
Knowledge Structuring and Representation in Requirement

Speci�cation

Egidio Astesiano - Gianna Reggio

DISI-Universit�a di Genova, Italy

astes,reggio@disi.unige.it

Abstract

On the basis of some experience in the use of UML-

based methods, we believe that a more re�ned and

stringent structuring of the knowledge in the Require-

ment Speci�cation may help the speci�cation process

and make easier the consistency checks among the var-

ious components. Thus we propose a way of struc-

turing and representing the Requirement Speci�cation

artifacts that presents a number of novelties w.r.t. the

best-known current methods. Our proposal is multi-

view, use case-driven and UML-based; thus also object-

oriented. However, also bene�tting of some earlier

work, notably in the Structured Analysis, we take a

rather abstract view, trying to avoid a preemptive de-

cision on the classes structuring the system to build;

that is achieved not only making a sharp distinction be-

tween business/domain modelling and the system, but

also dealing with the system at the requirement level

as a black box, providing only the minimal structure

needed to express the interactions with the context.

1 Introduction

Requirement capture and speci�cation has been recog-

nized as a paramount activity in every signi�cant soft-

ware development process model. In recent years we

have seen the introduction and the acceptance of use-

case driven approaches combined with object-oriented

techniques, particularly in connection with visual no-

tations such as UML [9]. This is the case of software

development process models such as RUP (the Ratio-

nal Uni�ed Process [5]), Catalysis [1] and COMET [3].

Our work tries to re�ne and complement those pro-

posals especially in the way we structure the require-

ment speci�cation activity and the resulting artifacts.

Indeed, after some serious experiments in teaching and

using those approaches, we are convinced that a more

systematic and stringent structuring can help in two

directions: make the process faster, cutting sometimes

endless discussions, and, because of the tighter con-

nections among the artifacts, support the consistency

checks of the overall speci�cation.

The method we propose, rigorously multiview, use-

case driven and UML-based, presents some novelties,

sometimes departing from traditional object-oriented

dogmas and sometimes incorporating some good, but

perhaps lost, ideas found in well-known methods, such

as Structured Analysis [10], and in the work of some

pioneers, such as M. Jackson's [4].

Indeed, central to our approach are the following

three concepts:

� the total separation of the Domain Model from

the System, a distinction somewhat blurred in

many object-oriented approaches;

� the distinction between the System and the envi-

ronment, formalized in a Context View, that will

be the basis for the de�nition of the requirements

about the interaction between the System and

the context, in conjunction with the use case di-

agram;

� the use of a very Abstract State, instead of the

many optional use case states, to allow expressing

abstract requirements about the interaction of

the System and the context, without providing an

object-oriented structuring at a stage when such

a structure is not required and can be premature;

of course, in our view, such System concept would

disappear in the following Design stages (�rst

Model-Driven and then Technology-Oriented).

Finally we also mention that our proposal relies on

the use of a well-chosen subset of UML that can be

given a rigorous semantic foundation, though we will

not discuss that issue in this paper.

In the �rst section we outline our method, putting

it into context and anticipating its novel features; more-

over we introduce a small but signi�cant running ex-

ample on which we will illustrate its use. In the second

1

(System) Requirement Specification
1..*

PDM

definition: Package

1

Model-Driven Design
1..*

1

Technology-Driven Design
1..*

1

operates on

realizes

realizes using

Figure 1: Artifacts

we will present in more detail the main features of the

approach, with sample application to the running ex-

ample. Finally we will conclude with comments and

comparison to extant work.

Throughout the paper we assume a basic knowledge

of the UML [9] notation, as can be found in [2].

2 Outline

The context of our work is sketchily represented in

Fig. 1, where we present some essential steps (artifacts

to be produced) in a modern software development pro-

cess. We intend the Requirement Speci�cation activ-

ity built over the Problem Domain Modelling (PDM)

and preliminary to Model-Driven Design, followed by

Technology-Driven design. As currently widely advo-

cated, by Model-Driven Design we intend the activ-

ity of providing a solution of the problem in terms of

Model-Driven Architecture (see, e.g., [8]),namely an

architecture based on the abstract modelling and in-

dependent of the implementation platform, to which is

targeted the Technology-Driven Design.

We do not deal here with those activities, nor with

the Domain Modelling. Still we intend to stress that

in our approach Requirement Speci�cation is the �rst

activity in which the (Software) System is taken into

consideration. Currently Domain Modelling is covered

in most methods by the so-called Business Modelling

activity (as, e.g., in RUP [5]), but we prefer to keep the

name Problem Domain Modelling to stress that for us

Domain Modelling does not include any aspect of the

System.

The Requirement Speci�cation structure and ac-

tivity we propose assumes that the Problem Domain

Modelling produces as an artifact a UML package, thus

describing in an object-oriented fashion the part of the

real world that concerns the System, but without any

reference to the System itself nor to the problem to

Requirement Specification

11

1..*

Context View

definition: Package

1

Internal View

definition: Package

1

Dictionary

definition: Package

UseCase Description

textualDescription: String

0..11 *

UseCase
Behaviour View

definition: Statechart

UseCase
Causal View

definition: ActivityDiagram

UseCase
Interaction View

definition: Collaboration

UseCase View

summary: UseCase Diagram

Figure 2: Requirement Speci�cation Structure

which the System provides a solution.

In our approach the Requirement Speci�cation ar-

tifacts consist of di�erent views of the System, plus a

part, Dictionary, needed to give a rigorous description

of such views. Its structure is shown in Fig. 2 by a

UML class diagram.

Context View describes the context of the System,

that is which entities (context entities) and of which

kinds may interact with the System, and in which way

they can do that. Such entities are further classi-

�ed into those taking advantage of the System (service

users), and into those cooperating to accomplish the

System aims (service providers).

In our approach that explicit splitting between the

System and the context entities should help avoid con-

fusions between what exists and needs just to be pre-

cisely described (context entities) and what instead has

to be developed (System) on which we have to �nd

(capture) the requirements

The further splitting between users and providers

help distinguish which context entities cannot be modi-

�ed by the developer (providers), and those which may

be partly tuned by the developer (users), e.g., by �xing

in which way some info is sent or received by them.

Use Case View, as it is now standard, shows the

main ways to use the System (use cases), making clear

which actors take parts in them. Such actors are just

roles (generic instances) for some context entities de-

2

picted in the Context View.

Internal View describes abstractly the internal struc-

ture of the System, that is essentially its Abstract State.

It will help precisely describe the behaviour of the use

cases, by allowing to express how they read and update

it. UML allows a single use case to have a proper state,

but we prefer to have a unique state for all the use

cases, to help model their mutual relationships (e.g., if

two use cases update the same information, we are led

to detect and to handle possible con
icts).

Dictionary lists and makes precise all entities ap-

pearing in the various views of the System to help

guarantee the consistency of the concepts used in such

views.

Some of the above views (e.g., Internal View and

Context View) are new w.r.t. the current methods for

the OO UML-based speci�cation of requirements. In

our approach, they play a fundamental role to help

ensure the consistency among the various use cases and

of the whole speci�cation.

The guidelines, summarized in Fig. 3, of our method

for capturing the requirements and giving their speci-

�cation following the above schema are as follows.

{ Give the Use Case Diagram

{ Give an initial version of Dictionary specializing

PDM and including all the data whose need is unques-

tionable.

{ Give an initial version of the Context View (only

class names and associations).

{ Find what you know on the context entities (oper-

ations, assumptions on their behaviours,. . .) and spec-

ify that by extending the Context View.

{ Give an initial version of the Internal View.

{ For each use case in the Use Case Diagram

Give its views, possibly extending and updating the

Dictionary, the Internal View and the Context View.

A running example We will illustrate our method

by means of a simple, but signi�cant enough, example:

the Algebraic Lottery.

Our lottery is said \algebraic" since the tickets are

numbered by integer numbers, the winners are deter-

mined by means of an order over such numbers, and a

player buys a ticket by selecting its number.

Whenever a player buys a ticket, he gets the right to

another free ticket, which will be given at some future

time, fully depending on the lottery manager decision.

The number of a free ticket is generated by the set of

the numbers of the already assigned tickets following

some law.

Thus a lottery is characterized by an order over the

integers determining the winners and a law for gener-

ating the numbers of the free tickets. To guarantee the

Use case diagram

Dictionary
first version

specializing PDM

Iterating over the use cases appearing in the Use case Diagram
Use Case Description

posibly updating Dictionary, InternalView and the operations of
the classes appearing in ContextView

InternalView
first version: only the

abstract executor

ContextView
first version: only class
names and associations

ContextView extension
adding the info on the context entities:

operations, assumptions on their
behaviours, ...

Figure 3: Requirement Speci�cation Tasks

Lottery

dim: Int

winners: Sequence(Player)
availableTicktes: Int

Order

lessThan(Int,Int): Bool

Law

newNumber(Set(Int),Int): Int

11
Order Law

Own

*1

Player

freeTickets: Int = 0

getFreeTicket: Int
buyTicket(Int)

Ticket

num: Int

CurrentLottery

The number
of tickets of
the lottery is
(2*dim)+1.

How
many free
tickets he
may get.

*

1

Figure 4: Algebraic Lottery: PDM

players of the fairness of the lottery, the order and the

law, expressed rigorously with algebraic techniques, are

registered by a lawyer before the start of the lottery.

The tickets must be bought and paid on-line using

credit cards with the help of an external service han-

dling them.

Possible clients must register with the lottery sys-

tem to play, becoming players; and players access the

system in a session-like way. An external service takes

care of the registration of the players and of the distri-

bution of the session keys.

In the case of our example, the result of the PDM

activity is quite simple (just the rules governing the lot-

tery), but it serves to illustrate the distinction w.r.t.

3

the System and introduces some terminology that will

be included in the Dictionary package. Instead the

System has to support the players in accessing the lot-

tery and buying the tickets, and the \lottery manager"

in doing the administrative tasks, as drawing the win-

ners, and launching new lotteries.

The PDM consists of a class diagram shown in Fig. 4

and of some constraints, expressed in OCL, de�ning

the various operations, As an example let us consider

the constraint that expresses under which condition a

free ticket may be given out to a player (he has the

right to receive it, at least half of the tickets of the lot-

tery are already been assigned, and there is still some

non-assigned ticket), and what are precisely the e�ects

of that.

context getFreeTicket(): Int

pre:

self.freeTickets > 0 and

self.CurrentLottery.availableTicktes() <

self.CurrentLottery.dim and

self.CurrentLottery.availableTicktes() > 0

post:

let existingTickets = Ticket.allInstances@pre in

self.freeTickets = self.freeTickets@pre-1 and

Ticket.allInstances->exits{ T |

existingTickets->excludes(T) and

T.num = self.CurrentLottery.Law.newNumber(

existingTickets.num,

self.CurrentLottery.dim) and

self.Own->includes(T) and

result = T.num }

Similarly, the constraint below states that a ticket

may be sold only once, and that a player who buys a

ticket gets the right to a free ticket.

context buyTicket(N: Int):

pre:

Ticket.allInstances.num->excludes(N)

post:

self.freeTickets = self.freeTickets@pre+1 and

Ticket.allInstances->exits{ T |

Ticket.allInstances@pre->excludes(T) and

T.num = N and

self.Own->includes(T)}

3 Requirement Speci�cation:

Tasks and Artifacts

In this section we describe in some details the tasks and

the artifacts of our method (see Fig. 3 and 2) and show

how they are applied to the running example case.

Connect

Disconnect

Buy a ticket

Give free tickets

Register

Draw the winners

Start a new lottery

PlayerU

Client

Manager

Access
Handler

Email

CreditCard
Handler

Figure 5: Algebraic Lottery: Use Case Diagram

3.1 Use Case Diagram

Our method is Use Case Driven; indeed our require-

ment speci�cation includes a Use Case View consisting

of a Use Case Diagram and of the descriptions of the

various use cases. But, for us the actors appearing in

the Use Case diagram are roles for any kind of enti-

ties outside the System interacting with it; moreover

they are of two kinds represented by the stereotypes

<<SU>> (User of the Services provided by the System)

and <<SP>> (Providers of the Services needed by the

System). We think that in this way we can avoid long

discussions about who/what are the actors.

An <<SU>> named Name will be visually repre-

sented by

Name
; whereas an <<SP>> named Name

will be visually represented by
Name

.

The Use Case Diagram for the lottery case is shown

in Fig. 5. It depicts that our System will use external

services for handling the credit cards and the accesses

to the system. Furthermore, it will use the email to

communicate with the players.

3.2 Dictionary (First version)

The Dictionary consists of a UML package describing

all the entities needed to present the use cases, the

context and the internal structure of the System. This

global description helps avoid that the same entity is

modelled di�erently in di�erent views or in di�erent

use cases.

The Dictionary specializes PDM, since we think that

the conceptual entities found in the problem domain

should be used to describe what the System should do.

4

PlayerR

data: PersonalData
creditCard: CreditCardData

PersonalData
<<datatype>>

CreditCardData

<<datatype>>

Player

Figure 6: Algebraic Lottery: Dictionary version 1

Notice that this does not mean that all classes appear-

ing in it will be used in the requirement speci�cation.

Here, for example, the class Player is not used any-

more, since it corresponds to the abstract concept of

the player. Instead, in the requirement speci�cation

we have two other classes PlayerU, to model the player

context entities, and PlayerR (for player Record) to

model the information on a player kept by the System

to perform its activities. In Fig. 6 we show this initial

version of Dictionary, where we state that to specify

the System requirements we surely will use personal

and credit card data.

3.3 Context View (First version)

The Context View is a UML package importing the Dic-

tionary containing at least a class diagram, where all

classes are all of the following three stereotypes

<<System>> that stands for the System (exactly one

class in the diagram with this stereotype);

<<SU>> that stands for a user of the services pro-

vided by the System;

<<SP>> that stands for a provider of services used

by the System.

Moreover, in such class diagram there is one binary

association from the System class into each other class,

and these are all the associations.

Because the actors in the Use Case Diagram are

just generic instances of <<SU>> and<<SP>> classes

appearing in this view, they should be in accord.

The operations of these classes model their mutual

interfaces, that is in which way they may interact (be-

ing in an OO setting, an interaction is just the call of

an operation).

<<SU>> and <<SP>> classes, di�erently from the

<<System>> class, may have also attributes, constraints

and a description of the behaviour. Such features rep-

resent the assumptions on the behaviour of their in-

stances on which the System relies.

Initially, we give an initial simpli�ed version of the

Context View including only the class names and the

**
1

1

1 1

Client PlayerU Manager

Access
Handler

CCH

AH

EMAIL

AlgebraicLottery
<<System>>

EmailCreditCard Handler

MAN

Figure 7: Algebraic Lottery: Context View version 1

associations. Such initial version of the Context View

for the lottery case is reported in Fig. 7.

3.4 Internal View (First Version)

The Internal View describes at an extremely abstract

level the structure (architecture) of the System. This

structure consists of a unique active object able to per-

form the System activities (abstract executor) and by

many passive objects abstractly describing the System

Abstract State.

We represent such structure by a class diagram con-

taining exactly one class of the stereotype <<A Executor>>

(without attributes and whose operations are in bi-

jective correspondence with those of the <<System>>

class appearing in the Context View), and several pas-

sive classes de�ning the parts of the System Abstract

State. For what concerns the associations, it contains

only a binary navigable association between the<<A Executor>>

class and each of the passive classes.

This class diagramdescribes implicitly also the \Abstract

State" of the <<System>> class appearing in the Con-

text View in the following way: for each association in

the diagram C<<A_Executor>>
A

such class

has an attribute A: Bag(C).

Technically, the Internal View is a UML package

importing the Dictionary and containing only a class

diagram.

In the algebraic lottery case the initial version of

the Internal View consists only of the abstract executor,

and we do not show it since it is trivial.

3.5 Context View (Extension)

This task requires to �nd out what we know on the

context entities (assumptions on their behaviours, on

how they interact, . . .) and to specify that by extend-

ing the initial version of the Context View. Notice that

to this aim we can also partly de�ne the operations of

the class <<System>>, since this is the only way to

5

AccessHandler

register(PersonalData,CreditCardData): Code
check(PersonalData,Code)

CreditCard Handler

check(CreditCardData)
charge(CreditCardData,Int)

Email

send(String,String)

Each call of register will
return always new codes.
It will never return a key
already used.

AlgebraicLottery

charged
notCharged
okCard(CreditCardData)
okCode(PersonalData,Code,Key)
wrongCard(CreditCardData)
wrongCode(PersonalData,Code)

Figure 8: Algebraic Lottery: Context View (Extension)

model that, e.g., a <<SP>> will answer in some way

to a request.

1

It is important to do this task before to describe

the use cases, since the context entities are not under

the responsibility of the System developer, but they are

already existing.

This extension in the case of the lottery, see Fig. 8,

de�nes the operations of the <<SP>> classes, and

states some property on the behaviour of AccessHan-

dler. Moreover, here we have added also some op-

erations to the class AlgebraicLottery, just those cor-

responding to receiving some communications by the

<<SP>> context entities.

3.6 Use Case Description

A Use Case Description consists of a textual presenta-

tion of the use case, and of one or more use case views,

which may be of the three kinds: behaviour, interac-

tion and causal.

Use Case Behaviour View Such view, that is manda-

tory for each use case, is de�ned by a statechart for the

<<System>> class describing the complete behaviour

of the System with respect to such use case.

A statechart de�ning a behaviour view must be

such that

� the conditions on its transitions may test only

the System Abstract State given in the Internal

View;

� the actions appearing on its transitions may in-

clude only calls of the the operations of the con-

text entity classes, as de�ned in the Context View,

and may update the System Abstract State;

1

This is a problem of OO, where a class is characterized in

some sense only by what can receive, but there is no way to

express what it can output.

� and the events on its transitions may be only

call events of the operations of the <<System>>

class, as presented in the Context View.

The behaviour view is a \complete" description of what

the System do in the use case. The UML state chart

will describe how the System reacts to all the possible

communications (concerning the use case) received by

the context entities; moreover, also the conditions (on

the Abstract State of the System) under which a reac-

tion is possible and its e�ect (on the Abstract State of

the System and on the context entities) is precisely de-

scribed. These last points are just the condition and

action part of the state chart transitions. This is quite

di�erently from other approaches, e.g., COMET [3],

where a use case is described by collaborations, which

correspond to some scenarios, and where there is no

way to make explicit under which condition some thing

is done.

Use Case Interaction View Such view is de�ned by

a sequence (or collaboration) diagram representing the

interactions happening in a scenario of the use case

among

� the context entities

� the System

� the internal abstract constituents of the System,

as presented in the Internal View (the abstract

executor and the passive components).

Technically, a Use Case Interaction View is a standard

UML interaction diagram, but the object lives appear-

ing in it correspond to objects in two distinct worlds:

inside the System (the abstract executor and the pas-

sive components), and outside the System (the context

entities).

In the visual representation we split the diagram in

two swimlanes, by a dashed line, to show what is hap-

pening inside and outside the System, and the lifeline

corresponding to the abstract executor will be marked

by a big E.

There are no restrictions on the number of the dia-

grams appearing in this view, but they must be coher-

ent with the behaviour view (that is, they must rep-

resent particular executions of the complete behaviour

described by such view).

Use Case Causal View Such view is de�ned by an

activity diagram describing all the relevant facts hap-

pening during the use case and their causal relation-

ships. The relevant facts (technically represented by

action-states of the activity diagram) can be only

6

� calls of the operations of System by the context

entities,

� calls of the operations of the context entities by

System,

� UML actions producing side e�ects on the System

Abstract State.

The guards on such diagram can be only conditions on

the System Abstract State. Also the causal view must

be coherent with the behaviour view, in the sense that

the causal relationships among \facts" that it depicts

may happen in the behaviour depicted by the state

chart.

Recall that the operations of System and of the con-

text entities are described in the Context View, and

that the System Abstract State is described in the In-

ternal View.

The various views listed above play di�erent roles

in the description of a use case and are partly comple-

mentary and partly overlapping. The choice of which

of them to use depends on the nature of the considered

use case. The only rule enforced by the method is that

the behaviour view is mandatory, because it obliges

to present all the behaviour of the use case (e.g., all

possible alternative scenarios are included), even if it

may be less readable than the others. However, due

to the nature of the UML state chart, the behaviour

view cannot be a complete description of the use case,

indeed; it does not allow to express who is calling the

operation of which System reacts.

As a guideline, in general it is better to start giving

some interaction views (e.g., the one for the basic non-

problematic scenario) whenever the use case requires

the participation of many context entities or the causal

view, if instead the use case mainly concerns the com-

ponents of the Abstract State of System, and after give

the behaviour view.

We suggest to describe �rst the use cases in which

<<SU>> actors take part, and to consider for each

actor one after the other those use cases to which it

participates.

We illustrate the Use Case Description on two use

cases of the lottery example, Register and Give free tick-

ets (see Fig. 9 and 10).

Register The description of the use case Register is

shown in Fig. 9. We have given the mandatory be-

haviour view and an interaction view corresponding to

the standard scenario (i.e., where the data given by

the client are correct). While giving that description,

we have modi�ed the Dictionary (adding the class Code,

textual A client may register by giving his personal

data and those of a credit card. If his data are cor-

rect and those about the credit card are accepted by

its handler, then he will receive a code, determine by

the access handler, and will be considered registered;

otherwise he will be informed that his registration has

been refused.

behaviour

registerMe(CL,D,C)
[D.ok() and C.ok()] /
CCH.check(C);

wrongCard(C) /
CL.failedRegistration();

registerMe(CL,D,C)
[not D.ok() or not C.ok()] /
CL.failedRegistration();

okCard(C) /
cod =AH.register(D,C);
pr = create(PlayerR,)
 CreditCard = C,
 COD = cod,
 (data = D);
Players = Players U {pr};
CL.areRegistered(cod);

interaction

create(CreditCard=C,)
 COD=cod,
(data=D)

PlayerR

registerMe(cl,D,C)

check(C)

okCard(C)

cod = register(D,C)

areRegistered(cod)

cl: Client
CreditCard

Handler
Accesses

HandlerE

Figure 9: Use Case Register Description

7

the Ok operation to classes CreditCardData and Person-

alData and the attribute COD to the class PlayerR), the

Context View (by adding to the class AlgebraicLottery

and Client the operations corresponding to the mes-

sages exchanged in this use case), and Internal View

by adding the Abstract State component made by the

records about the registered players.

Give free tickets For the description of the use case

Give free tickets (see Fig. 10), together the behaviour

view we give also a causal view; in this case we do

not give any interaction view because it is not simple

to model the complex activity of <<System>> while

cycling to give one ticket after the other, whereas the

causal view is quite clear and readable.

In the appendix we show the descriptions of the

remaining use cases and the �nal version of the Dictio-

nary, Internal View and Context View.

4 Conclusion and related Work

Our contribution, limited to the speci�c issue of Re-

quirement Speci�cation, is in the line of some of the

best-known methods for software development, adopt-

ing a multiview and use case approach and using the

UML notation, and can be seen as a variation or, bet-

ter, a complement to some of them. Still, it departs

from them, at least to our knowledge, in some impor-

tant points.

First, the overall major goal is to propose a more

systematic approach, in the sense that the structure of

the overall speci�cation artifact is constrained in or-

der to tightly relate the components and have at end a

number of consistency checks. This contrasts with the

almost total freedom given, for example in RUP [5],

where the structure is just based on the use case de-

scription. That level of freedom is, on the other hand,

explicitly advocated, for example in ([2]), on the ba-

sis that experience matters more than stringent struc-

turing and rules. However, while we do not deny that

highly skilled and experienced software developers per-

haps need only loose guidelines and a liberal support-

ing notation, form our experience we have seen that,

for less experienced people, such liberality is the source

of endless discussions, contrasting choices and a prolif-

eration of inconsistencies. The same freedom, just use

case diagrams and use case description, is given for

the Requirement Speci�cation phase in COMET [3],

in sharp contrast with the detailed structure and the

many constrained guidelines and notations for Analy-

sis and Design. The approach taken in Catalysis [1],

that in other details shows some similar general views

textualThe manager checks how many tickets are still

available. If they are less than half of the tickets of

the current lottery, then he may distribute some free

tickets among the players. During each distribution a

player may receive at most one ticket. The numbers

of the free tickets are determined by the current \law"

applied to the set of the numbers of the tickets already

given out.

behaviour

give(nbil) /
if(Lottery.availableTicktes() < Lottery.dim) then
{ N = min(card(Lottery.availableTicktes()),nbil);
 while(N > 0 and Players->select(ps.freeTickets >0).notEmpty)
 { pr’ = first(Players->select(pr.freeTickets >0));
 num = pr’.getFreeTicket();
 EMAIL.send(pr’.data.email, "got ticket num");
 N = N - 1 }}

checkSituation() /
MAN.available(Lottery.availableTickets())

causal

pr’ = first(Players->select(pr.freeTickets >0));
num = pr’.getFreeTicket();
EMAIL.send(pr’.data.email,"got ticket num");
N = N - 1

give(nbil)

[Lottery.availableTicktes < Lottery.dim]

[N > 0 and
Players->
 select(pr.freeTickets>0).notEmpty]

[N <= 0 or
Players->select(pr.freeTickets >0).empty]

[L
ot

te
ry

.a
va

ila
bl

eT
ic

kt
es

 >
=

 L
ot

te
ry

.d
im

]

N = min(card(Lottery.availableTicktes()),nbil)

MAN.available(Lottery.availableTicktes())

checkSituation()

Figure 10: Use Case Give free tickets Description

8

to ours, is not directly comparable, being based on

an overall transformational approach based on com-

ponents that are re�ned from business modelling to

implementation units. But de�nitely our way of struc-

turing requirements is not targeted to a transforma-

tional approach; we are more interested in providing a

separate step preliminary to devise in a rather struc-

turally independent manner, a model-driven software

architecture of the system.

A second major distinction is the explicit use of

the concept (a class) of System, both in the context

diagram and in the use case descriptions, where we

specify the System behavior related to a speci�c use

case with a statechart. This is not in direct contrast

with the traditional object-oriented approaches, where

the presence of such a class is considered a typical

naive student's mistake, but at the level of analysis

and design. Still, because of the fact that those ap-

proaches also at the requirement level start with an

object structure, the presence of that class is most un-

usual. However the danger of providing a structure

not immediately needed when de�ning the system re-

quirements has been remarked by many authors (no-

tably M. Jackson, see,e.g., [4]). Even more interesting,

also in Catalysis, that claims to be completely object-

oriented, a class system and a context diagram is used

in the preliminary phases and it appears in the se-

quence diagrams explaining the role of the system (see

[1, p.15, �g 1.16]) of course the context diagram with

the system initial bubble was the starting diagram in

the Structured Analysis approach [10].

Finally we just mention that in our approach the

choice and use of the UML constructs is guided by a

careful semantic analysis (see, e.g., [6, 7]), that has

led us to prevent and discourage the indiscriminated

use of some features that, especially in combination,

may have undesired side-e�ects, like interferences and

ambiguities.

References

[1] D. F. D'Souza and A. C. Wills. Objects, Com-

ponents, and Frameworks with UML: The Cataly-

sis Approach. Object Technology Series. Addison-

Wesley, 1999.

[2] M. Fowler and K. Scott. UML Distilled: Sec-

ond Edition. Object Technology Series. Addison-

Wesley, 2001.

[3] H. Gomaa. Designing Concurrent, Distributed

and Real-Time Applications with UML. Addison-

Wesley, 2000.

[4] M. Jackson. Software Requirements & Speci�ca-

tions: a Lexicon of Practice, Principles and Prej-

udices. Addison-Wesley, 1995.

[5] Rational. Rational Uni�ed Process
c

 for System

Engineering SE 1.0. 2001.

[6] G. Reggio, E. Astesiano, C. Choppy, and H. Huss-

mann. Analysing UML Active Classes and As-

sociated State Machines { A Lightweight Formal

Approach. In T. Maibaum, editor, Proc. FASE

2000, number 1783 in Lecture Notes in Computer

Science. Springer Verlag, Berlin, 2000.

[7] G. Reggio, M. Cerioli, and E. Astesiano. Towards

a Rigorous Semantics of UML Supporting its Mul-

tiview Approach. In H. Hussmann, editor, Proc.

FASE 2001, number 2029 in Lecture Notes in

Computer Science. Springer Verlag, Berlin, 2001.

[8] R. Soley and OMG Sta� Strategy Group.

Model Driven Architecture. Available at

ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf,

2000.

[9] UML Revision Task Force. OMG UML

Speci�cation 1.3, 1999. Available at

http://www.rational.com/media/uml/post.pdf.

[10] E. Yourdon. Modern Structured Analysis.

Prentice-Hall, 1989.

Appendix

PDM Constraints

context P: Player inv:

P.freeTickets >= 0

context Ticket inv:

There do not exist two tickets with the

same number

context O: Order inv:

"x < y iff O.lessThan(x,y)" is a total order

context newNumber(ins,j):

pre: {-j, ..., +j} - ins <> {}

post:

ins->excludes(resut) and

-j =< result and result =< j

context L: Lottery inv:

Lottery.allInstances->size = 1 and

L.dim = 5000 * k con K >= 1 and

Ticket.allInstances.num->

forall{ N | -L.dim =< N and N =< L.dim}

9

context winners():

pre: self.availableTicktes() = 0

post:

the result is the list, also with repetitions,

made by the h players (h = integer part of

self.dim/5000) owing the tickets whose numbers

are the first h with respect to self.Order

context availableTicktes():

post: ((self.dim *2)+1) - Ticket.allInstances->size

Use Case Connect Description

textual A registered player may connect himself to

the lottery system to play by giving the code received

at the registration time.

behaviour

connectMe(PU,D,CD) /
AH.check(D,CD);

okCode(D,COD,k) /
Players->select{ pr.CD = CD} .connect(k);
PU.connected(k)

wrongCode(D,CD) /
PU.error();

interaction

connectMe(pu,D,cod)

check(D,cod)

okCode(D,cod,k)

connect(k)

connected(k)

pu: PlayerUE Accesses
HandlerPlayerR

Use Case Disconnect Description

textual A connected player may disconnect from the

lottery system in any moment; from then he cannot

play till the next connection.

behaviour

disconnectMe(pu,k)
[Players->
 select(pr.sessionKey = k).notEmpty] /
Players->
 select(pr.sessionKey = k).disconnect();
pu.connectionEnd()

disconnectMe(pu,k)
[Players->
 select(pr.sessionKey = k).Empty] /
pu.error();

interaction

PlayerR

disconnect()

disconnectMe(pu,k)

connectionEnd()

E pu:PlayerU

Use Case Buy a ticket Description

textual A connected player, after having examined

the available tickets, buys a ticket by choosing its num-

ber, which must identify an available ticket. The price

of the ticket will be charged on the credit card given

at the registration time. By buying a ticket the player

gets the right to receive another free ticket at a certain

time in the future depending on the manager decision.

behaviour

buyTicket(PU,K,N)
[Players.sessionKey->includes(K) and
 Tickets.num->excludes(N)] /
CCH.charge(Players->)
 {pr.sessionKey=K}.creditCard,
(1000)

buyTicket(PU,K,N)
[Players.sessionKey->excludes(K)
 or
 Tickets.num->includes(N)]/
PU.error();

charged() /
Players->{pr.sessionKey=K}.buyTicket(N)
PU.boughtTicket(N);

notCharged() /
PU.error();

availableTickets?(PU) /
PU.available(Lottery.stillAvailable())

interaction

availableTickets?(ts)

charged()

boughtTicket(k,N)

pr:PlayerRpu:PlayerU

buyTicket(N)

charge(C,1000)

E

buyTicket(pu,k,N)

available(ts)

Lottery

ts = available()

C = pr.CreditCard

CreditCard
Handler

Use Case Draw the winners Description

textualWhen all the tickets of the lottery have been

given out, the winners are drawn; they are precisely

the owner of the �rst k tickets (where k = integer part

of the lottery dimension divided by 10000) using the

current order. The owner of the winning tickets will

be informed by using the email, while all the registered

players will be informed of the drawn.

behaviour

10

draw()
[CurrentLottery.availableTickets()=0] /
VL = CurrentLottery.winners();
for I = 1 to VL.length do
 EMAIL.send(VL[I].data.email, "Won price i-th");
for all pr in Players do
 EMAIL.send(pr.data.email, "End of the lottery");

causal

for I = 1 to VL.length do
 EMAIL.send(VL[I].data.email, "Won price i-th");

draw()

[Lottery.availableTicktes=0]

[L
ot

te
ry

.a
va

ila
bl

eT
ic

kt
es

=
/=

0]

VL = Lottery.winners();

for all pr in Players do
 EMAIL.send(pr.data.email, "End of the lottery");

Use Case Start a new lottery Description

textual When no lottery is running, the manager

may start a new one. First, he determines the dimen-

sion of the lottery (a natural greater than 1), the law

for generating the numbers of the free tickets (a func-

tion which given a set of integers �nds a new number

not belonging to it) and an order on integers, which

will be used to �nd the winners. All the registered

players, will then be informed of the new lottery by an

email message.

behaviour

startNewLottery(D,ord,gen) /
for all t in Tickets do destroy(t);
CurrentLottery.dim = D;
CurrentLottery.Order = ord;
CurrentLottery.Law = gen;
for all pr in Players do
 EMAIL.send(pr.data.email,"Start new lottery");

Dictionary Final version

PlayerR

connected: Bool = False
sessionKey: Key
COD: Code
data: PersonalData
creditCard: CreditCardData

connect(Key)
disconnect

Key
<<datatype>>

Code
<<datatype>>

PersonalData

ok: Bool
email: String

<<datatype>>

CreditCardData

ok: Bool

<<datatype>>

Player

context connect(K: Key):

pre: self.connected = False and

non exists a player P s.t. P.sessionKey = K

post: connect(K: Key):

self.connected = True and self.sessionKey = K

context disconnect:

pre: self.connected = True

post: self.connected = False

Internal View Final version

PlayerS Ticket Lottery
1**

Lottery

<<A_Executor>>

TicketsPlayers

Context View Final version

AccessHandler

register(PersonalData,CreditCardData): Code
check(PersonalData,Code)

Client

failedRegistration
areRegistered(Code)

CreditCard Handler

check(CreditCardData)
charge(CreditCardData,Int)

Email

send(String,String)

PlayerU

available(Set(Int))
boughtTicket
connected(Key)
connectionEnd
error

AlgebraicLottery

availableTickets?(PlayerU)
buyTicket(PlayerU,Key,Int)
charged
checkSituation
connectMe(PlayerU,PersonalData,Code)
draw
disconnectMe(PlayerU,Key)
give(Int)
notCharged
okCard(CreditCardData)
okCode(PersonalData,Code,Key)
registerMe(Client,PersonalData,CreditCardData)
startNewLottery(Int,Order,GeneratoreNumero)
wrongCard(CreditCardData)
wrongCode(PersonalData,Code)

Each call of register willr
eturn always new codes.
It will never return a key
already used.

Manager

available(Int)

11

