
p

�

�

[ ]

L

L

EL

Abstract

Introduction

Algebraic Speci�cation at Work

Conceptual tools

Software tools

Application development rules

conceptual tools software tools

application development rules

SCDS

FSCL

SCDS

CRP

CRP

CLT CLT

This work has been partially supported by \Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo" of CNR Italy and

by the COMPASS ESPRIT-BRA W.G. n. 3264.

Egidio Astesiano Alessandro Giovini Gianna Reggio

Dipartimento di Matematica

Universit�a di Genova { Italy

Franco Morando

Elsag Bailey S.p.A.

via Puccini 2, Genova { Italy

Structural Concurrent Design and

Speci�cation( )

Formal Speci�cation of Concurrent Languages

( )

A Concurrent Rapid Prototyping System ( )

Concurrent

Language Translator ( )

Concurrent software systems are used in �elds where safety and reliability are critical. In spite of

that, the validation of concurrent software tends to rely more on empirical experiments rather than on

rigorous proofs. This practice, which is already bad for sequential software, becomes awful for concurrent

systems since, due to nondeterminism, the behaviour observed during testing is only the most likely to

occur. We present a formal approach with associated tools for handling this situation. This method allows

us to derive from the speci�cation all possible behaviours of a concurrent program and hence to be sure

that a tested program will always behave correctly on its test-bed. We outline the approach discussing its

application to a typical situation in industrial practice.

Concurrent systems are usually programmed using a standard sequential language mixed with calls to the

underlying system primitives. If we model this mix as a concurrent language (as it actually is), then the

concurrent system becomes a program in . We need methods for specifying rigorously both the concurrent

system and its programming environment in a uniform framework.

During the speci�cation phase a tool set can be used to check speci�cation correctness and consistency.

When the speci�cation is ready programmers or hardware designers in charge of developing the system

can use a language interpreter to run test programs. Prototyping is an informal approach to speci�cation

understanding of valuable interest in industrial environments: it enables companies to introduce formal

speci�cations hiring a limited number of specialists in formal techniques, while implementors can use formal

documents (that they probably cannot understand) through the �lter of the tool set. When the speci�ed

system has been implemented, programs running on the system can be tested using a language interpreter.

This application of formal techniques to concurrent software testing is interesting since the interpreter, if

based on a formal speci�cation, can fully exploit the nondeterminism introduced by concurrency.

Let us now brie
y illustrate our formal approach. It consists of , and

.

They are essentially a technique for modelling and specifying concurrent systems and

languages. In practical applications we distinguish them in two parts:

(a structural and hierarchical approach to the design and the formal speci�cation of

concurrent systems expressed as algebraic speci�cations), and

(given the syntax of a concurrent language, we specify its semantics by a translation into a behaviour

language for describing processes; by applying the technique we build an abstract concurrent machine

which gives the semantics of the behaviour language).

They consist essentially of (given an

abstract concurrent machine and an initial state explores all �nite execution paths) and of a

(given some language semantic clauses and a program, translates it into

a state of the abstract underlying concurrent machine).

They are application dependent and consist of rigorous guidelines

using the conceptual and software tools for the correct development of a class of applications. In this

paper we illustrate the rules for a particular class, by means of a very simple example. We consider a

concurrent schematic language handling access to a shared resource parameterized over the mechanism

for regulating the access; we instantiate then the language on two di�erent mechanisms, a semaphore and

shared bit; we try to implement the �rst with the second and use the tools to check the implementation.

After presenting conceptual and software tools in the �rst two sections, in the third section we show in

practice the application development rules. The paper is organized so that the reader may start with section

3, going back to the previous sections only when in need of some more detailed explanations.



�

= +

:��!� � �

S L

state

;

1 +1

1

1 1

1

1

SMoLCS

SCDS

SOS

l l

n n i

k

l l

l

l

n

l

n

l

1 Conceptual Tools

TS

label state

SAx DAx

0 0 0

0

0

0 00 00 0 0 0 0 00 0

0 0 0

0

0

0

spec enrich by

preds

axioms

�

�

�! �! � � �

�! 2 �! �!

^ ^ �

�!

�! � �!

j ` j �!

` �! `

�!

^ ^ � �!

�!

`

1.1 Structured Concurrent Design and Speci�cation

1.1.1 Process Speci�cation

preds

; ;

s s s; l; s s s

s s l l

�

S L

� : : : � � ; i ; : : : ; n �

t t p t ; : : : ; t p

s s s s s s s s s

I I t t t t I s s

s s

I

� : : : � s s

� : : : �

s s

� �

formal behavioural guidelines

structurality universality

any

labelled transition systems

states labels

transition relation

algebraic transition systems TS

SAx DAx static dynamic positive

conditional axioms

SAx DAx

DAx

SAx CCS

TS

TS

inference rules

rules

static dynamic

TS TS

TS TS

2

The conceptual tools presented here are essentially an adaptation of the approach; the reader

interested in a more complete presentation with mathematical foundations may refer to [AR1, AR2, AR3].

The Structured Concurrent Design and Speci�cation ( ) approach to the speci�cation of concurrent

systems is aimed at giving both and to those who are engaged in giving

rigorous de�nitions of concurrent architectures, in the sense that:

the foundations of the method rely on a rigorous mathematical theory which ensures the soundness of the

overall schema and which does also guarantee that some fundamental properties of what is being speci�ed

do hold (for example, that the speci�cations admit models, that symbolic execution is possible, and so on);

the guidelines given by the method correspond to requirements of and , i.e.,

they provide a canonical way of structuring the speci�cation (of a concurrent system) which is capable

of specifying concurrent system; also, the structure of the speci�cation enlightens relevant concepts

of the speci�ed system or language and hence helps the designer in isolating the critical features.

We believe hence that these guidelines correspond to those provided by the method of structured program-

ming for the development of programs in the sequential case. In section 1.1.1 we brie
y present the princi-

ples of the method; while in section 1.1.2 we apply them to specify in a structured way concurrent systems.

The formal model of processes is that of . A labelled transition system is a triple

(S L ), where S is the set of the of the system, L is the set of the and S L S is the

, and as usual we write for ( ) . The usual interpretation of is

that a process in the state can evolve into the state by performing a transition labelled by ; the label

conveys the information related to the transition which is visible to the external world; as a convention,

is used to label transitions which correspond to internal computstions.

In our approach, labelled transition systems are models of particular algebraic speci�cations: thus we

talk of . The speci�cation of an algebraic transition system is a speci�cation

with predicates ( ) of the form in �gure 1, where and are the speci�cations of states and labels

respectively, while , are sets of and axioms respectively; they are sets of

, i.e. �rst order formulas having form where for = 1 + 1,

has form either = or ( ), with predicate symbol.

Figure 1: Algebraic transition system schema

Static axioms de�ne the properties of the states and of labels, while dynamic axioms de�ne

the transition relation . Hence states, labels and transitions are speci�ed axiomatically. Thus, while

giving the axioms , one can bene�t from the identi�cations on states and labels which are induced by

the axioms . As a very simple example, once we include in a -like language speci�cation the static

axiom + = + , we just need one dynamic axiom + to specify the transitions

related to the nondeterministic choice operator +, since the symmetrical one comes by application of the

commutativity axiom.

By restricting the kind of axioms to the class of positive conditional formulas one is ensured that the

speci�cation admits the initial model, say , characterized by: = = i� = , and =

i� , where denotes the usual Birko� deductive system for conditional speci�cations (see,

e.g., [GM]). So, in these cases, dynamic axioms can be considered as a set of inference rules de�ning the

interpretation of in ; for this reason in the following we call the dynamic axioms or

simply ; moreover a dynamic axiom having form will be written .

In this way we generalize the approach (see [P]) by neatly separating and properties:

static properties are speci�ed by means of axioms requiring identi�cations on the data types of the system,

while dynamic properties are speci�ed by means of inference rules.

As a notation, if is the speci�cation of a transition system, we write \the transition system " for

\the the initial model of the speci�cation " and write for .



n
1

�

STS

STS

�

0 0

0 0 0

0

1

1

1

1

1

1

1

1 2 2 1 1 2 3 1 2 3

n

n

i

n

l

n

l

n

n

sl

n

j

j

� !

� j � � !

� � � !

� )� � �

j j j j j j

= + +

, ( )

: ( )

: ( ) ( ) ( )

: ( )

= :

= ( ) = ( )

spec enrich by

sorts

opns

preds

axioms

< ; >

pms pms pms pms ; pms pms pms pms pms pms ;

<p p ; i>

p p

p

i

P

�

<p p ; i>

p p p p

<p p ; i> <p p ; i >

p p

j � � � j

� j � � � j

�

�

j � � � j

� �! �

� �

�!
� � �

�!

j � � � j ) j � � � j

1.1.2 Structured Speci�cations of Abstract Concurrent Machines

Static structuring

Dynamic structuring

STS BTS INF SLABEL

state mset process

process mset process

mset process mset process mset process

mset process inf state

state slabel state

Ax

static

dynamic

active components process components passive components

global information

abstract concurrent machines

processes

Basic Transition System BTS

global information

steps synchronization parallelism monitoring

must

can

Synchronization BTS

process label process INF

STS

STS SLABEL

Ax

3

Processes are just the basic building blocks of complex systems, where several processes (which may also

have a complex structure) interact between them. In this section we show how the method allows us to

structure the speci�cation of a complex system, by giving an abstract concurrent machine starting from the

speci�cation of its processes. The structuring is both (dealing with the structure of the machine) and

(dealing with the structural de�nition of the activity of the machine).

To specify a complex concurrent system �rst of all we need to determine which are its

subcomponents, distinguishing them in or and

or (as shared memories, bu�ers, communication media and so on). Active components

are speci�ed as transition systems (and hence their behaviour is determined by a set of dynamic axioms),

while passive components are represented by data types speci�ed by static axioms. So, complex systems are

speci�ed by using a subclass of transition systems, which we call , whose states

couples of the form where

is a multiset of , which represent the active components of the machine,

each process is a state of a ( ), representing the process activity,

is a , i.e. a value representing the status of the (shared) passive components.

It is important to have a criterium for de�ning the transitions of an abstract con-

current machinestarting from those of the active components. Our method splits this procedure into three

: , and . Informally, we start from the basic transitions that pro-

cesses can perform (e.g. performing an internal action, attempting to read a shared variable, starting a

handshaking communication). In the synchronization step we specify which sets of such transitions oc-

cur simultaneously and which is their e�ect on the global information (for example, the action of a process

starting a handshaking communication must occur simultaneously to a corresponding action of another

process). In the parallelism step we specify which groups of such synchronized actions occur simultane-

ously (for example, two actions are susually allowed to occur simultaneously, while the simultaneous ac-

cess to a same shared variable can be forbidden). Finally, in the monitoring step, we select which parallel

compositions of synchronized actions are allowed to become transitions of the abstract concurrent machine

(for example, we can handle here scheduling policies).

Formally, starting from the speci�cation of the basic transition system, one builds the speci�cations of

three transition systems corresponding respectively to the synchronization step, the parallelism step and

the monitoring step (the last system is the abstract concurrent machine). The states of these systems have

the common form and their transition relations represent the kind of transitions we have

informally explained above; the methodology gives the schemas that the three speci�cations have to follow.

Again, these schemas correspond to formal and behavioural guidelines.

In this step starting from a transition system with transition relation :

(modelling the behaviour of the active components) and from a speci�cation

(modelling the global information) we build a new transition system, called (see �gure 2), whose

Figure 2: The synchronization schema

states are the states of the concurrent machine and whose transitions model the synchronized transitions of

processes. The labels of are given as an extra speci�cation ; we introduce a new set of labels

since the amount of information about a synchronous transition which is left visible can be di�erent from

what is visible out of each basic transition considered on his own; for example, a rendezvous which is taking

place between two processes could become nonobservable.

The method requires each inference rule in to be of the following form

=

cond

where all the 's and 's are variables for process states, and its intuitive meaning is: whenever the (global)



n

UACM

PTS

ACM

PTS

ACM

� � � !

� )� � �

0 0 0 00 0 00

�

1

1 2

1 2

1 2

1 2

=

:

= ( ) = ( )

= +

== :

0 0

0 0 0

0

0

0 0 0 0

0 0 0

0 0

0 0 0 0

0 0 0

0

0 0

0 0

0 0

0 0 0 0

L

==

sl == sl sl == sl; sl == sl == sl sl == sl == sl ;

l

n

l

n

n

sl

n

j

j

sl sl

sl ==sl

sl sl

sl ==sl

sl

cl

sl cl

�! �!

j � � � j ) j � � � j

� � � !

) )

j ) j

) )

j ) j

)

j ) j

) j ) j

L

L

L

1

1

1

1

1

1 1

2

2 2

1 2

1 2

1 2

1 2

1

1 1

2

2 2

1 2

1 2

1

2

1 2 1 2

1 2

1 1

1 1

1

1.2 Formal Speci�cation of Concurrent Languages

spec enrich by

opns

axioms

spec enrich by

preds

axioms

PTS STS

slabel slabel slabel

Ax

ACM PTS CLABEL

state clabel state

Ax

Parallelism STS PTS

STS

STS slabel slabel slabel

Ax

Monitoring

PTS

ACM PTS

PTS ACM

CLABEL

Ax

Underlying Concurrent Abstract Machine

n p p : : : p p

<p p ; i> <p p ; i > sl

i i

p p

==

<pms ; i> <pms ; i > <pms ; i> <pms ; i >

<pms pms ; i> <pms pms ; i >

pms pms pms pms

<pms ; i> <pms ; i > <pms ; i> <pms ; i >

<pms pms ; i> <pms pms ; i >: sl

sl

i i

sl sl pms pms pms pms

<pms; i> <pms ; i >

<pms pms ; i> <pms pms ; i >

<pms; i> <pms ; i > <pms pms ; i> <pms pms ; i >

cl pms

4

condition cond holds, the actions , , of the component processes can be synchronized

and they result in the synchronized transition = labelled by (notice

that the global information changes from to ).

The formal requirement of 's and 's to be variables corresponds to the method requirement that

the transitions of the abstract concurrent machine we are building depend at most on the labels of the

transitions of the active subcomponents and on the global information, i.e. labels are all and only what is

visible of the transitions of the active components, since we are not allowed to explicitly make the evolution

of the system on the structure depending of such components.

In this step we start from the transition system and build a new transition system

(see �gure 3) having the same states as and as transitions the \parallel compositions" of transitions

Figure 3: The parallelism schema

of . We introduce new labels by means of the operation : for labelling

parallel compositions of synchronous transitions.

The method requires each inference rule contained in to be of the following form

== ==

=====

cond

where , , , are variables. The intuitive meaning of such rules is: whenever the condition

cond holds, the two actions == and == can be performed

in parallel and they result in the transition ===== Notice that

and can be either labels of synchronized transitions or, in turn, of parallel compositions of synchronized

transitions; the transformation of the global information from into in general depends on the transfor-

mations performed by the transitions labelled by and . The requirement of , , ,

to be variables has the same motivation as in the synchronization step.

In the monitoring step we can specify a form of global control on the activity of the process

components of the machine. We start from the transition system and build the abstract concurrent

machine (see �gure 4) having the same states as and as transitions the \local actions" (transitions

Figure 4: The monitoring schema

of ) which are allowed by the global control. The labels of are given as an extra speci�cation

since the amount of information which is left visible of a monitored transition can be di�erent

from that which is visible of the parallel one.

The method requires each inference rule contained in to be of the form

=

==

cond

The intuitive meaning of such rules is: whenever the condition cond holds, the monitoring allows the local

action = to become the transition == of the

abstract concurrent machine, labelled by , where all the subcomponents in stay idle.

Our method supports also the speci�cation of concurrent languages; given a language , the speci�cation

of the semantics of is split into two steps.

In the �rst step one determines what the of the language

(shortly ): this is the (initial model of a) speci�cation of an abstract concurrent machine whose

states correspond to the intermediate stages of the executions of programs. The basic components could



2 Tools

0

0 0

0

0

0

0

0

prog

l l

l

l

l

L

L

L

L

L

L

L L L

0 0

0 0

0 0

0 0

L

L

L L

L

�! �! ` �!

�!

�!

�!

UACM

BL

BL

LSC

LSC

UACM

BL UACM UACM

CRP

CLT

CLT CRP

CLT

CRP

CLT

CRP

CRP

CRP

CRP

prog

prog

prog

s prog

s s s s s

s s l s s

s

l; s s s

s s s

s

s

2.1 The Concurrent Rapid Prototyping System

Behaviour Language associated with

A Concurrent Rapid Prototyping System ( )

A Concurrent Language Translator ( )

ACM

ACM ACM

transition execution tree

the symbolic execution associated with by ACM

tree builder tree walker

5

correspond, for example, to tasks, while the global information could represent a shared memory. The terms

representing the states of the form a language that we call the

( ).

Then the second step consists in giving a translation in a compositional way (formally: a homomorphism)

from the syntax of the language into . This translation is given by a set of inductive clauses called

Language Semantic Clauses ( ).

By composition of the two steps one de�nes the semantics of a program of to be behaviour

associated with the translation of .

Our method is supported by a full set of development tools whose goal is to help the user of the method

engaged in giving the formal de�nition of architectures or languages during the development phase. The

tools, that are currently under development, are:

that allows the user to debug the speci�cation of an

abstract concurrent machine by making experiments with a running prototype of the speci�ed machine

(corresponding to the initial model of the speci�cation).

for the part of the method related to the de�nition of concurrent

languages, that taken in input the semantic clauses for a given language and a program of ,

returns the state of the corresponding to the beginning of the execution of .

together with can be used to test programs written in a concurrent language with a semantics

given following our approach. Indeed, translates programs of the language into programs of the

behaviour language (states of the ), which can be seen as a \machine code" for the .

\executes" this machine code simulating the evolution of that machine, thus generating the labelled

tree corresponding to all possible program executions. is a standard interpreter for inductive clauses,

that does not present particular interesting features, while is the real critical part of the tool set; hence

in the following we will focus on it.

The speci�cation of an individuates a labelled transition system (its initial model) with transition

relation characterized by the property i� . When and one state are

given, we can infer its behaviour starting from by �nding all states and labels such that .

In general, if does not correspond either to a deadlocked state or to a �nal state, then there is more

than one couple ( ) s.t. , corresponding to a nondeterministic choice between possible transitions

of the system. We can repeat the above procedure for each state s.t. and so on. In this way

we build a labelled tree, the so called or , whose nodes correspond to intermediate

states reachable from and whose labelled arcs correspond to the possible transitions. This tree is what

we call . The goal of the system is the construction

and the analysis of this transition tree.

comprises two distinct tools: a and a . They respectively deal with the

automatic generation and with the inspection of the transition tree. Walking on the transition tree the

user can take a global view of the machine behaviour; such view helps to locate problems. When the user

�nds an unexepected behaviour, he can switch to a �ner analysis and walk up and down the transition tree

inspecting every node. In this way he can understand more deeply what the machine can do starting from

a given state, how it can get to that state and (possibly) what is wrong with it.

This interaction schema implies an o�ine generation of the (part of the) transition tree we want to

examine before starting the interactive session. For this reason our tool is split into the two utilities mentioned

above; these utilities are compatible, so that the user can traverse the tree while it is still being built and

can decide to stop the tree builder when has obtained relevant information.

The tree builder is a noninteractive tool, so that the generation of the tree can proceed o�ine for hours

without assistance. This is mandatory since the tree generation for non-trivial applications takes usually a

huge amount of time. The tree builder takes care not to create the same state twice, therefore the generation

will not terminate i� the tree contains an in�nite number of distinct states.

The tree walker is instead an interactive tool that uses the output produced by the tree builder to display

the part of the tree so far generated. In this tool we concentrate all the \bells and whistles" of a friendly

user interface. The implementation of this component does not pose any theoretically relevant problems, so

we concentrate next on the hard problem, i.e. the automatic generation of the execution tree.



l

0

0

CRP

CRP

UACM

LSC

UACM

UACM LSC

�!

EL

EL EL

EL

EL EL

EL EL

EL

EL

EL

EL EL

EL

EL

EL

j j j j

j

3 Developing a Correct Implementation. A Worked Example: Semaphores

s l s

s s

Pbit

V bit prog prog prog Pbit= ; V bit=

c c x e e c e c c

c

p c

c id e c c e c c

e c c

id e

0

0

[ ]

[ ] [Sem]

[Bit]

[Bit] [Bit]

[Bit] [Sem]

[ ]

[ ]

[ ]

[Sem] [Bit]

[ ]

[ ]

[ ]

1 2 1 2

1 2 1 2

3.1 The language

while do end if then else

continue

create process

program

continue if then else

while do end create process

all

separable speci�cations

separate conditional narrowing

Formal speci�cation of .

Formal speci�cation of and .

Speci�cation checking and understanding by means of tools.

Trial implementations.

6

The basic step in the construction of the execution tree is the following: given , �nd all and such that

. When facing this problem for nontrivial speci�cations one has to cope with problems of memory

size and execution time. We have tried many approaches to solve this e�ciency problem; these experiments,

together with a theoretical analysis and practical considerations, revealed that presently it is not feasible

to build a prototyping system for abstract concurrent machine speci�cations. Therefore we specialized

on a decidable subclass of speci�cations, the , for which a very e�cient and yet

complete deduction system exists: the (SCNA).

Separable speci�cations are a subclass of predicate speci�cations that satisfy a decidable set of syntactic

restrictions; such class is broad enough to contain abstract concurrent machine speci�cations of practical

interest. In separable speci�cations we assume a clean semantic distinction between functions and predicates.

A function can be used to compute a value only when all its arguments are given, while a predicate de�nes

a relation and may appear in queries, where some arguments may be unknown. If this distinction is satis�ed

then SCNA, can be used to perform deductions in these theories; a a more detailed presentation can be

found in [GiMo]. The implementation of is written in Pascal and is based the RAP system [H].

Semaphores are a software mechanism introduced by Dijkstra to handle mutual exclusion problems. A

semaphore is an object with an internal status ranging over two values: free and busy. The semaphore is

initially set to free. Only two operations are possible on a semaphore: \P" and \V". A process may start

a P operation at any time but this operation completes only when the semaphore is free. The P operation

sets the semaphore to busy. A process may execute a V operation at any time, a V operation completes

immediately regardless of the previous state of the semaphore and sets this state to free. Semaphores are

very important in operating system kernels, but it is not di�cult to �nd subtle bugs in published algorithms

for implementing them. Here we show how our approach can be used to develop \correct" implementations

of a semaphore using a shared bit. The problem can be stated in the following way.

We have a simple concurrent language for building concurrent systems , where the calls to the

operating system are given as a parameter. Then, we consider two actualizations of : , where the

low level primitives are the semaphore operations P and V, and , where the low level primitives are the

read, write and test&set operations on a shared bit. We consider the problem of implementing the semaphore

using ; precisely, we want to �nd the code corresponding to P and V, i.e. to �nd and

fragments of programs s.t. for all in we have that and [ P V]

could reasonably be considered \equivalent".

To solve this problem we proceed throughout the following phases.

We give the parameterized underlying abstract concurrent machine [ ],

describing the concurrent structure of , and the parameterized language semantic clauses [ ], trans-

lating programs into states of [ ].

We give the formal de�nitions of the two languages by instan-

tiating [ ] and [ ] with the speci�cation of a semaphore and of a shared bit respectively.

Using the tools associated with the method we

check whether the speci�cations given above are adequate; moreover by experimenting with them we can

get a better understanding of the object to be implemented and of the implementation language.

We propose some implementations of P and V and check whether they are adequate

or not; here we �rst propose an apparently reasonable implementation and by using the tools show that it

is not correct and thereafter we give a better one.

is a simple concurrent language where the primitives corresponding to interactions with the operating

system (including the constructs for the process interactions) are given as a parameter. comprises usual

sequential commands: ; (sequencing), := (assignment), (while),

(conditional) and (null command). New processes (which are themselves commands) can be cre-

ated with the command .

The abstract syntax of the language is given by the following BNF-like rules.

::=

::= := ;

We do not further specify the non terminals and de�ning respectively the syntax for the variable



0 0

0

0

0

0

0

0

�

�

l

l

c

�

�

c

�

UACM

UACM

UACM

UACM

UACM

UACM

UACM

Process components of

Synchronization

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

1 2 1

1 2 2

1

1

1 2

1

2

creating( )

creating( )

EL

EL

EL

EL

EL

EL

� !

�!

�!

�

�

�

�

�!

�!

!

������!

�!

)

������!

) j

3.1.1 The abstract concurrent machine

continue

create process

<c; s> c

com s store c s

com

E exp store val E e; s e

s

�

< ; s> < ; s>

id e s

s E e; s =id

<id e; s> < ; s E e; s =id >:

E e; s < e c c ; s> <c ; s>

E e; s < e c c ; s> <c ; s>

E e; s < e c ; s> <c e c ; s>

E e; s < e s ; s> < ; s>

c c

<c ; s> <c ; s >

<c c ; s> <c c ; s >

:

com lab

< c; s> < ; s>

state <pms; i> pms

i

<c; >

c

p p

<p; i> <p ; i>

p p

<p; i> <p <c; >; i>

:

7

identi�ers and for the expressions.

Following our method the semantics of is given in two steps. We �rst de�ne the underlying con-

current model of , formally represented by the abstract concurrent machine [ ], which describes

the evolutions of the programs. Then we give a translation associating in a compositional way with

each program of a state of [ ]. We omit this translation, since in this case it is not particularly

interesting (and it is obvious to see which is the state of [ ] associated with each program).

[ ]

[ ] is given following the method illustrated in section 1.1. The active components correspond to

the processes; while the passive component, not further de�ned here, is a parameter representing the

information needed to handle possible additional features.

[ ] The states of BTS[ ] are couples of the form , where is an element

of sort and of sort ; models the code to be executed by the process (a command) and is a

store, i.e. a �nite map from variable identi�ers into values, that models a process local memory. We do not

report the full speci�cation of the states and of the labels of BTS[ ]: just note that elements of sort

correspond to commands (they have the same syntax without boldface). We also use the (obvious)

evaluation operation : such that ( ) is the result of evaluating when the values for

the variables are given by the store . Then we give the static axioms and the dynamic rules of BTS[ ].

The execution of the command corresponds to performing an internal transition and then to

evolve to a particular state unable to perform any further transition (note that, as said in section 1.1.1,

labels internal transitions).

continue skip

The execution of an assignment := is an internal transition that modi�es the local store from to

[ ( ) ]. Therefore the rule de�ning := is

:= skip [ ( ) ]

Control 
ow commands choose to execute a subcommand depending on the value of a boolean expression.

They are described by the following static axioms,

( ) = true if then else =

( ) = false if then else =

( ) = true while do end = ;while do end

( ) = false while do end = continue

A sequence of commands, where the �rst is skip, is equivalent to the second, i.e. skip; = ; otherwise, the

sequence of two commands is described by the rule

; ;

The command is described by the following rule, where the operation creating:

de�nes the corresponding labels. The actual creation of the process is handled in the synchronization step.

create process skip

We de�ne the transition system STS[ ] following the schema of �gure 2. The elements of

sort are couples where is a group of synchronizing processes in our architecture and

, the status of the passive component, depends on the parameter. Here we report the rules de�ning the

transitions of STS[ ], i.e. the synchronized transitions of [ ].

Process internal transitions and process creation are described by the following two rules; a process

creating a new process adds to the system a process having form � , which in turn will execute the

command over an empty store �.

= = �



PTS

l

�

� �

�

�

�

�

0 0

0 0

0

0

0

0

CLT CRP

CRP

CRP

UACM

UACM

UACM UACM

UACM

UACM

UACM

;

)

j ) j

EL

EL EL EL

EL

EL

!

�! �!

�!

)

�!

)

EL

EL

EL

!

! !

1 1

[Sem]

[Sem] [ ] [Sem]

[Sem]

[ ]

[Sem]

[Sem]

[Sem]

Sem

Parallelism

Monitoring

Basic Transition System

Synchronization

ss

Parallelism and monitoring

�

Ax

<pms; i> <pms ; i >

<pms pms ; i> <pms pms ; i >

�; � lab

� �

< ; s> < ; s> < ; s> < ; s>:

� � �

�

p p

<p; > <p ; >

p p

<p; > <p ; >

:

3.2 The language

P V

P V

P V

P V

P V

P

V

Experimenting with the tools

while do P V end

program

create process while do P V end

while do P V end

P

V

P V

P

V

8

The global information, which depends on the parameter is not changed by the above rules. The transitions

are labelled with : we are modeling an architecture where creation can be modelled within the synchro-

nization step and is not visible outside of it.

The description of parallel activities is formalized giving a new transition system PTS[ ] following

the schema of �gure 3. In this case we choose to forbid any parallel composition of synchronized actions,

thus PTS[ ] is de�ned by chosing the set of rules = .

[ ] corresponds to an architecture with parallelism simulated by interleaving the synchro-

nized actions of the component processes. If more than one synchronized action is possible, then the system

may choose one of them whatever. This constraint is formally expressed by choosing the rule de�ning the

transition relation of [ ] in the following way.

=

==

is a concurrent language obtained by adding to a semaphore. processes can interact

with the semaphore, initially set to free, using the and commands. The abstract syntax is

hence derived from that of by adding two commands and . The underlying abstract concurrent

machine [Sem] is similar to [ ]: the active subcomponents are the language processes and the

passive component is the semaphore status (free or busy). To get the speci�cation of [Sem] we add

the rules describing the execution of and .

To describe the behaviour of a process executing either a or a command we

introduce two new labels : , which are not internal transitions. Indeed the executions of and

depend on the context in which the process is running; here we can only say that if a process executes

( ), then it has the capability of performing a transition labelled by ( ), i.e.

P skip V skip

The semaphore status is a�ected by transitions labelled with and . A transition

completes regardless of the semaphore status and sets the semaphore to free. A process can perform a

transition i� the semaphore is free. This transition sets the semaphore to busy. Hence we have

= free free = busy

We assume that operations on the semaphore cannot proceed in parallel and

that parallelism is simulated by interleaving the transitions of the processes. With these assumptions we do

not need to change the [ ] de�nitions for the parallelism and monitoring to de�ne the corresponding

steps for [Sem]. Thus, if simultaneously more than one process needs to access the semaphore, the

system scheduler nondeterministically chooses one of them.

A reader with some industrial experience will argue that the above

speci�cation is of little help to the programmer in charge of developing an implementation of semaphores.

The tools are an answer to this kind of criticism since they allow a programmer not acquainted with formal

methods to use the speci�cation to gain an intuitive understanding of the semaphore mechanism by

executing symbolically some test programs.

For example, once the formal methods specialist has supplied and with the semantic

de�nition, the programmer is able to execute a test, launching, for example, in parallel two executions of

the command: true ; . That means to test the program TEST :

true ; ;

true ;

Accordingly to the semaphore description we expect that after the execution of a a process prevents

the other from executing semaphore commands until it completes a subsequent . The behaviour resulting

from the simulation con�rms our expectation and shows that a process cannot be interrupted between

a and a . produces the transition tree shown in �gure 5.

The tool allows us to walk on this tree inspecting the transitions. We see that during transition 0 1

the second process is created, while during cycle 1 2 1 a process performs in succession the commands

and .



0

CRP

0 0

0

0 0

0

0

0

0

E e;s v

v

b

�

b

�

b

�

UACM UACM

UACM

UACM

UACM

EL

EL EL EL

EL EL

���������! ������!

���������!

!

������!

)

������!

)

���������!

)

EL

EL EL

EL

!

test and set

not interruptable

Basic Transition System

Synchronization

Parallelism and monitoring

e

e id id

id id

v v

v

e id

id

< e ; s> < ; s> < x ; s> < ; s v=x >

< x ; s> < ; s v=x >

; ; val lab

b b

b b

b b

p p

<p; b> <p ; b >

p p

<p; b> <p ; b>

p p

<p; b> <p ; >

x

Sem

[Bit]

[Bit] [ ] [Bit]

[Bit] [ ]

writing( ( )) reading( )

test&setting( )

writing( ) reading( ) test&setting( )

[Bit]

[Sem] [Bit]

[Bit] Bit

Sem

3.3 The language

write

read

tst read

write

tst read write

read write

write read

tst

3.4 Testing Implementations of Semaphores in Using the Tools

P V

A First Attempt V write P

P read write while do read write end

P V

P V

9

Figure 5: The execution tree of TEST

is a concurrent language obtained by adding to a shared bit. processes can interact with

the shared bit, initially set to false, using one of the commands ( ) (writes the value of the boolean

expression into the shared bit), ( ) (copies the value of the shared bit into the local variable ),

and ( ) (executes a operation on the shared bit; this command corresponds to a ( )

immediately followed by a (true)). The three commands are , and two processes

cannot perform simultaneously such commands; ( ) is equivalent to ( ); (true) i� no other

operation on the shared bit is executed between ( ) and (true) by another process. The test and

set operation is a basic feature of a real concurrent architecture: an atomic test and set command is present

in all CPU instruction sets, since it is necessary to implement operating system kernel primitives.

The abstract syntax is derived from that of by adding the commands ( ), ( )

and ( ). The underlying abstract concurrent machine [Bit] is similar to [ ]; the active

subcomponents are the language processes, while the passive component is the shared bit status (true or

false). To get the speci�cation of [Bit] we add the following rules.

write( ) skip read( ) skip [ ]

tst( ) skip [ ]

The labels de�ned by the operations writing reading test&setting: are introduced to model the

capability of a process to interact with the shared bit.

A process performing a transition labelled by \writing( )" sets to the shared bit. A

transition labelled by \reading( )" starts only when the bit status is and does not change such status. A

transition labelled by \test&setting( )" starts only when the bit status is and sets such status to true.

= = = true

We assume that operations on the shared bit cannot proceed in parallel and

that parallelism is simulated by nondeterministically interleaving the transitions of the processes. With this

assumption we do not need to change the [ ] de�nitions for the parallelism and monitoring to de�ne

the corresponding steps for [Bit]. Thus, if simultaneously more than one process needs to access the

shared bit, the system scheduler nondeterministically chooses one of them.

We try to implement the semaphore mechanism of in using the shared bit to store the status

of the semaphore, the busy semaphore being the bit set to true. We propose two ways of implementing the

, commands and using the tools we show that the �rst is wrong.

A command is implemented by (false); a command is implemented by

continuously reading and writing the shared bit till it becomes false (i.e. the semaphore is free). Hence the

code of the implementation of is (x); (true); x (x); (true) .

We test the correctness of this implementation running on the program TEST obtained

by replacing in TEST the commands and with their implementations. We get a transition tree

showing some problems. The critical part of this tree is shown in �gure 6 (the local memory is simply

represented by the content of the variable ); the subtree starting from node 7 is complete.

If the system gets into state 7, then it is trapped into cycles not corresponding to perform ; . The

transitions that lead from node 0 to node 7 show how the system gets into problems. In transition 0 1 the

second process is created. Transitions from 1 to 3 are executed by the �rst process and correspond to the



CRP

CRP

x

x

x

x

x

x

x

Bit

Bit

Sem

!

!

!

! !

! ! ! !

formal testing

busy waiting

con
ict

delayed

locked out

P

V

P

P

P

P

P

read V V

P

A Second Attempt V P

tst while do tst end

P

P

P

read write

tst

P read write

P V

10

Figure 6: The critical part of the execution tree of TEST (wrong implementation)

execution of a command. Inspecting the status of the shared bit in state 3 we see that the bit is set to

true. During transition 3 4 the second process reads the shared bit and stores true into the local variable

. Transition 4 5 corresponds to the execution of the command by the �rst process. The second process

gains again the control and completes the command with transition 5 6, writing true in the shared bit.

The next two transitions are executed by the �rst process. The �rst process is now again at the beginning

of a command, it stores true into its local variable (6 7) and write true into the bit (7 8). However,

in state 7 the bit is set to true and the two processes are executing the loops in the command with true

in the local variable (7 8 7, 7 9 7). This is a deadlock: the two processes are both executing a

command and none of them will ever complete this command. This can be seen in the transition tree. Cycles

round state 7 show that in this state the two processes will keep on reading and writing the shared bit.

We ask the reader to re
ect a little on the example shown, tracing the execution of the two concurrent

processes. It is clear that this implementation does not satisfy our requirement. Indeed the system may

enter a state in which all processes are cycling and waiting for ever the semaphore becoming free. This

happens when the semaphore is busy (i.e. the shared bit is set to true), a process executing a command is

interrupted after the ( ) operation by a command and after the command the interrupted process

resumes its execution. When this happens, the resumed process enters an in�nite loop and all processes

trying to gain the resource by a command and will be locked out in the same way. This results in a

deadlock that is di�cult to trace using conventional debuggers. Bugs, like the one described above, are quite

serious and too subtle to be discovered during testing; can hence be used to discover bugs in critical

concurrent software by .

The command is implemented as in the previous attempt, while the command is

implemented by the sequence of commands (x); x (x) Using this solution, the process

that attempts a on a busy semaphore enters a cycle continuously executing the test and set

operation. When an access takes place, i.e. the two processes simultaneously start a command,

the process that completes the command gains the resource while the other is continuously testing

the shared bit. This solution is similar to the �rst proposed, but here the sequence ( ); (true)

is performed by a ( ) operation. This removes the problem of the previous implementation, since it is

not possible to interrupt a process performing a command between ( ) and (true). Obviously

this mechanism may be unfair, since the delayed process may be continuously while the other

continuously gains the resource, but this behaviour is allowed by the speci�cation of section 3.2.

To have some hints on the behaviour of this implementation, we submit to the TEST program

obtained by replacing in TEST the and commands with their new implementations. Now the subpart



Bit

CLT CRP

! !

!

! ! !

!

! !

!

!

! !

References

Contents

P P

tst

P V

P P V

tst

P V

1 Conceptual Tools 2

< c; s > c

: : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Proc. TAPSOFT`87, Vol. I

IBM Journal

of Research and Development

A Structural Approach to the Formal Modelization and Speci�cation of Concurrent

Systems

Proc. of TAPSOFT '87, Vol. II

Rivista Informatica

EUROCAL 85

Handbook of Theoretical Computer

Science , Vol. B: Formal Models and Semantics

A structural approach to operational semantics

[AR1] Astesiano E.; Reggio G. \SMoLCS Driven-Concurrent Calculi", , LNCS 249, 1987.

[AR2] Astesiano E.; Reggio G. \Direct Semantics for Concurrent Languages in the SMoLCS Approach",

, 31, 5 (1987), pp. 512-534.

[AR3] Astesiano E.; Reggio G.

, Technical Report n. 0, Formal Methods Group, University of Genova, 1990.

[GM] Goguen J.; Meseguer J. \Models and Equality for Logical Programming", ,

LNCS 250, 1987.

[GiMo] Giovini A.; Morando F. \How to Use E�ectively Equational Logic to Integrate Logic and Functional Program-

ming", vol. XIX, n. 3, 1989.

[H] Hussman H. \ Uni�cation in Conditional Equational Theories", , LNCS 204, 1985.

[M] Milner R. \Operational and algebraic semantics of concurrent processes",

, pp.1201-1242, Elsevier, 1990.

[P] Plotkin G. , Lecture notes, Aarhus University, 1981.

11

of the transition tree corresponding to what shown shown in the previous section in �gure 5 is reported at

the lefthand side of �gure 7. The �rst transition (0 1) creates the second process. During transition 1 2

Figure 7: The critical part of the execution tree of TEST (right implementation)

the �rst process executes a command. In transition 2 3 the second process starts a command and

it is locked out in state 3, continuously executing a command (3 3). Cycle 4 3 4 corresponds to a

; sequence executed by a process while the other is delayed. Transition 4 6 is performed by the delayed

process when it completes the command. Similarly cycle 5 6 5 represents the ; sequence executed

when no con
ict is present, while transition 6 3 is the �rst command of a busy waiting cycle.

The above graph becomes much more simpler if we forget local memory status mapping every process

into : states 1,4,5 and 2,3,6 becomes equivalent and the tree reduces to the one at the righthand

side of �gure 7 This tree is quite close to our intuition; transition 0 1 again represents process creation.

During cycle 1 2 1 a process gets the resource and performs the sequence corresponding to ; , while

the other may be delayed testing the shared bit cycling round node 2.

These outcomes show that our implementation behaves correctly on this test independently of the non-

determinism introduced by concurrency. Again we note that such a degree of con�dence on a single test, al-

though highly desirable, cannot be reached for concurrent systems by usual testing methods. Hence testing

with and provides a real bene�t in term of system reliability.

1.1 Structured Concurrent Design and Speci�cation 2

1.1.1 Process Speci�cation 2



CRP

UACM

EL

EL

EL

EL

[ ]

[Sem]

[Bit]

[Bit]

2 Tools 5

3 Developing a Correct Implementation. A Worked Example: Semaphores 6

: : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : :

12

1.1.2 Structured Speci�cations of Abstract Concurrent Machines 3

1.2 Formal Speci�cation of Concurrent Languages 4

2.1 The Concurrent Rapid Prototyping System 5

3.1 The language 6

3.1.1 The abstract concurrent machine [ ] 7

3.2 The language 8

3.3 The language 9

3.4 Testing Implementations of Semaphores in Using the Tools 9


