
Tight Structuring for Precise UML-based

Requirement Speci�cations

?

E. Astesiano and G. Reggio

DISI, Universit�a di Genova - Italy

Abstract. On the basis of some experience in the use of UML-based use case-

driven methods, we believe and claim, contrary to a recent wave for allowing

almost total freedom as opposed to disciplined methods, that a tighter and more

precise structuring of the artifacts for the di�erent phases of the software devel-

opment process may help speed-up the process, while obviously making easier the

consistency checks among the various artifacts. To support our claim we have

started to investigate an approach, that, though being compliant with the UML

notation and a number of UML-based methods, departs from them both in the

basic philosophy, that follows the \tight and precise" imperative, and in the tech-

nical solutions for structuring the various artifacts.

Building on some previous work concerning the structure of the requirement spec-

i�cation artifacts, here we complete upwards and improve our proposal, investi-

gating the link between the analysis of the problem domain and the requirement

capture and speci�cation. Indeed, one of our assumptions, as advocated by some

methodologists and backed by our own experience, is the neat separation between

the problem domain and the system. To that purpose we propose a rather new way

of structuring the problem domain model and then the link with the system, that

encompasses the most popular current approaches to domain modelling. Then

we exploit both the domain model and our requirement speci�cation frame for

capturing and specifying the requirements. From our construction we can derive

rigorous guidelines, only hinted to here, for the speci�cation tasks, in a work
ow

that allows and suggests iteration and incrementality, but in a way that is not

just based on the single use cases and takes more care of the overall construction.

The various concepts and constructions are illustrated with the help of a small

running case study.

1 Introduction

In recent years we have seen the introduction and the acceptance of use-case driven

approaches combined with object-oriented techniques, particularly in connection with

visual notations such as UML [19]. This is the case of software development process

models such as RUP (the Rational Uni�ed Process [14]), Catalysis [6] and COMET [9].

In the last three years we have made some experiments in the use of UML-based and use

case-driven techniques and of some related methods, both in teaching and by personal

involvement. Those experiments were concerned especially with the early development

phases, requirement capture and speci�cation and then design.

Because of that experience we have become more and more convinced that, to be

more e�ective both in terms of productivity and quality, those approaches need to be

?

Work supported by the Italian National Project SAHARA (Architetture Software per infra-

strutture di rete ad accesso eterogeneo).

improved and complemented especially in two directions. The �rst is a tighter and more

systematic structuring of the artifacts based on precise guidelines for their building. The

goal we want to achieve by that is twofold: �rst, cut experimentally endless discussions

on the structural choices and thus making the process much faster; second, provide a

better support to the consistency checks among the di�erent artifacts. Indeed, it is well-

known that consistency is one of the hot problems in multiview modelling approaches

([1,3]). Of course tight and precise structuring is not enough for consistency checks, as

long as we want (and we much need) to go beyond pure syntactic checks (see [7] also for

references). Thus there is a second sense of our \precise" quali�cation, that does not refer

to the structural aspects, but to the semantics of the single constructs. Indeed, another

principle we follow is the use of constructs with an unambiguous well-de�ned semantics.

Altogether, by the tight structuring and the use of semantically well-de�ned constructs,

we here provide an example of what we call well-founded method, as a modern and more

viable approach that still embodies the basic sound principles of the \explicitly formal"

methods (see [5] for a perspective and a rationale of well-founded methods).

In this paper we continue the investigation and update the initial proposal �rst pre-

sented in [2]. In that paper we have outlined some new ideas about the structure of

the Requirement Speci�cation artifacts. Here we complete upwards and improve that

proposal, investigating the link between the analysis of the problem domain and the re-

quirement capture and speci�cation. Indeed one of our assumptions, backed by our own

experience, is the neat separation between the problem domain and the system (as much

advocated in the work of pioneers, such as M.Jackson's [10]). To that purpose we propose

a rather new way of structuring the problem domain model (PDM) and then the link

with the system. Our proposal, centered on two views, the Conceptual View and the Work

Case View, in a structural sense encompasses the two most popular current approaches

to domain modelling, namely conceptual modelling and business modelling, and can be

reduced as a specialization to each of those. Then we propose a \system placement"

activity, supported by a System Placement Diagram, to relate the system to the domain

and, by that, to locate the system boundary.

This paper is mainly aimed at presenting the structural aspects of our approach; we

present both its rationale and the technical aspects, illustrated with the help of a small

running case study. But the fact that we illustrate the structure with the end artifacts,

should not induce to underestimate the relevance of the methodological aspects in the

building of the artifacts. Indeed, in the development we make an ample use of iteration

and feedback, as it is unavoidable in any sensible method. But, also for lack of room, we

only touch that issue, just providing some methodological guidelines for the work
ow,

while not presenting the various iterations we have followed when handling the case study.

In the �rst section we present the rationale and our way of structuring the problem

domain. In the second we outline the transition from the problem domain model to the

requirement capture and speci�cation, by exploiting our particular way of structuring

the requirement artifacts. Then, after some methodological hints on the work
ow, we

discuss the relation to other and future work. Throughout the paper we illustrate our

approach by means of a small case study, shown in Fig. 1.

We have to develop a system AL L to handle algebraic lotteries. Our lotteries are said \algebraic"

since the tickets are numbered by integer numbers, the winners are determined by means of an

order over such numbers, and a client buys a ticket by selecting its number. Whenever a client

buys a ticket, he gets the right to another free ticket, which will be given at some future time,

fully depending on the lottery manager decision. The number of a free ticket is generated by the

set of the numbers of the already assigned tickets following some law.

Thus a lottery is characterized by an order over the integers determining the winners and a law

for generating the numbers of the free tickets. To guarantee the clients of the fairness of the

lottery, the order and the law, expressed rigorously with algebraic techniques, are registered by a

lawyer before the start of any lottery.

The system will be then realized as an on-line system, where the tickets must be bought and paid

on-line using credit cards with the help of an external service handling them. Possible clients

must register with the lottery system to play; and clients access the system in a session-like way.

An external service takes care of the authentication of the clients.

Fig. 1. The AL L case study

2 Modelling the Problem Domain

2.1 Method Rationale

The distinction between the (problem) domain and the (solution) system has been recog-

nized and accepted long time ago in the software engineering community (see, e.g., [10]).

The problem domain consists of those aspects of the real world that are relevant for the

system to be developed for providing a solution to the problem under consideration. For

instance, in the case of a system for handling a lift the relevant domain aspects concern

how the lift works, that is in which way the calls can be made, whether the cabin doors

are opened/closed by the users, and the most typical habits of the users (e.g., a user

immediately leaves the cabin once the doors are open). Of course the separation line

between domain and system depends on the way the problem is stated. For example

for the algebraic lottery, the problem domain aspects concern how the clients buy the

tickets, how and when the winners are drawn and so on. Instead, in our formulation of

that problem, the possibilities for the clients to use Internet to access the lottery and the

other of having clerks selling the tickets produced by a printer are choices to be made

when devising the system and thus should appear in the requirements and not in the

problem domain.

More or less, any development method requires to model the problem domain either

explicitly, in a speci�c task, or implicitly in the requirement speci�cation task. In our

proposal, we prefer to separate the domain modelling from the requirement de�nition

and to present the result in a speci�c document (the PDM), because, in our opinion,

{ that separation helps get a more abstract unbiased description of the system that we

denote by System;

{ the resulting PDM may be reused for many di�erent System, thus extending to the

early phases of the development the MDA philosophy [12].

Currently, in the literature and also in the practice, there are two main ways to present

a PDM:

as a conceptual model: the PDM is a conceptual model of the entities present in the

domain, in this case it is usually represented by a (UML) class diagram, where the

classes correspond to such entities, the associations to their mutual relationships

and, if allowed, the attributes to some characteristics of such entities. Sometime,

some limited behavioural aspects are given by sequence/collaboration diagrams.

as a business model: the PDM is the description of a business, intended as an orga-

nized o�er of functionalities (business use cases) to outside entities interacting with

it (business actors), and with an internal structure (business object model based on

business workers and business items). Clearly, in this case actors, workers and items

correspond to entities present in the real world, and are not parts of the System to

be developed. This technique has been introduced recently in the RUP development

method [14].

In our opinion, the conceptual model approach is not satisfactory in the cases where

the entities in the domain are highly interacting and autonomous (e.g., participants in a

meeting for a system handling meetings electronically), or the most relevant aspects of

the domain are naturally presented as work
ows (e.g., handling an order in an invoice

electronic system). The business model approach overcomes the above limits, and is quite

satisfactory whenever it is possible to naturally determine the \business organization".

However, it is problematic in the cases where the domain is quite static (e.g., the domain

for a word processor concerning texts, paragraph, documents, layout and so on) or when

trying to �nd the \business organization" we �x too early the boundaries of the the

System to be developed.

Here we propose a somewhat more general technique trying to avoid the negative

aspects of both the above approaches, and such that the two above approaches are

particular subcases of our one.

2.2 Problem Domain Model: a Proposal

PDM

1

Conceptual View

definition: Package

1..*

Work Case View
Work Case Description

summary: Collaboration
textualDescription: String
visualDescriprtion: ActivityDiagram

0..1

Fig. 2. PDM Structure

Overall Structure The structure of a PDM in our proposal is shown in Fig. 2. We

propose to model the various entities present in the domain by the Conceptual View,

a UML class diagram, but where the classes may be also active, thus with a dynamic

behaviour; even more we allow to model the autonomous features of their behaviour.

Then, the most relevant cooperation among such entities may be modelled in the Work

Case View part that consists of a special kind of work
ows named work cases.

Conceptual View The Conceptual View, a UML package containing at least a class

diagram,makes explicit which are the entities appearing in the domain (they are modelled

by objects whose classes appear in such package) and their mutual relationships, if any

(modelled by associations among the corresponding classes). The other elements of the

class diagram, such as class attributes, operations and constraints, and the other diagrams

in the package (as state charts de�ning the operations) may be used to model relevant

aspects of such entities. In such package we may use the active class stereotype �auto�

to indicate those domain entities capable of autonomous behaviour (i.e., they are not just

reacting to external stimuli). An autonomous action of such entities is modelled by the

self call of operations of the stereotype �A� (visually denoted by identi�ers starting

with a bold capital A).

own

*0..1

Ticket

num: Int

How
many free
tickets he
may get.

freeTickets: Int = 0

Client

AbuyTicket(Int)
winnersDrawn
newLotteryStarted
youHaveWon

<<auto>>

AstartNewLottery(Int,WinningOrder,FreeTicketLaw)
Adraw
AgiveFreeTicktes(Int)

Manager
<<auto>>

dim: Int
running: Bool

Lottery

WinningOrder

lessThan(Int,Int): Bool

FreeTicketLaw

newNumber(Set(Int),Int): Int

1

1
order

law

The number
of tickets of
the lottery is
(2*dim)+1.1

1

tickets

clients

*

*

context C: Client inv: C.freeTickets >= 0

context WO:WinningOrder inv: "x < y iff WO.lessThan(x,y)" is a total order

context newNumber(asTks,j):

pre: f-j, ..., +jg - asTks <> fg

post: asTks->excludes(result) and -j =< result and result =< j

context L: Lottery inv:

All the tickets in L.tickets have different numbers and

L.dim = 5000 * k with K >= 1 and L.tickets.num = f-L.dim ... L.dimg

Lottery.allInstances->size = 1 Manager.allInstances->size = 1

Fig. 3. AL L PDM: Conceptual View

In Fig. 3 we have the diagram presenting the Conceptual View of the AL L case study.

The autonomous entities appearing in such domain are the clients, which may buy

the tickets, and a manager, which may start the lotteries, and decide when to draw the

winners and when to give out free tickets. Four A operations model that such entities may

perform such acts autonomously; whereas other non-autonomous activities, such as to be

informed of winning a prize, are modelled by plain operations (e.g., youhaveWon). There

are also passive entities, describing the current lottery and its tickets. The constraints

attached to the class diagram model relevant aspects of the domain entities (e.g., there

is at most one running lottery, or the winning orders are total orders on the integer

numbers).

Work Case View Technically, a work case is a variant of the UML collaboration, thus it

allows to represent some cooperative e�ort among some entities present in the domain.

As a collaboration, it has a name, precisely de�nes (the roles of) the participants, and

may have some parameters. But, we prefer to model the behaviour of a collaboration by

means of an activity diagram expressing the causal relationships among actions made

by the participants, instead of by a set of interactions (message exchanges). In this way

we can just describe the causal/temporal relationships among relevant actions made by

the participants without necessarily presenting such actions as messages sent by someone

to some other one. The reason of this choice is to keep the description of a work case

quite abstract avoiding to introduce spurious objects (just to have someone calling some

operations) or to make particular choices about who calls who.

Notice that there is a big di�erence between our work cases and the RUP business

use cases. Indeed all the participants in a work case are modelled by the roles of the work

case (recall it is a variant of a UML collaboration), whereas in a business use case there

exists a business organization, which is a special implicit participant interacting with all

the other ones (business actors), and in general the latter do not interact each other.

The description of a work case consists of three parts (see Fig. 2). The main part

is a, possibly parameterized, UML collaboration, where its roles corresponds to all the

participants in the work case. Since we do not describe its behaviour by a collaboration

diagram, we prefer to visually represent the collaboration corresponding to a work case

named Name in the following way:

Name

AE1

EC1 E1

P1: C1
...

Pn: Cn
Ek

....

AEm

....

AECm

AEC1
ECk

where P1, . . .Pn are the parameters, AE1, . . .AEm, E1, . . .Ek are the roles (to be played

by domain entities) of the participant in the work case; C1, . . .Cn, AEC1, . . .AECm, EC1,

. . .ECk are classes appearing in the Conceptual View. We distinguish the class of the the

autonomous entities by using the icon . Using the standard UML notation it should

be represented by

Name

E1: EC1 EK: ECk....

AE1: AEC1 AEn: AECn....

P1: C1
...

Pn: Cn

.

Since we can attach to the collaboration icon a constraint, we can state, if any, which

conditions the participants and the parameters must satisfy to take part of the work

case. Then, a work case description contains a textual description made by using the

natural language. It must start with a sentence of the form \When . . . " expressing under

which conditions the considered domain entities may take part to the work case, and

must consist of sentences where the subjects are autonomous participants and where the

object complements are participants. The last part of a work case description is a visual

presentation of its behaviour by means of a UML activity diagram. The action-states of

such diagram can be only calls of the operations of the work case participants, and the

conditions properties on the states of the work case participants.

Start New Lottery
 not L.running and
 L.clients = CLIENTS and
 D > 0 and D mod 5000 = 0

Lottery

L

CLIENTS

D: Int
WO: WinningOrder
FTL: FreeTicketLaw

MAN

1..*
Client

. . .

Manager

textual When no lottery is running, the manager may start a new one giving the dimension of

the lottery (a natural greater than 0 and multiple of 5000), the law for generating the numbers

of the free tickets (a function which given a set of integers �nds a new number not belonging to

it) and a total order on integers, which will be used to �nd the winners.

All clients, will be informed of the new lottery.

Then, a lottery is running and is characterized by the data given by the manager, and all its

tickets are available.

behaviour

MAN. AstartNewLottery(D,WO,FTL)

for all c in CLIENTS do c.newLotteryStarted()

L.startedLottery(D.WO,FTL)

Fig. 4. AL L PDM: Work Case Start New Lottery

In Fig. 4 we present one work case of the AL L PDM (the remaining ones: Buy Ticket,

Draw Winners and Give Free Tickets can be found in [4]). This work case is quite simple;

it just say under which conditions the manager my start a new lottery and what happens

when he does that (the clients are informed, and the characteristics of the new lottery

are recorded by the domain entity of class Lottery.

To keep the presentations of the behaviour views of the work cases simple and quite

readable, we strongly suggest to de�ne appropriate additional operations, similarly to

those used in [19] for presenting the \well-formedness rules". For example, in the work

case Start New Lottery we have used the operation startedLottery to describe the

update of the Lottery domain entity.

context Lottery::startedLottery(D:Int,WO: WinningOrder,FTL:FreeTicketLaw)

post: self.running and self.dim = D and

self.winningOrderr = WO and self.FreeTicketLaw = FTL and

self.availableTickets.num = { -D ... D }

3 Capturing and Specifying Requirements

3.1 System Placement

Once we have given the PDM, the next step of the development of the System is \to place

it" in the domain by making precise which problem it must solve. This task consists of

the following activities:

1. add a class for System to the class diagram in the Conceptual View of the PDM;

2. decide which entities of the domain will be encompassed in the System, that is if they

are autonomous their activities will be realized by the System, otherwise the data

that they contains will be preserved by the System; place them inside the icon of the

System class;

3. decide which entities of the domain will interact with the System; connect them with

the icon of the System class by a line;

4. decide if the System needs to cooperate with further external entities (not present

in the domain); usually they are devices or entities o�ering services to support the

System activity; add them as new classes to the diagram and connect them with the

icon of the System class by a line;;

5. decide which work cases the System will support (clearly all their participants have

to be included in those considered at points 3 and 4; for each of them place the

corresponding collaboration pictures over the class diagram.

After having performed the above tasks, you have got what we call \System Placement

Diagram".

Notice that placing the System includes of course the de�nition of its boundary, which

is recognized to be an important task almost in any development method (see [17,11]).

If we consider the AL L case study, we can see how we can place di�erent systems in the

domain described by the PDM given in Sect. 2.2. For example:

a) The System must completely automate the handling of the lottery using Internet, and

taking advantage of an external authentication service and of a credit card service

for the payment.

b) As for the previous case, but the System will not replace the manager deciding, e.g.,

when to draw the winners, and email will be used for some communications with the

clients.

c) The System just helps the clerks to sell the paper tickets to the clients by showing the

available tickets, printing the tickets, generating the list of the winning tickets, and

printing the free tickets, which will be given by the clerks to the clients that show a

paid ticket.

For what concerns the work cases all of them will be supported by the above systems.

In this paper we consider case b), and in Fig. 5 we show the resulting System Placement

Diagram. This diagram will be the starting point to capture and specify the requirements.

3.2 Overall Structure of a Requirement Speci�cation

In our approach the Requirement Speci�cation artifacts consist of di�erent views of the

System, plus a part, Data View, needed to give a rigorous description of such views. Its

structure is shown in Fig. 6 by a UML class diagram.

Draw Winners BuyTicket Give Free TicketsStart New Lottery

<<system>>
AL_L

own

*

Ticket

num: Int

freeTickets: Int = 0

Client

AbuyTicket(Int)
winnersDrawn
newLotteryStarted
youHaveWon

<<auto>>

AstartNewLottery(Int,WinningOrder,FreeTicketLaw)
Adraw
AgiveFreeTicktes(Int)

Manager
<<auto>>

dim: Int
running: Bool

Lottery

WinningOrder

lessThan(Int,Int): Bool

FreeTicketLaw

newNumber(Set(Int),Int): Int

1

1
order

law1

1

tickets

clients

*

Email

CreditCard Handler

Authentication

*

0..1

Fig. 5. AL L Case Study: System Placement Diagram

Requirement Specification

11

1..*

Context View

definition: Package

1

Internal View

definition: Package

1

Data View

definition: Package

UseCase Description

textualDescription: String

0..11 *

Behaviour View

definition: Statechart

Causal View

definition: ActivityDiagram

Interaction View

definition: Collaboration

UseCase View

summary: UseCase Diagram

Fig. 6. Requirement Speci�cation Structure

Context View describes the context of the System, that is which entities (context

entities) and of which kinds may interact with the System, and in which way they can do

that. Such entities are further classi�ed into those taking advantage of the System (service

users), and into those cooperating to accomplish the System aims (service providers).

That explicit splitting between the System and the context entities should help avoid

confusions between what exists and needs just to be precisely described (context entities)

and what instead has to be developed (System) on which we have to �nd (capture) the

requirements The further splitting between users and providers should help distinguish

which context entities cannot be modi�ed by the developer (providers), and those which

may be partly tuned by the developer (users), e.g., by �xing their interface towards the

System.

Use Case View, as it is now standard, shows the main ways to use the System (use

cases), making clear which actors take parts in them. Such actors are just roles (generic

instances) for some context entities depicted in the Context View.

Internal View describes abstractly the internal structure of the System, that is essen-

tially its Abstract State. It will help precisely describe the behaviour of the use cases, by

allowing to express how they read and update it. UML allows a single use case to have

a proper state, but we prefer to have a unique state for all the use cases, to help model

their mutual relationships (e.g., if two use cases update the same information, we are led

to detect and to handle possible con
icts).

Data View lists and makes precise all data appearing in the various views of the System

to help guarantee the consistency of the concepts used in such views.

Some of the above views (e.g., Internal View and Context View) are new w.r.t. the

current methods for the OO UML-based speci�cation of requirements. In our approach,

they play a fundamental role to help ensure the consistency among the various use cases

and of the whole speci�cation.

3.3 Examples from the AL L Case Study

Here we illustrate the proposed structuring for the requirement speci�cation artifact,

showing its use in the AL L case study.

Notice that here we present the result of an activity that includes various steps and

iterations. For lack of room here we do not discuss those aspects of incremental develop-

ment with feedback. We just provides a hint in Fig. 7.

Dictionary
initia version: only
unquestionable

needed data

Iterating over the use cases appearing in the Use case Diagram
Use Case Description

posibly updating Dictionary, InternalView and defining the
interfaces among the classes appearing in ContextView

InternalView
initial version: only

abstract executor and
unquestionable

needed components
of the abstract state

Use case diagram

ContextView
initial version: only context entity

classes, just names and
assumptions on their behaviours,

and system class name

"System Placement Diagram"
Place the System in the domain by making

precise which problem it must solve.

Fig. 7. Requirement Speci�cation Tasks

CreditCardData

ok: Bool

<<datatype>>
WinningOrder

lessThan(Int,Int): Bool

FreeTicketLaw

newNumber(Set(Int),Int): Int

<<datatype>><<datatype>>

context WO: WinningOrder inv: "x < y iff O.lessThan(x,y)" is a total order

context newNumber(asTks,j):

pre: -j, ..., +j - asTks <> fg

post: asTks->excludes(result) and -j =< result and result =< j

Fig. 8. AL L Requirement Speci�cation: Data View

Data View The Data View for the AL L case is quite simple and just introduces three

data types: the orders for �nding the winners, the rules for �nding the numbers of the

tickets to be given freely, and the data needed to identify a credit card.

Email

CreditCard Handler

ManagerClient

Authentication

CCReq CCAnsw

FromClient ToClient ManagerReq ToEmail

AuthReq AuthAnsw

AL_L
<<system>>

availableTickets?
buyTicket(Int)
connectMe
disconnectMe
registerMe(String,CreditCardData)

<<interface>>
FromClient

areRegistered
areAvailable(Set(Int))
confirmTicket(int)
connected
connectionEnd
error
failedRegistration

<<interface>>
ToClient

send(String,String)

<<interface>>
ToEmail

draw
give(Int)
startNewLottery(Int,Order,Law)

<<interface>>
ManagerReq

register(ClientInfo)
check(ClientInfo)

<<interface>>
AuthReq

ok(ClientInfo)
wrong(ClientInfo)

<<interface>>
AuthAnsw

check(CreditCardData)
charge(CreditCardData,Int)

<<interface>>
CCReq

wrongCard(CreditCardData)
okCard(CreditCardData)
notCharged
charged

<<interface>>
CCAnsw

Fig. 9. AL L Requirement Speci�cation: Context View

Context View The Context View of the AL L System, shown in Fig. 9, consists of a class

diagram, where there is a class AL L of stereotype �System� whose unique instance is

the System, some classes of stereotype �SU� (icon) whose instances are users of

the services provided by the System (the clients and the manager); and some classes of

stereotype �SP� (icon) whose instances are providers of services used by the

System (the email, the credit card service and the authentication service).

In this diagram we show the mutual interfaces among these classes, that is in which

way they may interact, using the the standard UML interface construct. In Fig. 9, for

example, we can see that the interface ToEmail of the Email context entity is really simple,

just o�ering the possibility to receive request to send an email message.

C

I

and

C

I
visually present respectively that a class C realizes/uses an interface

I. The interfaces appearing in this diagram are usually given apart (here in the bottom

part of Fig. 9).

The Context View may include also some information on the behaviour of the �SU�

and �SP� classes, but not of the �System� class, to model the assumptions on the

behaviour of their instances on which the System relies.

1

**

lottery

<<A_Executor>>

ticketsregistered

Lottery

dim: Int
running: Bool
order: WinningOrder
law: FreeTicketLaw

The number
of tickets of
the lottery is
(2*dim)+1.

ClientInfo

freeTickets: Int = 0
connected: Bool = False
email: String
creditCard: CreditCardData

own

*1

Ticket

num: Int

How
many free
tickets he
may get.

Fig. 10. AL L Requirement Speci�cation: Internal View

Internal View The Internal View describes at an extremely abstract level the structure

(architecture) of the System. This structure consists of a unique active object able to

perform the System activities (abstract executor) and by many passive objects describing

the System Abstract State.

In Fig. 10 we show the Internal View of the AL L case study. It consists in a class

diagram containing exactly one class of the stereotype �A Executor�, and several passive

classes de�ning the parts of the System Abstract State.

The instances of the class ClientInfo represent the information relative to the client

context entities. Very frequently, the Abstract State must contain information about some

context entities, and so we propose a standard way to treat these cases We name CENTInfo

the class of the information on the context entities of class CENT, and assume that its

instances are in bijective correspondence with those of CENT, and thus with the con-

text entities. Furthermore, this correspondence is supported by an operation CENT::Info:

CENTInfo that returns the information element corresponding to a context entity.

Following this approach, we avoid, on one side, models where the presence of a class

named as a context entity class, say Client, requires to think about its true nature (e.g.,

is it a database relation ? , or a kind of interface taking care of the interactions with such

context entities"?, or . . .), and, on the other one, precise but too much detailed models,

where the association of the information to the corresponding context entities is realized,

e.g., by using codes uniquely identifying the entities.

The class diagram of the Internal View describes implicitly also the \Abstract State" of

the System (technically the state of the �System� class appearing in the Context View)

in the following way: for each association in the diagram from the �A Executor� class

C<<A_Executor>> A
the �System� class has an attribute A: Bag(C).

Connect

Disconnect

Buy Ticket

Give Free Tickets

Register

Draw Winners

Start New Lottery

EM:Email

CC:CreditCard
Handler

MAN:Manager

C: Client

RC: Client

AH :Authentication

Fig. 11. AL L Requirement Speci�cation: Use Case Diagram

Use Case View The Use Case View consists of a UML \Use Case Diagram" and of a Use

Case Description for each use case appearing in it.

But, for us the actors appearing in the Use Case diagram are possible roles for the

entities outside the System interacting with it (context entities, de�ned in the Context

View). Thus each actor will be denoted by a name, expressing the played role, and by

a class, appearing in the Context View, showing which kind of context entities may play

such role. Moreover, since the context entities are distinguished between users of services

provided by the System and providers of services needed by the System also the actors

will be distinguished in the same way. The same icons used for the context entity classes

will be used for the actors (and).

The Use case Diagram for the AL L case study is reported in Fig. 11. Notice how the

client context entities may play two di�erent roles, when interacting with the System,

as registered client (RC) when playing with the system, and as normal client (C), when

trying to register.

A Use Case Description, see those of two use cases of AL L in Fig. 12 and 13 (the

remaining use case may be found in [4]), consists of a textual presentation and of one or

more views, of di�erent kinds, of the use case.

The textual description should be expressed by sentences where the subject is either

one of the actors or the System, and may start with a sentence of the form \When . . . "

expressing under which condition the use case may happen (pre-condition).

Any Use Case Description must include a Behaviour View, which is a statechart for

the �System� class describing the complete behaviour of the System with respect to

textual When a client is not registered may register himself to the lottery system by giving

his email and the data of a credit card. The system check the credit card data with the credit

card service, if they are ok and are validated by the credit card service, then the system registers

the client with the authentication service, informs him that he has been registered, and he will

be registered; otherwise the system informs him that his registration has failed.

behaviour

registerMe(em,crCard)
[crCard.ok()] /
CC.check(crCard);

wrongCard(C) /
C.failedRegistration();

registerMe(em,crCard)
[not crCard.ok()] /
C.failedRegistration();

okCard(crCard) /
AH.register(C);
register(C,em,crCard);
C.areRegistered();

[registered->excludes(C)]

interaction

registerMe(em,crCard)

check(crCard)

okCard(crCard)

register(C)

areRegistered()

CC: CreditCard
Handler

AH:
AuthenticationAL_L C: Client

context AL L::register(C:Client,em:String,crCard:CreditCardData)

post: registered->

exists(CI | CI.email = em and CI.creditCard = crCard and C.Info = CI)

Fig. 12. AL L Requirement Speci�cation: Use Case Register

textual When no lottery is running, the manager may ask to the system to start a new one by

giving its dimension (a natural greater than 1), winning order (an order on integers, which will

be used to �nd the winners) and free ticket law (for generating the numbers of the free tickets,

just a function which given a set of integers �nds a new number not belonging to it). Then, a

new lottery will be running having the dimension, winning order and free ticket law given by

the manager.

The system will inform all the registered clients by an email message that a new lottery is

running.

behaviour startNewLottery(D,ord,law) /
for all c in registered do
 EM.send(c.email,"Start new lottery");
startedLottery(D,WO,FTL);

[not lottery.running]

causal

for all c in registered do
 EM.send(c.email,"Start new lottery");

AL_L.startNewLottery(D,ord,law)

AL_L.startedLottery(D,WO,FTL);

[not lottery.running]

context AL L::startedLottery(D: Int, WO: WinningOrder, FTL: FreeTicketLaw)

post: tickets = fg and lottery.dim = D and

lottery.Order = ord and lottery.Law = law and lottery.running = True

Fig. 13. AL L Requirement Speci�cation: Use Case Start New Lottery

such use case. Such statechart, see, e.g., Fig. 12 and 13 has particular features. The

transition from the initial state should be labelled by the \pre-condition", its events may

be only call of the operations of the �System� interfaces, its conditions may test only

the System Abstract State and the event parameters, and its actions may only be calls of

the the operations of the actors, as de�ned by their interfaces, or actions updating the

System Abstract State. To keep the behaviour views simple and quite readable we use

appropriate additional operations, as previously suggested for the work cases.

The behaviour view is a \complete" description of what the System does that con-

cerns the use case. In Fig. 12 we can see that the registration of a client requires some

collaboration by the credit card service and the authentication service, that a�ects the

System Abstract State, and that the use case has three possible cases (all of them visually

presented in the diagram); whereas in Fig. 13 we see that the registered client will be

informed by an email message of the new lottery, and that the use is really simple, not

having any alternative way.

A Use Case Description may include any number of Interaction View, which are se-

quence (or collaboration) diagrams representing the interactions happening in a scenario

of the use case among the context entities and the System. The Use Case Description

in Fig. 12 has an Interaction View, whereas the one in Fig. 13 none. Any Interaction

View must be coherent with the Behaviour View (that is, it must represent a particular

execution of the complete behaviour of System described by such view).

We think that the Interaction View are really important showing visually who does

what, but they are complementary to the Behaviour View because they cannot show under

which conditions the various messages may be exchanged and their e�ects on the System

Abstract State.

A Use Case Description may include also a Causal View (see for example Fig. 13),

which is an activity diagram describing all the relevant facts happening during the use

case and their causal relationships. The relevant facts (technically represented by action-

states of the activity diagram) can be only calls of the interface operations of System by

the actors, calls of the operations of the actors by System, UML actions producing side

e�ects on the System Abstract State. Also the Causal View must be coherent with the

Behaviour View, in the sense that the causal relationships among \facts" that it depicts

may happen in the behaviour depicted by the state chart.

The various views listed above play di�erent roles in the description of a use case and

are partly complementary and partly overlapping. The choice of which of them to use

depends on the nature of the considered use case. The only rule enforced by the method

is that the behaviour view is mandatory, because it obliges to present all the behaviour

of the use case (e.g., all possible alternative scenarios are included), even if it may be

less readable than the others. However, due to the nature of the UML state chart, the

behaviour view cannot be a complete description of the use case, indeed; it does not allow

to express who is calling the operations to which System reacts.

4 Related Work and Conclusions

The approach that we have outlined (see [4] for an extended version with interesting

and complex case studies), here limited to the early development phases, is in the line

of some of the best-known methods for software development, adopting a multiview and

use case approach and using the UML notation. But it departs from them, at least to our

knowledge, in some important respects, both from the methodological and the technical

viewpoint.

First, on the method side, the overall major goal is to propose a more systematic and

stringent approach, in the sense that the overall structure of our artifacts, both for the

PDM and the Requirements, is constrained in order to tightly relate the components and

have at hand the possibility of performing a number of consistency checks. This view

contrasts with the almost total freedom given, for example in RUP [14], where the struc-

ture is just based on the use case description. The same freedom, just use case diagrams

and use case description, is given for the Requirement Speci�cation phase in COMET [9],

in sharp contrast with the detailed structure and the many constrained guidelines and

notations for Analysis and Design. That level of freedom is, on the other hand, explicitly

advocated, for example in [8], on the basis that experience matters more than stringent

structuring and rules. There the underlying philosophy is admittedly the same of the Ag-

ile Methods Movement (see [18], for an interesting discussion and references). However,

while we do not deny that highly skilled and experienced software developers perhaps

need only loose guidelines and a liberal supporting notation, from our experience we have

seen that, for less experienced people, such liberality is a source of endless discussions,

contrasting choices and a proliferation of inconsistencies. Moreover, we believe that our

\tight and precise" imperative and the related techniques may help from one side reduce

the amount and the fuzzy verbosity of some documentation and on the other provide

e�ective guidelines for passing to the design and then the implementation phase, though

we have not yet explored all the later phases.

The approach taken in Catalysis [6], that in other details shows some similar general

views to ours, is not directly comparable, being an overall transformational approach

based on components that are re�ned from business modelling to implementation units.

But de�nitely our way of structuring requirements is not targeted to a transformational

approach; we are more interested in providing a separate step preliminary to devise in a

rather structurally independent manner, a model-driven software architecture of the sys-

tem. Indeed, we have already performed some experiments to pass from a requirement

speci�cation in the suggested form to a design document, for which too we have pro-

posed a more tight and precise structuring. Our approach is totally compliant with the

OMG Model Driven Architecture philosophy (see [12]) and it is within that framework

that we intend to explore the connection with the implementation phase, passing from

Platform Independent Models to Platform speci�c Models and then to code. A second

more speci�c methodological di�erence is the strict and explicit separation between the

Problem Domain Model and the system, in the line for example of [10]. That distinction

was and is somewhat blurred in some classical and Object Oriented approaches, though

revisited with UML (see, e.g., [13,8]) for very recent examples) . In other approaches

that distinction has been reintroduced and phrased in the distinction between Business

Modelling (e.g., in [14]) and Requirements.

On the more technical side there are a number of major distinctions with the extant

work, namely

{ the PDM structure, encompassing conceptual modelling and business modelling;

{ the System Placement activity, that encompasses the search for the system boundary;

{ the use of the Context View to make explicit the distinction between the system and

its environment and as a basis for de�ning the requirements about the interaction of

the system with its context;

{ the explicit use of the concept (a class) of System, both in the context diagram and in

the use case descriptions, where we specify the System behavior related to a speci�c

use case with a statechart;

{ the use of a very Abstract State, instead of the many optional use case states, to

allow expressing abstract requirements about the interaction of the System and the

context, without providing an object-oriented structuring at a stage when such a

structure is not required and can be premature.

Notice that the use of the class System is not in direct contrast with the traditional

object-oriented approaches, where the presence of such a class, at the level of analysis

and design, is considered a typical naive student's mistake. Still, because of the fact

that those approaches also at the requirement level start with an object structure, the

presence of that class is most unusual. However the danger of providing a structure not

immediately needed when de�ning the system requirements has been remarked by many

authors (notably M. Jackson, see, e.g., [10]). Even more interesting, also in Catalysis,

that claims to be completely object-oriented, a class system and a context diagram is

used in the preliminary phases and it appears in the sequence diagrams explaining the

role of the system (see [6, p.15, �g 1.16]). Of course the context diagram with the system

initial bubble was the starting diagram in the Structured Analysis approach [20].

Finally we just mention that in our approach the choice and use of the UML constructs

is guided by a careful semantic analysis (see, e.g., [15,16]), that has led us to prevent

and discourage the indiscriminate use of some features that, especially in combination,

may have undesirable side-e�ects, like interferences and ambiguities.

References

1. Consistency Problems in UML-based Software Development: Workshop Materials. Technical

report, Blekinge Institute of Technology (Sweden), 2002.

2. E. Astesiano and G. Reggio. Knowledge Structuring and Representation in Re-

quirement Speci�cation. In Proc. SEKE 2002. ACM Press, 2002. Available at

ftp://ftp.disi.unige.it/person/ReggioG/AstesianoReggio02a.pdf.

3. E. Astesiano and G. Reggio. Consistency Issues in Multiview Modelling Techniques. Tech-

nical Report DISI{TR{03{05, DISI, Universit�a di Genova, Italy, 2003. To appear in Proc.

WADT 2002.

4. E. Astesiano and G. Reggio. Tight Structuring for Precise UML-

based Requirement Speci�cations: Complete Version. Technical Report

DISI{TR{03{06, DISI, Universit�a di Genova, Italy, 2003. Available at

ftp://ftp.disi.unige.it/person/ReggioG/ReggioEtAll03c.pdf.

5. E. Astesiano, G. Reggio, and M. Cerioli. From Formal Techniques to Well-Founded Soft-

ware Development Methods. Technical Report DISI{TR{02{50, DISI, Universit�a di Genova,

Italy, 2002. Presented at The 10th Anniversary Colloquium of the United Nations Univer-

sity International Institute for Software Technology (UNU/IIST): Formal Methods at the

Crossroads from Panacea to Foundational Support. Lisbon - Portugal, March 18-21, 2002.

Available at ftp://ftp.disi.unige.it/person/ReggioG/AstesianoEtAll02a.pdf.

6. D. F. D'Souza and A. C. Wills. Objects, Components, and Frameworks with UML: The

Catalysis Approach. Object Technology Series. Addison-Wesley, 1999.

7. G. Engels, J.M. Kuester, and L. Groenewegen. Consistent Interaction of Software Compo-

nents. In Proceedings of IDPT 2002, 2002.

8. M. Fowler and K. Scott. UML Distilled: Second Edition. Object Technology Series. Addison-

Wesley, 2001.

9. H. Gomaa. Designing Concurrent, Distributed and Real-Time Applications with UML.

Addison-Wesley, 2000.

10. M. Jackson. Software Requirements & Speci�cations: a Lexicon of Practice, Principles and

Prejudices. Addison-Wesley, 1995.

11. P
eeger S. L. Software Engineering: Theory and Practice. Prentice Hall, 2001.

12. OMG Architecture Board MDA Drafting Team. Model Driven Architecture (MDA). Avail-

able at http://cgi.omg.org/docs/ormsc/01-07-01.pdf, 2001.

13. Stevens P. and Pooley R. Using UML: Software Engineering with Objects and Components.

Addison-Wesley, 2000.

14. Rational. Rational Uni�ed Process
c

 for System Engineering SE 1.0. 2001.

15. G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. Analysing UML Active Classes and

Associated State Machines { A Lightweight Formal Approach. In T. Maibaum, editor, Proc.

FASE 2000, number 1783 in Lecture Notes in Computer Science. Springer Verlag, Berlin,

2000.

16. G. Reggio, M. Cerioli, and E. Astesiano. Towards a Rigorous Semantics of UML Supporting

its Multiview Approach. In H. Hussmann, editor, Proc. FASE 2001, number 2029 in Lecture

Notes in Computer Science. Springer Verlag, Berlin, 2001.

17. J. Sommerville. Software Engineering: Third Edition. Addison-Wesley, 1989.

18. DeMarco T and Boehm B. The Agile Methods Fray. Computer, pages 90{92, 2001.

19. UML Revision Task Force. OMG UML Speci�cation 1.3, 1999. Available at

http://www.rational.com/media/uml/post.pdf.

20. E. Yourdon. Modern Structured Analysis. Prentice-Hall, 1989.

