UML-SPACES: A UML Profile for Distributed Systems
Coordinated Via Tuple Spaces

E. Astesiano - G. Reggio
DISI Universita di Genova - Italy
astes,reggio@disi.unige.it

Abstract

Coordination via tuple spaces is a well known and accepted technique for designing
distributed systems; originally introduced in Linda, it has been very recently adopted
within the Java environment as underlying mechanism of the JavaSpaces™ technology.

Here we explore the possibility of using UML in the development of systems using
such technique. While tuple spaces are modelled quite naturally in UML as particular
passive classes and objects, state machines do not seem adequate for modelling active
objects interacting via tuple spaces. A solution is to use the UML lightweight extension
mechanism to propose an appropriate extension of state machines by adding transition
triggers corresponding to successful and failed execution of lookup operations on a tuple
space.

The result is a UML profile, and thus a visual notation, for modelling autonomous
distributed systems based on tuple spaces.

Keywords: UML - Autonomous distributed systems - Coordination - Tuple spaces

1 Introduction

The Unified Modeling Language (UML) [13, 11] is an industry standard visual notation largely

used for specifying software systems. This language is unique and important for several reasons:

e UML is an amalgamation of several, in the past competing, notations for object-oriented
modelling.

e Compared to other pragmatic modelling notations in Software Engineering, UML is very
precisely defined and contains large portions that are similar to a formal specification
language, as the OCL language used for the constraints.

o UML is quite flexible intended as extensible, adaptable, and modifiable. From the preface
of the proceeding of last <<UML>> conference [5]:

Flexibility is needed if the UML is to be used in a variety of application domains.
Tailoring of UML syntax and adaption of UML semantics to system domains
is highly desiderable. Incorporating domain-specific concepts into the language



will yeld modelling languages that more effectively support system development
in these domains. Tayloring may involve determining a subset of the UML that
is applicable to the domain, extending or modifying existing language elements,
or defining new language elements.

Furthermore, UML itself provides the mechanisms, summarized in [8], to define its various
variants. UML Real Time [12] is an example of a variant for modelling embedded real-time
systems.

Here, we want to extend UML for modelling systems made of distributed autonomous
processes. This is a relevant task, because UML has not a natural provision for handling such
systems, as pointed out also in [6].

At the moment, there is not a standard prominent mechanism for the design of distributed
systems, so we have chosen to consider “coordination via tuple spaces”, the mechanism origi-
nally introduced in Linda [3]. We think that the choice is sensible, because such mechanism is
quite simple, easy to learn and to use, well-known and accepted; moreover it has been very re-
cently adopted within the Java environment as the underlying mechanism of the JavaSpaces™
technology, see [7].

A tuple is just a heterogeneous record, a tuple type is a record type, and a tuple space, or
shortly space, is an abstract shared storage device containing tuples of the same type. Processes
using a tuple space may write a tuple in such space (the tuple is added to the space). They
can also look up tuples by using a pattern (or template), that is a tuple where some of the
fields are specific values and the others are left as wildcards. There are two kinds of lookup
operations: read and take. A read operation returns either a tuple that matches the pattern,
i.e., the specified fields must be the same (successful execution), or an indication that a match
was not found (failed execution). A take operation works as a read, but if a match is found the
tuple is removed from the space.

We can sensibly model tuples and tuple spaces within UML by means of standard passive
objects, whereas tuple types and space types are modelled by classes. Furthermore, we can
slightly extend the UML notation, with some stereotypes of class and of association, to get a
convenient way to describe such items.

At this point the proposed extension seems to concern only the class diagrams, but we
have to consider what is its impact on the use of the most common kinds of UML diagrams,
precisely sequence/collaboration and state chart (state machine). While such extension is quite
compatible with sequence/collaboration diagrams, we have found problematic the use of state
machines. The main reason is that such diagrams are intended for modelling the behaviour of
reactive systems; see, e.g., [13] page 30 “Stalte machine may be used to describe user inlerface,
device controllers, and other reactive subsystems” and page 186 “A class .... It may have
a state machine that specifies its reactive behaviour — that is, its response to the reception of
events.”. Processes using tuple spaces are not reactive because they behave autonomously by
looking up and writing the tuple spaces.

Therefore, we need a different notation for modelling the behaviour of distributed (au-
tonomous) processes using tuple spaces. We have devised two possible solutions:

e a quite lightweight extension of state machines, consisting of just adding new transition
triggers corresponding to successful /failed executions of read and take operations on a
tuple space;



e a heavyweight extension, introducing a new kind of diagram, behaviour diagrams origi-
nated from the labelled transition systems, to model in general the behaviour of processes
(including autonomous, interactive aspects).

In this paper we present the first solution, while the second one, which is not specifically
intended for processes using tuple spaces, will be presented in [2].

Technically, the new triggers are simply obtained by adding a new kind of events, ghost
events, always available for dispatching, and so this extension is nicely integrated with the
other features of the state machines, and it will be easy to update tools supporting them.

The UML variant for distributed systems proposed in this paper can be precisely presented
as a UML profile [8], that we name UML-SPACES.

Here we present UML-SPACES using a simple case study: the invoice system (taken from

[1)-

The problem under study is an information system for a company selling products
to clients to support the management decisions. The clienls send orders lo the
company, where an order contains one and only one reference to an ordered product
in a given quantity. The status of an order will be changed from “pending” lo
“invoiced” if the ordered quantity is less or equal to the quantity of the corresponding
referenced product in stock. New orders may arrive, others may be cancelled, and
there may be some arrivals of products in some quantity in the stock.

2 Tuples and Tuple Spaces in UML

Tuples are particular data types, roughly corresponding to records, and so we can model them
in UML by using the DataType element (a special kind of classes).

A tuple space is a kind of abstract shared storage device characterized by a precise structure
and a precise way to access it, storing tuples all of the same type. Thus, we can model it, quite
naturally, using UML as a passive object.

However, we think that it is convenient to introduce appropriate stereotypes (of DataType
and of Class respectively) for such structures, at least to get an appropriate clear and concise
notation.

In the following two subsections we present our stereotypes for tuples and for tuple spaces.

2.1 Tuples in UML

We think to model a tuple datatype with n fields, whose types are T4, ..., T, respectively, as
a DataType classifier with n attributes of types Ti, ..., T, respectively.

However, to accommodate the tuple patterns (used by the read and take operations) the
value of a field of a tuple may be also the special “wild card” (denoted by ‘_’). Thus, the types
of the attributes of the tuple DataType will be W(T}), ..., W(T,), where for a given type T,
W(T') roughly corresponds to T'U {_}.

The main operation of the tuple DataType is match, a predicate checking whether a normal
tuple matches a tuple pattern.



<<tuple>>
Ttt

cl: Tl

cn: Tn

opl: ..

opm: ...

Figure 1: The stereotype <<tuple>>

The stereotype of DataType corresponding to tuple types is named <<tuple>>, and the
corresponding notation is given in Fig. 1, where: n > 1, cl, ..., cn are distinct names, T1, ...,
Tn are UML types, m > 0, opl, ..., opm are distinct names and all different from match.

Recall that all operations on tuples are queries', because in UML all operations of a
DataType must be queries.

Notice that constraints, as invariants, may be freely attached to a tuple classifier.

The semantics of the tuple stereotype is simply given by translating it into standard basic
UML. An instance of a tuple classifier, as the one in Fig. 1, corresponds to the following UML

class diagram fragment.

W(T1) W(Tn)
iswild: Boolean | 7 iswild: Boolean
el: T1 el: Tn

<<datatype>>

Ttt
cl: W(T1)
post:
cn: W(Tn) result = o
R (t.cl.iswild or t.cl.el = self.cl.el) an

match(t: Ttt): Boolean |’

. (t.cn.iswild or t.cn.el = self.cn.el)
opl: ...

opm: ...

2.2 Tuple Spaces in UML

We model a (type of) tuple space in UML as a passive class having an attribute of type set of
some given tuple type, and the read, take, and write operations; the latter does not return a
result, while the first twos return either a tuple or a special value to denote failure.

We introduce a stereotype of Class for the tuple space types <<space>>, and a stereotype
of Association <<of>> for the associations connecting tuple spaces with the corresponding
tuple types. The notation for such two stereotypes is presented in Fig. 2.

In UML queries are operations without side effects, i.e., they are pure functions.



<<space>>
<<tuple>> Sss
XXX <<of>>
opl: ...
opm: ...

Figure 2: The stereotypes <<space>> and <<of>>

A space classifier must be always connected to one and only one tuple classifier by means
of an instance of <<of>>, moreover it cannot have any attribute.
The “of” association cannot
e have a name,

e be navigable in any versus,

e have named rolenames,
e and have any multiplicity constraint.

Notice that constraints, as invariants, may be freely attached to a space classifier
A space classifier, with the connected tuple classifier, as the one in Fig. 2, corresponds to

the following UML class diagram fragment.
pre: exists t'in self.tuples s.t. t.match(t) = true
=trde }

post: result.ok = true and
def} result.el in {t in self.tuples | t.match(t)
and self.tuples = self.tuples@pre

The datatype Tttx roughly
corresponds to Ttt U {un

1
1 "
1
1
not exists t' in self.tuples s.t. t'.match(t) :tru%

<<datatype>>
Tttx ! Tore:
ok: Boolean . | post: result.ok = false and
eI'-Ttt ' J self.tuples = self.tuples@pre
* ," ,’
K ," pre: exists t'in self.tuples s.t. t.match(t) = true
1 ! |post: result.ok = true and
o, result.tin { t'in self.tuples@pre | t'.match(t) = tru
Sss R and self.tuples = self. tuples@pre - {r esult }
- tuples: bag(Ttt) = empty ," /
read(t: Ttt): Tttx { guarded: 2 pre: not exists t' in self.tuples s.t. t".match(t) = tru
take(t: Ttt): Tttx { guarded-f- - - - - post: result.ok = false and
write(t: Ttt) { guarded } self.tuples = self.tuples@pre
opl: ... "~
opm: ... post: self.tuples = self.tuples@pre U { t}ll|
The meaning of the UML guarded annotation of an operation of a class, here used on read,
take and write, is ambiguous. Indeed, [13] says that it means:



<<active>>
<<space>> <<use>> Aaaa

Sss Uuu

Figure 3: The stereotype <<use>>

Multiple calls from concurrent threads may occur simultaneously to one Instance
(on any guarded Operation), but only one is allowed to commence. The others are
blocked until the performance of the first Operation is complete. . . .

It is ambiguous because “Multiple calls” may be interpreted either as
e of the same guarded operation,
e or of all the guarded operations of the class.

Our realization of the tuple spaces works only with the second interpretation, so our stereotype
enforces such semantic interpretation.

The operations for accessing a tuple space (read/take/write) can be called only in a syn-
chronous way.

Whenever the type of sp is a tuple space, we abbreviate sp.tuples into sp.

To describe the structure (architecture) of a distributed system it is useful to say which
processes use which tuple spaces. Thus, we introduce a proper stereotype of Association:
<<use>>. The corresponding notation is shown in Fig. 3.

A use association is binary, must connect a space classifier and an active class (and the
navigation is allowed only from the active class to the space), cannot have a name, the role
corresponding to the active class must be named, whereas the other cannot be named.

No multiplicity can be attached to any end of such associations, and implicitly we assume
that is 1 on the active class end and * on the other end. It is possible to have different “use”
associations between an active class and a tuple space classifier (obviously the role names should
be different). Thus, an active object may use different instance of the same space classifier, but
each one will be denoted by a different role name.

A use association, as the one in Fig. 3, corresponds to the following association.

<<active>>
*
<<space>> 1 Aaaa

Sss Uuu

Example As example we show in Fig. 4 the class diagram for the invoice system, which
consists of active objects of three different types (handler of the messages from the clients,
order invoicer and warehouse handler) and of two tuple spaces (one storing the orders and
the other the information about the products in the warehouse). In this diagram we have
constraints attached to the tuple spaces, e.g., requiring that all the tuples describing the orders
have different dates (the date includes also the hour), and a global constraint requiring that
there is exactly one instance of some classes.



Prod_Code Quantity Client
<<enumeration>>
Status
Pending <<tuple>> <<tuple>>
Invoiced Order Product
Cancelled pr: Prod_Code pr: Prod_Code
gt: Quantity gt: Quantity
dt: Date
ct: Client not exists wh, wh' in self
st: Status <<of>> s.t. wh.pr= wh’.pr
. . <> !
not exists or, or’ in self <<of>> and_wh wh
s.t. or.dt=or.dt '
and or<> or S <sspace>> <<space>>
Orders Warehouse
Lisess  <<use>> <<use>> <<use>>
ORS ORS wH WH
<<active>> <<active>> <<active>>
MS_Handler Invoicer WH_Handler

the_prod: Prod_Code
the_quant: Quantity
the_date: Date
the_client: Client

the_prod: Prod_Code
the_quant: Quantity
the_date: Date
the_client: Client

the_prod: Prod_Code
the_quant: Quantity

add_p(p: Prod_Code,

receive_order(p: Prod_Code,
g:Quantity
) c:client)
cancel_order(d: Date)

g:Quantity)

size(allinstances(Orders)) = 1 and
size(allinstances(Wharhouse)) = 1 and
size(allinstances(Invoicer)) >= 1 and
size(alllnstances(MS_Handler)) = 1 and
size(allinstances(WH_Handler)) = 1

Figure 4: The class diagram of the invoice system



Printer Orders Invoicer Wharehous

<p,q,d,Pending> =
take(_,_,_,_,Pending)

<p,q™> = take(p,_)

N\

[q <= q'] write(<p,q,d, |nvoiced>) :

write(<p,q’ - g>)

printinvoice(p,q,d)

D [@<a]
write(<p.,q.d.Pending>) | e <p i)

Figure 5: A sequence diagram for the invoice system

3 Using Tuple Spaces within UML

In Sect. 2 we have shown how to conveniently model tuple spaces using UML. To be sure that
such extension allows us to properly model distributed systems coordinated via tuple spaces
using UML, we still need to investigate the impact of the introduced stereotypes on the use
of the other kinds of UML diagrams. Here, we consider only those diagrams that we think
are the most relevant for distributed systems, precisely class diagrams, sequence/collaboration
diagrams and state machines.

Class diagrams, obviously, do not pose any problems; see, e.g., the example in Fig. 4. Also
sequence and collaboration diagrams work finely with tuple spaces; indeed we can use the
new classifiers (tuples and tuple spaces), the new associations (of and use) and the operations
for accessing the tuple spaces (read/write/take) in a sequence/collaboration diagram without
problems, because such diagrams roughly depict the execution of operation calls among objects.
In Fig. 5 we report an example of a sequence diagram for the invoice system. It shows how
the invoicer handles the orders: it takes a pending order (if any) from the space Orders, then
the tuple of the ordered product from the space Warehouse; if the quantity is sufficient, then
the order is invoiced and the reduced quantity is written back in Warehouse, otherwise the two
taken tuples are written back in the corresponding spaces.

3.1 State Machines

We have found much more problematic the use of state machines to describe the behaviour
of active objects using tuple spaces (clearly it is not sensible to associate state machines with
tuple spaces). The reason is that the operations for accessing a tuple space must be called by
the active objects and so they may appear only in the action part of the machine transitions,
and cannot generate events to trigger such transitions.

Consider for instance the Invoicer active class in the running example. Such class has no
operations and so for modelling its behaviour with a state machine we can use only the timed



(" )
®

/go
|

<l Take_Order e
L—J\

go/
t = ORS.take(_,_,_,_,Pending); go;
go [t.ok=False]/

t' = ORS.write(t); 90 take Prod ]

!

go [t.ok=True]/
t' = WH.take(t.pr,_); go;

Invoice

go [tgt>t.qt]/ go [tgt<=t.qt]/
WH.write(t); WH.write(t’.pr, t'.qt - t.qt);
ORS.write(t); ORS.write(t.pr, t.qt, t.ct, t.dt, Invoiced);
go; PR.printinvoice(t.pt, t.qt, t.ct, t.dt);
o;
\ 9 J

Figure 6: A unacceptable modelization of the INVOICER’s behaviour

and change events. However, interesting change events, i.e., detecting changes in the used tuple
spaces, should use attributes of other objects, and so they are of the kind that should not be
used as stated by the official UML documentation. Furthermore, even if allowed, their use in a
distributed setting may make the system quite centralized.

The Invoicer should behave in this way:

e take a pending order, if any, from the ORS space,
o take the tuple corresponding to the ordered product form the WH space,

o if the quantity in the warehouse is enough, then send the invoice and put back the two
tuples properly updated (the order will be invoiced and the product quantity will be
reduced), otherwise put back the two tuples unchanged.

It seems to us that the only way to model it using standard UML state machines is as reported
in Fig. 6. Notice that we have added to the class Invoicer an auxiliary operation go without
arguments and returning anything, add two auxiliary attributes t and t’ of type tuple.

Clearly this solution is not acceptable. The fundamental reason for this problem is the fact
that state machines are intended for describing the behaviour of reactive systems, as stated
by [11] page 30 and page 186, while processes interacting via shared tuple spaces are not
reactive, but autonomously interacting by reading and writing shared memory. Thus, we need
an extension of UML for modelling in general the behaviour of active objects, and not focused
on reactivity, at least in this particular case.

In the following section we propose a “lightweight” extension, where the only addition
is a new form of trigger for the state machine transitions. In [2] instead we will propose a



“heavyweight” extension adding a new kind of diagrams, “behaviour” diagrams, to describe in
the general case the behaviour of active objects, which can also very conveniently be used for
distributed processes interacting via shared tuple spaces.

4 Lightweight Extension

To conveniently describe the behaviour of processes using shared tuple spaces with the UML
state machine, we need transitions that are triggered by the failed or successful execution of
either a read or a take operation on a tuple space. Moreover, in the successful case the returned
tuple should be assigned to some variable that must be available in the condition and action
part of the transition itself. We propose to extend UML state machines to include the following
four new forms of transitions (corresponding to the new triggers):

. { x=TS.read(t) } [cond(x)] / act(x)
successful reading [ Source } { Target ]
. . { Null=TS.read(t)} / act
failed reading [ Source } { Target ]
. { x=TS.take(t) } [cond(x)] / act(x)
successful taking [ Source } { Target ]
. . { Null=TS.take(t) } / act
failed taking Source } Target

where TS is an expression of type Sss (a space of tuples of type Ttt), x is a variable of type Ttt
and t an expression of the same type. cond(x) (act(x)) means that x may freely appear in such
condition (action).

The intuitive semantics of such transitions is that they can be fired whenever the execution
of the corresponding operation on the tuple space TS is

e successful and returns a tuple that will be assigned to x;
e not successful;
o successful and returns a tuple that will be assigned to x;
e not successful.

Now we have to integrate such intuition with the semantics of the other transitions of the state
machines, that is based on the run-to-completion step started by dispatching events.
Unfortunately, we cannot consider the new triggers as standard events. Indeed, events are
either (a) generated by other objects (call and signal) or (b) correspond to the happening of
some facts (change and time) checked by the object itself. In case (a) the tuple space should go
on generating events by calling the objects that use it, whereas, in case (b), the object should go
on looking up the tuple space, and that destroys the distributed nature of the modelled systems.

10



To keep it, the read and take operations have to be performed only when it is required by a
user of the tuple space.

But the semantics of the UML state machine is described in terms of events, event queues,
run-to-completion-steps started by dispatching an event, and so if we want that our extension
is really “light” we cannot describe the semantic of the new transitions in a completely different
way.

Our solution is to introduce for each pair: active class ACL and used space tuple TS, one
special event, SPACE(TS), that it is always available to be dispatched from the event queue of
the objects of ACL. We name such events ghost event, since they float around without the need
to be explicitly generated.

Then, using the ghost events, the above new transitions are simply defined as follows:

SPACE(TS)
[lety = TS.read(t) in ]
successful reading " y.ok =true and cond(y.el) and assign(x,y.el) ] /
act(x)
SPACE(TS)
failed reading [ TS.read(t) .ok = false ] / act
SPACE(TS)
[lety = TS.take(t) in
successful taking y.ok = true and cond(y.el) and assign(x,y.el) ] /
act(x)
Source } Target
SPACE(TS)

failed taking [ TS.take(t) .ok = false ] / act
Source } Target

where x is an auxiliary attribute, and assign a boolean auxiliary method assigning a value to
an attribute returning always the true value (they are implicitly declared).

Then the usual UML semantics of the state machines completely describes also the semantics
of the new transitions.

When a special ghost event, say SPACE(TS), is dispatched (this is always possible, since it
is always in the queue ready to be dispatched), it may trigger one of the above transitions.

In the first case, then the condition is evaluated requiring to perform the calls of TS.read(t)
and of assign(x,y). If the returned tuple is ok and cond holds on the returned tuple, then the
transition is fired, its action part is executed using x (the evaluation of assign has assigned to
it the returned tuple), and the machine moves to the final state of the transition. Otherwise,
the transition is not fired.

Similarly, in the other cases.

The semantics and the static correctness conditions concerning the ghost events are modified
in the following way.

e The condition part of a transition triggered by the ghost events may have the side effects
(due to the calls of take and of assign).

11



{<p.q,c,d,s> = ORS.take(_, , , ,Pending)}/
the_prod = p;

the_quant =q;

the_client = ¢;

Worki the_date = d; nvoic
orking J > Invoicing

{ <p,g> = WH.take(the_prod,_) }

-
[g < the_quant] / k>

ORS.write(the_prod, the_quant, ]
the_client, the_date,
Pending);

WH.write(the_prod,the_quant);

[q =>the_quant] /

ORS.write(the_prod, the_quant, the_client, the_date, Invoiced);

WH.write(the_prodt, q - the_quant);

PRI.PRINTINVOICE(the_prod, the_quant, the_client, the_date)
. J

Figure 7: Extended state machine modelling the INVOICER behaviour

e The ghost events can be used only in the above four cases.
o The ghost events are always ready to be dispatched in the event queue.

e The queue handling policy must be fair w.r.t. the picking of the ghost events, i.e., it
cannot happen neither that ghost events are dispatched forever nor that non-ghost events
are picked forever.

Examples

We present in Fig. 7, 8 and 9 the extended state machines modelling the behaviour of the
objects of the three active classes present in the class diagram of the invoice system of Fig. 4.
Here we use also another notational shortcut. If x1, ..., xn are the fields of the considered
tuple type,

{ <x1,...,xn > = UUU.read(t) } [ cond(x1, ... ,xn) ] / act(x1, ..., xn)
stands for

{t =UUU.read(t) } [ cond(t.x1, ... t.xn)] / act(t.x1, ..., t.xn) .

5 Conclusions

In this paper we have presented UML-SPACES, a UML profile [8], for the specification of dis-
tributed systems made by autonomous processes coordinated via tuple spaces. We think that
this may be a significant addition to the existing “tools” for the development of reliable software
systems, since UML does not offer special provisions for modelling distributed systems, while
it is becoming one of the most used notation for software systems.

12



receive_order(p,q,c) /
<] working ORS.write(p,q,c,Now,Pending);

delete_order(p,q,c,d) /
the_prod = p;
the_quant = q;
the_date=d;
the_client =c;

Deleting

{<p.gcds>=
. ORS.take(the_prod,the_quant,the_client,the_date, )}
[s <> Pending] /

PR.PRINTNOTICE(......) f)
S

[s = Pending] /
ORS.write(the_prod, the_quant, )
the_client, the_date, Cancelled);

N\

Figure 8: Extended state machine modelling the MS_HANDLER’behaviour

{ <p,g> = WH.read(_,0) }/
Working | PRI.PRINTNOTICE(.......)

add(p,q) /
the_prod = p; the_quant = q;

=D

{ <p,g> = WH.take(the_prod,_) } /
WH.write(the_prod, q + the_quant)

N J

Figure 9: Extended state machine modelling the WH_HANDLER behaviour

13



Indeed, other attempts to extend UML for distribution are present in the literature; for
example [6] incorporates in UML a particular technique for developing distributed systems
(meta object protocol).

Instead, UML-SPACES is a quite light extension of UML; we have defined it just by adding
a few new classifiers for tuple types, tuple spaces and related associations (stereotypes of
DataType, Class and Association), and a new form of transition for the state machines (which
can be triggered by the failed or successful execution of a lookup operation on a tuple space).
We have shown that to introduce such transition it is sufficient to extend the Event metaclass
with a new kind of event (ghost events).

We have designed UML-SPACES trying to modify UML as less as possible; thus it is easy
to extend to the case of distributed systems methods, tools, techniques based on UML: we
just need to add some static constraint and modify the function corresponding to dispatching
events from the queue. Moreover, since tuple spaces are supported by Java technology [7], it is
possible to develop Java code generation tools for UML-SPACES.

We can also give a formal precise definition of UML-SPACES by very slightly modifying the
formal semantics of state machine in [9].

Here we have presented only the most basic constructs, but we can add also more refined
operation for accessing tuple spaces, as

e read (take) all, returning all tuples matching a pattern,
e write all (writing a set of tuples),

o delete, deleting all the tuples matching a pattern.

JavaSpaces offers also additional features that could be added also to UML-SPACES. For ex-
ample, the annotation “transaction” for the methods of a tuple space, characterized by the
fact that when they start to execute no other process can access the space till the end of such
execution; and also new change events raised in the processes using a tuple space whenever a
tuple matching a pattern is added/removed from the space. These events do not require the
continuous polling of the space by the processes, it is sufficient that the space calls the users
when a tuple is added /removed.

Developing UML-SPACES we have noted how the state machines are mainly intended for
modelling reactive processes, and that can be less convenient in the case of general active
objects. Thus, we have also designed a heavyweight extension, see [2], introducing a new
kind of diagram for modelling the behaviour of active objects: behaviour diagrams, inspired by
labelled transition systems, and already used in some visual formal notations ([10] and [4]).

We know that in the case of distributed systems it is also relevant to model the structure
(architecture) of the system at the level of the instances; we plan to investigate what does UML
offer in this regard, trying to understand the role of object diagrams (not very well clarified in
UML) and of the deployment diagrams.

References

[1] M. Allemand, C. Attiogbhe, and H. Habrias, editors. Proc. of Int. Workshop “Comparing
Specification Techniques: What Questions Are Prompted by Ones Particular Method of
Specification”. March 1998, Nantes (France). IRIN - Universite de Nantes, 1998.

14



2]

[10]

[11]

[12]

[13]

E. Astesiano and G. Reggio. UML Behaviour Diagrams for Modelling Active Objects.
Technical report, DISI, Universita di Genova, Italy, 2000. In preparation.

N. Carriero and D. Gelernter. How to Write Parallel Programs: A Guide to the Perplexed.
ACM Computing Surveys, 1989.

E. Coscia and G. Reggio. JTN: A Java-targeted graphic formal notation for reactive and
concurrent systems. In Finance J.-P., editor, Proc. FASE 99 - Fundamental Approaches
to Software FEngineering, number 1577 in Lecture Notes in Computer Science. Springer

Verlag, Berlin, 1999.

R. France and B. Rumpe. <<UML>>"99 preface. In R. France and B. Rumpe, edi-
tors, Proc. UML’99, number 1723 in Lecture Notes in Computer Science. Springer Verlag,
Berlin, 1999.

J.S. Lee, T.H. kim, G.S. Yoon, J.E. Hong, 5.D. Cha, and D.H. Bae. Developing Distributed
Software Systems by Incorporating Meta-Object Protocol (diMOP) with Unified modelling
Language (UML). In Proc. fth International Symposium on Autonomous Decemtralizzed

Systems, pages 65-72, 1999.
Sun Microsystems. JavaSpaces Specification. Technical report, Sun, 1999.

OMG. White paper on the Profile Mechanism -  Version 1.0.
http://uml.shl.com/u2wg/default.htm, 1999.

G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. Analysing UML Active Classes
and Associated State Machines — A Lightweight Formal Approach. In T. Maibaum, editor,
Proc. FASE 2000 - Fundamental Approaches to Software FEngineering, number 1783 in
Lecture Notes in Computer Science. Springer Verlag, Berlin, 2000.

G. Reggio and M. Larosa. A Graphic Notation for Formal Specifications of Dynamic Sys-
tems. In J. Fitzgerald and C.B. Jones, editors, Proc. FMFE 97 - Industrial Applications and
Strengthened Foundations of Formal Methods, number 1313 in Lecture Notes in Computer
Science. Springer Verlag, Berlin, 1997.

J. Rumbaugh, 1. Jacobson, and G. Booch. The Unified Modeling Language Reference
Manual. Object Technology Series. Addison-Wesley, 1999.

B. Selic and J. Rumbaugh. Using UML for Modeling Complex Real-Time Systems. Tech-
nical report, ObjecTime Limited, 1998.

UML Revision Task Force. OMG UML Specification, 1999. Available at
http://uml.shl.com.

15



