

j 8 2 j

2 j j

A;V Pr t ; : : : ; t t ; : : : ; t Pr

A; V t t t t

A; V � A;V �

A;V � > � A;V � A;V �

A;V x : � v A s x A;V v=x �

� F A A � A;V � VX valid

Proc. TAPSOFT'85, Vol. 1

Proc. TAPSOFT'87, Vol. 1

Recent Trends in Data Type Speci�cation

Logics of Programming Workshop

Proc. MFCS'91

Foundations of Object-

Oriented Languages, Proc. REX School/Workshoop

ACM TOPLAS

Proc. TAPSOFT'89, Vol. 2

A Calculus of Communicating Systems

Proc. IFIP TC

2-Working conference: Formal description of programming concepts

{ = () i� ()

{ = = i� = (both sides must be de�ned and equal)

{ = i� =

{ = = i� either = or =

{ = i� for all , with sort of , [] =

A formula () is in (written =) i� = for all evaluations .

1. E. Astesiano, G.F. Mascari, G. Reggio, and M. Wirsing. On the parameterized al-

gebraic speci�cation of concurrent systems. In H. Ehrig, C. Floyd, M. Nivat, and

J. Thatcher, editors, , number 185 in Lecture Notes in

Computer Science, pages 342{358. Springer Verlag, Berlin, 1985.

2. E. Astesiano and G. Reggio. SMoLCS-driven concurrent calculi. In H. Ehrig,

R. Kowalski, G. Levi, and U. Montanari, editors, , num-

ber 249 in Lecture Notes in Computer Science, pages 169{201. Springer Verlag, Berlin,

1987.

3. E. Astesiano and G. Reggio. Algebraic speci�cation of concurrency (invited lecture).

In , number 655 in Lecture Notes in Computer

Science. Springer Verlag, Berlin, 1992.

4. E. Astesiano and G. Reggio. Entity institutions: Frameworks for dynamic systems,

1992. in preparation.

5. E. Astesiano and G. Reggio. A structural approach to the formal modelization and

speci�cation of concurrent systems. Technical Report PDISI-92-01, Dipartimento di

Informatica e Scienze dell'Informazione, Universit�a di Genova, Italy, 1992.

6. R.M. Burstall and J.A. Goguen. Introducing institutions. In E. Clarke and D. Kozen,

editors, , number 164 in Lecture Notes in Computer

Science, pages 221{255. Springer Verlag, Berlin, 1984.

7. M. Cerioli and G. Reggio. Institutions for very abstract speci�cations. Technical Re-

port PDISI-92-14, Dipartimento di Informatica e Scienze dell'informazione - Universit�a

di Genova, Italy, 1992.

8. G. Costa and G. Reggio. Abstract dynamic data types: a temporal logic approach. In

A. Tarlecki, editor, , number 520 in Lecture Notes in Computer Science,

pages 103{112. Springer Verlag, Berlin, 1991.

9. J. Fiadeiro and T. Maibaum. Describing, structuring and implementing objects. In

J.W. de Bakker, W. P. de Roever, and G. Rozemberg, editors,

, number 489 in Lecture Notes in

Computer Science, pages 274{310. Springer Verlag, Berlin, 1991.

10. I.S.O. LOTOS { A formal description technique based on the temporal ordering of

observational behaviour. IS 8807, International Organization for Standardization, 1989.

11. L. Lamport. Specifying concurrent program modules. , (5), 1983.

12. S. Mauw and G.J. Veltink. An introduction to PSF . In J. Diaz and F. Orejas, editors,

, number 352 in Lecture Notes in Computer Science, pages

272 { 285. Springer Verlag, Berlin, 1989.

13. R. Milner. . Number 92 in Lecture Notes in

Computer Science. Springer Verlag, Berlin, 1980.

14. G. Plotkin. An operational semantics for CSP. In D. Bjorner, editor,

, pages 199{223.

North-Holland, Amsterdam, 1983.

A

Current Trends in Concurrency

Recent Trends in Data Type Speci�cation

Recent Trends in

Data Type Speci�cation

Petri nets: an introduction

Temporal logics

of Speci�cation

Handbook of Theo-

ret. Comput. Sci.

15. A. Pnueli. Applications of temporal logic to the speci�cation and veri�cation of reactive

systems: a survey of current trends. In , number 224

in Lecture Notes in Computer Science, pages 510{584. Springer Verlag, Berlin, 1986.

16. G. Reggio. Entities: an istitution for dynamic systems. In H. Ehrig, K.P. Jantke,

F. Orejas, and H. Reichel, editors, , number

534 in Lecture Notes in Computer Science, pages 244{265. Springer Verlag, Berlin,

1991.

17. G. Reggio. Event logic for specifying abstract dynamic data types. In

, number 655 in Lecture Notes in Computer Science. Springer

Verlag, Berlin, 1992.

18. G. Reggio, D. Bertello, and E. Crivelli. Speci�cation of a hydro-electric central. Tech-

nical Report PDISI-92-13, Dipartimento di Informatica e Scienze dell'Informazione {

Universit�a di Genova, Italy, 1992.

19. G. Reggio, A. Morgavi, and V. Filippi. Speci�cation of a high-voltage substation.

Technical Report PDISI-92-12, Dipartimento di Informatica e Scienze dell'Informazione

{ Universit�a di Genova, Italy, 1992.

20. W. Reisig. . Number 4 in EATCS Monographs on Theoret-

ical Computer Science. Springer Verlag, Berlin, 1985.

21. C. Stirling. Comparing linear and branching time temporal logics. In

, number 398 in Lecture Notes in Computer Science. Springer Verlag,

Berlin, 1989.

22. M. Wirsing. Algebraic speci�cations. In van Leeuwen Jan, editor,

, volume B, pages 675{788. Elsevier, 1990.

This article was processed using the LT

E

X macro package with LLNCS style

