
Towards a Well-Founded UML-based Development Method�

Egidio Astesiano - Gianna Reggio

DISI, Università di Genova - Italy

fastes,reggiog@disi.unige.it

Abstract

This paper presents an attempt, perhaps unorthodox, at

bridging the gap between the use of formal techniques and

the current software engineering practices. After years of

full immersion in the development and use of formal tech-

niques, we have been led to suggest a Virtuous Cycle philos-

ophy, better marrying the rigour of formalities to the needs

and, why not, the wisdom of current practices. What we

have called Well-Founded Software Development Methods

is a strategy compliant with that philosophy, that essentially

aims at proposing methods where the formalities provide

the foundational rigour, and perhaps may inspire new tech-

niques, but are kept hidden from the user.

In a stream of papers we have outlined an approach – a

possible instantiation of a particular well-founded method

– which is Model-Driven and adopts a UML notation.

Here, after introducing our basic philosophy and the Well-

Founded methods strategy, we outline in summary our sam-

ple approach and, as a new contribution, we show in some

detail how to handle the Model-Driven Design (or Platform

Independent Design) phase.

1 Introduction

The origin of the work presented in this talk goes back

to the years when we have been involved in some projects

with industry to apply our formal techniques to real-size

case studies. It was soon evident that our work in formal

methods had not taken into consideration some aspects of

paramount importance in software development, generally

qualifiable as methodological aspects. That has led us first

to take care in some way of those aspects in the applica-

tion of our techniques, and then to reflect on our approach.

The results of our reflections were first presented in an in-

vited talk at the last TAPSOFT in Lille in ’97 (for a journal

version, see [1]). The main findings of that investigation,

significantly titled Formalism and Method, were

�Work supported by the Italian National Project SAHARA (Architet-

ture Software per infrastrutture di rete ad accesso eterogeneo).

� the distinction between formalism and method,

� the inclusion of a formalism, if any, as a part of a

method,

� the essential relevance of modelling rationale as the

link between the end product (application, system) and

the formal structures (formal models) representing it,

� the role of pragmatics.

We were arguing that the impact of formalisms would much

benefit from the habit of systematically and carefully relat-

ing formalisms to methods and to the engineering context.

More generally, we have personally learnt how much it is

advisable for people working in the area of the formal tech-

niques to put the work into the perspective of what is con-

sidered essential for the development of software. There has

been a clear lesson for us from our experience in projects

with industry and has been a different attitude in the way

we devise, use and advocate formal techniques, see [6]. We

summarize our position in what may be called a Virtuous

Cycle:

� Inspect and learn from software engineering practices

and problems

� Look for/provide formal foundations when needed

� Experiment near-to practice but well-founded meth-

ods, hiding formalities

� Anticipate needs providing sound engineering con-

cepts and methods

Clearly the above four directions are in a somewhat increas-

ing order of difficulty and ingenuity. We have already done

some work along the first three (the fourth being quite am-

bitious and to be judged by history and success). In this talk

we will outline an experiment in what we call Well-Founded

Software Development Methods; by that we roughly mean a

revisitation or possibly a proactive proposal of engineering

best practice methods, but with the guarantee that the no-

tation is amenable to a rigorous formal foundation, though

such formalization is not apparent to the user.

The experiment that we discuss here falls within a line

of research that consists in looking at current development

practices, noticing problems and attempting at a reformu-

lation based upon, and inspired by, related work in formal

techniques.

One of the foremost contributions coming from the soft-

ware engineering side is the concept and use of develop-

ment process models to guide the software development.

We can take as a paradigmatic example, among the best

well-known process models, the Rational Unified Process

(RUP), proposed by the same authors of the UML (see [14])

and incorporating many insights coming from the software

engineering best practices. The problems that we have en-

countered with RUP are twofold. On one side it relies on

the UML as a supporting notation, which admittedly does

not have a rigorous (neither static nor dynamic) semantics.

On the other, to be liberal and accommodate, at least nom-

inally, a number of variants, subcases and personal tastes,

RUP gives so much freedom that a non-experienced user is

often disconcerted among the possible modelling choices.

These two kinds of problems have as a consequence that the

resulting artifacts are much more prone to ambiguities, in-

consistencies and the like. We have undertaken some work

attempting at proposing a more stringent method, which we

are in part experimenting in course projects. For example,

in [3, 5] we have presented a new way of structuring the

Requirement Specification and in [5] we have investigated

the link between the analysis of the Problem Domain and

the Requirement Capture and Specification. Our approach

can be seen pursued within an overall RUP-compatible ap-

proach, with the aim of guiding the developer to

� use only semantically sound constructs,

� have better means for making the modelling decisions,

� produce as a result a set of artifacts under tighter con-

straints and as an overall result, to make the process

faster, cutting sometimes endless discussions, and to

better support consistency both in the construction and

in the checking phase.

Though we have expressed our approach in a rigorous mul-

tiview, use-case driven and UML-based way, its essence is

UML-independent and it could be even given a formal al-

gebraic dress.

Before giving some technical highlights, let us mention

the inspiring sources and the technical basis. First, the

choice of a restricted subset of the UML constructs has been

guided by a formal semantic analysis of those constructs.

The general approach to address the semantic problems of

UML, together with references to our work on more spe-

cific aspects, can be found in [16]. Essentially, it shows how

the (generalized) labelled transition systems of our LTL ap-

proach [2] can be taken as a basis for defining what we call

(System) Requirement Specification
1..*

Problem Domain Model
1

Model-Driven Design
1..*

1

Technology-Driven Design
1..*

1

operates on

realizes

realizes using

Figure 1. Artifacts

UML-systems as formal semantic models for all UML. No-

tably, that work has been pursued within the CoFI initiative1

[13]. Second, we have incorporated some ideas from well-

known methods, such as Structured Analysis [20] and the

work of some pioneer methodologists such as M. Jackson

[10, 11]. From the latter in particular we have taken the to-

tal separation of the domain from the application, a distinc-

tion somewhat blurred in many object-oriented approaches;

while the distinction between the application and the envi-

ronment especially comes from the Structured Analysis. Fi-

nally, from the overall formal (algebraic) approach, together

with the strong typing as a must, we have also borrowed the

idea of the black box abstraction of a software application

and of its minimal white box structure to express the re-

quirements about its interaction with the environment. To

that end we have introduced the notion of “abstract state”

for the software application, without providing an object-

oriented structuring at a stage when such a structure is not

required.

In this paper we first outline the overall structure of our

approach and then we continue our investigation address-

ing the issue of the so-called Model-Driven Design. That

is the stage between the requirement specification and the

concrete design, when a first software architecture is laid

down, which is totally platform independent, following the

MDA terminology (see [12]). At the end we discuss our

approach, especially in relation to the context of the current

work on the subject.

2 Method Overview

In this section we outline the essential steps, with the

corresponding artifacts to be produced, see Fig. 1, in our

multiview, use-case driven and UML-based software devel-

opment process. We intend the Requirement Specification

activity built over the Problem Domain Modelling and pre-

liminary to Model-Driven Design, followed by Technology-

Driven design.

We speak of a multiview description of a system (or of

a software application) whenever it consists of a collection

1http://www.cofi.info/

PDM

1

Conceptual View

definition: Package

1..*

Work Case View

Work Case Description

summary: Collaboration
textualDescription: String
visualDescriprtion: ActivityDiagram

0..1

Figure 2. PDM Structure

of sub-descriptions (views) dealing with different, possibly

overlapping, aspects of the system. For example, we can

have the following views: – static view (the types of the en-

tities building the system); – behaviour view (the behaviour

of the various entities building the system); – interaction

view (how the entities building the system interact among

them).

Notice that a description/specification split in many dif-

ferent views is not just any description/specification modu-

larly decomposed or structured; indeed in the second case

the structure/decomposition may follows the structure of

the described system; think, e.g., of a description of a dis-

tributed system split into the description of the composing

processes.

Let us assume to have to develop a software application

that we name in the following Application.

Problem Domain Model One of our assumptions,

backed by our own experience, is the neat separation be-

tween the problem domain and the application (as much ad-

vocated in the work of pioneers, such as M. Jackson’s [10]).

To that purpose we propose a rather new way of structuring

the problem domain model (shortly PDM), shown in Fig. 2

by a UML class diagram, and then the link with the appli-

cation.

Our proposal, centered on two views, the Conceptual
View and the Work Case View, in a structural sense en-

compasses the two most popular current approaches to do-

main modelling, namely conceptual modelling and business

modelling, and can be reduced as a specialization to each of

those. Then we propose an “application placement” activ-

ity, supported by a Application Placement Diagram, to

relate the Application to the domain and, by that, to locate

the Application boundary.

Some examples of PDMs can be found in [5].

Notice, that a PDM artifact may be used as a starting

point for many different applications, as well as a Re-
quirement Specification may be used for many different

Requirement Specification

11

1..*

Context View

definition: Package

1

Internal View

definition: Package

1

Data View

definition: Package

UseCase Description

textualDescription: String

0..11 *

Behaviour View

definition: Statechart

Causal View

definition: ActivityDiagram

Interaction View

definition: Collaboration

UseCase View

summary: UseCase Diagram

Figure 3. Requirement Specification Structure

Model-Driven Designs, which in turn may be used to get

many different Technology-Driven Designs (see the asso-

ciations in Fig. 1).

Requirement Specification In our approach the Re-
quirement Specification artifacts consist of different

views of the Application, plus a part, Data View, needed

to give a rigorous description of such views. Its structure is

shown in Fig. 3.

Context View describes the context of the Application,

that is which entities (context entities) and of which kinds

may interact with the Application, and in which way they

can do that. Such entities are further classified into those

taking advantage of the Application (service users), and

into those cooperating to accomplish the Application aims

(service providers). That explicit splitting between the

Application and the context entities should help avoid con-

fusions between what exists and needs just to be precisely

described (context entities) and what instead has to be de-

veloped (Application) on which we have to find (capture)

the requirements The further splitting between users and

providers should help distinguish which context entities

cannot be modified by the developer (providers), and those

which may be partly tuned by the developer (users), e.g., by

fixing their interface towards the Application.

Use Case View, as it is now standard, shows the main

ways to use the Application (use cases), making clear

which actors take parts in them. Such actors are just roles

(generic instances) for some context entities depicted in the

Context View.

Internal View describes abstractly the internal structure

of the Application, that is essentially its Abstract State. It

will help precisely describe the behaviour of the use cases,

by allowing to express how they read and update it. UML

allows a single use case to have a proper state, but we prefer

to have a unique state for all the use cases, to help model

their mutual relationships (e.g., if two use cases update the

same information, we are led to detect and to handle possi-

ble conflicts).

Data View lists and makes precise all data appearing in

the various views of the Application to help guarantee the

consistency of the concepts used in such views.

Some of the above views (e.g., Internal View and Con-
text View) are new w.r.t. the current methods for the OO

UML-based specification of requirements. In our approach,

they play a fundamental role to help ensure the consistency

among the various use cases and of the whole specification.

Some examples of Requirement Specifications can be

found in [5].

Model-Driven Design As currently widely advocated, by

Model-Driven Design we intend the activity of providing a

solution of the problem in terms of Model-Driven Archi-

tecture (see, e.g., [12]), namely an architecture based on

the abstract modelling and independent of the implementa-

tion platform, to which is instead targeted the Technology-

Driven Design.

In Sect. 4, also with the help of a running example, the

algebraic lottery AL L presented in Fig. 4, we will illustrate

how we handle that step in our approach. The AL L case

study has been used also in [5], which contains also the rel-

ative PDM and Requirement Specification artifacts.

3 The Used UML

All the UML models produced following our method in

the various phases of the development process must be pre-

pared using only a specific subset of UML (to be precise of

UML 1.3 [18]) trying to avoid its most problematic features,

and the dark sides concerning semantics, both static and dy-

namic. Below, we briefly summarize what is included in

this subset, and how we intend its semantics.

Class diagram containing classes, with attributes, oper-

ations and methods, specialization, aggregation and

composition relationships, and user defined binary as-

sociations. Moreover, invariant constraints may be as-

sociated with classes, and pre-postconditions with op-

erations.

Statechart without do actions and deferred events, and

whose context class is active, has no methods, and its

attributes are protected; for what concerns the seman-

tics we assume that event queue is an ordered list.

We have to develop an application AL L to handle alge-

braic lotteries. Our lotteries are said “algebraic” since the

tickets are numbered by integer numbers, the winners are

determined by means of an order over such numbers, and

a client buys a ticket by selecting its number. Whenever a

client buys a ticket, he gets the right to another free ticket,

which will be given at some future time, fully depending on

the lottery manager decision. The number of a free ticket is

generated by the set of the numbers of the already assigned

tickets following some law.

Thus a lottery is characterized by an order over the integers

determining the winners and a law for generating the num-

bers of the free tickets. To guarantee the clients of the fair-

ness of the lottery, the order and the law, expressed rigor-

ously with algebraic techniques, are registered by a lawyer

before the start of any lottery.

The application will be then realized as an on-line appli-

cation, where the tickets must be bought and paid on-line

using credit cards with the help of an external service han-

dling them. Possible clients must register with the lottery

application to play; and clients access the application in a

session-like way. An external service takes care of the au-

thentication of the clients.

Figure 4. The AL L case study

Sequence/collaboration diagram we assume that the se-

mantics of a sequence/collaboration diagram corre-

sponds to describe a fragment of a possible execution

of the modelled system.

Activity diagram only action states, decision nodes and

synchronization states; we assume that the semantics

of an activity diagram correspond to describe a partial

ordering on the happening of some facts (executions of

actions) in the modelled system.

Use case diagram without relationship between use cases.

Moreover, the expressions, the conditions and the con-

straints in any diagram are expressed by using OCL, the

“logical language” for expressing the constraints of the

UML, and the “actions” are the basic one required by the

UML (operation call, creation and deletion of objects) plus

assignment and generic control flow statements (conditional

and while-loop).

All the produced UML models must be statically correct,

or, using a UML-community terminology, statically consis-

tent; see [4] for our proposal on how to rigorously define

static consistency. Briefly summarizing,

a class diagram is statically consistent iff all the types

used for operations and attributes are either defined in

Model-Driven Design

1

StaticView

definition: Package

1..*

BehaviourView

ofWhat: Name

Executive
definition: Method

Causal

definition: ActivityDiagram

definition: Statechart

Active Class
BehaviourOperationBehaviour

1

DataView

definition: Package

1..*

ConfigurationView

definition: ObjectDiagram
of Situation: String

*

AdditionalView

definition: UMLDiagram

InterfaceView

*

Pre-Post

definition: Constraint

Figure 5. Model-Driven Design Structure

the diagram itself or are OCL predefined types, spe-

cialization relationship has no loop and the constraints

are made of OCL expressions that are correct w.r.t. the

considered class diagram itself.

a statechart is statically consistent iff all call events are

built using operations of the context class, all condi-

tions and effects are made respectively by OCL expres-

sions and by actions that are correct w.r.t. the context

class.

a sequence/collaboration diagram is statically consistent

iff the roles refer to classes defined in the model, and

all the messages are built by using operations, with cor-

rect arguments, of the class of the receiving role.

an activity diagram is statically consistent iff the action

states and the conditions are respectively OCL expres-

sions and actions correct w.r.t. the classes defined in

the model.

It is then possible to give a formal semantics to the con-

sidered UML subset following, for example, our approach,

see [16, 15], using (generalized) labelled transition sys-

tems as formal models of the systems described by a UML

model.

4 Model-Driven Design

A Model-Driven Design, whose structure is reported

in Fig. 5, consists of different views of the designed

Application. The possible kinds of these views are listed

below:

Data View describes the datatypes used by the entities

composing the Application.

Static View introduces the classes typing the entities

used to build the Application.

Behaviour View describes the behaviour of the entities

of some given class; clearly, that class must be intro-

duced in the Static View.

Configuration View describes which are the entities

composing the Application in some given situation

(e.g., initially), by stating which are their classes, how

many they are, and how they are linked.

Additional View highlights an aspect of the Application
concerning how some composing entities interact

among them to accomplish some particular task. An

additional view is optional and intended just for doc-

umentation; it should not add any information not al-

ready present in the other views.

Interface View describes the interface of the

Application towards some context entities by

presenting a GUI. Because there is not a standard

established and convincing way to present GUI by

using UML, this view is not a UML model, but just a

document whose type is not fixed.

4.1 Data View

The Data View defines all datatypes used by the entities

composing the Application.

Technically, the Data View is a UML package contain-

ing a class diagram, where all the classes are datatypes

(UML stereotype �datatype� 2) and where the relation-

ships among classes are either specialization or aggregation

or composition. An operation of a datatype may be defined

either by pre-postconditions or by an associated method.

We show in Fig. 6 the Data View for our Model-Driven
Design of AL L; here to improve readability we do not de-

tail some trivial data structures, PersonData and Credit-
CardData, and some trivial constraints are presented using

the natural language.

4.2 Static View

The Static View introduces the classes typing the enti-

ties used to build the Application, which are of the follow-

ing four different kinds:

2A UML datatype is a classifier whose instances are pure values, i.e.,

they have no identity and their state cannot be changed; thus the operation

of a datatype operations are all pure functions.

CreditCardData

ok: Bool

<<datatype>>

PersonData
<<datatype>>

FreeTicketLaw

newNumber(no:Set(Int),L: Int): Int
ok: Bool

<<datatype>>

exp: Expr

The result of newNumber(s,n)
is given by evaluating self.expr
over s and n.
ok holds iff the result is
between L and -L, and does
not belong to no.

WinningOrder

lessThan(Int,Int): Bool
ok: Bool
winners(Int): Seq(Int)

<<datatype>>

exp: Expr

The result of lessThan(n,m) is
given by evaluating self.expr over
n and m.
ok holds if lessThan is a total order.
Winners(n) returns a sequence
made by the n mod 1000 integers
whih are the highest w.r.t. the order.

Figure 6. AL L: Data View

context, external (w.r.t. the Application) entities that inter-

act with it;

boundary, entities composing the Application that take

care of the interaction with some context entities;

executor, entities composing the Application that perform

some core Application activities;

store, entities composing the Application that contain per-

sistent data3.

Technically, the Static View is a UML package, import-

ing the package Data View, and containing a class diagram,

say CD, with the following characteristics.

The attributes of each class in CD must be protected.4

The # symbol signalling that an attribute is protected may

be omitted, since it should appear in front of any attribute.

Each class in CD is of one of the following stereotypes:

�context � stereotype of active class. An instance of a

�context� class is a context entity.

Context classes cannot have attributes, and there

should be one of them for each class of stereotype

�SU� or �SP� in the Context View of the Re-
quirement Specification.

�boundary � stereotype of active class. An instance of a

�boundary� class is an object that takes care of the

interaction of the Application with some context en-

tities. It receives messages from the context entities,

analyses them and afterwards either sends back an im-

mediate answer (e.g., if the received message contains

an error) or interacts with other entities as required by

the message.

3Data which are preserved also when the Application stops or breaks

down.
4A protected attribute is visible only inside its class and inside any of

its specializations.

�store� stereotype of passive class. An instance of a

�store� class is an object that contains persistent data

(e.g., a database).

�executor � stereotype of active class. An instance of an

�executor� class is an object that performs some core

Application activities as result of information received

from the context through the boundaries; clearly dur-

ing such activities it may collaborate with other enti-

ties.

A specialization relationship in CD may be only between

classes having the same stereotype.

Composition and aggregation relationships may be used

to define “subobjects/subentities”. Composing classes may

have the same stereotype of the composed class or no

stereotype; in this case they are just used to modularly de-

compose a complex class.

Each association in CD, different from specializa-

tion/composition/aggregation, must be of the stereotype

�communication�.

A �communication� association from class C to class

C’ (visually depicted as an oriented arrow from C to C’)
means that an instance of class C interacts with some in-

stances of class C’ by calling their operations. The multi-

plicity assertions state how many instances it will interact

with.

The �communication� associations should respect the

following conditions:

� no communication association may leave a �store�
class, because stores are fully passive and should be

used only by the executors and the boundaries;

� �context� classes may communicate only with

�boundary� classes;

� any multiplicity constraint about �context� classes

must be in accord with those appearing in the Context
View of the Requirement Specification;

� any class in the diagram must be connected by a com-

munication chain with at least one context class (oth-

erwise it means that a part of the system is isolated and

thus useless).

A �communication� association may be anonymous, and

in this case it just models the information flows inside the

Application, or it may be named, in this case it models also

the fact that the source class has an attribute named as the

association itself and whose type is the target class, or a set

of the target class (depending on the multiplicity).

We show in Fig. 7 the Static View of the AL L case

study. The AL L application is quite simple and so also

its architecture, shown in Fig. 7, is rather simple; we do

not need �executor� classes, because the �boundary�

classes may take care of the activity due to the requests of

the users, using in some cases some auxiliary classes, e.g.,

GiveFreeTickets and DrawTickets. There are store enti-

ties for the database of the registered clients (ClientInfo)

and the data about the current lottery (Lottery). In such di-

agram we use for the classes of the stereotype �context�
the same icons used in the requirement phase, precisely, the

parallelogram for the service providers and the stick-man

for the service users.

4.3 Behaviour View

A Behaviour View describes the behaviour of the enti-

ties of a given class (introduced in the Static View). We

think that store entities, being just data containers, have a

standard behaviour consisting in receiving operation calls;

because we further assume that any call may be received in

any moment, and that no two calls may be executed simul-

taneously, to model their behaviour it is sufficient to model

their operations. For this reason, technically we have two

different kinds of Behaviour View:

� describing the behaviour of either a �boundary� or

an�executor� (active) class; in this case it is a stati-

cally consistent statechart associated with such class;

� describing the behaviour of an operation of a�store�
(passive) class; in this case it may be:

– a UML method definition associated with such

operation (that is a program written using the

UML actions);

– a constraint of the form pre/postcondition for

such operation, expressed using OCL;

– an activity diagram associated with such opera-

tion. An activity diagram defines the behaviour

of an operation at a rather abstract level; in partic-

ular the fork construct is used to define activities

whose ordering is irrelevant.

It is mandatory to define the behaviour of any�boundary�
and �executor� class, and of any nontrivial operation of

any�store� class (trivial operation are, for example, those

getting and setting the attributes). The behaviour of the con-

text entities cannot be defined, because they are not one

of the aims of the design. Some information on their be-

haviour may be found in the Context View of the Require-

ment Specification; if it may help understand the design, it

may be copied in the design model.

We assume that the entities composing the Application
behave in a parallel way without any restriction; under this

assumption, the description of the behaviour of the com-

posing entities it is sufficient to describe the behaviour of

the whole Application.

draw()
[lottery.allSold()] /

DRAW.do()

lo
tte

ry
R

un
ni

ng

draw()
[not lottery.allSold()]

give(nbil)
[lottery.canBeGiven(nbil)] /
GIVE.do(nbil)

startLottery(d,lw,wo)
[d >1 and
 wns->size() = round(d mod 1000)
 and onew(d,lw,wo)

noLottery

waiting

when lottery.dim = 0

give(nbil)
[not lottery.canBeGiven(nbil)] /
MAN.error()

Figure 8. ForManager: Behaviour View

registerMe(C,pd,em,ccd)
[ccd.ok()] /
client = C;
data = pd;
email = em;
credCard = ccd;
CC.check(ccd);wrongCard(x) / [x = credCard]

client.failedRegistration();

registerMe(C,pd,em,ccd)
[not ccd.ok()] /
C.failedRegistration();

okCard(x) /
[x = credCard]
AUTH.register(pd);
cinfo = create(ClientInfo,)
 pd,email,
 credCard,
(false,0,{});
client.registered();

Figure 9. ToRegister: Behaviour View

In our approach, the decomposition of the Application
in entities should be considered as a kind of logical decom-

position, in the sense that such decomposition does not con-

vey any precise information on which activities must/may/

cannot be performed in parallel. The aspects of Application
concerning parallelism and distribution will be considered

in the next Technology-Driven Design steps.

In Fig. 8, 9 and 10, we present the behaviour of the most

relevant �boundary� classes (those of the boundaries to-

wards the service providers are quite trivial). To keep the

statecharts corresponding to the various behaviour views

quite simple and to follow our method, which requires to

fully encapsulate the used (passive) classes, we have de-

fined many auxiliary operations, for example, allSold and

canBeGiven for the We collected in Fig. 11 the Behaviour
Views for the operations of the passive classes, which have

all the form of a method definition.

check(CreditCardData)
charge(CreditCardData,Int)
wrongCard, okCard
notCharged, charged

<<boundary>>

ToCCH

registerMe(Client,PersonData,String,CreditCardData)
okCard(CreditCardData)
wrongCard(CreditCardData)

<<boundary>>
ToRegister

client: Client
email: string
creditCard: CreditCardData
data: PersonData

<<boundary>>
ForClient

availableTickets?
buyTicket(Int)
connectMe(Client,PersonData)
disconnectMe
charged(CreditCardData)
notCharged(CreditCardData)

client: Client
cdata : PersonData
cinfo: ClientInfo
tickt: Int

AUTH

AUTH

1

lottery
1

1

<<Store>>
Lottery

dim: Int
law: FreeTicketLaw
wOrd: WinningOrder
soldTickets: Set(Int)

giveTicket: Int
available(Int): Bool
unsell(Int)
canBeGiven(Int): Bool
allSold: Bool
new(Int,FreeTicketsLaw,WinningOrder)

1

<<boundary>>
ToAuthor

register(PersonData)
check(PersonData)
ok
wrong

1

CC

*

0..1

lottery

*

1

C
re

di
tC

ar
d

H
an

dl
er

Client

1

0..1

11

0..1

<<Store>>
ClientInfo

data: PersonData
email : String
freeTickets: Int
ownTickets: Set(Int)

boughtTicket(Int)
gotTicket(Int)

*

1

CC
1

1

Manager

1

1

A
ut

he
nt

ic
at

io
n

<<boundary>>
ForManager

startNewLottery(Int,FreeTicketsLaw,WinningOrder)
draw
give(Int)

do

1

numbers: Seq(Int)
lucky: ClientInfo

DrawTickets

1

GiveFreeTickets

lucky: ClientInfo

do(Int)

GIVE DRAW

1

1

1
1

Email

<<boundary>>
ToEmail

send(String,String)

1
1

1

1

EM

MAN

Figure 7. AL L Static View

<<Store>>
Lottery

dim: Int
law: FreeTicketLaw
wOrd: WinningOrder
soldTickets: Set(Int)

giveTicket: Int
{ N = law(soldTickets,dim);
 soldTickets = soldTickets U { N };
 return N; }

available(N: Int): Bool
 { if soldTickets->excludes(N) then
 { soldTickets = soldTickets U {N};
 return True}
 else
 return False }

unsell(Int)
{ soldTickets = soldTickets - { N } }

canBeGiven(N:Int): Bool
{ return
 (2 * dim) + 1 - soldTickets->size() >= N and
 soldTickets->size() >= dim }

allSold: Bool
{ return (2 * dim) + 1 = soldTickets->size() }

new(D:Int,lw:FreeTicketsLaw,wo:WinningOrder)
{ dim = D;
 law = lw;
 wOrd = wo;
 soldTickets = {}; }

<<Store>>
ClientInfo

data: PersonData
email : String
freeTickets: Int
ownTickets: Set(Int)

boughtTicketN: (Int)
 { freeTickets = freeTickets + 1;
 ownTickets = ownTickets U { N} }

gotTicket(N: Int)
 { freeTickets = freeTickets - 1;
 ownTickets = ownTickets U { N} }

GiveFreeTickets

lucky: ClientInfo

do(howMany: Int)
{ for I = 1 to howMany do
 { N = lottery.giveTicket();
 lucky = Find(ClientInfo, "freeTickets >0").first();
 lucky.gotTicket(N);
 EM.send(lucky.email, "Got ticket N"); }}

do
{ numbers = lottery.wOrd.winners(lottery.dim);
 for I = 1 to numbers->size() do
 { lucky = find(ClientInfo,)
("ownTickets->includes(numbers[i])");
 EM.send(lucky.email, "Won price I-th") };
 for C in ClientInfo.allInstances do
 EM.send(C.email, "Won price I-th");
 C.assignedTicket = {} };
 lottery.dim = 0; }

numbers: Seq(Int)
lucky: ClientInfo

DrawTickets

Figure 11. Operations of passive classes: Behaviour Views

connectMe(C,pd) /
client = C;
cdata = pd;
AUTH.check(pd)

wrong(x)
[x = cdata] /
client.error();

ok(x) /
[x = cdata]
cinfo = find(Cinfo,"data = cdata");
client.connected()

disconnectMe(x)
[x = client] /
client.disconnected()

availableTickets?(x)
[x = client] /

client.show(lottery.stillAvailable())

buyTicket(x,n)
[x = client and

not lottery.available(n)] /
client.error()

ch
ar

ge
d(

y)

[y
 =

 c
in

fo
.c

re
di

tC
ar

d
]/

ci
nf

o.
bo

ug
ht

T
ic

ke
t(

tc
kt

);
cl

ie
nt

.c
on

fir
m

T
ic

ke
t(

tic
kt

)

notcCharged(y)
[y = cinfo.creditCard] /

client.error();
lottery.unsell(tickt)

nonConnected

connected

waitingAuhtorization

buyTicket(x,n)
[x = client and
 lottery.available(n)] /
CC.charge(cinfo.creditCard,1000);
tickt = n;

waitingPayment

Figure 10. ForClient: Behaviour View

4.4 Configuration View

A Configuration View describes the run-time struc-

ture/architecture of the Application at some given point/

situation during its life, by stating which are the entities

composing it and how they interact among them.

Technically, a Configuration View is a collaboration di-

agram without messages in statically consistent with the

Static View 5; it describes the entities composing the ap-

plication in the given situation, and the links of the com-

munication associations show how such entities cooperate

among them.

In Fig. 12 we present two Configuration Views for the

AL L application depicting respectively the initial configu-

ration, and the situation when one client is trying to register,

another one is connected and a third one is registered but not

connected.

4.5 Additional View

An Additional View describes how some entities of the

Application interact among them to accomplish some par-

ticular task. An additional view is optional and intended

just for documentation; it should not add any information

not already present in the other views.

5This means that the roles and the links are typed by the classes and

associations present in the Static View, and that any multiplicity constraint

in that view is respected.

lottery

<<Store>>
Lottery Manager

<<boundary>>
ForManager

Email

<<boundary>>
ToEmail

EM

MAN

<<boundary>>

ToCCH

<<boundary>>
ToRegister

AUTH

<<boundary>>
ToAuthorization

C
re

d
it

C
a
rd

 H
a
n

d
le

r

CC

A
u

th
e
n

ti
c
a
ti

o
n

C3: Client

<<boundary>>
ForClient

AUTH

lottery

<<Store>>
Lottery

CC

lottery

Manager

<<boundary>>
ForManager

Email

<<boundary>>
ToEmail

EM

MAN

<<Store>>
C2: ClientInfo

C1: Client

<<boundary>>

ToCCH

<<boundary>>
ToRegister

AUTH

<<boundary>>
ToAuthorization

C
re

d
it

C
a
rd

 H
a
n

d
le

r

CC

A
u

th
e
n

ti
c
a
ti

o
n

C3: Client

<<Store>>
C1: ClientInfo

Figure 12. AL L: Configuration Views

Technically, an Additional View consists of a UML di-

agram (either sequence or collaboration or activity) stati-

cally consistent w.r.t. the class diagram of the Static View.

Moreover, any information on the behaviour of the entities

composing the Application presented by an additional view

must be consistent with the complete description of that be-

haviour presented by the various Behaviour Views.

The Additional Views are completely optional, in

the sense that they do not influence the design of the

Application; their role is just to document some aspects

of the Application by presenting them, in more appealing

ways, as scenarios or causally related facts.

We think however that trying to produce some Addi-
tional Views may help the developers check the design or

understand the behaviour of some parts of the Application,

and that a development method may usefully requires to

produce many of them. For example, Additional Views

may be used to present how the various Interaction View
and Causal View of the use cases presented in the Re-

quirement Specification have been realized; or they can be

produced by the designer to help clarify the behaviour of

the Application in some cases before giving the Behaviour
Views of the concerned entities.

We show in Fig. 13 and 14 two additional views for the

AL L application, corresponding to two interactions of two

use cases in the Requirement Specification, given in [5].

They do not define at all the behaviour of the AL L applica-

tion, already fully defined by the various Behaviour Views,

but help understand how the two use cases are realized by

the Model-Driven Design, and to become confident in the

correctness of that realization. For example, in Fig. 13 we

can immediately see that the manager will never receive a

confirmation that the ticket has been effectively given out.

4.6 Interface View

An Interface View is associated with a �boundary�
class present in the Static View and describe the graphi-

cal interface of the instances of such class towards the con-

text entities interacting with them. An Interface View is

mandatory for each boundary class interacting with human

context entities.

There is no specific request on the format of an Interface
View. Some possible ways to present an Interface View are

� a free visual presentation of a GUI,

� a UML presentation of a GUI using perhaps appropri-

ate stereotypes, such as button, check box, and menú,

� a definition of some textual line commands.

The only relevant point is that the connection between the

elements of the interface and the operations of the associ-

ated boundary and context entity classes must be precisely

stated.

For lack of room here we do not give here any example

of Interface View.

5 Checking the Quality of a Model-Driven
Design

Here we list some checks to be performed on the pro-

duced Model-Driven Design to detect problems.

Minimality The following checks avoid to define useless

parts of the design.

� All datatypes defined in the Data View are used at

least once, and all their operations are called at least

once.

� All operations of a �store� /�executor� /

�boundary� class are called at least once.

If one of the above checks fails, it is easy to solve the prob-

lem by removing some part of the design.

� All operations of a�context� are called at least once

by a�boundary�.

In this case we can have also a design error (some require-

ment is not fully implemented) or some redundancy in the

requirements.

Soundness

The assumptions on the communications among the

entities composing the Application as stated by the

�communication� association must be respected by the

behaviours described buy the various Behaviour Views.

Correctness

In the development method that we have presented here,

we use a subset of UML to which a formal semantics can

be given (see Sect. 3). Today, a lot of formal notions and

techniques partly supported by software tools are avail-

able to precisely state, and then to formally check, whether

a Model-Driven Design is correct w.r.t. a Requirement
Specification. However, we do not think that with the cur-

rent state-of-the-art we can devise a practical development

method including a formal proof of the correctness of the

produced design. Instead, we propose an inspection tech-

nique grounded in the underlying formal framework allow-

ing to gain an acceptable confidence that a Model-Driven
Design correctly realizes a given Requirement Specifica-
tion. Because of the precise structuring in different views of

both the requirement and the abstract design models, this in-

spection activity may be structured in a set of related tasks,

each one covering a particular aspect; and it is then possible

to implement a software tool realizing a wizard guiding the

developer through those tasks.

give(1)

:Manager :ForManager :Lottery

canBeGiven(1) = True

C:ClientInfo :Email:GiveTickets

do(1)

N = giveTicket()

gotTicket(N)

send(C.email,"Got ticket N")

C.freeTickets >0

Figure 13. The manager gives one free ticket: Additional View:

registerMe(C,)
(pd,em,ccd)

:Client :ToRegister :ToCCH

check(ccd)

ClientInfo

check(ccd)

okCard

CreditCard
Handler

okCard(ccd)

Authentication

register(pd)
register(pd)

create(pd,email,ccd,false,0,{})

:ToAuthor

registered()

Figure 14. Client registration: Additional View:

6 Related work and conclusions

We have presented here in a very short outline a possible

instantiation of a general strategy that we call Well-Founded

Software Development Methods. That strategy is guided by

three imperatives:

� the issues addressed should be potentially relevant to

software engineering practice; to that end, we look at

and borrow, as much as we can, from the best practices

in the field and from the methodology side, avoiding

what we see as the formalism (not so) splendid isola-

tion;

� the discipline coming from the area of formal tech-

niques imposes both the use of semantically well-

defined structures and of rigorously justified methods;

� the formal aspects should not be forced on the end-

users, who in principle are not experts, but used in the

background to achieve the second imperative.

There is a sociological consideration at the root of our

strategy. It is a constant finding that formal techniques are

liked and accepted only by people extremely well-trained

in formal techniques, that is not the case of the vast ma-

jority of software engineers. Moreover, there is a reported

tension, if not a contrast, between formalism and produc-

tivity/efficiency. Hiding formalities, but keeping their disci-

plined rigour in the methods they use, is a strategy that can

overcome both disadvantages. In support of this belief, we

have made some experiments in the last two years with un-

dergraduate students without any formal background, with

the exception of an elementary short course in mathematical

logic. The results have been very encouraging, especially

compared with previous experiments, some using explicitly

formal techniques with students better skilled in formali-

ties and, on the opposite side, some using visual techniques

(UML) and related methods as they usually are, namely

without any underpinning rigour.

The approach that we have outlined (see [5] for an ex-

tended version with interesting and complex case studies),

is in the line of some of the best-known methods for soft-

ware development, adopting a multiview and use case ap-

proach and using the UML notation. But it departs from

them, at least to our knowledge, in some important respects,

both from the methodological and the technical viewpoint.

First, on the method side, the overall major goal is to pro-

pose a more systematic and stringent approach, in the sense

that the overall structure of our artifacts is constrained in

order to tightly relate the components and have at hand the

possibility of performing a number of consistency checks.

This view contrasts with the almost total freedom given, for

example in RUP [14], where the structure is just based on

the use case description. The same freedom, just use case

diagrams and use case description, is given for the Require-

ment Specification phase in COMET [9], in sharp contrast

with the detailed structure and the many constrained guide-

lines and notations for Analysis and Design. That level of

freedom is, on the other hand, explicitly advocated, for ex-

ample in [8], on the basis that experience matters more than

stringent structuring and rules. There the underlying phi-

losophy is admittedly the same of the Agile Methods Move-

ment (see [17], for an interesting discussion and references).

However, while we do not deny that highly skilled and expe-

rienced software developers perhaps need only loose guide-

lines and a supporting liberal notation, from our experience

we have seen that, for less experienced people, such liber-

ality is a source of endless discussions, contrasting choices

and a proliferation of inconsistencies. Moreover, we believe

that our “tight and precise” imperative and the related tech-

niques may help from one side reduce the amount and the

fuzzy verbosity of some documentation and on the other

provide effective guidelines for passing to the design and

then the implementation phase, though we have not yet ex-

plored all the later phases.

The approach taken in Catalysis [7], that in other de-

tails shows some similar general views to ours, is not di-

rectly comparable, being an overall transformational ap-

proach based on components that are refined from business

modelling to implementation units. But definitely our way

of structuring requirements is not targeted to a transforma-

tional approach; we are more interested in providing a sep-

arate step preliminary to devise in a rather structurally in-

dependent manner, a model-driven software architecture of

the system.

Indeed our approach is totally compliant with the OMG

Model Driven Architecture philosophy (see [12]) and it is

within that framework that we intend to explore the connec-

tion with the implementation phase, passing from Platform

Independent Models to Platform specific Models and then

to code.

Currently we are developing some supporting tools,

starting from the open and freee ArgoUML, for checking

the consistency of our artifacts. Moreover we are investi-

gating the use of inspection techniques to check the correct-

ness of the Model-Driven Design w.r.t. the Requirement
Specification. There too the formal techniques help; in-

deed those techniques are guided by the notions developed

by Hoare (abstraction function in data type implementation)

and by Sannella and Wirsing (correct implementation of ab-

stract data types), see [19].

References

[1] E. Astesiano and G. Reggio. Formalism and Method. T.C.S.,

236(1,2), 2000.

[2] E. Astesiano and G. Reggio. Labelled Transition Logic: An

Outline. Acta Informatica, 37(11-12), 2001.

[3] E. Astesiano and G. Reggio. Knowledge Struc-

turing and Representation in Requirement Specifica-

tion. In Proc. SEKE 2002. ACM Press, 2002.

Available at ftp://ftp.disi.unige.it/person/

ReggioG/AstesianoReggio02a.pdf.

[4] E. Astesiano and G. Reggio. Consistency Issues in Mul-

tiview Modelling Techniques. In Recent Trends in Al-

gebraic Development Techniques, Selected Papers of the

15th International Workshop WADT’02, Lecture Notes in

Computer Science. Springer Verlag, 2003. To appear.

Available at ftp://ftp.disi.unige.it/person/

ReggioG/AstesianoReggio03b.pdf.

[5] E. Astesiano and G. Reggio. Tight Structuring for

Precise UML-based Requirement Specifications: Com-

plete Version. Technical Report DISI–TR–03–06,

DISI, Università di Genova, Italy, 2003. Avail-

able at ftp://ftp.disi.unige.it/person/

ReggioG/AstesianoReggio03c.pdf. It will appear

in “Radical Innovations of Software and Systems Engi-

neering in theFuture”, Proc. of 2003 Monterey Workshop,

Lecture Notes in Computer Science, Springer Verlag.

[6] E. Astesiano, G. Reggio, and M. Cerioli. From Formal

Techniques to Well-Founded Software Development Meth-

ods. In Proc. of The 10th Anniversary Colloquium of

the United Nations University International Institute for

Software Technology (UNU/IIST): Formal Methods at the

Crossroads from Panacea to Foundational Support. Lisbon

- Portugal, March 18-21, 2002., Lecture Notes in Com-

puter Science. Springer Verlag, Berlin, 2003. To appear.

Available at ftp://ftp.disi.unige.it/person/

ReggioG/AstesianoEtAll03a.pdf.

[7] D. F. D’Souza and A. C. Wills. Objects, Components, and

Frameworks with UML: The Catalysis Approach. Object

Technology Series. Addison-Wesley, 1999.

[8] M. Fowler and K. Scott. UML Distilled: Second Edition.

Object Technology Series. Addison-Wesley, 2001.

[9] H. Gomaa. Designing Concurrent, Distributed and Real-

Time Applications with UML. Addison-Wesley, 2000.

[10] M. Jackson. Software Requirements & Specifications: a

Lexicon of Practice, Principles and Prejudices. Addison-

Wesley, 1995.

[11] M. Jackson. Problem Frames: Analyzing and Structuring

Software Development Problems. Addison-Wesley, 2001.

[12] OMG Architecture Board MDA Drafting Team.

Model Driven Architecture (MDA). Avail-

able at http://cgi.omg.org/docs/

ormsc/01-07-01.pdf, 2001.

[13] P. Mosses. CoFI: The Common Framework Initiative for

Algebraic Specification and Development. In M. Bidoit and

M. Dauchet, editors, Proc. TAPSOFT ’97, number 1214 in

Lecture Notes in Computer Science. Springer Verlag, Berlin,

1997.

[14] Rational. Rational Unified Process c

 for System Engineer-

ing SE 1.0. Technical Report Rational Software White Pa-

per: Tp 165, 8/01, 2001.

[15] G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann.

Analysing UML Active Classes and Associated State Ma-

chines – A Lightweight Formal Approach. In T. Maibaum,

editor, Proc. FASE 2000, number 1783 in Lecture Notes in

Computer Science. Springer Verlag, Berlin, 2000.

[16] G. Reggio, M. Cerioli, and E. Astesiano. Towards a Rigor-

ous Semantics of UML Supporting its Multiview Approach.

In H. Hussmann, editor, Proc. FASE 2001, number 2029 in

Lecture Notes in Computer Science. Springer Verlag, Berlin,

2001.

[17] D. T and B. B. The Agile Methods Fray. Computer, 2001.

[18] UML Revision Task Force. OMG UML Specification

1.3, 2000. Available at http://www.omg.org/docs/

formal/00-03-01.pdf.

[19] M. Wirsing. Algebraic Specifications. In J. van Leeuwen,

editor, Handbook of Theoret. Comput. Sci., volume B. Else-

vier, 1990.

[20] E. Yourdon. Modern Structured Analysis. Prentice-Hall,

1989.

