
?

?

f g

Introduction

Algebraic Speci�cation of Concurrency

abstract data type adt algebraic

speci�cation

loose

structuring parameterization

implementation

correctness

proof systems

speci�cation languages

DISI

Dipartimento di Informatica e Scienze dell'Informazione

Universit�a di Genova { Italy

astes , reggio @ cisi.unige.it

This work has been supported by COMPASS-Esprit-BRA-W.G. the project MURST 40%

\Metodi e speci�che per la concorrenza" and by \Progetto Finalizzato Sistemi Informatici

e Calcolo Parallelo" of C.N.R. (Italy).

Egidio Astesiano and Gianna Reggio

Let us �rst summarize what algebraic speci�cation is about, following [66]. Algebraic

speci�cation methods provide techniques for data abstraction and the structured

speci�cation, validation and analysis of data structures.

Classically, a (concrete) data structure is modelled by a many-sorted algebra

(possibly term-generated); various categories of many-sorted algebras can be con-

sidered, like total, partial, order-sorted, with predicates and so on. An isomorphism

class of data structures is called an (shortly) and an

is a description of one or more abstract data types. There are various

approaches for identifying classes of abstract data types associated with an alge-

braic speci�cation, which constitute its semantics: initial, terminal, observational; a

semantics is when it identi�es a class (usually in�nite) of adt's.

Since data structures can be very complex (a
ight reservation system, e.g.),

and mechanisms are fundamental for building large

speci�cations.

Together with a rigorous description of data structures, algebraic speci�cations

support stepwise re�nement from abstract speci�cations to more concrete descrip-

tions (in the end, programs) of systems by means of the notion of

and techniques for proving of implementations. In this respect formal

associated with algebraic speci�cations play a fundamental role. Fi-

nally provide a linguistic support to algebraic speci�cations.

The purpose of the algebraic speci�cation of concurrent systems is to specify

structures where some data represent processes or states of processes, i.e. objects

about which it is possible to speak of dynamic evolution and interaction with other

processes; more generally we can consider as the subject of algebraic speci�cation of

concurrency those structures able to describe entities which may be active partic-

ipants of events. Such data structures will be called simply \concurrent systems",

where \concurrent" conveys di�erent meanings, from \occurring together" to \com-

pete for the same resources" and to \cooperate for achieving the same aim".

The aim of this paper is twofold: to analyse the aims and the nature of the

algebraic speci�cations of concurrency and to give, as examples, a short overview of

some (not all) relevant work.

�

Warning.

1 Processes and Concurrent Systems

In Sect. 1 we introduce some basic concepts and terminology about processes: the

various models around which the speci�cation models are built and the fundamental

issues of (observational) semantics, formal description and speci�cation; moreover we

give some illustrative examples of speci�cation problems to be used later for making

more concrete some general considerations and for assessing di�erent methods.

In Sect. 2 we try to qualify the �eld: indicating three di�erent fundamental moti-

vations/viewpoints (and distinguishing between methods and instances); then outlin-

ing the issues to deal with; �nally illustrating by two signi�cant examples/approaches

how this �eld stimulates innovations and improvements beyond the classical theory

of adt's.

In Sect. 3 we outline some relevant approaches; the presentation is related to

the issues discussed in Sect. 2 and the speci�cation examples presented in Sect. 1.

However, being impossible to report on all methods, we have mainly used some

approaches to illustrate, as examples, concrete ways of tackling the issues of the

�eld..

Informally a process is an entity with the capability of performing an activity within

which it may interact with other entities and/or with the environment. The interac-

tion may consist in communicating, synchronizing, cooperating, acting in parallel,

competing for resources with other processes and/or with the environment.

By a concurrent system we informally mean a process consisting of component

processes that are operating concurrently.

We are of course interested in those aspects of processes that support the design

and implementation of software systems. Thus we are looking for a formal support

to the speci�cation, programming, implementation and veri�cation phases. For this

it is crucial to have good models for processes.

Now, the usual formal model of a sequential software system (program) as in-

put/output, or state to state, function is no longer adequate for processes. Moreover,

to date no single model seems to capture all the relevant formal aspects of a process.

Hence in the following we will brie
y introduce the most signi�cant formal models

which have been used in connection with the algebraic speci�cation of processes. In

the meantime we introduce some terminology typical of concurrency, which will be

useful in the sequel.

We are presenting basic models and not formalisms; for example, la-

belled transition systems (and variations) are the common basic model for di�er-

ent formalisms like CCS, CSP, MEIJE, -calculus, etc. Moreover some formalisms,

notably the many variations of Petri nets, allow to represent di�erent aspects of

systems and provide a variety of basic models. However our aim here is only to give

the non-expert in concurrency some very basic information, in order to understand

the following presentation of speci�cation formalisms. It is not at all an overview of

existing formalisms in concurrency.

0

0 0

0

0 0

0

0

0

0

0

0 0

0 0

0

1.1 Basic Models

()

()

0

1 2

1 2 1 2

1 2

1

()

1

2

()

2

0 1

2

1 2

1

2 3 3

3

()

3

l

Rec v;ch

Send v ;ch

Rec v ;ch Send v ;ch

�

Send v ;ch

!

!� � �

2! �!

������!

��������!

f g

�������! ��������!

�! f g

��������!

Labelled Transition Systems.

labelled transition system lts STATE LABEL

STATE LABEL STATE LABEL STATE

; ;

s; l; s s s

s s

l

�

Rec x; ch

x ch

s s v v

s

Rec x; ch s v

v x

v ch

e ch Send e; ch

s s

s

Send e; ch s

e s v ch

p p p

cs s ; s s s

p p

s s s s

cs v p

p cs s ; s �

p

p

p p s

s s

The use of labelled transition systems for modelling

processes has been advocated mainly by Milner and Plotkin (see [50, 55]).

A (shortly) is a triple (), where

and are two sets and . A triple

() , also written , means that the process modelled by the lts has

the capability of passing from the state into the state under an interaction

with the external environment represented by the label . In the simplest case, when

the transition is purely internal to the system and there is no relationship with the

environment, the label can be dropped or better represented by a special element,

which is usually written (as in CCS) and called \silent move" or \internal action".

For example, the capabilities associated with a process executing an action of

receiving a message, brie
y denoted by (), assigned as value to a variable

on a channel could be represented by a set of labelled transitions of the form

() (one for each in the set of values that can be received). That

means that the process can pass from the state (corresponding to the situation

immediately before the execution of ()) into a state () (which records

that the value has been received and assigned to the variable) performing an

action of receiving from the outside along the channel .

The capabilities associated with a process executing the action of sending the

message on the channel , brie
y denoted by (), could be represented

by the labelled transition . That means that the process can pass

from the state (corresponding to the situation immediately before the execution

of ()) to the state performing the action of sending the value of the

expression in () along the channel . Notice that an lts may have several

di�erent transitions starting from the same state and that allows us to represent the

nondeterministic behaviour of processes.

We need also to model groups of interacting processes; in these cases we can use

particular classes of lts's built from some component lts's. The states of the overall

system have as subparts states of the component systems and its transitions are

determined by the transitions of the component systems. For example the parallel

composition of two processes and (which interact by exchanging messages

through channels) could be represented by a state = , where and

represent the initial states of the two processes and . Assuming the transitions

of the components and , the following transition

of corresponds to the synchronized exchange of the value between and

: (the transition is labelled by since there is no need of further

interaction with the world outside).

Nondeterminism can also come from parallelism, for example when a process

can perform some action with at least two other processes. Consider the process

above in parallel with and with a process in a state having the capability

; clearly there are at least two exclusive possible transitions of the

system consisting of the three processes in parallel. Speci�cally:

ES

� �

0 0 0 0

Fig. 1.

f g �! f g f g �! f g

� �

An event structure

1 2 3

1 2

3 1 2 3

1

2

3

1 2

1 2 3

1 2 2 4

s ; s ; s s ; s ; s s ; s ; s s ; s ; s

E; ; E E

E

e e

e e e

e e e e

Event Structures.

events

causality mutual exclusion

event structure

ES

Petri Nets.

and .

Lts's are very suitable for composing processes in a modular way; however they

require a further procedure of abstraction for eliminating details and representing

causality relationships between events. Indeed lts's are usually a too detailed de-

scription of processes, so that equivalent processes may be described by two di�erent

values (labelled trees with states) in an lts. Thus it is necessary to de�ne semantics

via equivalence classes and there is an extensive literature on the subject (see e.g.

[37]). This issue is discussed in some more detail in Sect. 1.2 and, from a very general

algebraic viewpoint, encompassing lts's in Sect. 2.3.

We may model processes by considering a set of notable facts

which can happen during their activity called (e.g., sending/receiving a value,

changing/testing the content of a local storage) and then by describing the relevant

relationships among them, as and . In this way we can

give a view of the processes more abstract than using lts's.

Formally a process is modelled by an (see [65]), i.e. a triple

(#), where is a set (the events), is a partial order on (causality relation)

and # is binary relation on (mutual exclusion relation).

It is important to note that using event structures we can describe in a sim-

ple way processes where two events are truly concurrent (i.e., where there is no

causal/temporal relationship between them).

Consider, for example, the event structure graphically represented in Fig. 1;

there the events and are truly concurrent: i.e. there is no relationship between

the happening of with the happening of and vice versa; while may happen

only after that and have happened; and and cannot happen simultane-

ously.

Unfortunately it is not easy to give a simple way for composing the event struc-

tures modelling the component processes of a complex concurrent system to get

the structure modelling the whole system (see e.g. [64] which requires non-trivial

categorical techniques).

Petri nets are probably the oldest and best-known model of processes

(see e.g. [59]). Starting from the original de�nition, nowadays many variations of

Petri nets have been developed with di�erent basic models. Here we brie
y outline

Fig. 2.

[

f j g

f j g

A Petri net

N;A N

N P T

t

t p p t

p t p

Petri net PN

places transitions

premise

consequence

�re

some typical features of this kind of models by considering a very basic one, which

is now called Petri net (i.e. directed bipartite graph).

A is a directed graph = (), where the set of the nodes

is split into and , = , and the arcs connect only places

to transitions and transitions to places. Given a transition , the and the

of are the following sets of places: there exists an arc from to

and there exists an arc from to (notice that in general the two sets are not

disjoint).

To describe the dynamic behaviour of Petri nets we consider marked nets, i.e.

nets where each place is marked by a number of tokens. In a marked net a transition

is enabled when all places in its premise have at least a token. An enabled transition

may changing the marking of the net as follows: a token is eliminated by all the

places in its premise and a token is added to all places in its consequence. Then the

dynamic activity of a marked net is given by the �ring of its enabled transitions;

notice that in general more than one transition is enabled, so that a net can be

used to model also nondeterministic processes. A marked net models a process in a

particular situation, while the �ring of the transitions describes its possible activities.

Petri nets are very popular since they allow to give nice graphical representations

of the activity of the processes; however also in this case it is not very simple and

natural to compose the nets describing the component processes of a complex system

to get the net describing the whole system; to this end particular kinds of nets have

been developed (see e.g. the superposed automata of [15]). For a survey on modular

approaches to Petri nets see [16].

In Fig. 2 we report a simple example of a marked Petri net with three transitions

and �ve places which describes a system transferring the tokens from the places IN1

and IN2 into the place OUT.

i

p z n

Fig. 3.

Data
ows.

1.2 Semantics

A data
ow network

The data
ow approach (see e.g. [41]) provides a completely di�erent, but

more specialized, model. The basic idea is to see a process as a box able to receive

in an asynchronous way values along some input lines (or channels) and then to

return other values along some output lines always in an asynchronous way. Here

asynchronous means that values are received also if the process is performing some

calculation on other values received previously and the output values are returned

also if the receiver is not immediately ready to get them.

Thus a data
ow may be modelled by a function from tuples of (also in�nite)

sequences of values (those received on the input channels) into tuples of (also in�nite)

sequences of values (those returned on the output channels).

In this framework it is easy to compose several data
ows together: it is just as

to compose functions.

This model is particularly apt to describe processes which interact in the above

asynchronous way, while it is not very convenient for describing processes interacting

synchronously.

In Fig. 3 we report a simple example of a data
ow network which describes a

system receiving in input integer numbers on channel and returning those which

are positive, zero and negative respectively on channels , and ; the two compo-

nent data
ows SEL POS and SEL NEG select respectively the positive and negative

numbers.

Whatever kind of model we choose, when describing processes we have still the

problem of de�ning the right semantic equivalence, i.e. in general it is not true

that two processes are semantically equivalent i� they have associated the same

model. In this section we consider this problem only for the lts's, but the situation

is analogous for the other models, for which other notions of semantic equivalence

have been developed.

Given an lts we can associate with each process the so called transition tree. A

transition tree is a labelled tree whose nodes are decorated by states, whose arcs

l

l l

l l

Fig. 4.

�!

!

2

�! �!

�! �!

0 0

0

0

0

0 0 0 0 0

0 0 0 0 0

F

F

1 2

1 2 1 2

1

1 2

2

2 1 2

2

2 1

1

1 1 2

l

s s s s

p

p

p p

�

p p

p p

p p

; ; R

s ; s s R s

s s s s s s R s

s s s s s s R s

STATE LABEL

STATE (strong) bisimulation relation STATE

Transition trees associated with two sequential processes

are decorated by labels, where the order of the branches is not considered and two

identically decorated subtrees with the same root are considered as a unique one,

and �nally there is an arc decorated by between two nodes decorated respectively

by and i� .

By associating with a process the transition tree having as root the initial state

of we give an operational semantics: two processes are operationally equivalent

whenever the associated transition trees are the same, see [51]. But usually such

semantics is too �ne, since it takes into account all details of the process activity.

It may happen that two processes which we consider semantically equivalent have

associated di�erent trees. A simple case is when we consider the trees associated with

two sequential processes (i.e., performing only sequential commands), represented by

two states and , thus they perform only internal activities (i.e., no interactions

with the external environment); the associated transition trees (reported in Fig. 4)

are unary trees, with all the arcs labelled by the symbol of internal action . If we

consider an input-output semantics, then they are equivalent i� , are equivalent

w.r.t. the input and , are equivalent w.r.t. the output; the di�erences about

other aspects (intermediate states, number of the intermediate transitions, etc.) are

not considered.

From this simple example, we understand also that we can get various interesting

semantics on processes modelled by lts's depending on what we observe of them.

For instance, consider the well-known strong bisimulation of Park ([53]) and the

trace semantics ([38]). In the �rst case, two processes are equivalent i� they have

associated the same transition trees after forgetting the states. In the second case,

two processes are equivalent i� the corresponding sets of traces (streams of labels

obtained travelling along all paths starting from the roots of the associated transition

trees) are the same. In general, the semantics of processes depends on what we are

interested to observe: i.e., the semantics of processes is observational.

In Fig. 5 we report the transition trees associated with two processes and

which are equivalent w.r.t. the trace semantics but not w.r.t. the strong bisimulation.

One of the most interesting techniques for de�ning observational semantics for

(�nite and in�nite) processes is the Park's bisimulation semantics (see [53, 51]).

Assume that we have an lts (); then a binary relation on

is a i� for all () s.t.

1. if , then there exists s.t. and

2. if , then there exists s.t. and .

1 2

p p

R R

�

� [f j g

Fig. 5.

(model-oriented)

(property-oriented)

1.3 Formal Description and Speci�cation

{

{

{

{

Transition trees associated with the processes and

It can be shown that there exists a maximum bisimulation relation character-

ized by = is a bisimulation relation . What we get in this case is just

the strong (bisimulation) equivalence; but there are many possible and interesting

variations (see e.g. [51, 2]).

After choosing a particular kind of models for processes, there are two main ap-

proaches to formally describing (specifying) a process:

a process corresponds to a class of semantically equivalent mod-

els given by exhibiting a particular element of the class;

a process is speci�ed by giving a set of properties, which

determines a class of models (those having the required properties).

In general the above approaches have associated an appropriate syntactic sup-

port, respectively:

a language s.t. each of its expressions corresponds to one model; then the lan-

guage expressions may be used to de�ne the processes via an appropriate se-

mantic equivalence;

a logical (speci�cation) language s.t. its formulae express properties of the models

together with a validity relation saying when a model has the property expressed

by a formula; then a process is speci�ed by giving a set of such formulae, which

determine a class of models (those satisfying the formulae).

Algebraic speci�cation of concurrency falls under the second (property-oriented)

paradigm for which several logical languages have been proposed, based on modal /

temporal logics in the case of lts's, event structures and Petri nets (see e.g. [56, 45])

and on �rst-order logic for characterizing data
ows.

In the literature several languages for supporting the �rst (model-oriented) ap-

proach have been proposed; among them we can recall CCS (Calculus of Communi-

cating Processes) for lts's with strong bisimulation (see [50, 51]), CSP for lts's with

trace semantics (see [38]), the various process algebras of the Amsterdam school (see

e.g. [18, 14]) and so on.

1 2

A

E

A E

E E

E E

E E

E E

�

�

�

�

�

�

�

�

�

� �

�

�

�

0

0

0

0

0

0

0

0

0 0

0 0

0

0

Finite CCS.

The process algebra atomic actions

1 2 1 2

1 2 1 2

1

1

1 2

1

2

2

1 2

2

1

1

1 2

1

2

2

2

1 2 1

2

1

1

2

2

1 2

1 2

1 2 2 1

A A L

f j 2 Ag

A [A [f g

E

2 E

2 E 2 E 2 L

2 E 2 E

k 2 E 2 E

n 2 E 2 E 2 A

E L ! !

�!

�!

�!

�!

�!

�!

k �! k

�!

k �! k

�! �!

k �! k

�!

n �! n

6

�

2 2

2 2

k 2 2

b 2 2

�

a a

�

nil

�:e e �

e e e ; e

e e e ; e

e a e a

; ;

�:e e

e e

e e e

e e

e e e

e e

e e e e

e e

e e e e

e e e e

e e e e

� � � �

e e

e a e a

� a; a

x:y x; y

x y x; y

x y x; y

x y x; y

The CCS approach has been recently expanded to a very interesting approach,

the -calculus (and the mobile processes approach, see [52]), for dealing with pro-

cesses which may exchange processes (identi�ed indirectly by references) as messages.

Notably the same problem has been �rst addressed and solved within an approach

to the algebraic speci�cation of concurrency, the SMoLCS approach (see e.g. [7] and

Sect. 3.4) where processes are exchanged directly as values/data. This last viewpoint

has been taken up and developed as an updating of CCS in [61].

In the following we brie
y report, for example and further use, the full de�nitions

of �nite CCS and of the process algebra PA (see [14] Sect. 3).

CCS and process algebras represent the two prominent description styles based

on the model of lts's. Milner de�nes inductively the transitions by SOS rules and

then apart a semantics; while the Amsterdam group de�nes axiomatically the derived

semantic equivalence (as initial semantics).

Assume that is a given set of basic action names and let , denote

respectively the set of the complementary actions and of the labels

.

The set of CCS expressions is inductively de�ned as follows.

{ (the process unable to perform any action)

{ for all and (action pre�xing)

{ + for all (nondeterministic choice)

{ for all (parallel composition)

{ for all and (restriction)

The lts associated with CCS is (), where is inductively de�ned by the

following rules.

+ +

= or = =

Two CCS expression are considered semantically equivalent i� they are strongly

bisimilar (see Sect. 1.2). An equivalent alternative of Milner's CCS is the MEIJE

Calculus of Boudol and Austry [13] with the related elegant foundational work of

De Simone [31].

PA. Let be a given set of ; the set of the PA

expressions is inductively de�ned as follows.

{ (processes performing just one atomic action)

{ for all (sequential composition)

{ + for all (nondeterministic choice)

{ for all (parallel composition)

{ for all (left merge)

b

k b b

b b k b b b

1.4 Illustrative Examples of Speci�cation Problems

x y y x x y z x y z x x x

x y :z x:z y:z x:y :z x: y:z

x y x y y x

a x a:x a:x y a: x y x y z x z y z

abstract speci�cations very abstract

speci�cations

Speci�cation of a Family of Concurrent Systems.

CA

CA

CA

Di�erently from the CCS case, here we do not associate an lts to the language

(and then consider as semantically equivalent the expressions strongly bisimilar); we

give instead directly a list of axioms identifying the expressions strongly bisimilar

in the sense that equalities between terms in the initial model correspond to strong

bisimulation equivalence. Notice that in order to do that we need to introduce an

auxiliary operator ().

+ = + (+) + = + (+) + =

(+) = () + () () = ()

= () + ()

= () = () (+) = () + ()

In order to give the
avor of what \speci�cation of concurrent systems" means, we

present some illustrative examples, which will be used in the sequel as reference

for making more concrete some general considerations and for assessing di�erent

speci�cation methods. Some very interesting speci�cation problems (ten in all) have

been proposed and discussed in a Cambridge Workshop, 1983, whose proceedings

[32] may be of interest for the readers.

First we consider the problem of specifying a parameterized family of concurrent

architectures: for each �xed set of parameters we get the speci�cation of a family of

essentially equivalent architectures. Then we brie
y consider a more abstract level of

speci�cation, where we are concerned with looser requirements about architectures.

The distinction here between the two cases looks rather fuzzy; however it has a

great impact on the speci�cation techniques. Later on when speaking of algebraic

speci�cations we will see that this distinction will be similar to the one between non-

loose and loose (or ultra-loose) algebraic speci�cations. In order to avoid confusion,

in this paper we will call (AS) the �rst and

(VAS) the second ones; in the following section we will propose a more

rigorous quali�cation of the two.

The problem here is to specify a

family of concurrent architectures (each one brie
y called).

The structure of a is informally described below and graphically represented

in Fig. 6, where the ovals represent the active components, the squares the passive

ones and the straight lines the interactions among the components. A con-

sists of a variable number of processes and a bu�er shared among the processes;

\variable" means that processes may terminate and new processes may be created.

Processes can communicate among them by exchanging messages in a synchronous

mode throughout channels (handshaking communication) and either reading or writ-

ing messages on the bu�er; moreover the processes could also communicate with the

outside world (consisting of other similar architectures) sending and receiving mes-

sages in a broadcasting mode; messages are simply values.

Each process has a local memory (private) and its activity is de�ned by a sequence

of commands de�ned by the following pattern rules.

CA

1 2 1 2

Fig. 6.

i h j k i h j k

j j

j j j j

j j

j j

j

CA

CA

CA

CA

CA

CA

A architecture

c Write x Read x Test x

Send x; ch Rec x; ch BSend x BRec x

Start c Stop

c c c c

Skip seq c

x ch seq c

D ;B ;A ; P D B A P

::= () () () (1)

() () () () (2)

() (3)

; + (4)

- (5)

where , , - are respectively the nonterminals for variables, channel identi�ers

and sequential commands. A process may:

{ write the value of a variable on the bu�er, read a value from the bu�er and

assign it to a variable and test if the bu�er is empty (the result of the test is

assigned to a boolean variable) (1);

{ exchange messages along the channels in a handshaking way and with the envi-

ronment outside in a broadcasting way (2);

{ create a new process with a given command part (and initial empty local mem-

ory) and terminate its execution (3);

{ perform the sequential composition of two commands and nondeterministically

choose between two commands (4);

{ execute sequential commands not further speci�ed (i.e. commands which do not

require an interaction with other processes, nor with the bu�er, nor with the

environment outside) (5).

We are interested in specifying all instances of , where each instance is deter-

mined by an initial state, i.e., a set of processes and a bu�er in some initial states.

To test the modularity and the possibility of giving speci�cations with \reusable"

parts of the various methods we consider several versions of di�ering either for

the kind of the data used by the processes, or the bu�er organization, or the mode

in which the process components perform their activity in parallel; each version of

the architecture is denoted by (), where , , , represent

respectively the assumptions on the data, the bu�er organization, the bu�er access

and the kind of parallelism.

n

n

CA NETFig. 7. architecture

1

2 1 3 2

1 2

3

1

2

3

1

1

1

2

3 1

D

D D D D

B B

B

A

A

A

v : : : v

v : : : v

P

P

P P

k

CA

CA

CA

CA NET CA

Abstract Requirements of a Computer Network.

Static properties:

Dynamic properties:

safety properties:

The data handled by processes may be:) integer numbers, booleans and

Pascal-like arrays of data;) as but also the processes are data;) as

but also functions having as argument and result processes are data.

The bu�er may be organized as:) unbounded queue;) unbounded stack;

) cell, which can contain at most one element.

The requirements on multiple simultaneous accesses to the bu�er may be:)

several simultaneous accesses (i.e., writing, reading, testing) are not allowed;) only

several simultaneous testings are allowed;) only several simultaneous testings and

writings are allowed and the simultaneous writings of the values , , could

nondeterministically result into writing , , in any order.

The requirements on the way the processes act in parallel may be:) except

for the synchronous interactions required by handshaking communications, the pro-

cesses perform their activity in an interleaving mode;) except for the synchronous

interactions required by handshaking communications and the requirements on si-

multaneous bu�er accesses, the processes perform their activity in a completely free

parallel mode;) as but reading takes precedence over writing.

The architecture consists of several instances of in parallel, which

interact by exchanging messages in a broadcasting mode (see Fig. 7). In this case

the various components of the network perform their activity in a maximal parallel

mode (i.e., no component can stay idle).

Here we want to express formally

the abstract requirements for a computer network, without fully describing it. We

need to express both requirements about the structure of the network (static prop-

erties) and about its activity (dynamic properties), as exempli�ed in the following

the network must have between 10 and 20 computer components

and must be able to store bytes of information.

they may be further distinguished in:

requirements about what should not happen during the sys-

tem activity (e.g., no deadlock situation may arise [i.e., the network can

stop its activity only when all computer components have terminated their

activities], the percentage of the used storage will never be more than 95%);

2 Issues in Algebraic Speci�cation of Concurrency

liveness properties:

Three Motivations/Viewpoints.

three main

motivations three views

CA

2.1 Aims and Nature

V1 Handling static adt's

V2 Abstract concurrent structure

V3 Abstract dynamic data types

requirements about what must happen during the system

activity (e.g., if a command \run a certain correct C program" is given to

one of the computers, then eventually the program result will appear on the

computer screen; if a computer sends a message to another computer of the

network, then eventually either the network breaks down or the message is

received).

Note that we do not want to make any other assumption; thus we do not impose

conditions about:

{ the way the components are connected,

{ the presence of auxiliary passive components (e.g., storage devices),

{ the way the components interact among them and so on.

Thus to give the required speci�cation means to formally identify the class of all

networks satisfying the listed properties; this class includes, e.g., a network consisting

of 10 Sun3 computers, �ve auxiliary disks connected by an Ethernet cable backbone;

but also a network consisting of 15 PCIBM XT connected by a token ring.

First we brie
y review the aims of algebraic speci�cations of concurrency; then we

try to identify the items/dimensions by which we can assess and relate di�erent

approaches.

While the meaning and the role of the formal speci�-

cation of concurrent systems is clear, it is natural to ask why algebraic speci�cations,

which have been invented for describing data structures and apparently deal with

static data, should be adopted for describing intrinsically dynamic structures (and

of course whether this approach is sensible and viable). There seem to be

for that, corresponding to of the relationship between data

types and concurrent systems.

Concurrent systems use various data structures, whose

abstract formal speci�cation is most appropriately expressed by an algebraic

speci�cation.

The abstract structure of a concurrent sys-

tem (either globally or at a certain stage of its evolution) is conveniently de-

scribed as an abstract data type.

Concurrent systems themselves can be seen

as data manipulated by other systems and functions, as any other data.

We will see those three motivations/views quite clearly re
ected in various ap-

proaches, at a di�erent level of integration.

We can now illustrate the di�erent views by means of the examples of the

architectures of Sect. 1.4.

D

i

i

CA

2

3

1

2

3

2

D

B

B

D

D

V1

V2

V3

V2

V1

CA

CA

CA

CA CA

Methods and Instances.

architectures following assumption are not unrealistic products of theoreticians

but can be found in real systems: some Unix commands are modelled as functions from

processes into processes and the denotation of an Ada task type is a function returning

a process.

Under the assumption on the data handled by the processes , for specifying

a architecture we need to formally de�ne a complex data structure (there

are data of type integer, boolean and array with di�erent dimensions). For giv-

ing an abstract speci�cation of such architecture, we have to abstractly specify

the above data structure and that could be conveniently done by an algebraic

speci�cation.

Each architecture consists of an unordered group of processes plus a bu�er

shared among them, where the bu�er organization depends on the assumption

. This structure may be abstractly de�ned by saying that an architecture is

a couple consisting of a multiset of processes (since there may be two identical

processes) and of a bu�er, which is, depending on , either a queue, or a stack,

or a single value. Then it may be speci�ed by giving �rst appropriate combinators

for describing the bu�er structure and for putting processes and bu�er together,

and later qualifying such operators by means of axioms. Thus the structure of a

could be abstractly speci�ed by an algebraic speci�cation.

We need a formalism fully supporting the third viewpoint whenever we want

to specify the architectures following the assumptions on data (also

processes are data) and (also functions from processes into processes are

data) .

Whatever the motivation and the technical approach, a key

distinction has to be made between \methods for" and \instances of" algebraic

speci�cation of concurrent systems; this is just the distinction between methods for

specifying abstract data types and particular speci�cations of some data types. This

remark is particularly relevant in concurrency, where algebraic techniques have found

important applications in the description of abstract concurrent systems (viewpoint

). For example, considering processes as data quali�ed by a set of axioms, we

may obtain a theory of processes which is the analogous of a theory of rings or

groups or, as a more familiar example to computer scientists, a theory of stacks or

queues. Though this is a very important and fruitful viewpoint, we cannot consider

these theories among the methods of algebraic speci�cation of concurrency, which

should instead provide techniques and guidelines for de�ning (classes of) abstract

concurrent systems, as much as the classical algebraic speci�cation formal methods

for specifying (classes of) abstract data types. In particular it seems natural to re-

quire that methods of algebraic speci�cation of concurrency reduce to some methods

for the speci�cation of abstract data types, i.e., that the viewpoint is always in-

corporated. For particular algebraic process theories, which are not methods, see,

for example, the very elegant and informative book by M. Hennessy [37], where the

axiomatizations of several simple concurrent languages are given.

A simple example of algebraic process theory, PA, has been given in Sect. 1.3.

Here below we show how to turn the inductive de�nition of CCS given in the same

section into an algebraic speci�cation, which is an instance of the algebraic speci�-

cation method based on conditional speci�cations (see [25] and Sect. 3.4).

!

0

CCS

I

I I

I

act lab

exp lab

I

exp

�

� � � �

� � � �

t t �

t t

CCS

CCS CCS

CCS

CCS

�

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0

0 0

2.2 Items for Taxonomy

spec

sorts

opns

preds

axioms

1 2 3

1

1

1 2

1

2

2

1 2

2

1

1

1 2

1

2 2

2

1 2 1

2

1

1

2

2

1 2

1 2

=

:

:

:

:

:

:

+ :

:

:

:

+ +

for all s.t. = or =

for all =

!

� !

� !

!

!

� � � !

� � � !

� k � � !

�n� � !

� �! � � �

�!

�! � �! �! � �!

�! � k �! k �! � k �! k

�! ^ �! � k �! k

�! � n �! n 6

CCS

CCS

Speci�cation Formalism.

basic speci�cation formalism

basic speci�cation

basic concurrent models

exp; act; lab

a ; a ; a ; : : : act

act lab

act lab

� lab

nil exp

: lab exp exp

exp exp exp

exp exp exp

exp act exp

exp lab exp

�:e e

e e e e e e e e e e

e e e e e e e e e e e e

e e e e e e e e t; t t t t t

e e e a e a t a; a

The initial model of determines an abstract lts, whose sets of states

and labels are respectively () , () and whose transition relation is

; then the elements of () are further identi�ed by bisimulation seman-

tics. Notice that, assuming as primitive the sorts and , the �nal semantics of

as a hierarchical speci�cation coincides with the initial semantics.

Guided by the discussion about the aims of Sect. 2.1, we try to de�ne some items

for locating various approaches and obtaining a reasonable taxonomy. We will refer

implicitly to those items in the following when discussing some approaches. We do

not pretend all the items to be completely independent, and this is why we do not

call these items just dimensions; anyway their relationship should be clear from our

presentation.

Even when it is not explicitly stated and whenever possi-

ble, we try to identify a more or less under the insti-

tution paradigm, in the sense of Burstall and Goguen [26].

A consists of a set of sentences over a signature; its models

are those structures on the signature satisfying the sentences. Sometimes (basic)

speci�cations denote classes of structures satisfying some properties; we will stick

to the syntactic view of a speci�cation as a presentation, so that it makes sense to

speak of semantics of speci�cations.

It is important here to distinguish the models of a speci�cation from what we

call ; i.e., the structures that represent semantically pro-

cesses/concurrent systems (see Sect. 1.1).

1 2

3

P P

P

�

�

algebraic speci�ca-

tion formalism for abstract data types

basic speci�cation formalism

speci�cation language

Support for Concurrency.

basic concurrent models

primitives for concurrency

basic concurrent models

primitives for concurrency

CA

CA NET

Semantics and Level of Abstraction.

semantics

loose

ultra-loose

very abstract speci�ca-

tions (VAS) abstract speci�cations (AS)

Also, as we anticipated in Sect. 2, we would normally expect that an algebraic

speci�cation formalism for concurrency reduces to an associated

, whenever one does not consider processes,

but just static data types.

Starting with a , we may build more complex speci-

�cations by suitable operations over basic speci�cations. A linguistic support to such

operations constitutes a .

There are two aspects by which concurrency is dealt with

in a method for the formal speci�cation of concurrency: the

for processes and the .

Typical are labelled transition systems with the associ-

ated, possibly in�nite, labelled transition trees, Petri nets of various kinds, stream

processing functions (data
ows), which have been brie
y illustrated in Sect. 1.1.

There are also approaches, like process algebra, apparently qualifying processes just

by axioms without any reference to an underlying structure. But inevitably any such

axiomatization is driven by a hidden structure and any method which does not ex-

plicitly refer to a model, either provides a manner of descriptions of basic concurrent

models or leaves the burden of identifying and describing such a model to the user.

By we refer to higher-level aspects of concurrent sys-

tems concerning operations for structuring processes, and the mode of the inter-

actions of processes and of their evolutions. Typical primitives are: operations for

composing processes in parallel or hierarchically; communication mechanisms like

synchronous and asynchronous message passing and shared variables; global evolu-

tion modes, like interleaving, free and maximal parallelism.

For specifying the architectures of Sect. 1.4, for example, we need to con-

sider processes interacting by synchronously exchanging messages and by accessing

a shared bu�er; while the nodes of the network interact by broadcasting

communication; moreover such processes may evolve in parallel either in an inter-

leaving or free mode (and) or in an interleaving mode where the con
icts on

the bu�er access are solved by giving precedence to reading w.r.t. writing ().

As for classical adt speci�cations, here speci�-

cations may determine one or more abstract concurrent systems, where by abstract

concurrent systems we mean an isomorphism class of concurrent systems; those ab-

stract concurrent systems are the of the speci�cation.

In the �rst case it is intended that a speci�cation determines just one isomorphism

class. In the second case the semantics (sometimes we just say the speci�cation) is

; in the classical sense a loose semantics determines a class of non-isomorphic

structures on ; we may also speak of speci�cations in various senses, for

example when we consider structures also over signatures with some relation with

. Since there is not a general agreement on the meaning of loose and especially

of ultra-loose, in the present context we prefer to speak of

, qualifying instead as those identifying one

abstract concurrent system.

Semantics is one of the most delicate and interesting topics in concurrency; we

will see that essentially three approaches are followed:

V1

V2

V3

Integration.

inclusion of static data types

algebraic speci�cation for the concurrent structure

dynamic data types

Applications.

{ adopting a given semantics for processes, just connecting it to a semantics for

usual adt's; this is possible whenever there is a clear separation between processes

and the data they manipulate;

{ de�ning, by adding suitable axioms, a classical semantics, e.g., initial or �nal, in

a way that captures the wanted semantics for processes;

{ providing new semantic paradigms for adt's, which are able to accommodate

semantics sensible for data which are processes, thus extending the classical

semantic theory for adt's.

We will discuss in some more detail the issue of semantics in the following section.

It turns out that VAS of concurrent systems need speci�cation formalisms (say

institutions) and semantics which go beyond those in use for classical static adt's

in two respects. Notions of ultra-loose semantics have to be developed in order to

abstract from the particular structure of an architecture; these abstractions cannot

be captured simply by means of the classical notion of satisfaction. Moreover we

have to go beyond equational and conditional logic, since, in order to express re-

quirements on events and their relationship (sometimes distinguished in safety and

liveness properties) we need the power of �rst-order logic, possibly with in�nitary

conjunctions, and of various forms of temporal logic. This necessity of encompassing

classical adt speci�cation for VAS explains why most algebraic methods are mainly

concerned with AS. Thus we will have to deal mainly with AS and only brie
y we

will discuss the VAS issue.

By integration we refer to the two following distinct aspects:

{ the level of integration of abstract data types and concurrent features;

{ the extent to which a speci�cation of a concurrent system is truly an algebraic

speci�cation and can exploit classical concepts and results of general algebraic

speci�cations.

For classifying the integration of adt's and concurrent features we may refer to the

three viewpoints illustrated in Sect. 2 and related to three motivations for making

speci�cation of concurrency algebraic: () in a �xed

concurrent structure, also ()

a �nally considering processes as data themselves, what we call

(). As long as a method always subsumes as a special case a general method for

specifying classical adt's, we may consider the three above viewpoints arranged in an

order of increasing integration. Clearly the dynamic data type viewpoint corresponds

also to an overall algebraic framework, but di�erent possibilities arise, as we shall

see, especially following the �rst viewpoint, which leaves separate the speci�cation

of the static adt's and of the concurrent structure, but may result in a completely

algebraic speci�cation.

It seems that we are still at an infancy stage for speaking in general of

applications to real industrial cases. However it makes sense to look at applications in

a broader sense: use of a method in proposal for standard tools, in research projects,

in prototyping, in industrial case-studies. To some extent we may also guess at

potential applications, looking at the varieties of example applications a method has

shown.

Tools.

Pragmatics.

2.3 Beyond Classical Algebraic Speci�cations

Projection Speci�cations

It is a widely accepted dogma that there is no hope of real use of algebraic

speci�cations without a convenient toolset for editing, verifying and animating spec-

i�cations. Speci�cation of concurrency adds a new challenge in many senses: concur-

rent rewriting systems are typically non-con
uent and non-terminating; even when

applicable, some general tools for algebraic speci�cations are ine�cient to master

the complexity of the dynamic behaviour of processes; �nally the veri�cation pro-

cedures, in order to deal with various observational semantics for processes, need

speci�c techniques, far beyond the case of equational or conditional deduction.

Note that the point here is not just feasibility or expressive power, but

also convenience. As M. Broy points out in [22]

\most important properties of speci�cation methods are not only the un-

derlying theoretical concepts but more pragmatic issues such as readability,

tractability, support for structuring, possibilities of visual aids and machine

support".

The algebraic approach to speci�cation applied to concurrency poses some new prob-

lems, whose solution is of general interest to the theory of algebraic speci�cations.

A typical issue which has stimulated new techniques, beyond the classical ones, is

semantics. We present brie
y two recent theories, which are representative of the

two main approaches to the algebraic semantics of processes. The �rst, \projection

speci�cations", is an interesting variation of the initial approach taken in the process

algebra school; in this approach the axioms embed a particular semantics and pro-

cesses are limit points in a complete metric space, which is also a continuous initial

algebra.

The second, \observational speci�cations", takes the bisimulation approach (typ-

ical of CCS) extending it to general algebraic speci�cations; it encompasses, as spe-

cializations, most presently known sensible semantics for processes together with all

classical semantics for adt's.

When specifying processes frequently we need to con-

sider \in�nite elements"; for example, when processes are modelled by means of

(possibly) in�nite trees, when the result or the observation of a process is a (possi-

bly) in�nite stream of values and so on. The projection speci�cations developed by

the Ehrig's group in Berlin, and especially by M. Grosse-Rhode in his Diplom thesis

(see [35, 36]) allows us to specify algebraically in�nite objects.

The key ideas of projection speci�cations are the following:

{ in�nite objects are seen as limit points in complete metrics spaces, called pro-

jection spaces, since the metric is de�ned in terms of projections; moreover the

continuity of operations ensures that the models are continuous algebras;

{ the algebraic speci�cations of in�nite objects include the speci�cation of projec-

tions and thus embody the metric; the associated continuous model is obtained

by a standard construction.

� !

V3

1 2 3

PNAT

PS

PS PS

PS PS

PS

PS

CT

p s nat s s

Cat T

T

!

� � � !

� � � !

� k � � !

�b� � !

� !

- =

:

:

+ :

:

:

- :

+ = + (+) + = + (+) + =

spec

enrich by

sorts

opns

axioms

PA Pr

exp

a ; a ; a ; : : : exp

: exp exp exp

exp exp exp

exp exp exp

exp exp exp

p exp nat exp exp

x y y x x y z x y z x x x

This approach is much related to the metric approach developed by the de

Bakker's school in Amsterdam (see [30]) as a development of a pioneering paper

by Arnold and Nivat [1]. The key di�erence here is the explicit speci�cation of pro-

jections.

Projection speci�cations are almost as usual total equational algebraic speci�-

cations, but with an explicit projection operation for each sort - : ;

some constraints are added thus obtaining the constrained projection speci�cations

to ensure conservative extensions of the naturals, if used in the projections, and

compatibility of operations with projections.

Projection algebras are models of constrained projection speci�cations; they are

characterized by the fact that every carrier is a projection space and the operations

are projection compatible. By de�ning suitable projection morphisms, for every pro-

jection speci�cation , the projection algebras which are models become a

category (), which admits (free and) initial algebra .

By a standard construction procedure on projections, with every projection al-

gebra a continuous algebra is associated which is complete (i.e., every carrier is a

complete projection space) and separated (i.e., equality of projections implies equal-

ity of the limits). Thus the semantics of a projection speci�cation is the initial

complete separated algebra which is associated with the initial algebra

and is initial in the category of complete separated projection algebras.

Moreover projection speci�cations have nice properties like existence of free con-

struction and the amalgamation and extension properties, so that the modularization

and parameterization techniques and the results for classical equational speci�cations

may be fully extended to projection speci�cations.

The theory of projection spaces and speci�cations provides a way of specifying

processes as in�nite objects of some kind, de�ning their projections, The nice aspect

is that whenever processes are speci�ed in this way, there is a full integration of data

and processes, because processes are data themselves (viewpoint : dynamic data

types). Moreover this theory, not being bound to a particular model of processes,

nor languages, nor method, can be incorporated in other methods (for example, it

seems possible to use it within the SMoLCS approach, see Sect. 3.4, for associating

semantics in a pure algebraic way as in [6]).

Here we report the projection speci�cation of the process algebra PA already

considered in Sect. 1.3, but in this case we have the initial complete separated algebra

which considers also in�nite processes, while in 1.3 only the �nite ones are considered.

f g

2f g

1 2 1 2

HCCS

i i

i i

i i

HCCS

CCS

PNAT

CCS

CCS

k b b

b b k b b b

�

!

spec

enrich by

opns

s
s exp;act;lab

exp

exp

Observational Structures and Speci�cations

Succ

nil nil nil

exp

R R

I =R

R

Pcom nil :nil P com nil nil :nil

R

e ; e e R e

(+) = ()+ () () = ()

= () + ()

= () = () (+) = ()+ ()

for all 1

- () =

- (0) =

- (()) = - ()

- (+) = - () + - ()

=

:

{ also communicating a process is a basic action

x y :z x:z y:z x:y :z x: y:z

x y x y y x

a x a:x a:x y a: x y x y z x z y z

i

p exp n; a a

p exp ; a :x a

p exp Succ n ;a :x a :p exp n; x

p exp n; x y p exp n; x p exp n; y

Pcom exp act

Here is the projection speci�cation of natural numbers with the usual

operations 0 and .

The usual semantics for basic al-

gebraic speci�cations in general are not adequate for speci�cations of processes. Con-

sider, for example, the algebraic speci�cation of �nite CCS given in Sect. 2.1.

Initial and �nal semantics of , which coincide, do not represent the right se-

mantics for CCS (for example, and + are not identi�ed, since there are

no axioms requiring the identi�cation of terms of sort).

Also the common form of observational semantics for algebraic speci�cation

(sometime called behavioural semantics as in [66]) allows only to express particular

bisimulation semantics: those which may be characterized by primitive observations

(see [10] for a general treatment and [6] for the particular case of weak bisimulation;

while in [12] a lattice of simulation relations is de�ned, whose greatest element can

be seen as a possible correspondent of bisimulation in an algebraic framework). How-

ever behavioural semantics cannot be used for general bisimulation semantics, for

example in the case of higher-order processes (i.e., when processes are communicated

among processes).

The semantics of CCS is given usually by means of several variations of bisimu-

lation. However various problems are encountered when extending bisimulation se-

mantics to algebraic speci�cations. Consider the higher-order extension of the �nite

CCS (algebraically speci�ed in Sect. 2.1) which is formally de�ned below.

In this case a bisimulation semantics must determine an algebra; thus instead of

bisimulation relations we have to consider families of relations on the carriers of the

initial model indexed on the sorts of the speci�cation = ; so if

the maximum bisimulation is a congruence, then the resulting semantics will be the

quotient algebra .

Then we have to give conditions for being a bisimulation, which must di�er

from those of 2.3, otherwise () and (+) will be distin-

guished by the maximum strong bisimulation (while each reasonable extension of

strong bisimulation should identify them, since both communicate strongly bisimi-

lar processes); more generally the condition for being a bisimulation of 1.2 can

be rephrased as follows. For all s.t.

{

{

{

1 1

2

1 2

1 2

�! �!

�!

�! �!

�! �!

0 0

0

0 0 0 0

0 0

0 00 0 00

0 00

0 00

0 00 0 00

l l

l

l l

exp

l l

exp

exp

exp

act lab

act act

exp

lab act

act

1 1

1 1

1 2 2

2

1

2

1 2

1 2

1 2

1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 1 2 2 1 1 2 2 1 2

EXP

EXP EXP

observational structure

experiments

similarity law

propagation law

e x e x e

e e x e R

e

x e R x e l l e R e

R

x e R x e e R e l l

l P com e l Pcom e e R e l Pcom e l Pcom e

e R e

R R

R a a a R a

a a a Pcom e a Pcom e e R e

R l l l R l

l a l a l a l a a R a

observational relations

observational equivalence

observational structures are not at all con�ned to a generalization of

bisimulation semantics for processes

{ if passes an experiment = (i.e. the formula holds on

), then passes another experiment = -similar to ;

{ analogous condition for ;

where -similar to means = and .

For coping with higher-order CCS we have just to modify the notion of -similar

experiment; now -similar to i� and either (=) or

(= (), = () and) or (= (), = ()

and).

What about and ? We have to extend the identi�cations on processes

to the elements of other sorts, since they may have process components.

: For all , , implies

either (=) or (= (), = () and).

: For all , , implies

either (= , =) or (= , =) with .

The above problems (and many others) are tackled within the theory of ob-

servational structures and speci�cations, which we sketch below (see [2] for a full

treatment). The result is a new theory of adt semantics on its own, encompassing

the classical treatment.

An essentially consists of a �rst-order structure (or alge-

bra with predicates) equipped with

: (possibly in�nitary) �rst-order contexts for observable elements;

a for experiments: a function which, given a (similarity) relation

on the elements of the algebra, generates a similarity relation on experiments;

a for relations: a function which propagates a (similarity) re-

lation on the observable elements to a (similarity) relation on elements of the

other sorts.

With each observational structure a family of is associ-

ated, with a maximum that we call . This equivalence, as

expected, is not always a congruence; thus it is shown how to derive canonically an

approximating congruence and also how to de�ne observational equivalences which

are congruences. Whenever this equivalence is a congruence we get an observational

semantics by the usual quotient operation.

The construction is a much abstract version of Park's construction of maximum

bisimulation (see Sect. 1.2). Indeed, observational structures capture the essential

ingredients for de�ning over algebraic structures those semantics which share with

the original notion of bisimulation semantics the feature of being maximum�xpoints

of suitable transformations. Hence the associated proof technique is e�ective: in or-

der to show that two elements are semantically equivalent, just �nd an observational

relation to which they belong. As a desired consequence many known bisimulation

semantics for processes (presently, all known to us) are special cases of this con-

struction. But

. Indeed because of their abstract nature and of

n1

� �A s : : : s

process module

begin

atoms

3 Outline of Some Approaches

NAME

{ atomic action symbols declaration

:

3.1 The Process Speci�cation Formalism for Process Algebras (PSF)

observational speci�cation

SPEC

SPEC

free axiomatic propagation law

free axiomatic similarity law

CA

the
exibility in the choice of the similarity laws for experiments and of the prop-

agation laws for relations, they can be applied to give a wide range of semantics

for abstract data types. It can be shown indeed that the full class of well-known

semantics, like initial, �nal and various behavioural semantics, are special cases of

this paradigm.

An is a particular case of observational structure in

which we make explicit use of an algebraic speci�cation ; moreover the algebra

component of the structure is the initial model of and the propagation and

similarity laws are derived by the axioms of the speci�cation as follows.

{ The provides the minimal propagation of the

identi�cations on the observed elements to the whole structure (i.e., to all nonob-

served sorts and all predicates) which preserves the algebraic structure and the

validity of the speci�cation axioms about non observed elements and predicates.

{ The considers equivalent two experiments if and

only if they at most di�er for subcomponents which are related by the above

free axiomatic propagation law.

We have selected a number of relevant approaches, which are brie
y presented with

an implicit reference to the items of Sect. 2; moreover for each one we comment its

application to the example speci�cation problems (the architectures) presented

in Sect. 1.4.

PSF (see [46]) is the process speci�cation formalism developed by Mauw and Veltink

as a base for a set of tools to support process algebra of Bergstra, Klop et al' (see

e.g., [18, 14]). The main goal in the design of PSF was to provide a speci�cation

language with a formal syntax similar to the process algebra ACP (see [14] Sect. 4)

but also with a notion of data type; to this end ASF (the Algebraic Speci�cation

Formalism of [17], which is based on the formal theory of abstract data types) has

been incorporated.

The basic speci�cation formalism is equational logic with total algebras. The

theory and language of ASF is adopted for handling modular and parameterized

speci�cations.

A PSF speci�cation consists of a series of modules, distinguished in data modules

and process modules.

Data modules are algebraic speci�cations of adt's with initial semantics.

Process modules are algebraic speci�cations of processes. Formally a process

module has the following form.

k

n

n

� �

j

1

1 2 3

1

hide encaps

: : :

P s : : : s

: : :

H : : :

: : :

a a a

: : :

P x ; : : : ; x

processes

set of atoms

communications

de�nitions

end

{ process symbols declaration

:

{ set of atoms used with the hiding and encapsulation operation declaration

= { using set comprehension

{ explicit de�nition of synchronous actions and of the resulting label

=

() = ACP-expression

NAME

Processes are particular data structures obtained from operators like \+", \ ",

\;", \ " and \ ", elementary processes called atomic actions and recursive

de�nitions; the given (equational) axiomatization determines a particular semantics

over these structures embodying ideas of concurrency. This is best understood look-

ing at the hidden basic concurrent model behind process algebra which are lts's as

in CCS and many other approaches; then the axioms provides semantics like strong,

trace or bisimulation semantics and others. The hidden model is made evident in

some presentations of PSF, where ACP processes are described by means of SOS-

like rules (see [54]) describing transitions. Anyway, since ACP provides essentially a

language schema for processes, it is irrelevant, except for building the tools, how its

semantics is given, either by equations or by transitions plus semantic equivalences.

It is instead important to notice that in PSF:

{ the synchronization of actions can be de�ned explicitly in the communication

part, i.e. the synchronization mechanism is not �xed and is parameterized;

{ the execution mode is interleaving.

The interface between processes and adt's is as follows:

{ the atomic actions may have as components values of the speci�ed adt's;

{ it is possible to de�ne recursively families of processes indexed on the elements

of some sort;

{ an in�nitary non-deterministic choice indexed on the elements of some sort is

available.

Note that there is no notion of global data and the communication mechanism is by

message passing.

The semantics of the data part is a classical algebraic semantics by initiality; the

semantics of processes is in general a bisimulation semantics which gives a congruence

on the term algebra. Thus the semantics identi�es an isomorphism class of structures,

i.e., an adt.

The data part is strictly distinguished from the process part, i.e., the �rst view-

point of including the speci�cation of static adt's into a formalism for concurrency is

followed; but also the concurrent structure is here speci�ed algebraically though with

a �xed set of primitives parameterized on the actions and on synchronization struc-

ture. The result is a completely algebraic speci�cation to which all the techniques

and results of ASF can be applied nicely.

D D

P P

2 3

2 3

CA

CA

CA NET

V3

3.2 LOTOS

Particularly powerful are the modularization mechanisms in PSF, which are bor-

rowed from ASF but are truly dealing with integration of adt's and processes: the

module concept supports importing and exporting also of processes and actions.

There is a vast literature on the use of process algebra with a detailed treatment of

classical examples and correctness proof for implementation.However these examples

should not be confused with applications of a speci�cation method like PSF, which

has been introduced indeed for supporting industrial applications. Clearly PSF is

practically applicable to a wide range of signi�cant cases, but we see a limitation in

its strict policy of message passing and no provision for data sharing; in many cases

some amount of coding is required which is not in the spirit of abstract speci�cations.

The same remark applies to execution modes other than interleaving, which have to

be simulated by appropriate use of synchronization and restriction mechanisms.

PSF has been devised as a basis for the development of a toolset (see e.g. [46]).

This toolset is currently in an advanced phase of development ([47]); in particular a

simulator, a term rewriting and a proof assistant has been implemented. From the

design of the toolset, it seems that this would be a most interesting feature of PSF.

Some of the architectures may reasonable speci�ed using PSF; clearly the

bu�er has to be realized by means of a particular process (all bu�er organizations

may be handled).

The following variations of cannot be speci�ed in PSF: and (PSF does

not support the viewpoint) and also and since PSF allows only interleaving

execution mode for processes and does not o�er a way to solve con
icts; for the same

reason also cannot be speci�ed in PSF.

LOTOS has been probably the �rst internationally known (since 1984) algebraic

speci�cation formalism for concurrency (see [27, 40]); most importantly it is an of-

�cial ISO language speci�cation for open distributed systems, a quali�cation which

alone would rank it high in an ideal value scale of possible important applications.

However LOTOS is interesting also because it represents an early paradigm of which

PSF can be considered an improvement. Because of this, we do not go into a de-

tailed discussion of LOTOS; it is enough to compare it to PSF for understanding its

structure.

LOTOS adds classical adt speci�cations into a language for concurrency as PSF;

but it uses ACT ONE ([34]) instead of ASF and a process description based on

an extension of CCS with several derived combinators (e.g. input/output of strucu-

tured values, sequential composition with possible value passing, enabling/disabling

operators) instead of the process algebra ACP.

The basic speci�cation formalism (equational logic with total algebras) is the

same and also bisimulation semantics for processes.

PSF is an improvement over LOTOS (see a discussion in [47]), since it allowsmore

freedom in the de�nition of synchronization mechanisms and supports import/export

of action/processes thus being more
exibile for stepwise development.

Along all these years LOTOS has been used in several practical applications and

moreover nowadays a toolset for helping to write down LOTOS speci�cations has

been developed (see e.g. the ESPRIT project LOTOSHERE [62]).

A

C

A

C

1 2 3

k

� � � !

!

k k k

k

SPEC

DATA

EQ

EQ

SPEC

3.3 ACP with Shared Data

process

actions

PUSH

PUSH

PUSH PUSH PUSH POP

SPEC

process data data

item process

i d Push i; d :

process data

i i i Push i; Empty :

process speci�cation:

data speci�cation:

atomic actions:

composite actions:

equations for atomic actions:

equations for composite actions:

end process speci�cation:

This approach is due to S. Kaplan and has been presented in [42, 43]. The situation

is very similar to the one in PSF: strict hierarchical separation between data and

processes and processes speci�ed by a schematic language. The di�erence is that now

the actions operate on the data and thus what is parametric is now the speci�cation

of the e�ect of actions on data.

The basic speci�cation formalism is equational logic with total algebras. Any

speci�cation language that supports this basic formalism can be used to provide

methods for modularization and parameterization; PLUSS (see [21]) is explicitly

quoted as such a possible language.

A process speci�cation is in two layers:

{ the data part, which is a classical algebraic speci�cation of some basic data struc-

tures; data represent the concurrent states of the (global) environment which is

manipulated by processes;

{ the part, specifying the agents that act concurrently on the data. Pro-

cesses are built out of basic entities called , by means of the operators

(those typical of process algebra) \;", \ ", \+".

The interactions of processes with data is modelled by an application operator

:: : . For example we can build a process stack by means

of operations like : ; then we can specify its e�ect with an

axiom like: () :: = ()

The states of a concurrent system have always the form \ :: " and

they are of type data; for example

(() () ()) :: ()

For making easier the speci�cation, it is possible to declare composed actions,

i.e., processes built from atomic actions by \;", \+" and \ ", also in a parameterized

way. The general form of a process speci�cation is as follows:

The communication mechanism is by shared data and indeed the actions are used

for manipulating the global data, while there is no provision for message passing.

The basic concurrent model is the process algebra ACP: i.e., no explicit model

is given since processes are treated as static data, but the hidden models are lts's.

The axioms for processes axiomatize the execution mode by interleaving of atomic

actions and trace semantics. Note that trace semantics refers to the basic model for

concurrency and not to the overall semantics for processes (see below).

Semantics is done by purely algebraic methods, i.e. it is hierarchical on data

speci�cation with an overall observational semantics, given by a congruence corre-

sponding to a �nal algebra. Indeed the semantics of a process speci�cation

n1

1 2 3

2 3 2 3

jjj

jjj jjj

� p:E p

: : :

B B B

D D P P

3.4 Dynamic Speci�cations and SMoLCS

SPEC SEM SPEC

SEM SPEC

SEM SPEC

SPEC SPEC

CA

CA

CA NET

is given by translating into a classical algebraic speci�cation ().

The speci�cation () has a standard part consisting in equations for de�n-

ing the operators on processes (those of ACP) and the semantics of the application

operators of processes to data.

The overall semantics of () is observational in an algebraic sense, i.e.

it gives an observational congruence corresponding to a �nal algebra; this semantics

formalizes an input-output semantics for processes with respect to data, as it is

sensible for a concurrent system which represents non-deterministic transitions from

a data con�guration to another one (recall that the overall state of the system is of

sort data).

In�nite processes are possible by means of �xpoint operator \ []", whose se-

mantics is axiomatically given by the unfolding equation as usual; dynamic processes,

which may modify their structure depending on the environment, are obtained by a

conditional operator.

Being fully algebraic, the approach can use various operators for composing

speci�cations and of course parameterization and notions of implementation (and

indeed the approach was developed in the same environment of PLUSS and AS-

SPEGIQUE). But it also provides a special composition operator for process speci-

�cations \ " showing that under certain conditions one can convert a speci�cation

into a basic speci�cation. This operation is viewed as a �rst

step towards multilevel structuring, which is not exploited.

There is no mention in the literature of signi�cant applications; however it can

be easily understood that the method is viable whenever and only when we have

to model concurrent architectures where the communications is by shared data.

Converting models with message passing would imply some coding, which inevitably

a�ects the level of abstraction.

No special tools. If the processes are �nite then it is understandable that the

usual tools for algebraic speci�cation work.

Some of the architectures may be speci�ed using this approach; however the

handshaking communication between processes has to be simulated using particular

shared structures and so, as said before, what we get is more an implementation of

the architecture that an abstract speci�cation. Clearly all kinds of bu�er organization

(variations , and) may be speci�ed. Moreover, since also this formalism

is based on the ACP, it has has the same restrictions of PSF: so we cannot specify

neither the architectures corresponding to variations , , , nor the

network .

The core of the SMoLCS approach has been developed, mainly by E. Astesiano

and G. Reggio at the University of Genova, with a signi�cant contribution by M.

Wirsing of the University of Passau, since 1983, �rst within the Italian national

project CNET (Campus Net, the prototype design of a local area network). While

the core of the method has been unchanged, signi�cant improvements and additions

have been made since, especially for what concern semantics, tools and speci�cations

at higher-level of abstraction. Curiously enough its theoretical development has been

always accompanied and partly driven by applications; indeed at the time of its

�

V3

{

{

{

{

CONDYN

�

� �

� 2 2 �

� �! � � � 2

D� �;

� S; ;

S

st l st S

st l st st

D� D� �

D�;Ax D� Ax

D�

dynamic signature DS

OP PR

DS DS dynamic sorts

DS DS

PR

dynamic algebra

absract dynamic data type addt

dynamic speci�cation

appearance in the international literature [3, 4] a full SMoLCS speci�cation of the

prototype CNET communication architecture had been already completed [4]; the

�rst tools have been developed for application to the draft formal speci�cation of

full Ada; the most recent development for very abstract speci�cations have been

required for applications to two industrial case studies.

As a most distinctive feature, SMoLCS supports, within one speci�cation formal-

ism, di�erent ways of specifying concurrent systems, adapting the description to the

level of abstraction of the speci�ed system. In its current version it even supports

explicitly various forms of very abstract speci�cation, which will be discussed among

others in a later section; here we present just abstract speci�cations.

Any institution which support conditional speci�cations with predicates can be

used as algebraic speci�cation formalism; a privileged one is , the institu-

tion of conditional dynamic speci�cations with partial (total) [order-sorted] algebras

with predicates. Though most examples have been given in an ASL-like metalan-

guage [11], SMoLCS is not bound to any particular speci�cation language, as long

as it supports at least conditional speci�cations with predicates, parameterization

and modularization mechanisms.

SMoLCS is centered around the following ideas.

{ Processes are speci�ed algebraically as lts's and are themselves data as any

other; thus can be manipulated by functions and processes (viewpoint : dy-

namic data types); in particular higher-order concurrent systems and calculi are

supported (actually they have been �rst introduced and developed within the

SMoLCS approach, see [7]).

{ It supports the user-de�ned speci�cation of any kind of concurrent structure,

communication mechanism (frommessage passing to shared data) and execution

modes (from interleaving to priorities).

{ This support is provided by modularization, hierarchization and parameteriza-

tion mechanisms for de�ning and combining parts of a system, with possibly

reusable components of any kind (data, actions, communication and execution

mode schemas).

{ Semantics also is user de�ned, following a schema for de�ning observations of

the system depending on a viewpoint.

A process is speci�ed by giving a dynamic speci�cation (an algebraic transition

system, as it was called until '89), which is as follows.

A is a couple () where:

= () is a predicate signature,

(the elements in are the , i.e. the sorts corre-

sponding to states of lts's),

for all there exist a sort - (the sort of the labels) and

a predicate : - (the transition predicate).

A on (shortly -algebra) is just a -algebra.

An (shortly) is an isomorphism class of dynamic

algebras on a signature.

A couple (), where is a dynamic signature and a set of �rst-order

formulae on is called a .

{

{

0

0

=1

1

1

i ;:::;n i

i n

l

n

concurrent system

CONDYN

^ �

CONDYN

�!

j j j

� �;

� � t t Pr t ; : : : ; t

P r

� s s

p : : : p i

i

The axioms may refer both to static aspects (e.g., values, states of a system)

and to the dynamic aspects, i.e. concerning the transitions predicates.

By algebra we mean usually a many-sorted algebra with predicates; though we

generally prefer, for reasons of convenience in applications, to use partial alge-

bras, there are no problem to use, for example, total or order-sorted algebras.

There are various institutions of dynamic speci�cations depending on the form

of the axioms. For the purpose of abstract speci�cations the most interesting is

, the institution of conditional dynamic speci�cations, with axioms

of the form

where and are atoms, i.e., formulae of the form = or () with

predicate symbol (in the case of partial algebras the equality in the formulae

is interpreted as existential equality).

has some nice features; indeed a conditional dynamic speci�cation

has always an initial model which de�nes an associated lts; moreover it is possible

to make a clear distinction between static and dynamic axioms, the last ones

being those where has the form .

Depending on the degree of separation between static and dynamic aspects in

the axioms, various simple inductive ways of de�ning the associated lts's are

possible.

A dynamic speci�cation determines an addt, according to a semantics that can be

user de�ned following a schema for de�ning observational semantics. There are

essentially two ways in SMoLCS for associating a semantics: by adding axioms

de�ning observations and thus getting semantics as a terminal semantics (a

terminal congruence, see especially [6]), or by de�ning over the speci�cation

an observational structure, as speci�ed in [2] (see also Sect. 2.3) and getting an

observational equivalence, which has to be proven to be a congruence; su�cient

conditions are given to ensure this.

Observational equivalence includes as a special case all presently known sensible

semantics for concurrency like trace and bisimulation (strong, weak, branch-

ing, distributed), etc. Since observational semantics is obtained as a maximum

�xed point of a suitable monotonic transformation, the same proof technique of

bisimulation can be applied.

A support to modular speci�cation of concurrent systems is then given accord-

ingly to the following schema, where we outline the methodological aspects,

leaving apart the algebraic formalism, which can be found in the quoted papers.

A is speci�ed as follows: the states () are a

multiset of states of the process components and a value representing the

global information.

The transitions are speci�ed splitting the speci�cation in several steps, where at

each step some partial moves are de�ned using the partial moves de�ned at the

previous step; at the �rst step the partial moves are de�ned starting from the

transitions of process components.

1 2

i

j

j

j

1

1

1

1

1

1

1

1 2

1 2

1 1

0

0

0 0

0

0

0 0

0

0 0

0 0

0

0

0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

i

pl

i

n

l

n

i

i

j

l

j j

n

l

n

j

j

j

j

j

l

j

n

sl

n

sl

sl

j

pl

j j

pl ==pl

pl

extl

Synchronization

Parallelism

Monitoring

SMoLCS

SMoLCS SMoLCS

)

j j j j �! j j j j

)

j ����� j

j j j j �! j j j j

�����

!

)

j j j �! j j j

j �! j

j ����� j

j ����� j

j j ����� j j

j ����� j

j j ���! j j

p p i ; : : : ; n

p : : : p mp i p : : : p mp i

cond

mp i i

pl l cond p p

cond

mp i > mp i j ; : : : ; n

mp : : : mp mp i mp : : : mp mp i

cond

>

mp i i l i l cond

mp mp

cond

p p j ; : : : ; n

p : : : p i p : : : p i

cond

mp i mp i

mp i > mp i

mp i > mp i j ;

mp mp i > mp mp i

cond

mp i > mp i

mp mp i mp mp i

cond

: : :

: : : ; : : : ; : : :

The rules de�ning the transitions at the �rst step have form

== = 1

where denotes the transition relation of the process components, , , ,

the 's, and are metaexpressions and the 's and 's are metavariables

not appearing in ; while the rules de�ning the transitions of the next steps

have form

= 1

where denotes either the transition relation corresponding to the

partial moves of the previous steps or , , , , the 's, , and are

metaexpressions and the 's and 's are metavariables not appearing in

.

It is shown that any speci�cation of a concurrent system may be reduced to a

canonical form consisting of the composition of three particular steps, respec-

tively for synchronization, parallelism and monitoring, which are characterized

by rules of the the form respectively:

=
= 1

= 1 2

Appropriate algebraic parameterized schemas are given for expressing the three

steps; ultimately the speci�cation of a system can be formally viewed as an

adt speci�cation which is an instantiation of a parameterized speci�cation, say

(), where the parameters refer to various user de�ned aspects con-

cerning dynamics and data. It is clearly possible then to reuse parts of speci-

�cations and also to structure hierarchically systems, corresponding to nested

calling on di�erent parameters, say (()).

SMoLCS has been applied to signi�cant case-studies, the most important being

the speci�cation of the underlying concurrent model in the formal de�nition of full

!

0

3 1 1 2

3 3 1 2

D B A P

D B A P

g t t

CA

CA NET

SMoLCS CA

CA

CA

3.5 Conditional Rewriting Logic

Ada (EEC-Map project The Draft Formal De�nition of ANSI/STD 1815A see [5]).

Among other applications, the description of a local area architecture in [4] and two-

cases studies proposed by ENEL (Italian National Electricity Board) are concerning

an hydro-electric central and a high-tension station for distribution of electric power.

For industrial applications it still lacks standardization and a complete toolset. A

simulator, the SMoLCS rapid prototyping system based on RAP ([39]), has been in

use since 1987, consisting of a tree-builder and a tree-walker. Currently a speci�cation

metalanguage for the SMoLCS speci�cations of concurrent systems and a related

toolset is under development. The toolset includes a syntax-directed editor and a

much more e�cient redoing of the simulator equipped with a graphical interface for

showing the results.

Following the SMoLCS approach it is possible to specify all architectures and

the network without implementing/simulating their concurrent features;

such features may be abstractly speci�ed by giving appropriate axioms for the various

steps (the full speci�cations can be found in [8]). In this case it is important to note

that the various assumptions on the data, on the bu�er access and organization and

on the parallelism are formalized by appropriate parameters of the parameterized adt

; thus if we have the speci�cation of the corresponding to a particular

choice of such assumptions, say (, , ,), to get the speci�cation for

another choice, say (, , ,), it is su�cient to change the parameter

corresponding to the bu�er access (rules for the parallelism step).

In [49] and, as application to object systems in [48], Meseguer advocates a formalism

called \Conditional Rewriting Logic" as a unifying model of concurrency.

Meseguer work resembles much the SMoLCS approach (of which he was not aware

when writing [49, 48]) but it di�ers in one fundamental point, as we will see. For

example, the speci�cations of object systems in the second paper use for state con-

�gurations multisets of objects (processes) and information as in SMoLCS. Indeed

it will be rather easy to understand that approach by comparing it to SMoLCS.

Seen from the speci�cation viewpoint the proposed method can be viewed as a

specialization of dynamic speci�cations in which:

{ the transitions are seen as rewriting steps;

{ a set of labelled conditional rewriting rules (:) is given, which constitute

the proper axioms of the speci�cation;

{ a �xed set of conditional axioms is given de�ning the propagation of the rewriting

steps by re
exivity, congruence, replacement and transitivity (in Meseguer's view

a concurrent rewriting is characterized by the use of the replacement rule).

This work contains some very interesting ideas for theoretical foundations of con-

currency, in particular the notion of semantics as a congruence over terms represent-

ing proofs; moreover it gives some very elegant insight into a categorical semantics.

However for the moment those de�nitions are not able to embody signi�cant obser-

vational semantics, which (personal communication) will constitute the subject of

some future work.

2 3

2 3

D D

p

D D

CA

CA NET

CA

CA CA NET

CA

3.6 Stream Processing Functions

The propagation axioms are the characterizing feature of Conditional Rewrit-

ing Logic; and indeed they justify the name of the approach (rewriting and logic).

However, while being useful and elegant in some cases (for example in some applica-

tion to Petri nets, which were the inspiring case), these axioms make this approach

not convenient, in our view, for application to signi�cant concurrent systems. The

propagation rules imply that the actions corresponding to rewritings are not capa-

bilities, but e�ective actions (silent moves in CCS). This implies that one cannot

simulate labelled transitions (which are not explicitly supported) for representing

capabilities. Hence what is a basic support for modular composition of open process

modules (i.e., processes with capabilities toward the external world) is lacking. In

most signi�cant examples that we have encountered this makes speci�cations less

modular than they should be.

Using the Conditional Rewriting Logic we can specify all variations and

the network ; but the variations and are very hard to realize. The

problem is that these speci�cations are very little modular due to the propagation

axioms. We cannot �rst describe the rewritings of the processes and then those of the

architectures, since if a process can perform some rewriting only in some particular

context, we have to specify only the architecture rewritings. So we cannot give a

speci�cation of the processes and then use it for all variations of ; moreover we

cannot use the speci�cation of for specifying . For the same reason the

speci�cation of choosing variations and are possible but very complicated,

since we can only describe the rewritings of the architectures, otherwise the processes

can perform some activity while they are communicated or stored in the bu�er.

We should wait for more examples and applications, also remembering that prob-

ably the aims of that work are di�erent from the classical speci�cation of concurrent

systems. Indeed the main application is currently related to the design, semantics

and implementation of a speci�cation language for concurrent modules. Quite inter-

estingly, the semantics is driving the implementation down to the realization of the

hardware architecture, which gives the project, in our view, a particular value as for

the application of formal techniques to software engineering.

A somewhat related approach has been pursued in [28].

In various papers [22, 23, 24] and in projects M. Broy has developed since 1983 an

approach to the formal speci�cation of concurrent systems which is a combination

of algebraic speci�cations, streams, predicate logic and functional programming.

The approach is denotational in nature: it provides a language and its semantics;

thus it does not qualify as a typical algebraic formalism. However we brie
y present

it for matter of comparison; it may indeed use classic formalisms for the speci�cation

of abstract data types and it may apply �rst-order and temporal logic for describing

properties of the agents.

The basic models are data
ow architectures and the structuring primitives are

those typical for data
ows (which can be elegantly obtained as derived operators, be-

cause of the speci�cation formalism and its semantics). Any other kind of concurrent

architectures and of communication mechanisms have to be simulated.

?def

)

:)

_

[DATA STREAM DATA

n

m

store d b

r

b r store d b

b r d store d b

d b r

infinite r

r r r r

r : : : r : : :

D

V1

agent input stream data stream bool output stream

data

�rst rest rest

�rst �rst rest

agent output stream bool

true false

true true false false

�rst rest

There is a clear distinction between processes (agents) and data which may be

de�ned as adt with some semantics; thus viewpoint is followed, since the con-

current architecture is not de�ned algebraically.

The overall speci�cation is not algebraic and thus we cannot speak of adt speci�-

cation. However the speci�cations which use �rst-order and temporal logic formulae

identify classes of concurrent systems, thus VAS is supported.

Let us to see the approach in some more detail.

Broy's approach is built around a data
ow view of concurrent systems; conse-

quently his basic semantic models are sets of continuous functions mapping tuples

of streams to tuple of streams, see Sect. 1.1. Thus a process, called agent, has

input lines and output lines. On every input line a �nite or in�nite sequence of

data is transmitted to the agent and on every output line a �nite sequence of data

is generated by the agent. The input lines and output lines have internal (local)

names that are used in a predicate for expressing the relationships between input

and output.

A typical example is the following:

= , ,

= (,)

= & (,)

Here , , are used both as variables and as internal names.

Also nondeterministic agents are admitted, as in

=

= & = & ;

thus there are two possible output streams:

= & & and = & & .

From the examples we see that formulae are used for de�ning the streams of data,

using of course primitive functions on streams like and . Formulae may be

�rst-order and also temporal logic formulas with operator like next, eventually and

necessarily.

Sets of agents and recursive agents may be de�ned.

A semantics of a speci�cation is given in the usual denotational way using basic

domains and environments; the basic domains are data and agents:

= ()

?

def

m n

i

j

f 2 ! j 2 g

k �

k

^

1 2

1 1 1 1

2 2 2 2

3 1 2

3 1 2 1 2 1 2

AGENT

DATA

DATA DATA

CA

CA

f D D n;m

C

a a

a x y H

a x y H

a a a

a x ; x y ; y H H

agent input stream output stream end

agent input stream output stream end

agent input stream output stream end

3.7 Algebraic Petri Nets

V1

V1

= [] IN

where is a set of atomic data objects, but it may also be given by an abstract

data type speci�cation; is the
at cpo associated with . The semantics

of a family of agent de�nitions is the set of all agent environments that ful�ll the

speci�cation. For very technical reasons with any agent identi�er a set of agents

(functions) is associated instead of functions from tuples of streams into sets of

tuples of streams.

An interesting feature of the formalism is that basic structuring operators like

parallel composition \ ", sequential composition \ " and feedback \ " may be

obtained as derived operators. If and are de�ned by

=

=

then = is de�ned as

=

Of course in this formalism algorithms may be described and thus so-called al-

gorithmic agents can be de�ned.

Much importance is given to correctness, relative to safety (partial correctness)

and liveness (robust correctness) properties, and to correctness of implementations,

which are de�ned in a very elegant and simple way.

The architectures may be speci�ed using this formalism, but the resulting

speci�cations are not very natural since the architectures are based on communi-

cating processes and so we have to realize their concurrent features using data
ows.

Broy's approach �nds its most elegant applications in the speci�cation of con-

current architectures which have essentially a data
ow structure. Indeed some nice

examples of applications have been given, showing the potential applicability, at least

for those architectures which are amenable to a data
ow structure. The method has

also been applied in an EEC-MAP project (n. 785) in conjunction with industries,

for giving a formal basis to the MASCOT method.

In the literature there are several papers presenting speci�cation formalisms inte-

grating Petri nets and algebraic speci�cations of adt's (in general not the elementary

Petri nets introduced in Sect. 1.1 but e.g. predicate/transition or coloured nets);

most of them follow the viewpoint but some one uses the algebraic techniques

and results for handling, for example, nets composition or describing the �ring rules.

Here we brie
y list some of the approaches known by the authors, but we do not

claim that they are the only one. For a survey paper on this topic following view-

point see e.g. [60]; where it is also shown that results about invariants could be

obtained by classical algebraic results.

The Milan group has worked out a formalism \OBJSA Nets" combining Su-

perposed Automata Nets (SA) with the possibility of de�ning the tokens and the

transitions by means of parameterized algebraic OBJ speci�cations (see e.g. [15]).

� �

Fig. 8.

V1

V1

V2

An algebraic coloured net.

TKV ar

V TKV ar

V

GET x P q

P Length q n

True RETURN First q

P

Length q > True

OBJSA can be summarized as follows. The net structure is given as usual in su-

perposed automata nets; the individuals
owing in the net consist of a name part,

which models instances individuality and is not modi�ed by transition �ring, and

a data part, which represents the data structure and can be modi�ed by transition

�ring; the overall net system can be obtained through composition of the net models

of its components (viewpoint).

Vautherin in [63] presents an algebraic version of coloured Petri nets, where the

tokens of di�erent colour are represented by elements of di�erent sorts in the initial

model of a speci�cation of an adt and the structure of the net is given as usual

(viewpoint), while Dimitrovici and Hummert in [33] show how to compose such

nets by using categorical techniques.

In the following we report a simple example of these algebraic coloured Petri

nets specifying a bounded bu�er, containing natural numbers, organized as a queue.

The tokens used in the net are de�ned by the initial model of a speci�cation of the

queues of natural numbers with the usual operations (Nil, InQueue, DeQueue, First

and Length), which we do not report here. The schema of the net is graphically

reported in Fig. 8; the arcs connecting places and transitions are labelled by open

terms representing tokens; while the transitions are labelled by equations involving

the variables appearing in such terms (); a transition may �re when for some

evaluation of the variables satisfying its equation in the premise there

are the tokens obtained by evaluating with the relative terms.

Transition takes an element from place 1 and puts within the queue

in place , when the bu�er is not full, i.e. when the equation (() 1) =

holds. Transition takes the �rst element out of the queue ()

and put it in the place 2, when the queue is not empty, i.e. when the equation

(() 0) = holds.

Bettaz in [19] and in [20] presents the so called \Algebraic Term Nets" and shows

how such nets and their �ring activity may be described by means of an algebraic

speci�cation of an adt (viewpoint).

Algebraic Petri nets has been also used as a basis for a speci�cation metalanguage

for distributed systems with real-time features [44].

: : :

Acknowledgements.

4 Very Abstract Speci�cations of Concurrent Systems

In Sect. 2 we have already introduced the distinction between abstract and very ab-

stract speci�cations of concurrent systems (shortly AS and VAS). An AS abstractly

determines a concurrent system, i.e. it describes in an abstract way the system con-

current structure (which are its component processes and how they are arranged in

the system) and activity; while a VAS abstractly determines a class of concurrent

systems by giving only the relevant properties about their structure and activity.

Here we brie
y list the algebraic approaches to speci�cation of concurrency re-

ported in Sect. 3 which can be extended to handle VAS's.

The Broy's approach, see Sect. 3.6, allows to express very abstract properties

about the dynamic activity of classes of data
ow networks by using either �rst-order

logics or various forms of temporal logics [22]; the last ones permit to formalize in

a simple way liveness properties. However, this formalism does not allow to express

requirements about the distributed structure of the networks. The dynamic require-

ments about a computer net given in Sect. 1.4 can be formalized using this approach,

while the static ones cannot be considered. More importantly in this case we have

also a notion of implementation between speci�cations of di�erent abstraction levels;

and in the literature there are examples of complete proofs of the correctness of some

implementation (e.g. [24]).

Also in the framework of dynamic speci�cations, see Sect. 3.4, it is possible to

give speci�cations of concurrent systems VAS both w.r.t. static and dynamic prop-

erties. Dynamic speci�cations are extended with the possibility of expressing very

abstract properties about the dynamic activity of concurrent systems just by replac-

ing conditional logic with more powerful ones. Initially �rst-order (in�nitary) logic

was considered, but it does not allow to express liveness properties; logics which

integrates the combinators of temporal logic in the algebraic framework have been

proposed in [29] and, more recently, in [58] whose \event logic" permits the formal-

ization of the abstract properties of the activity of concurrent systems in terms of

causal/temporal relationships among non-instantaneous events.

For what concerns the static (structure) properties, [57, 9] propose a subclass

of the dynamic algebras, called \entity algebras", equipped with particular sorts,

operations and predicates for describing the concurrent structure of the dynamic

elements. Moreover, whichever logic for dynamic properties mentioned before (con-

ditional, temporal, event,) may be extended with special predicates for formal-

izing abstract properties about the structure of dynamic elements ([57, 9]). Also for

the dynamic VAS introduced above there is a notion of implementation extending

that for speci�cations of static adt's of [66] (see [29, 57]); in these cases it is possi-

ble also to de�ne particular kinds of implementations which e.g. preserve/re�ne the

concurrent structure of a system, the atomicity grain of the activity of a system and

so on. All the requirements about a computer net given in Sect. 1.4 can be simply

formalized using dynamic VAS.

We thank H.Ehrig and F.De Cindio for various helpful com-

ments.

References

TCS

TCS

Proc. TAPSOFT'85, Vol. 1

A Broad Perspective of Current Developments,

Proc. ICS'85 (ACM International Computing Symposium)

Mathematical Models for the Semantics of Parallelism, Proc. Advanced

School on Mathematical Models of Parallelism, Roma, 1986

Proc. TAPSOFT'87, Vol. 1

Proc. MFCS'86

Program Speci�cation and Transformation

Proc. of the Colloquium on Resolution of Equations in Alge-

braic Structures

TCS

Process Algebra

Advances in Petri Nets

Advances in Petri Nets

1. A. Arnold and M. Nivat. Metric interpretations of in�nite trees and semantics of non

deterministic recursive programs. , 11:181{205, 1980.

2. E. Astesiano, A. Giovini, and G. Reggio. Observational structures and their logic.

, 96, 1992.

3. E. Astesiano, G.F. Mascari, G. Reggio, and M. Wirsing. On the parameterized al-

gebraic speci�cation of concurrent systems. In H. Ehrig, C. Floyd, M. Nivat, and

J. Thatcher, editors, , number 185 in Lecture Notes in

Computer Science, pages 342{358, Berlin, 1985. Springer Verlag.

4. E. Astesiano, F. Mazzanti, G. Reggio, and E. Zucca. Formal speci�cation of a concur-

rent architecture in a real project. In

, pages 185{195, Amsterdam,

1985. North-Holland.

5. E. Astesiano, C. Bendix Nielsen, N. Botta, A. Fantechi, A. Giovini, P. Inverardi,

E. Karlsen, F. Mazzanti, J. Storbank Pedersen, G. Reggio, and E. Zucca. The draft

formal de�nition of Ada. Deliverable, CEC MAP project: The Draft Formal De�nition

of ANSI/STD 1815A Ada, 1986.

6. E. Astesiano and G. Reggio. An outline of the SMoLCS approach. In M. Venturini

Zilli, editor,

, number 280 in Lecture

Notes in Computer Science, pages 81{113, Berlin, 1987. Springer Verlag.

7. E. Astesiano and G. Reggio. SMoLCS-driven concurrent calculi. In H. Ehrig,

R. Kowalski, G. Levi, and U. Montanari, editors, , num-

ber 249 in Lecture Notes in Computer Science, pages 169{201, Berlin, 1987. Springer

Verlag.

8. E. Astesiano and G. Reggio. A structural approach to the formal modelization and

speci�cation of concurrent systems. Technical Report 0, Formal Methods Group, Di-

partimento di Matematica, Universit�a di Genova, Italy, 1991.

9. E. Astesiano and G. Reggio. Entity institutions: Frameworks for dynamic systems. in

preparation, 1992.

10. E. Astesiano, G. Reggio, and M. Wirsing. Relational speci�cation and observational

semantics. In , number 233 in Lecture Notes in Computer Science,

pages 209{217, Berlin, 1986. Springer Verlag.

11. E. Astesiano and M. Wirising. An introduction to ASL. In L.G.L.T. Meertens, editor,

, pages 343{365. North-Holland, 1987.

12. E. Astesiano and M. Wirising. Bisimulation in algebraic speci�cations. In M. Nivat

and H. Ait-Kaci, editors,

, San Diego, 1989. Academic Press.

13. D. Austry and G. Boudol. Algebre de processus et synchronisation. , 30:91{31,

1984.

14. J.C.M. Baeten and W.P. Weijland. . Cambridge University Press,

Cambridge, 1990.

15. E. Battiston, F. De Cindio, and G. Mauri. OBJSA nets: a class of high-level nets

having objects as domains. In G. Rozemberg, editor, , number

340 in Lecture Notes in Computer Science, pages 20{43, Berlin, 1988. Springer Verlag.

16. L. Berardinello and F. De Cindio. A survey of basic net models and modular net

classes. In G. Rozemberg, editor, , Lecture Notes in Computer

Science, Berlin, 1992. Springer Verlag. To appear.

Infor-

mation & Control

Recent Trends in Data Type Speci�cation

PLUSS, un langage pour le developpment de speci�cations algebriques mod-

ulaires

Proc. TAPSOFT'85, Vol. 1

Information Processing Letters

Acta Informatica

Logics of Programming Workshop

Proc. 4th Int.

Symp. on Programming

Proc. of 18-eme Ecole de Print-

emps en Informatique Theorique, Semantique du Parallelism

Proc. MFCS'91

Information & Control

TCS

The Analysis

of Concurrent Systems

Recent Trends in Data Type Speci�-

cation

17. J.A. Bergstra, J. Heering, and P. Klint. ASF - an Algebraic Speci�cation Formalism.

Technical Report CS-R8705, Centre for Mathematics and Computer Science, Amster-

dam, 1987.

18. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.

, 60(1/3):109{137, 1984.

19. M. Bettaz. An association of algebraic term nets and abstract data types for specifying

real communication protocols. In H. Ehrig, K.P. Jantke, F. Orejas, and H. Reichel,

editors, , number 534 in Lecture Notes in

Computer Science, pages 11{30, Berlin, 1991. Springer Verlag.

20. M. Bettaz. How to specify nondeterminism and true concurrency with algebraic term

nets. Draft, 1992.

21. M. Bidoit.

. These d'Etat, Universite de Paris-Sud, 1989.

22. M. Broy. Speci�cation and top down design of distributed systems. In H. Ehrig,

C. Floyd, M. Nivat, and J. Thatcher, editors, , number 185

in Lecture Notes in Computer Science, pages 4{28, Berlin, 1985. Springer Verlag.

23. M. Broy. Predicative speci�cations for functional programs describing communicating

networks. , 25:2, 1987.

24. M. Broy. An example for the design of distributed systems in a formal setting: The lift

problem. Techinical Report MIP P 8802, University of Passau, 1988.

25. M. Broy and M. Wirsing. Partial abstract types. , 18:47{64, 1982.

26. R.M. Burstall and J.A. Goguen. Introducing institutions. In E. Clarke and D. Kozen,

editors, , number 164 in Lecture Notes in Computer

Science, pages 221{255, Berlin, 1984. Springer Verlag.

27. V. Carchiolo, A. Faro, F. Minassale, and G. Scollo. Some topics in the design of the

speci�cation language LOTOS. In M. Paul and B. Robinet, editors,

, number 167 in Lecture Notes in Computer Science, Berlin,

1984. Springer Verlag.

28. A. Corradini, G.L. Ferrari, and U. Montanari. Transition systems with algebraic struc-

ture as models of computation. In I. Guessarian, editor,

, number 469 in Lecture

Notes in Computer Science, pages 185{222, Berlin, 1990. Springer Verlag.

29. G. Costa and G. Reggio. Abstract dynamic data types: a temporal logic approach. In

A. Tarlecki, editor, , number 520 in Lecture Notes in Computer Science,

pages 103{112, Berlin, 1991. Springer Verlag.

30. J.W. de Bakker and J.I. Zucker. Processes and the denotational semantics of concur-

rency. , 54:70{120, 1982.

31. R. de Simone. Higher-level synchronising devices in Meije - SCCS. , 37:245{267,

1985.

32. B.T. Denvir, W.T. Hardwood, M.J. Jackson, and M.J. Wray, editors.

. Number 207 in Lecture Notes in Computer Science. Springer

Verlag, Berlin, 1985.

33. C. Dimitrovici and U. Hummert. Composition of algebraic high-level nets. In H. Ehrig,

K.P. Jantke, F. Orejas, and H. Reichel, editors,

, number 534 in Lecture Notes in Computer Science, pages 52{73, Berlin, 1991.

Springer Verlag.

34. H. Ehrig, W. Fey, and H. Hansen. ACT ONE: An algebraic speci�cation language with

two levels of semantics. Technical Report 83-01, TUB, Berlin, 1983.

35. H. Ehrig, F. Parisi Presicce, P. Boehm, C. Rieckho�, C. Dimitrovici, and M. Grosse-

Rhode. Algebraic data type and process speci�cations based on projection spaces. In

d

Recent Trends in Data Type Speci�cation

Stepwise re�nenment of distributed sys-

tems

Algebraic theory of processes

Communicating Sequential Processes

Information Processing 77

TCS

Proc. STACS '87 (Symposium on Theoretical Aspects of Computer Science)

Concepts, Syntax and Semantics of SEGRAS { A speci�cation Language

for Distributed Systems

Proceeding of ICALP'87

Proc. TAPSOFT'89, Vol. 2

Proc. Third Workshop on Computer Aided Veri�cation, Vol. 1

ECOOP-OOPSLA'90 Confer-

ence on Object-Oriented Programming, Ottawa Canada, October 1990

TCS

A Calculus of Communicating Systems

Communication and concurrency

Infor-

mation and Computation

Proc. 5th GI Conference

Proc. IFIP TC

2-Working conference: Formal description of programming concepts

Current Trends in Concurrency

D.Sannella and A. Tarlecki, editors, , number

332 in Lecture Notes in Computer Science, pages 23{43, Berlin, 1988. Springer Verlag.

36. M. Grosse-Rhode and H. Ehrig. Transformation of combined data type and process

speci�cations using projection algebras. In

, number 430 in Lecture Notes in Computer Science, pages 301{339, Berlin, 1990.

Springer Verlag.

37. M. Hennessy. . The MIT Press, Cambridge, Mas-

sachusetts, 1988.

38. C.A.R. Hoare. . Prentice Hall, London, 1985.

39. H. Hussmann. Rapid prototyping for algebraic speci�cations: RAP system user's man-

ual. Technical Report MIP P 8504, University of Passau, 1985.

40. I.S.O. LOTOS { A formal description technique based on the temporal ordering of

observational behaviour. IS 8807, International Organization for Standardization, 1989.

41. G. Kahn. The semantics of a simple language for parallel programming. In J.L.

Rosenfeld, editor, , pages 471{475, Amsterdam, 1974. North-

Holland.

42. S. Kaplan. Algebraic speci�cation of concurrent systems. , 9:90{115, 1989.

43. S. Kaplan and A. Pnueli. Speci�cation and implementation of concurrently accessed

data. In ,

number 247 in Lecture Notes in Computer Science, Berlin, 1987. Springer Verlag.

44. B. Kraemer.

. Oldenbourg verlag, Munchen, Wien, 1989.

45. K. Lodaya and P. S. Thiagarajan. A modal logic for a subclass of event structures. In

T. Ottmann, editor, , number 267 in Lecture Notes in Com-

puter Science, pages 290{303, Berlin, 1987. Springer Verlag.

46. S. Mauw and G.J. Veltink. An introduction to PSF . In J. Diaz and F. Orejas, editors,

, number 352 in Lecture Notes in Computer Science, pages

272 { 285, Berlin, 1989. Springer Verlag.

47. S. Mauw and G.J. Veltink. A proof assistant for PSF. In K. Larsen and A. Skou,

editors, , pages 200 {

211, Aalborg, Denmark, 1991. The University of Aalborg.

48. J. Meseguer. A logical theory of concurrent objects. In

, pages 101{115.

ACM, 1990.

49. J. Meseguer. Rewriting as a uni�ed model of concurrency. , 96, 1992.

50. R. Milner. . Number 92 in Lecture Notes in

Computer Science. Springer Verlag, Berlin, 1980.

51. R. Milner. . Prentice Hall, London, 1989.

52. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes - Part I.

, 1992. To appear.

53. D. Park. Concurrency and automata on in�nite sequences. In ,

number 104 in Lecture Notes in Computer Science, Berlin, 1981. Springer Verlag.

54. G. Plotkin. A structural approach to operational semantics. Lecture notes, Aarhus

University, 1981.

55. G. Plotkin. An operational semantics for CSP. In D. Bjorner, editor,

, pages 199{223,

Amsterdam, 1983. North-Holland.

56. A. Pnueli. Applications of temporal logic to the speci�cation and veri�cation of reactive

systems: a survey of current trends. In , number 224

in Lecture Notes in Computer Science, pages 510{584, Berlin, 1986. Springer Verlag.

a

Recent Trends in Data Type Speci�cation

Petri nets: an introduction

TCS

Proceeding of

POPL Conference

Advances in Petri Nets

Proc. 9th ICALP

Linear Time, Branching Time and Partial Order in Logics

and Models for Concurrency

Handbook of Theo-

ret. Comput. Sci.

57. G. Reggio. Entities: an istitution for dynamic systems. In H. Ehrig, K.P. Jantke,

F. Orejas, and H. Reichel, editors, , number

534 in Lecture Notes in Computer Science, pages 244{265, Berlin, 1991. Springer Ver-

lag.

58. G. Reggio. Event logic for specifying abstract dynamic data types. In the same volume,

1992.

59. W. Reisig. . Number 4 in EATCS Monographs on Theoret-

ical Computer Science. Springer Verlag, Berlin, 1985.

60. W. Reisig. Petri nets and algebraic speci�cations. , 80:1{34, 1991.

61. B. Thomsen. A calculus of higher-order communicating systems. In

, pages 143{154, 1989.

62. P. van Eijk. Tools for LOTOS, a Lotosfere overview. Memoranda Informatica 91-25,

Universiteit Twente - Faculteit der Informatica, Enscede, 1991.

63. J. Vautherin. Parallel system speci�cations with coloured Petri nets and algebraic data

types. In G. Rozemberg, editor, , number 266 in Lecture Notes

in Computer Science, Berlin, 1987. Springer Verlag.

64. G. Winskel. Event structure semantics for CCS and related languages. In M. Nielsen

and E.M. Schmidt, editors, , number 140 in Lecture Notes in Computer

Science, pages 561{576, Berlin, 1982. Springer Verlag.

65. G. Winskel. An introduction to event structures. In J.W. de Bakker, W.-P. de Roever,

and G. Rozemberg, editors,

, number 354 in Lecture Notes in Computer Science, pages

364{397, Berlin, 1989. Springer Verlag.

66. M. Wirsing. Algebraic speci�cations. In van Leeuwen Jan, editor,

, volume B, pages 675{788. Elsevier, 1990.

This article was processed using the LT

E

X macro package with LLNCS style

