
13 Algebrai Spei�ation of Conurrent

Systems

Egidio Astesiano

1

, Manfred Broy

2

, and Gianna Reggio

1

1

DISI { Dipartimento di Informatia e Sienze dell'Informazione

Universit�a di Genova { Via Dodeaneso, 35 { Genova 16146 { Italy

{astes,reggio}�disi.unige.it http://www.disi.unige.it

2

Institut f�ur Informatik der Tehnishen Universit�at M�unhen

80333 M�unhen { Germany

broy�informatik.tu-muenhen.de

http://wwwbroy.informatik.tu-muenhen.de/

Introdution

A proess is a unit with the apaity of performing an ativity by whih it

may interat with other units and/or with the environment. The interations

may involve ommuniating, synhronizing, ooperating, ating in parallel,

ompeting for resoures with other proesses and/or with the environment.

By \onurrent systems" we mean proesses whih may onsist of other pro-

esses (or in turn onurrent systems) operating onurrently.

Most software systems are onerned with onurrent systems and thus

it is of paramount importane to provide good formal support to the spei-

�ation, design, and implementation of onurrent systems. Algebrai/logi

methods have also found interesting appliations in this �eld, espeially to

treat at the right level of abstration the relevant features of a system, helping

to hide the unneessary details and thus to master system omplexity.

Due to the partiularly omplex nature of onurrent systems, and on-

trary to the ase of lassial (stati) data strutures, there are di�erent ways

of exploiting algebrai methods in onurreny. First of all, we do not have a

single satisfatory model and view for proesses and onurrent systems, like

input{output funtions for sequential input{output systems. Hene, algebrai

methods need to be applied to di�erent models. Moreover, in the literature,

we an distinguish at least four kinds of approahes.

A1 The algebrai tehniques are used at the metalevel, for instane, in the

de�nition or in the use of spei�ation languages. Then a spei�ation

involves de�ning one or more expressions of the language, representing

one or more systems. This is, for example, the ase in ACP, CCS, and

CSP [BK86,Mil89,Hoa85℄.

A2 A partiular spei�ation language (tehnique) for onurrent systems

is omplemented with the possibility of abstratly speifying the (stati)

data handled by the systems onsidered using algebrai spei�ations.
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We an qualify the approahes of this kind by the slogan \plus algebrai

spei�ations of stati data types".

A3 These methods use partiular algebrai spei�ations having \dynami

sorts", whih are sorts whose elements are/orrespond to onurrent sys-

tems. In suh approahes there is only one \algebrai model" (for in-

stane, a �rst-order struture or algebra) in whih some elements repre-

sent onurrent systems.

We an qualify the approahes of this kind as \algebrai spei�ations

of dynami-data types", whih are types of dynami data (proesses/

onurrent systems).

A4 These methods allow us to speify an (abstrat) data type, whih is

dynamially hanging with time. In suh approahes we have di�erent

\algebrai" models orresponding to di�erent states of the system.

We an qualify the approahes of this kind as \algebrai spei�ations of

dynami data-types"; here the data types are dynami.

We have organized the paper around the lassi�ation above, providing

signi�ant illustrative examples for eah of the lasses. The list of the exam-

ples is not exhaustive; moreover, we have given a greater emphasis to the

approahes representing an extension to onurreny of algebrai spei�a-

tion tehniques. For example, this is why for A1 we have presented in some

detail only CCS, the Calulus of Communiating Systems of R. Milner, as the

�rst and paradigmati example, though the various versions of CSP,ACP, and

the like are of omparable importane as for abundane of literature, theoret-

ial investigations and illustrative appliations. Indeed the viewpoint of the

proess algebra approah is more onerned with formal models of proesses

via appropriate ombinators, in whih ase the spei�ation problem is han-

dled by adopting a model-oriented approah. The same applies to Petri nets,

whih represent the earliest attempt (apart from automata) to provide formal

models for proesses and are as important as CCS, CSP, and the like. Here,

withinA2, we have outlined a formalism onerned with algebrai extensions

of Petri nets.

To present a more omplete overview, we should also treat another lass

of approahes, whih an be termed \algebrai tehniques/tools for dynam-

is". These are interesting approahes where tehnial tools developed in the

algebrai �eld are used formally to apture the dynami nature of proesses.

Among them, we an reall the use of the hidden sort algebras and spei�-

ations, see, for instane, [GD94℄, and the use of oalgebras and oalgebrai

spei�ations, see [JR97℄, also for further referenes. However we annot over

these approahes, essentially for lak of spae; moreover, oalgebrai methods

methods are quite reent and in full development, ompared to those overed

in this hapter.

Similarly we do not have spae to present other methods, where the usual

algebrai spei�ations of stati data types are used instead in a partiular

lever way to speify proesses, see, for instane, [BCPR96℄.
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Partiular examples of approahes of the four kinds, presented in Se-

tions 13.1 { 13.4 respetively, are neither a omplete list, nor have they been

hosen beause we think they are the best representatives.

Our rationale has been mainly to present representatives. In partiular,

there is no intention of providing a omparative study of the methods. This

is a goal outside the sope of the book.

The general notions about the spei�ation of onurreny needed for

understanding the approahes presented are briey summarized at the be-

ginning of the various setions.

We use a ommon example for the presentation of all approahes, a very

simple onurrent system onsisting of a bu�er and a user, informally de-

sribed below.

The Bit example

The system Bit (alled Bit sine it is really very small) onsists of two om-

ponents in parallel: a user and a bu�er. The bu�er is organized as a queue

and ontains integers; it may obviously reeive and return integer values; it

may break down, in whih ase its ontent will be 10

10

, and, moreover, it

may happen that the last element of its ontent is dupliated.

When the system is started by the environment, the bu�er is empty and

the user puts in sequene 0 and 1 on the bu�er; then it gets the �rst element

from the bu�er. If this element is the number 0 the user must inform the

environment of the orret working of the bu�er, otherwise it must signal

that there is an error.

Thus Bit is an interative onurrent system with omponents having

both autonomous ativities (as the bu�er failures) and ooperations (the

user writing/reading the bu�er), and using some stati data (integers); fur-

thermore it also has some relevant stati/funtional aspets, as the queue

organization of the bu�er.

Some relevant requirements on Bit are:

R0 The bu�er must always be able to reeive any integer value.

R1 When the user is terminated, it annot perform an ativity again.

R2 In at least one ase, the system must behave orretly.

R3 After being started, it will eventually signal OK or ERROR.

R4 OK and ERROR are signaled at most one, and it annot happen that

both are signaled.

R5 The user puts integers on and gets integers from the bu�er.

13.1 Proess algebras

Proess Algebras and Caluli, exempli�ed by CCS, CSP, ACP, and the like,

are the most notable example of the use of algebrai methods in the de�nition

and the use of spei�ation languages (approah A1).
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Labeled transition systems (abbreviated to lts), as models of proesses,

underlie CCS and many other variations of proess algebras, and are also used

in many logial/algebrai spei�ation formalisms. Thus we start this setion

with the fundamental onepts about lts's and their semantis. Note that the

�rst appearane of lts was in the theory of nondeterministi automata; how-

ever, the key idea of using labeled transitions to represent the apabilities of

interations (or partiipation in events) for desribing open systems is gen-

erally attributed to Robin Milner in CCS. The related fundamental onept

of bisimulation semantis, espeially its formalization by maximum �xpoint,

is due to David Park.

13.1.1 Modeling proesses with labeled transition systems

For the �rst use of labeled transition systems for the modeling onurreny,

see [Mil80,Plo83℄.

A labeled transition system (lts) is a triple

hSTATE ;LABEL;!i;

where STATE and LABEL are two sets, the states and labels of the system,

and !� STATE � LABEL � STATE is the transition relation. A triple

hs; l; s

0

i 2! is said to be a transition and is usually written s

l

��! s

0

.

Given an lts we an assoiate with eah s

0

2 STATE the so-alled tran-

sition tree, that is, the tree whose root is s

0

, where the order of the branhes

is not onsidered, two identially deorated subtrees with the same root are

onsidered as a unique subtree, and if it has a node n deorated with s and

s

l

��! s

0

, then it has a node n

0

deorated with s

0

and an ar deorated with

l from n to n

0

.

A proess P is thus modeled by a transition tree determined by an lts

hSTATE ;LABEL;!i and an initial state s

0

2 STATE ; the nodes in the tree

represent the intermediate (interesting) states of the life of P, and the ars

of the tree the possibilities of P of passing from one state to another. It is

important to note here that an ar (a transition) s

l

��! s

0

has the following

meaning: P in the state s has the apability of passing into the state s

0

by

performing a transition, where the label l represents the interation with

the environment during suh a move; thus l ontains information on the

onditions on the environment for the apability to beome e�etive, and

on the transformation of suh environment indued by the exeution of the

ation.

Conurrent systems, whih are proesses having ooperating omponents

that are in turn other proesses (or onurrent systems), an be modeled

through partiular lts obtained by omposing other lts desribing suh om-

ponents.

By assoiating with a proess P the transition tree having root P we

give P an operational semantis: two proesses are operationally equivalent
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whenever the assoiated transition trees are the same, see [Mil80℄. However

in most ases suh semantis is too �ne, sine it takes into aount all op-

erational details of the proess ativity. It may happen that two proesses

whih we onsider semantially equivalent have assoiated di�erent transi-

tion trees. A simple ase is when we onsider the trees assoiated with two

deterministi proesses interating with the environment only by returning

a �nal result (e.g., two PASCAL programs) represented by two states p and

p

0

: they only perform internal ativities exept for the last transitions, and

thus the assoiated transition trees reported below are:

p

�

��! p

1

�

��! : : :

�

��! p

n

OUT (r)

�����! p

F

p

0

�

��! p

0

1

�

��! : : :

�

��! p

0

m

OUT (r

0

)

������! p

0

F

If we onsider an input{output semantis, then the two proesses are

equivalent i� p, p

0

are equivalent w.r.t. the input and r, r

0

are equivalent; the

di�erenes onerning other aspets (intermediate states, number of interme-

diate transitions, et.) are not onsidered.

From this simple example, we an also appreiate that we get various

interesting semantis on proesses modeled by lts depending on what we ob-

serve (see, e.g., [Mil80,NH84℄). For instane, onsider the well{known strong

bisimulation semantis of Park [Par81℄ and Milner [Mil80℄ and the trae se-

mantis [Hoa85℄. In the �rst ase, two proesses are equivalent i� they have

the same assoiated transition trees after the states have been forgotten. In

the seond ase, two proesses are equivalent i� the orresponding sets of

traes (streams of labels), obtained traveling along the maximal paths of the

assoiated transition trees, are the same. In general, the semantis of pro-

esses depends on what we are interested in observing.

Now we show how to de�ne preisely strong bisimulation over an lts

hSTATE ;LABEL;!i. A binary relation R on STATE is a strong bisimula-

tion i�, for all s

1

, s

2

2 STATE , if s

1

R s

2

, then

1. if s

1

l

��! s

0

1

, then there exists s

0

2

suh that s

0

1

R s

0

2

and s

2

l

��! s

0

2

;

2. if s

2

l

��! s

0

2

, then there exists s

0

1

suh that s

0

1

R s

0

2

and s

1

l

��! s

0

1

.

The maximum strong bisimulation � for an lts is de�ned as the union of

all strong bisimulations. We have that � is a strong bisimulation and that

for all strong bisimulations R , R � � .

Similarly we an de�ne weak bisimulation over an lts; in this ase the

internal transitions, i.e., those orresponding to a null interation with the

environment, are not onsidered when they have no visible onsequene. Teh-

nially we use � 2 LABEL to label internal transitions.

1

We de�ne an auxil-

iary transition relation

)� STATE � LABEL� STATE

1

The symbol � was used for the �rst time by Milner for CCS internal transitions,

see Setion 13.1.2.
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as follows:

s

�

=) s,

if s

l

��! s

0

, then s

l

=) s

0

,

if s

�

��! s

0

and s

0

l

=) s

00

, then s

l

=) s

00

,

if s

l

=) s

0

and s

0

�

��! s

00

, then s

l

=) s

00

.

A binary relation R on STATE is a weak bisimulation i�,

for all s

1

, s

2

2 STATE , if s

1

R s

2

, then

1. if s

1

l

=) s

0

1

, then there exists s

0

2

suh that s

0

1

R s

0

2

and s

2

l

=) s

0

2

;

2. if s

2

l

=) s

0

2

, then there exists s

0

1

suh that s

0

1

R s

0

2

and s

1

l

=) s

0

1

.

The maximum weak bisimulation � is the union of all weak bisim-

ulations. We have that � is a weak bisimulation and that for all weak

bisimulations R , R � � .

Example 13.1. (Bit using labeled transition systems) Here we give the

lts modeling the two omponents of Bit, the user and the bu�er, and Bit

itself respetively.

USER = hSTATE

U

;LABEL

U

;!

U

i

STATE

U

=

fInitial;Putting 0;Putting 1;Reading ;Terminatedg [ fRead

i

j i 2 g

LABEL

U

= fSTART ;ERROR;OKg [ fPUT

i

;GET

i

j i 2 g

!

U

is graphially represented by depiting the resulting graph in Figure 13.1.

Notie that in the state Reading the user has in�nite ation apabilities, one

for eah possible value that an be obtained from the bu�er.

BUFFER = h

�

;LABEL

B

;!

B

i

LABEL

B

= fRECEIVE

i

;RETURN

i

j i 2 g [ f�g

!

B

ontains the following triples, where i 2 , q 2

�

:

q

RECEIVE

i

���������!

B

q � i i � q

RETURN

i

��������!

B

q

i � q

�

��!

B

i � i � q q

�

��!

B

10

10

,

SYSTEM = hSTATE

S

;LABEL

S

;!

S

i

STATE

S

onsists of pairs of states of the bu�er and the user.

LABEL

S

= fSTART ; �;OK ;ERRORg

!

S

ontains the following triples, where i 2 , u; u

0

2 STATE

U

, b; b

0

2

STATE

B

, hi is the empty stream:

hhi; ui

START

������!

S

hhi; u

0

i if u

START

������!

U

u

0

hb; ui

�

��!

S

hb

0

; u

0

i if b

RECEIVE

i

���������!

B

b

0

and u

PUT

i

�����!

U

u

0

,

hb; ui

�

��!

S

hb

0

; u

0

i if b

RETURN

i

��������!

B

b

0

and u

GET

i

�����!

U

u

0

,

hb; ui

OK

����!

S

hb; u

0

i if u

OK

����!

U

u

0

,
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Initial

?

START

Putting 0

?

PUT

0

Putting 1

?

PUT

1

Reading

?

GET

0

Read

0

?

OK

Terminated

�

�

�

�

�

��

GET

�1

Read

�1

�

�

�R

ERROR

: : :

H

H

H

H

H

Hj

GET

1

Read

1

�

�

�	

ERROR

: : :

Fig. 13.1. The transitions of the user

hb; ui

ERROR

�������!

S

hb; u

0

i if u

ERROR

�������!

U

u

0

,

hb; ui

�

��!

S

hb

0

; ui if b

�

��!

B

b

0

Notie that SYSTEM , de�ned in a modular way by using USER and

BUFFER, is an example of how we an ompose proesses operating in par-

allel. However, if we forget how it has been de�ned, then we annot see its

onurrent struture. For example, the fat that the transition

h0 � 1;Readingi

�

��!

S

h1;Read

0

i

orresponds to the synhronous exeution of the bu�er and user ation a-

pabilities, labeled by RETURN

0

and GET

0

respetively, annot be dedued

by examining SYSTEM alone.

13.1.2 Proess aluli and algebras

By proess aluli and algebras we mean those approahes whih speify

proesses, whose foremost representatives are the many formalisms known

under the olletive names CCS, CSP, and ACP. The formalisms, though quite

di�erent in some fundamental tehnial aspets, share some basi underlying

ideas:

{ as in �{aluli, proesses are represented by terms built over a set of

ombinators onerning all aspets of proess behavior, from ow of on-
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trol of single proesses to operators for omposing proesses in parallel;

the ombinators are di�erent, both as a matter of taste and for tehnial

reasons;

{ proesses are essentially modeled by transition trees;

{ the primitive means of interation between proesses is synhronization,

that an be interpreted equivalently as synhronization of exhanging

data and simultaneous partiipation in an event;

{ emphasis is laid on algebrai laws stating equivalene of proesses;

{ a onept of re�nement is based on ontainment of behaviors: re�ning

means reduing the amount of possible behaviors.

We present the basi features of CCS, onsidered a breakthrough in the

�eld, and will briey omment on ACP and CSP.

CCS, developed by Robin Milner, basially adopts an operational (tran-

sition) semantis, assoiating with eah proess a transition tree (graph); on

the basis of the transition semantis, some equivalenes are de�ned on the

proesses (various bisimulations and operational equivalenes), and laws are

proven stating equivalenes on proesses; the set of laws is usually a omplete

axiomatization of the semantis over �nite proesses.

We refer to [Mil89℄ as a basi referene.

For explanatory purposes, we an start by looking at CCS as a language

for desribing possibly in�nite transition trees.

If A denotes a set of basi names, then A = fa j a 2 Ag is the set of the

onames and L = A [ A, with l = l. A speial label � indiates the so-

alled silent ation, i.e., an ation not visible outside, sine it orresponds to

a ommuniation taking plae within the proess; the set of the ations (or,

more aurately, apabilities of ation), i.e., the labels, is then ACT = L [ f�g,

ranged over by �.

First we have the basi ombinators for desribing �nite depth transition

trees:

(1) pre�xing � : E

(2) summation �

i2I

E

i

, I an indexing set

where E denotes a generi CCS expression.

Assume that E represents a tree

E

t

�

�

�

�

�

�

with root E, then � : E

represents the tree

� : E

�

E

t

�

�

�

�

�

�
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with root � :E. This is formalized by an appropriate semanti lause (indu-

tive rule de�ning !)

At

� : E

�

��! E

.

Assume that eah E

i

represents a tree

E

i

t

i

�

�

�

�

�

�

with root E

i

, then

�

i2I

E

i

represents the tree

�

i2I

E

i

: : :

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

t

i

: : :

H

H

H

H

H

H

H

H

H

H

�

�

�

�

�

t

j

: : :

.

The related semanti lause is

Sum

j

E

j

�

��! E

0

j

�

i2I

E

i

�

��! E

0

j

j 2 I .

In other words lause (1) allows us to desribe adding an ar and lause (2)

to desribe branhing. Notie that for I = ;, lause (2) de�nes one expression,

also written nil or 0, orresponding to a leaf on a tree.

In�nite depth trees are de�ned as usual by reursion, say A =

def

P , where

the name of the proess A (a onstant) may appear in P , whih denotes an

expression. Of ourse multiple reursion is possible. The semantis is as usual

Con

P

�

��! P

0

A

�

��! P

0

A =

def

P .

To handle interation between proesses, a basi ombinator for paral-

lelism is introdued:

(3) E

1

jj E

2

There are many ways to de�ne the semantis of the ombinator jj ; the

original one, whih we report here, formalizes a notion of synhronization/

ommuniation by handshaking ommuniation (Comm

3

) and of parallel

exeution by interleaving (Comm

1

, Comm

2

).

Comm

1

E

�

��! E

0

E jj F

�

��! E

0

jj F

Comm

2

F

�

��! F

0

E jj F

�

��! E jj F

0

Comm

3

E

l

��! E

0

F

l

��! F

0

E jj F

�

��! E

0

jj F

0

l 2 L

Rule Comm

3

says that synhronization may take plae whenever the apa-

bilities are omplementary (l and l).

In CCS we also have two other operations,

(4) E=L Restrition
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(5) E[f ℄ Relabeling,

where L � L denotes a set of nonsilent ations, and f is a funtion from L

to L suh that f(l) = f(l); f an be extended to ACT by setting f(� ) = � .

The semantis of (4) and (5) is given by

Res

E

�

��! E

0

E=L

�

��! E

0

=L

(� 62 L [ L) Rel

E

�

��! E

0

E[f ℄

f(�)

���! E

0

[f ℄

.

Notie that relabeling is essentially a user faility for de�ning proesses,

with no behavioral meaning, while restrition means hiding from the outside

all the ation apabilities in L and its omplementary set.

The given semantis is operational in nature (though it an also be given

in a denotational way) and serves the main purpose of assoiating a labeled

transition system with proess expressions.

As we have seen in the preeding setion, various semantis an be as-

soiated with lts. Depending on the hosen semantis, various laws an be

proved about CCS expressions. For example, adopting strong bisimulation

semantis, denoted by � , the following laws hold (P +Q = �fP;Qg)

(1) (� : Q)=L =

�

nil if � 2 L [ L

� : (Q=L) otherwise

(2) (� : Q)[f ℄ = f(�) : Q[f ℄

(3) (Q + R)=L = Q=L + R=L

(4) (Q + R)[f ℄ = Q[f ℄ + R[f ℄

(5) P + Q = Q + P

(6) P + (Q + R) = (P + Q) + R

(7) P + P = P

(8) P + nil = P

Also a fundamental law, alled the expansion law, an be proved, show-

ing that we an eliminate from a proess expression the parallel operator,

restrition, and relabeling, thus showing the essene of interleaving seman-

tis as reduing parallel exeution to nondeterministi hoie. A simpler form

onerned only with the parallel ombinator is as follows:

(9) P

1

jj : : : jj P

n

=

�f� : (P

1

: : : jj P

0

i

jj : : : jj P

n

) j P

i

�

��! P

0

i

; 1 � i � ng +

�f� : (P

1

: : : jj P

0

i

jj : : : jj P

0

j

jj : : : jj P

n

) j

P

i

l

��! P

0

i

; P

j

l

��! P

0

j

; 1 � i < j � ng

It an be shown that strong bisimulation is a ongruene for CCS, sine it

is substitutive under all ombinators and reursive de�nitions. For example,

if P

1

� P

2

, then we have

� : P

1

� � : P

2

P

1

+ Q � P

2

+ Q, et.

Also, under reasonable onditions, reursive de�nitions uniquely identify

a proess modulo its bisimulation.
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Unfortunately, passing to weak bisimulation (observation equivalene in

[Mil89℄), we do not get a ongruene any longer and thus another equiva-

lene is introdued, alled equality (or observation ongruene), whih im-

plies weak bisimulation. It an be shown that, sine CCS is as powerful as

Turing mahines, no e�etive axiomatization of equality exists. However the

laws provide e�etive axiomatization for smaller lasses of proesses, suh as

the �nite proesses.

Our presentation shows the role of laws in CCS, as derived theorems from

essentially operational semantis. A somewhat di�erent approah has been

taken by ACP, mainly developed by Bergstra, Klop, and Baeten (see [BW90℄

also for referenes). There the starting point is a omplete axiomatization

(usually by equations or onditional axioms) of some equivalene (e.g., strong

or weak bisimulation) for �nite proesses; thus two �nite proesses are equiv-

alent i� their equality an be proven by equational/onditional dedution.

Then reursion is added and semantis is again given in terms of graphs,

labeled transition systems, or projetive limits.

The approah is highly hierarhial, introduing laws for new ombinators

in a onservative way. Some of the ombinators introdued in ACP are due

to the tehnial needs for obtaining omplete axiomatizations.

Di�erent again is the CSP approah [Hoa85℄, where the semantis is de-

notational and the laws are derived from semantis, and used for reasoning

about orretness. The denoted values are di�erent, depending on the rih-

ness of the ombinators; they range from sets of traes to the so-alled refusal

sets.

A ommon problem with the proess algebra/aluli approahes is the

enormous variety of possible meaningful semantis and thus of the assoiated

derived laws; in one paper [vG90℄ Van Glabbeek analyzes from a modal logi

unifying viewpoint, as many as 155 di�erent semantis.

Example 13.2. (Bit using CCS) The proess orresponding to the user is

de�ned by

USER = START :PUT

0

:PUT

1

:(GET

0

:OK :nil+ �

i2 �f0g

GET

i

:ERROR:nil);

the proess bu�er is de�ned by the following, mutually reursive de�nitions

BUFFER

hi

= �

i2

PUT

i

: BUFFER

i

+ � :BUFFER

10

10

BUFFER

i

1

�����i

k

=

�

i2

PUT

i

:BUFFER

i�i

1

�:::�i

k

+ GET

i

k

:BUFFER

i

1

�:::�i

k�1

+

� :BUFFER

10

10 + � :BUFFER

i

1

�i

1

�:::�i

k

, i

1

� : : : � i

k

2

+

Finally the system is the parallel omposition of the two proesses above

(initially the bu�er is empty)

SYSTEM = (BUFFER

hi

jj USER)=fPUT

i

;GET

i

j i 2 g.

The example illustrates the use of CCS in the spei�ation phase, whih

follows a model-oriented approah: with the help of the CCS language a pro-

ess is desribed and then a lass of models is de�ned orresponding to the

equivalene lass of the proess (w.r.t. some equivalene).
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13.2 Algebrai spei�ation of stati data types

In this setion we briey present some spei�ation tehniques following the

approah A2 to the algebrai spei�ation of onurrent systems, that is,

approahes integrating a formalism for the onurrent aspets with algebrai

spei�ations of the stati data types.

13.2.1 Proess aluli plus algebrai spei�ation of data types

In this subsetion we briey present two spei�ation formalisms, LOTOS and

PSF, designed following approah A2, where the proesses are de�ned by a

proess{algebra style alulus. The di�erenes between LOTOS and PSF are

in the formalism for the algebrai spei�ation part (ACT ONE [EFH83℄ and

ASF [BHK89℄, respetively) and in the ombinators of the proess alulus

hosen (inspired by those of CCS and ACP, respetively, see Setion 13.1).

Proess spei�ation formalism (PSF). PSF [MV89,MV90℄ is the proess

spei�ation formalism developed by Mauw and Veltink as a base for a set

of tools to support the proess algebras. The main goal in the design of PSF

was to provide a spei�ation language with a formal syntax similar to the

proess algebra ACP [BW90, Setion 4℄ but also with a notion of data type;

to this end ASF (the Algebrai Spei�ation Formalismof [BHK89℄) has been

inorporated.

The basi spei�ation formalism is equational logi with total algebras.

The theory and language of ASF are adopted for handling modular and pa-

rameterized spei�ations.

A PSF spei�ation onsists of a series of modules, divided into data mod-

ules and proess modules. Data modules are algebrai spei�ations with ini-

tial semantis. Proess modules are ACP spei�ations of proesses. Formally,

a proess module onsists of

{ delarations of the operation symbols for ations and proesses (whih

may have the stati data as arguments),

{ expliit de�nitions of the synhronization among suh ations,

{ proess de�nitions of the form P (x

1

; : : : ; x

n

) = ACP{expression, in whih

the operators like \+", \k", \;", \hide" and \enaps", elementary pro-

esses, pure atomi ations, and also P (thus allowing reursive de�ni-

tions) may appear.

Proesses are partiular data strutures obtained by a given (equational) ax-

iomatization whih determines a partiular semantis over these strutures,

embodying ideas of onurreny. This is best understood by looking at the

hidden basi onurrent models behind proess algebra, whih are lts as in

CCS and many other approahes; then the axioms provide semantis like

strong, trae, or bisimulation semantis and others, see Setion 13.1.1. The
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hidden model is made evident in some presentations of PSF, where ACP

proesses are desribed by means of lts. In any ase, sine ACP essentially

provides a language shema for proesses, it is irrelevant, other than for build-

ing the tools, how its semantis is given, either by equations or by labeled

transitions plus semanti equivalenes.

It is instead important to note that in PSF:

{ the synhronization of ations an be de�ned expliitly in the ommu-

niation part; as a onsequene, the synhronization mehanism is not

�xed and is parameterized;

{ the exeution mode is interleaving.

The interfae between proesses and data types is as follows:

{ the atomi ations may have as omponents some values of the spei�ed

data types;

{ it is possible to de�ne reursively families of proesses indexed on the

elements of some sort;

{ an in�nitary nondeterministi hoie indexed on the elements of a sort is

available.

The semantis of the data part is a lassial algebrai semantis by ini-

tiality; the semantis of proesses is strong bisimulation, whih gives a on-

gruene over the term algebra. Thus the semantis identi�es an isomorphism

lass of strutures, as for a data type.

The data part is stritly separated from the proess part. Thus it is an

A2 approah; but the onurrent struture here is also spei�ed algebraially,

though with a �xed set of primitives parameterized on the ations and the

synhronization struture. The result is a ompletely algebrai spei�ation

to whih all the tehniques and results of ASF an be onveniently applied.

Partiularly powerful are the modularization mehanisms in PSF, whih

are borrowed from ASF but truly deal with the integration of data types

and proesses; the module onept also supports the import and export of

proesses and ations.

There is a vast literature on the use of proess algebras, with a detailed

treatment of lassial examples and orretness proofs for implementation.

However, these examples should not be onfused with appliations of a spe-

i�ation method like PSF, whih have indeed been introdued for supporting

industrial appliations. Clearly PSF is appliable to a wide range of signi�-

ant ases in pratie, see, for instane, [MV93℄, but we see a limitation in its

strit poliy of message passing and no provision for data sharing. In many

ases some amount of oding is required whih is not in the spirit of abstrat

spei�ations. The same remark applies to exeution modes other than in-

terleaving, whih have to be simulated by appropriate use of synhronization

and restrition mehanisms.

PSF has been devised as a basis for the development of a toolset (see,

e.g., [MV89,MV91,PSF97℄); in partiular, a simulator, a term rewriting, and

a proof assistant have been implemented.
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LOTOS. LOTOS was probably the �rst internationally known (sine 1984),

algebrai spei�ation formalism for onurreny [BB87,I.S89℄; most impor-

tantly, it is an oÆial ISO spei�ation language for open distributed systems,

a quali�ation whih alone would rank it high in an ideal value sale of pos-

sible important appliations. However, LOTOS is interesting also beause it

represents an early paradigm of whih PSF an be onsidered an improve-

ment. Beause of this, we do not go into a detailed disussion of LOTOS; it

is enough to ompare it with PSF to understand its struture.

LOTOS adds lassial algebrai spei�ations into a language for onur-

reny like PSF; but it uses ACT ONE [EFH83℄ instead of ASF and a proess

desription based on an extension of CCS with several derived ombinators

(e.g., input/output of strutured values, sequential omposition with possi-

ble value passing, enabling/disabling operators) instead of the proess algebra

ACP. The basi spei�ation formalism (equational logi with total algebras)

and proess bisimulation semantis are the same.

PSF is an improvement over LOTOS (see a disussion in [MV89℄), sine

it allows more freedom in the de�nition of synhronization mehanisms and

supports import/export of ation/proesses, thus beoming more exible for

stepwise development.

Throughout these years LOTOS has been used in several pratial appli-

ations and nowadays tools for helping to write orret LOTOS spei�ations

have been developed (see, for instane, the ESPRIT projet LOTOSHERE

[vE91℄). Reently a new, revised version of LOTOS (E-LOTOS, for Enhane-

ment to LOTOS) has been developed and presented as a standard [LOT97℄,

taking into aount the needs that emerged through its appliation; enhane-

ments onern the data part (built{in, partial operations), the onurreny

part (noninterleaving semantis, real time, priorities), and the whole organi-

zation of the spei�ations (introdution of modules).

Example 13.3. (Bit using LOTOS) The data part is given by the spei�a-

tion INT QUEUE , shown in Appendix A, and by the following:

spe MESSAGE =

sorts message �� messages exhanged with the environment

opns OK ;ERROR : ! message

Bit is given as the parallel omposition of two proesses orresponding to

the bu�er and the user.

The gates of suh proesses and their onnetions are graphially repre-

sented in Figure 13.2.

Below \?" and \!" distinguish input/output ations, \;", \: : : ! : : :",

\[℄", \jjj", and \i" denote respetively ation pre�xing, Boolean guards, non-

deterministi hoie, parallel ombinator and internal ation.

In the de�nition of BUFFER, Put and Get are the gates and q is a proess

parameter of sort queue .
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BUFFER

Put

Get

USER

Initial

Output

Put

Get

BUFFER

Put

Get

USER

Initial

Output

SYSTEM

Fig. 13.2. Struture of the LOTOS spei�ation of Bit

proess BUFFER[Put;Get℄(q : queue) :=

[Not Empty(q)℄ ! Get !First(q);BUFFER[Put;Get℄(Remove(q)) [℄

Put ? x : int;BUFFER[Put;Get℄(Put(x; q)) [℄

i;BUFFER[Put;Get℄(Put(10

10

;Empty)) [℄

i;BUFFER[Put;Get℄(Dup(q))

end proess

proess USER[Initial;Put;Get; Output℄ :=

Initial ?; Put ! 0;Put ! 1;Get ?x : int;

([not(x = 0)℄! Output !ERROR [℄

[x = 0℄! Output !OK )

end proess

proess System[Initial; Output℄ :=

BUFFER[Put;Get℄(Empty) jjj USER[Initial;Put;Get; Output℄

end proess

Note the similarity between LOTOS and CCS.

13.2.2 Petri nets

Petri nets are among the earliest and most inuential models of onurreny.

Net models. Here we briey present (elementary) nets, the basi models

for the various spei�ation formalisms generally alled \Petri nets"; all vari-

ants arise either by putting some restritions on the allowed nets, adding

minor features, or o�ering more ompat/simple ways to present the nets
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(e.g., olored nets, high-level nets, : : : ); in some ases, a slightly di�erent

terminology is used. [Rei85,RT86℄ give general overviews and further refer-

enes for net models, while [Rei98℄ is more onerned with the use of nets for

speifying onurrent systems.

A net N is a triple hP ;T ;F i, where P and T are two sets and F is a

subset of (P �T ) [ (T �P); P , T , and F are respetively alled the sets of

the plaes, the transitions, and the ars of the net; F is also alled the ow

relation.

Nets are graphially represented by depiting plaes, transitions, and ars

respetively as irles, boxes, and arrows, see, e.g., Figure 13.3.

Example 13.4. (Bit using Petri nets)A Petri net modelingBit is reported

in Figure 13.3; note that to make the drawing small enough we have assumed

that the bu�er may only fail when its ontent is 01.

The behavior of a net is de�ned as follows.

Given a transition t 2 T , we de�ne �t = fp j p 2 P ; hp; ti 2 Fg (the

preonditions of t) and t� = fp j p 2 P ; ht; pi 2 Fg (the postonditions of t).

Any funtion s from P into is alled a (global) state (or marking) of

N ; graphially represented by putting s(p) �'s (alled tokens) on the plae p,

for any p 2 P ; the net in Figure 13.3 is in a state haraterized just by one

token on eah of the plaes Initial and Empty.

A transition t 2 T is enabled in a state s (or may �re) i�, for any p 2 �t,

s(p) > 1. If t is enabled in s, then

s

0

= �p:

8

<

:

s(p) � 1 if 2 �t� t�

s(p) + 1 ifp 2 t � � � t

s(p) otherwise

is alled the suessor state of s with t (or the state obtained after the �ring

of t in s) and s

t

��! s

0

is alled a step in N .

A system net (s-net for short) is a net N , together with a state, alled

the initial state.

The single steps of an s{net an be omposed in runs: hs

i

t

i

��! s

i+1

i

i2I

with s

0

the initial state and I = f0; : : : ; ng (I = ) is a �nite (in�nite)

interleaved run.

Empty : 1; Initial : 1

START

�����! Empty : 1;Putting 0 : 1

INT1

����!

0 : 1;Putting 1 : 1

INT2

����! 01 : 1;Reading : 1

INT3

����! 01 : 1;Ok : 1

BREAK

�����!

10

10

: 1;Ok : 1

OK

��! 10

10

: 1;Terminated : 1

is an example of an interleaved run of the net in Figure 13.3, where a state is

represented by listing the plaes with the number of their tokens, forgetting

those without tokens.

Some ourrenes of transitions in an interleaved run that are seen as

ordered one after the other may be independent. Thus they may also have
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Initial

START

Putting_0

Putting_1

Reading

Ok

Empty

INT1

INT2

0

01

INT3

DUP

011
INT4

BREAK

1010

ERROR

OK

Terminated

Fig. 13.3. A Petri net modeling Bit

happened in the reverse order; in the run depited above, the two last tran-

sitions are independent. We give another de�nition of a run, making expliit

the onurrent aspets.

Conurrent runs are represented by speial nets; the underlying idea is

that a onurrent run of N is a net, whose plaes and transitions are labeled

with the plaes and transitions of the original net N and orrespond to their

ourrenes and �rings in the run, and where the ow relation orresponds

to the ausal relationships among them.
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Due to lak of spae we skip the omplete de�nition of onurrent runs,

and just give in Figure 13.4, as an example, the onurrent run orresponding

to the run above; here we an see how the two last transitions are not ausally

related.

Initial

START

Putting_0

Putting_1

Reading

Ok

Empty

INT1

INT2

0

01

INT3

BREAK

10
10

OK

Terminated

01

Fig. 13.4. A onurrent run of the net modeling Bit

The features of onurrent systems that an be niely handled by modeling

them with nets are as follows:
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{ loal and global states abstratly represented as token distributions over

the plaes;

{ atomi ations (the transitions);

{ (loal) ausality and e�et between ations and states;

{ mutual independene/ausality of ations;

while there is no aeptable way to model

{ the (distributed) struture of the system;

{ the modular deomposition of systems;

{ open/interating/reative systems (no distintion between internal and

external transitions/plaes: in the net in Figure 13.3, START, OK, and

ERROR should be the external transitions), and therefore no way to

de�ne modularly the net orresponding to a omplex system by putting

together the nets orresponding to its omponents.

Clearly many new formalisms extending nets with other features have been

proposed in the literature overoming some of these problems.

Nets are partiularly apt for analyzing the modeled systems, formally

heking whether the system has or does not have some properties, inluding

both safety and liveness properties (see Setion 13.2.3); several tehniques

have been provided for that, one of the most relevant is based on \plae{

invariants".

A plae{invariant is a linear ombination (summation) with (also zero)

integer oeÆients of the number of tokens ontained in the plaes, whih is

not hanged by the �ring of the transitions; all plae{invariants of a net may

be found by solving a linear system of equations with integer oeÆients,

thus it is possible to have software tools for �nding them.

For example, two invariants of the net in Figure 13.3 are:

1�Initial +1�Putting 0 +1�Putting 1 +1�Reading +1�Ok+1�Terminated = 1

1 � Empty + 1 � 0 + 1 � 01 + 1 � 011 + 1 � 10

10

= 1

(orresponding to saying that the user and the bu�er are always in one and

only one state); while

1 �Ok � 1 � 01 = 0

is not an invariant (the user may be in the Ok state while the bu�er ontent

is not 01).

High-level algebrai Petri nets. Nets, as presented in Setion 13.2.2,

allow us to model several aspets of onurrent systems. However, if we want

to use them for signi�ant examples we have to handle very large (if not

in�nite) nets; e.g., onsider the Petri net modeling a system using integer

numbers. Moreover in pratial appliations we have also to handle omplex

data strutures.
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To �x the �rst kind of problem, the basi nets have been extended in

several ways: a transition �ring an test for the presene of, delete, and add

�nite sets of tokens (reating Petri nets as originally de�ned). Later on, the

unique blak token was replaed by olored tokens, produing the so-alled

\Colored nets"; here the �ring of a transition also depends on the olors of

the tokens present in the plaes, and its �ring deletes and adds sets of olored

tokens. More generally, tokens an be onsidered to be data taken in some

data struture; this leads to the so-alled \algebrai nets" where suh a data

struture is given by a (many-sorted) algebra.

A riher struture of the tokens allows us to introdue \high-level" nets,

where the basi idea is that the ars are deorated with symboli expres-

sions, desribing in a ompat way the sets of tokens ausing the �ring of a

transition, and those deleted and added by suh �ring. Moreover, now the

transitions may also be deorated by some expression orresponding to per-

forming some heks on the tokens present in the plaes in the premise of

the transition, for instane, putting in relation the olor of the token in a

plae with that of the token in another plae (the token of type natural in

one plae should be the length of the token of type queue in another). In the

literature it is possible to �nd several proposals for high-level algebrai nets

(see, for instane, [Rei91,BCM88,DH91,Vau87℄). The reader interested in a

more detailed study of suh nets may, for instane, onsult [JR91℄; here we

just briey present their basi features.

A high-level algebrai net system onsists of:

{ a net N = hP ;T ;F i (the shema);

{ a signature � and a set of sorted variables X ;

{ an assoiation with eah plae in P of a sort of � (plaes are typed with

the sorts);

{ an assoiation with eah ar in F of a set of terms built on � and X

having the sort of the plae soure or target of the ar (ar insriptions);

{ an assoiation with eah transition in T of a �rst-order (onditional, : : : )

formula built on � and X , where only the variables appearing in the

insriptions of the ars entering in the transition may appear (transition

insriptions);

{ a �{algebra A (the data part);

{ an assoiation with eah plae p in P of a set of elements of jAj

s

, where

s is the sort assoiated with p (initial state).

In some approahes, sets are replaed by multisets, and in others the

signatures and the algebras are extended to have sorts and operations for

handling sets/multisets of elements of the original sorts; thus ars are in-

sribed by terms of sort set(s)/mset(s) and the initial marking onsists of

elements of the arriers of these set/mset sorts. The algebras used in algebrai

nets may be of whihever kind; e.g., there are approahes using homogeneous

total algebras and others using many-sorted partial algebras.
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The abstration level of high-level algebrai nets may be enhaned by

abstratly giving the data part as an algebrai spei�ation with initial se-

mantis.

Example 13.5. (Bit using algebrai high-level nets) Here we give a spe-

i�ation of Bitwhih is an improvement on that presented in Figure 13.3; the

bu�er is now organized as a queue and ontains integer numbers, and so it is

possible to hek whether its �rst element is 0. Notie that the orresponding

non-high-level net is in�nite.

The data part is given by the following algebrai spei�ation with initial

semantis

spe DATA =

enrih INT QUEUE by

sorts token

opns � : ! token

The plae Bu�er has sort queue, while Initial , Putting 0,Putting 1,Reading ,

Ok , and Terminated have sort token.

The net is shown in Figure 13.5.

Like lassial Petri nets, high-level algebrai nets su�er from their laking

modularity.

13.2.3 Temporal logi

In the �eld of onurreny, spei�ations following an axiomati, or, better,

property{oriented style, have been widely used, in general to give the formal

spei�ation of the requirements on a onurrent system. In these ases, a

spei�ation is just a set of formulas of some logi expressing the require-

ments on the spei�ed system; among the ommonest and most relevant

requirements, we have:

1. liveness properties: (under some ondition) something good will happen

eventually in the system; for instane, the system will eventually reat to

the reeption of some stimuli/after that some situation has been reahed;

2. safety properties: (under some ondition) something bad will never hap-

pen in the system; for instane, after reeiving some stimuli/reahing

some situation, some (inorret) output will not be produed/some (in-

orret) situation will be not reahed;

3. fairness properties: the repeated hoie between two alternative ativities

of the system must be fair (i.e., it annot happen that one of the two

alternatives will be hosen forever); e.g., in the ase of two proesses

trying to aess a shared resoure, it annot happen that only one will

sueed;
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Initial

START

Putting_0

Putting_1

Reading

Ok

INT1

INT2

Buffer

INT3

BREAK

ERROR

OK

Terminated

q

Put(0,q)

Put(1,q)

q

q

q

First(q) = 0

DUP

q Dup(q)

q
Put(10   ,Empty)

10

q

q

Empty

First(q) � 0

Fig. 13.5. A high-level algebrai net modeling Bit

4. priority/preedene properties: some ativity an be exeuted i� some

other ativity annot be exeuted; e.g., a proess omponent of a system

an write to a bu�er i� no other proess in the system an read it, a

proess with priority n an aess a resoure i� no proess with priority

higher than n an;

5. : : : .



13 Algebrai Spei�ation of Conurrent Systems 23

First-order logi is not suÆient to express properties suh as those above

in full generality: some properties are related to the evolution of the system

over time (2), others related to the possible ativities of a system (1), or

of the omponents of a system. Following the way indiated by Pnueli in a

landmark paper [Pnu77℄, in reent years various modal/temporal logis have

been widely and satisfatorily used to express properties like (1) and (2), or

speial variants partiularly tailored for the system model hosen have been

developed (see, e.g., [CR97,Mil89℄). Conerning properties suh as (3, 4), no

fully satisfatory proposal has yet been found (some initial attempts are in

[Reg91,ES95℄).

Here we only briey introdue the basi (linear and branhing) temporal

logis, and afterwards we show how �rst-order temporal logi with equality

may be used to give requirement spei�ations of onurrent systems where

the stati data are spei�ed by loose algebrai spei�ations, following an

A2 approah; in Setion 13.3, we present an alternative approah based on

temporal logi of kind A3.

Variations of temporal logis. Here we briey reall the de�nition of a

linear/branhing temporal logi and give some examples of use of its formulas

to express requirements on onurrent systems; for referenes, see [Sti92,

Pnu86,Eme90℄.

A propositional linear temporal logi. TL is a propositional linear temporal

logi with a minimal set of ombinators.

Assume that Q is a set of propositional symbols; thus the formulas of TL

are de�ned by:

� ::= Q j �

1

) �

2

j : � j �

1

U �

2

The models of TL are sequenes of states M = hs

i

i

i2

, where a state s is

a funtion from Q into fT; Fg, the set of the truth values.

The validity of a formula � over a modelM = hs

i

i

i2

is de�ned as follows:

M j= � i� i;M j= � for all i 2 ;

where

{ i;M j= Q i� s

i

(Q) = T

{ i;M j= �

1

) �

2

i� i;M j= : �

1

or i;M j= �

2

{ i;M j= : � i� i;M 6j= �

{ i;M j= �

1

U �

2

i� there exists j � 0 suh that for all h, i < h < j,

h;M j= �

1

and j;M j= �

2

.

The term \linear" means that in this ase the behavior of a system is

modeled by a set of exeutions represented by linear sequenes of states, and

thus at a given instant state, there is exatly one suessor state.
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When TL is used to speify a system, we have that the models and the

formulas represent respetively the exeutions of that system and the prop-

erties on suh exeutions. For example, �

1

U �

2

orresponds to saying that

in any exeution the property represented by �

1

holds until the property rep-

resented by �

2

holds, and that �

2

surely will hold. Thus a set of TL formulas

� ould be used to speify the requirements on a system: � determines the

lass of all systems whose possible exeutions are inluded in the lass of the

models of �.

U is the basi ombinator; many others suitable for expressing further

relevant properties an be derived; among them:

{ true , false , _ , ^ , and , , de�ned in the usual way

{ � =

def

true U � (eventually the property represented by � will hold)

{ � =

def

: : � (the property represented by � will hold forever)

{ �

1

WU �

2

=

def

(�

1

U �

2

) _ �

1

(the property represented by �

1

holds

until �

2

will hold, but it is not required that �

2

will eventually hold).

A propositional branhing temporal logi. BTL is a propositional branhing

temporal logi with a minimal set of ombinators given, following a CTL

style. The term \branhing" means that in this ase the behavior of a system

is modeled by a tree whose nodes are deorated by states, and thus at a given

instant there may be several di�erent suessor states.

As before, assume that Q is a set of propositional symbols; then the for-

mulas of BTL are the following, where 4 is the ombinator for \quantifying

over paths":

� ::= Q j 4 � j �

1

) �

2

j : � j �

1

U �

2

:

The models of BTL are transition systems or Kripke strutures, where a

funtion from Q into the set of the truth values is assoiated with eah state.

Preisely, a model M is a triple hSTATE ;!; vi, where STATE is a set,

!� STATE

2

and v is a funtion from STATE into the set of the funtions

from Q into fT; Fg.

The validity of a formula � over a model M is de�ned as follows.

First we de�ne the set of paths over M:

PATH (M) =

fhs

i

i

i2

j 8 i 2 : ((s

i

! s

i+1

_ (8 j: j > i ) (s

j

= s

i

^ 6 9s: s

i

! s))g.

Given � = hs

i

i

i2

2 PATH (M) and h � 0, �b

h

denotes the path

s

h

s

h+1

s

h+2

: : : .

M j= � i� �;M j= � for all � 2 PATH (M);

where

{ �;M j= Q i� v(s

0

)(Q) = T
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{ �;M j= �

1

) �

2

i� �;M j= : �

1

or �;M j= �

2

{ �;M j= : � i� �;M 6j= �

{ �;M j= �

1

U �

2

i� there exists j � 0 suh that for all h, 0 < h < j,

�b

h

;M j= �

1

and �b

j

;M j= �

2

{ �;M j=4 � i� �

0

;M j= � for all �

0

2 PATH (M) suh that s

0

= s

0

0

.

When BTL is used to speify a system, we have that a model represents the

whole behavior of suh a system, i.e., all its possible exeutions and at whih

point the nondeterministi hoies are made, and then the formulas represent

properties on suh behavior. For example, : 4 ( true U �) orresponds

to saying that it is not true that in any ase the exeutions of the system

will eventually satisfy the property represented by � (if � orresponds to

failing, then the formula requires that the system has at least an exeution

without failures). Thus a set of BTL formulas � ould be used to speify

the requirements on a system: � determines the lass of all systems whose

behavior is desribed by an element of the lass of the models of �.

4 is the basi branhing ombinator; many others that are suitable to

express further relevant system properties an be derived; among them

5� =

def

: 4 : �

(at least in one ase, i.e., the property represented by � holds in at least one

path).

The derived ombinators for the path formulas, and , an be de�ned

as for the linear{time logi.

Further temporal logis. In the previous paragraphs we have briey skethed

two simple logis. In the literature and in the \pratie" of spei�ation

of onurrent systems, a large number of variants have been proposed; the

di�erenes are related to:

anhored version In the model a state (set of states) is singled out to be

initial, determined by a speial propositional symbol, and the validity of

a formula is hanged to hold only on suh states (paths starting from suh

states). Formally, for the branhing{time ase, assume that s

0

2 STATE

is the initial state, thus

M j= � i� �;M j= � for all � 2 PATH (M) suh that s

0

= s

0

:

edge formulas The models, instead of just being sequenes (trees) of states,

allow the labeling of the transitions from a state to another; thus they

are sequenes of states and labels or trees where the ars are labeled

(labeled transition systems). Clearly, the formulas are extended to inlude

\edge formulas" expressing onditions on the next label (see, e.g., [Lam83,

CR97℄).
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�rst-order The basi formulas, instead of being propositional, are �rst-

order. Now there is the problem of the evaluation of the variables appear-

ing in a formula; usually the symbols appearing in a formula (operations,

prediates, variables) are lassi�ed into: rigid, whose interpretation does

not depend on the state where the formula is evaluated, and exible,

whose interpretation depends on the state where the formula is evalu-

ated. Consequently a model onsists of a standard �rst-order struture,

a variable evaluation (for interpreting the rigid symbols) and a sequene

(tree) of states, where with eah state is assoiated a �rst-order struture

and a variable evaluation, for interpreting the exible symbols. Clearly

the arriers of suh strutures must oinide with those of the struture

used for rigid symbols (no sensible and usable proposal is available for

overoming this restrition).

Temporal logi and algebrai spei�ations (A2). First-order tem-

poral logis allow us to give spei�ations of onurrent systems, where the

properties on the dynami ativity are given using the temporal ombinators,

while the involved (stati) data strutures are spei�ed by �rst-order loose

algebrai spei�ations. The sort symbols plus the rigid symbols give the sig-

nature of the data struture, while the exible symbols desribe the states

of the system (notie a similarity with the dynami data-type approah in

Setion 13.4).

Example 13.6. (Bit using temporal logi (requirements)) In this ase

we try to give some requirements on Bit (see p. 3), instead of speifying its

design, as done in previous examples.

The stati data struture is now spei�ed by the following loose algebrai

spei�ation, where we do not �x the poliy followed by the bu�er for storing

values (e.g., as a queue or as a stak).

2

spe INT BUNCH =

enrih INT by

sorts bunh

opns Empty : ! bunh

Put : int � bunh! bunh

First : bunh ! int

Remove : bunh ! bunh

preds Not Empty : bunh

Is In : int � bunh

axioms Empty and Put are generators for bunh

: Is In(i;Empty)

Is In(i;Put(i

0

; b)) , (i = i

0

_ Is In(i; b))

2

In this hapter, for simpliity, we omit the universal quanti�ers when

writing the spei�ation axioms; thus, e.g., : Is In(i;Empty) stands for

8 i : int:: Is In(i;Empty).
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Not Empty(b) , 9 i: Is In(i; b)

Is In(First(b); b)

Is In(i;Remove(b)) ) Is In(i; b)

The states of the system are then haraterized by the following exible

symbols:

opns Buf Cont : ! bunh �� the bu�er ontent

preds Putting : int

�� is the user putting a given integer in the bu�er ?

Reading : int

�� is the user reading a given integer from the bu�er ?

Terminated :

�� has the user terminated its ativity ?

Error :

�� has something erroneous happened in the system ?

The following formulas express requirements on Bit.

Putting(i) ) 4 (Is In(i;Buf Cont) _ Error)

If the user is putting i in the bu�er, then in any ase, eventually, either i will

be in the bu�er or something erroneous will happen (R5).

4 (Reading (i) ) i = First(Buf Cont))

or equivalently

Reading (i) ) i = First(Buf Cont)

In any ase, always, if the user is reading i, then i is the �rst element of the

bu�er (R5).

Terminated ) Terminated

One the user has terminated its ativity, it annot restart (R1).

5 : Error

There always exists a possible \orret" behavior (R2).

There is no way to express (R0), sine we annot express the bu�er

apabilities of interating with the user within the system.

13.2.4 Streams and data ow

A model of onurreny where the data strutures representing the ow of

interation are made expliit is data ow onepts based on streams. Of

ourse, these temporal formulas do not speify all the interesting properties

of a bu�er; rather they speify a subset. Temporal logi is not well suited

for omprehensive spei�ations. Therefore it is better to ombine it with

methods that are more appropriate for speifying safety properties.
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Data ow models. For referenes, see, for instane, [Bro87,Bro97,Bro93,

Bro96℄.

Data ow models of systems are often represented by data ow graphs

(also alled data ow diagrams). A data ow graph is a direted graph, the

nodes of whih are alled data ow nodes and the ars of whih are alled

data ow ars. Some ars may have no soures. These are alled input ars.

Others may have no target. These are alled output ars.

Data ow models are used in many methods in software engineering.

They provide a strutural view of a system by representing the omputing

agents by data ow nodes and their ommuniation interonnetion by the

arrows onneting them. Although data ow diagrams are used in nearly all

methods (SA, SADT, SSADM, OMT, SDL, et.), as well as in many books

on operating systems, their meaning is often not well de�ned and leads to

many misinterpretations. The stream model an help to provide a preise

meaning for data ow graphis.

There are a number of variations of data ow models. In ayli data ow

models often only one data value is assoiated with eah data ow ar. The

data ow nodes are then funtions that reeive their arguments on their input

ars (one on eah ar) and produe one result on eah of their output ars. The

data ow diagram aordingly shows a omputation tree or a omputation

graph. This is related to the single assignment languages.

In more sophistiated data ow graphs, we assoiate a stream of data

elements with eah data ow ar. This leads to Kahn networks [Kah74℄. In the

deterministi ase eah node is assoiated with a stream proessing funtion

that reeives its argument streams on its input ars (one at eah ar) and

produes one result stream on eah of its output ars. These graphs may be

yli. This leads to yli (reursive) de�nitions for the streams assoiated

with the ars. A simple mathematial model for data ow diagrams an be

obtained by stream proessing funtions. Nondeterministi data ow diagrams

an be handled by assoiating sets of funtions with eah node.

The idea of data ow was heavily inuened by the onept of Petri nets.

Pioneering papers on data ow were based on the �ring rule semantis of Petri

nets [Den80℄. On the other hand the development of data ow inuened the

generaliZation of Petri nets. High-level Petri nets are speial ases of suh

data ow diagrams. Both plaes and transitions in Petri nets an be seen as

data ow nodes.

Funtional system spei�ation. In this setion we give a brief sum-

mary of the basi mathematial onepts of stream-based funtional system

models. We onsider system omponents with a �nite number of input and

output hannels. Messages are exhanged over the hannels. A hannel his-

tory is mathematially modeled by a stream of messages. The behavior of

a (deterministi) omponent orresponds to a funtion mapping the streams

on its input hannels onto streams for its output hannels.
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A stream of messages over a given message set M is a �nite or in�nite

sequene of messages. We de�ne the set of stream by

M

!

=

def

M

�

[ M

1

:

By x

_

y we denote the result of onatenating two streams x and y. We

assume that x

_

y = x, if x is in�nite. By hi we denote the empty stream.

For simpliity we write for a 2M , x 2M

!

a

_

x instead of hai

_

x and x

_

a instead of x

_

hai.

If a stream x is a pre�x of a stream y, we write x v y. The relation v is

alled pre�x order. It is formally spei�ed by

x v y =

def

9 z 2M

!

: x

_

z = y:

The relation v is a partial order on the set of streams. The empty stream hi

is the least element.

Given a partially ordered set, a subset is alled direted if, for any pair of

elements in S, there exists an upper bound in S. A partially ordered set is

alled omplete if, for every direted set of streams, there exists a least upper

bound. The set of streams ordered by the pre�x order is omplete. The least

upper bound of a direted set S is denoted by lub S.

The behavior of deterministi interative systems with n input hannels

and m output hannels is modeled by pre�x monotoni funtions

f : (M

!

)

n

! (M

!

)

m

alled (m, n){ary stream proessing funtions.

A funtion f mapping a omplete partially ordered set onto a omplete

partially ordered set is alled ontinuous, if, for every direted set S,

f(lub S) = lub ff(x) j x 2 Sg

The set of all pre�x ontinuous stream proessing funtions of funtion-

ality (M

!

)

n

! (M

!

)

m

is denoted by

SPF

n

m

:

For simpliity, we do not onsider type information here and assume M

to be just a set of messages.

The following funtions on streams are useful in spei�ations:

rt : M

!

!M

!

rest of a stream

ft : M

!

!M [ f?g �rst element of a stream

#: M

!

! [ f1g length of a stream


 : P(M ) �M

!

!M

!

�lter of a stream
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Here ? is used as a dummy to avoid partial funtions. These funtions are

easily spei�ed by the following algebrai equations (let x 2 M

!

, m 2 M ,

S � M ):

rt(hi) = hi; rt(m

_

x) = x;

ft(hi) = ?; ft(m

_

x) = m;

#(hi) = 0; #(m

_

x) = 1 +#(x);

S

hi = hi;

S

 (m

_

x) = m

_

(S

x); if m 2 S

S

 (m

_

x) = S

x; if m =2 S

These axioms speify the funtions ompletely. They are useful in proofs, too.

Stream proessing funtions an easily be spei�ed by logial formulas in

the style of algebrai equations as is demonstrated for the running example

below. Given suh funtions, we may ompose them.

We use two forms of omposition: parallel omposition and sequential

omposition. Given funtions f 2 SPF

n

k

, g 2 SPF

k

m

we write

f ; g

for the sequential omposition of f and g whih yields a funtion in SPF

n

m

,

where

(f ; g)(x) = g(f(x)):

Given funtions f 2 SPF

n

m

, g 2 SPF

n

0

m

0
we write

fkg

for the parallel omposition of f and g whih yields a funtion in SPF

n+n

0

m+m

0

,

where (let x 2 (M

!

)

n

, y 2 (M

!

)

n

0

):

(fkg)(hx; yi) = hf(x); g(y)i

Finally, given a funtion

f 2 SPF

n

m

we may onstrut a funtion by the feedbak operator leading an output line

bak to an input line. We write

�

k

j

f 2 SPF

n�1

m�1

for the funtion de�ned by the equation (1 � k � n; 1 � j � m)

�

k

j

f(x

1

; : : : ; x

k�1

; x

k+1

; : : : ; x

n

) = (y

1

; : : : ; y

j�1

; y

j+1

; : : : ; y

m

)

where z is the pre�x least stream suh that the following equation holds

f(x

1

; : : : ; x

k�1

; z; x

k+1

; : : : ; x

n

) = (y

1

; : : : ; y

j�1

; z; y

j+1

; : : : ; y

m

)
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k

1 n... ...

1 m

j

... ...

k-1 k+1 ...

j-1 j+1

f

Fig. 13.6. Data ow graph for feedbak

See Figure 13.6.

Sine f is pre�x monotoni, suh a stream least solution (least �x point)

always exists. Of ourse, it is unique.

By SPEC

n

m

we denote the set of all prediates Q where

Q : SPF

n

m

! fT; Fg

The set SPEC

n

m

denotes the set of all omponent spei�ations for a ompo-

nent with n input hannels and m output hannels.

We want to ompose spei�ations of omponents to networks. Eah

form of omposition introdued for funtions an be extended to ompo-

nent spei�ations in a straightforward way. Given omponent spei�ations

Q 2 SPEC

n

k

, R 2 SPEC

k

m

we write

Q;R

for the prediate in SPEC

n

m

where

(Q;R)(f) , 9 q; r: f = q; r ^ Q(q) ^ R(r)

Trivially, we have for all spei�ations Q 2 SPEC

n

m

the following equations,

where I denotes the identity funtion:

Q; I = Q and I;Q = Q:

Given spei�ations Q 2 SPEC

n

m

, R 2 SPEC

n

0

m

0

we write

QkR

for the prediate in SPEC

n+n

0

m+m

0

where

(QkR)(f) , 9 q; r: f = qkr ^ Q(q) ^ R(r):
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Feedbak also arries over in a straightforward manner to spei�ations.

(�

k

j

Q)(f) � 9 f

0

: Q(f

0

) ^ f = (�

k

j

f

0

)

Any data ow graph an be desribed by parallel omposition and feedbak.

This is easily seen. To build a ompositional form for a given data ow di-

agram where the nodes are desribed by spei�ations of stream proessing

funtions, we form a large parallel omposition of all data ow nodes. Then

we onnet the output lines to input lines by feedbak as shown by the data

ow diagram.

A spei�ation Q 2 SPEC

n

m

is alled a property re�nement of a spei�-

ation Q 2 SPEC

n

m

if, for all funtions f , we have Q(f) ) Q(f). We write

then

Q ) Q

In other words, Q is a property re�nement of Q if the set of funtions de-

sribed by Q is a subset of the set of funtions desribed by Q. More sophis-

tiated notions of re�nement are obtained by abstration and representation

spei�ations as introdued in [Bro97℄.

A pair of spei�ations A and R are alled abstration and representation,

if

R;A = I

Let A

1

be an abstration spei�ation and R

2

be a representation spei�a-

tion. A spei�ation C

0

is alled a re�nement of spei�ation C if we have

C

0

) A

1

;C;R

2

Given the orresponding abstration spei�ation A

2

and a representation

spei�ation R

1

, the identities

R

1

;A

1

= I R

2

;A

2

= I

allows us to dedue

R

1

;C

0

;A

2

) C:

The atual spei�ation of data ow nodes an be done by logial formulas

desribing the relationship between the input and output streams.

The strong aspet of stream proessing onepts is their modularity. They

allow for a modular spei�ation, omposition, and re�nement of interating

systems.

Example 13.7. (Bit using stream funtions)

First we speify the two omponents, bu�er and user.

For eah omponent we �rst give its funtionality, then we give the spe-

ifying axioms.

BUFFER : ( [ f GETg)

!

!

!
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8h 2 ; z 2

�

; x 2 ( [ f GETg)

!

:

BUFFER(h

_

z

_

GET

_

x) = h

_

BUFFER(z

_

x) _

BUFFER(h

_

z

_

GET

_

x) = h

_

BUFFER(h

_

z

_

GET

_

x) _

BUFFER(h

_

z

_

GET

_

x) = h10

10

i

The user is modeled by the funtion

USER :

!

� f STARTg

!

! ( [ f GETg)

!

� fOK ;ERRORg

!

whih is spei�ed by the equation

USER(x; hSTART i) = h0

_

1

_

GET ; INSPECT (x)i

where the auxiliary funtion

INSPECT :

!

! fOK ;ERRORg

!

is spei�ed by the equations (i 2 ^ x 2

�

)

INSPECT (0

_

x) = hOK i

INSPECT (i

_

x) = hERRORi; i 6= 0

The system is formed by the parallel omposition of BUFFER and USER,

and a feedbak ofOutput

I

to Input and of Output to Input

I

; see its graphial

explanation in Figure 13.7.

USER

Input_E

Output_E

Input_I

Output_I

BUFFER

Input

Output

Fig. 13.7. Struture of Bit spei�ed using stream-proessing funtions
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The struture of the data ow diagram is aptured logially by the equa-

tions

Output = BUFFER(Input)

(Output I ;Output E ) = USER(Input I ; Input E )

Input I = Output

Input = Output I

Input E = hSTART i

Given these equations and the speifyig equations above, we may begin a

straightforward reasoning about the value of Output E .

Integration with algebrai data type spei�ations. The integration

of stream proessing funtions with algebrai spei�ation is quite simple.

Streams are nothing other than an abstrat data type, just slightly more

omplex beause they may be in�nite. The data types forming the messages

in a stream are easily spei�ed by algebrai spei�ations.

Stream proessing funtions an also be spei�ed by algebrai spei�a-

tions. Similarly sequential omposition, parallel omposition, and feedbak

an be desribed by algebrai spei�ations. Here we need higher-order al-

gebrai spei�ations, of ourse. The algebrai equations for the omposition

operators lead to a rih algebra of stream proessing omponents.

13.3 Dynami-data types (A3)

As shown in the setion on CCS, labeled transition systems (lts) are an e�e-

tive way to give an operational semantis to a proess algebra. In this setion

we show how lts an be diretly used for the spei�ation of system behavior.

13.3.1 Labelled transition logi (LTL)

The main referenes for LTL are [AR87,AR96b,CR97℄; the �rst appearane

is in [AMRW85℄. Notie that in the past the terms \algebrai transition sys-

tems" (e.g., in [AMRW85,AR87℄) and \dynami spei�ations" (e.g., in [CR97,

Reg93,AR96a℄) have also been used for the spei�ations built using LTL.

To model proesses LTL uses labeled transition systems, see Setion 13.1.1,

and supplies two di�erent kinds of spei�ations at di�erent levels of abstra-

tion:

requirement for expressing the requirements on a onurrent system; a re-

quirement spei�ation should determine a lass of nonisomorphi mod-

els, all those formally and abstratly desribing systems having suh re-

quirements;

design for expressing the abstrat design of a onurrent system, to de�ne

abstratly and formally the way in whih we intend to design the system;

a design spei�ation should determine one model, the one formally and

abstratly desribing the designed system.



13 Algebrai Spei�ation of Conurrent Systems 35

LT-Strutures. An lts an be represented by a �rst-order struture (an alge-

bra with prediates) A on a signature with at least two sorts, state and label ,

whose elements orrespond respetively to the states and labels of the sys-

tem, and a prediate ��! : state� label�state representing the transition

relation. The triple hjAj

state

; jAj

label

;!

A

i is the orresponding lts. Obviously

we an have lts whose states are built by states of other lts (for modeling

onurrent systems); in suh a ase we use strutures whose signature has

di�erent sorts orresponding to states and labels, and di�erent prediates

orresponding to transition relations.

In a formal model for onurrent systems we may need to onsider data,

too (for example, the data manipulated by a system suh as natural numbers);

to handle these ases we onsider strutures whih also have sorts that just

orrespond to data and not to states or labels of lts.

The �rst-order strutures (algebras) orresponding to lts are alled LT-

strutures and are formally de�ned as follows.

� An LT-signature LT� is a pair h�;DS i, where:

* � = hS ; 
;�i is a �rst-order signature,

* DS � S (the elements in DS are the dynami sorts, whih are the

sorts orresponding to states of lts),

* for all ds 2 DS there exist a sort lab ds 2 S � DS (labels of the

transitions of the proesses of sort ds) and a prediate

��! : ds � lab ds � ds 2 �

3

(transition relation of the dynami

elements of sort ds).

� An LT-struture on LT� (abbreviated to LT�-struture) is a �{�rst-

order struture (a �-algebra with prediates).

Design LT-spei�ations. LT-spei�ations are partiular algebrai/logi

spei�ations for LT-strutures where onditional formulas are used as ax-

ioms; sine transitions are desribed by prediate symbols, suh formulas also

allow us to express properties on the ativity of proesses.

An LT-spei�ation is a pair SP = hLT�;AX i, where LT� = h�;DS i is

an LT-signature and AX a set of onditional formulas on LT� having form

^

i=1;:::;n

�

i

) �

n+1

;

where for i = 1; : : : ; n + 1, �

i

is an atom, i.e., a formula having the form

either t = t

0

or p(t

1

; : : : ; t

m

).

We an give SP di�erent semantis, as initial and observational, briey

presented below.

The initial semantis of SP determines one (up to isomorphism) LT-

struture, preisely IMod(SP ) = T

�

=�

AX

, where �

AX

is the ongruene

3

In this paper, for some of the operation and prediate symbols we use a mix�x

notation; for instane, ��! : ds lab ds ds means that we shall write t

t

0

��! t

00

instead of ��! (t; t

0

; t

00

).
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over T

�

generated by the Birkho� dedutive system for onditional spei�a-

tions, sound and omplete w.r.t. the models of SP and the atomi formulas,

see Chapter 3.

Sine in an LT-struture the transitions orrespond to the truth of the

ground atoms built by the transition prediates, we have that the transitions

in the initial model of an LT-spei�ation are just those whose orresponding

atoms an be proved by using the Birkho� system.

In most ases the initial semantis of an LT-spei�ation is too �ne, sine

it takes into aount all details of the ativity of the proesses (as intermediate

states). It may happen that we want to onsider as semantially equivalent

two proesses having di�erent assoiated transition trees, see Setion 13.1.1.

There is a general way to give an observational semantis to LT-spei�-

ations introdued in the general ase of onditional spei�ations by some

of the authors and A. Giovini (see [AGR92℄ for a full presentation); this

approah is well suited for use in LT-spei�ations, whih speify onur-

rent systems, sine it generalizes and extends the Milner{Park's bisimulation

tehnique to a purely algebrai setting.

Example 13.8. (Bit using LTL) We �rst speify the two omponents of the

system, the bu�er and the user, and then how they ooperate.

Below \dsort : : : : : : :" is the onstrut for delaring dynami sorts, the

seond argument is the syntati form of the transition prediate; thus

dsort bu�er : ��!

delares the dynami sort bu�er , the assoiated sort of the labels lab bu�er ,

and the transition prediate ��! : bu�er � lab bu�er � bu�er .

spe BUFFER =

enrih INT QUEUE [bu�er=queue℄ by

dsorts bu�er : ��!

opns � : ! lab bu�er

RECEIVE ;RETURN : int ! lab bu�er

axioms Not Empty(b) ) b

RETURN(First(b))

������������! Remove(b)

b

RECEIVE(i)

��������! Put(i; b)

b

�

��! Put(10

10

;Empty)

Not Empty(b) ) b

�

��! Dup(b)

spe USER STATUS =

enrih INT by

sorts user status

opns Initial;Putting 0;Putting 1;Reading;Terminated : ! user status

Read : int ! user status

spe USER =

enrih USER STATUS [user=user status℄ by

dsorts user : ��!

opns START ;OK ;ERROR : ! lab user

PUT ;GET : int ! lab user
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axioms Initial

START

�����! Putting 0

Putting 0

PUT(0)

�����! Putting 1

Putting 1

PUT(1)

�����! Reading

Reading

GET (i)

�����! Read(i)

Read(0)

OK

��! Terminated

NotEq(i; 0) ) Read(i)

ERROR

�����! Terminated

spe SYSTEM =

enrih BUFFER +USER by

dsorts system : ��!

opns j : bu�er � user ! system

START ;OK ;ERROR; � : ! lab system

axioms u

START

�����! u

0

) Empty j u

START

�����! Empty j u

0

b

RECEIVE(i)

��������! b

0

^ u

PUT(i)

�����! u

0

) b j u

�

��! b

0

j u

0

b

RETURN(i)

��������! b

0

^ u

GET (i)

�����! u

0

) b j u

�

��! b

0

j u

0

u

OK

��! u

0

) b j u

OK

��! b j u

0

u

ERROR

�����! u

0

) b j u

ERROR

�����! b j u

0

b

�

��! b

0

) b j u

�

��! b

0

j u

Requirement LT-spei�ations. SP = hLT�;AX i with loose semantis

determines the lass of its models, Mod(SP ), i.e., all LT�{strutures satis-

fying all formulas in AX .

LT-spei�ations with loose semantis an be used to speify the require-

ments on a onurrent system, thus determining a lass of systems (all those

satisfying suh requirements), instead of abstratly de�ning one partiular

system. However, onditional formulas are too limited to express all relevant

requirements on onurrent systems, thus various extensions of �rst-order

logi are used, e.g., inluding ombinators of the branhing{time temporal

logi [CR97℄, the deonti logi [CR96℄, using the onept of \abstrat event"

[AR93℄, et. Below we briey present the extension of [CR97℄ with branhing-

time temporal ombinators (see Setion 13.2.3).

Let LT� = hhS ; 
;�i;DS i be an LT-signature, L an LT�-struture, and

ds 2 DS . We need the following tehnial de�nitions. PATH (L; ds) denotes

the set of the paths for the elements of sort ds , i.e., all sequenes of transitions

having the form either (1) or (2) below:

(1) d

0

l

0

d

1

l

1

d

2

l

2

: : :

(2) d

0

l

0

d

1

l

1

d

2

l

2

: : : d

n

n � 0

where for all i � 0, d

i

2 jLj

ds

, l

i

2 jLj

lab ds

, and (d

i

; l

i

; d

i+1

) 2 !

L

.

FirstS(�) denotes the �rst state of �; and FirstL(�) denotes the �rst label

of �, if exists, i.e., if � is not just a state.

� 2 PATH (L; ds) is maximal i� either it is in�nite or there do not exist

l, d

0

suh that hd

n

; l; d

0

i 2 !

L

.
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Given � = d

0

l

0

d

1

l

1

d

2

l

2

: : : and h � 0, if d

h

exists, then �b

h

denotes

the path d

h

l

h

d

h+1

l

h+1

d

h+2

: : : , otherwise unde�ned.

The set of formulas, denoted by F (LT�;X ), and the family of the sets

of path formulas, denoted by hPF (LT�;X )

ds

i

ds2DS

, on LT�, and variables

X are de�ned by multiple indution as follows. For eah s 2 S and ds 2 DS :

formulas

{ p(t

1

; : : : ; t

n

) 2 F (LT�;X ) p : s

1

� � � � � s

n

2 �, t

i

2 jT

LT�

(X )j

s

i

{ t

1

= t

2

2 F (LT�;X ) t

1

; t

2

2 jT

LT�

(X )j

s

{ : �; � ) �

0

; 8 x: � 2 F (LT�;X ) �; �

0

2 F (LT�;X ); x 2 X

{ 4 (t; �) 2 F (LT�;X ) t 2 jT

LT�

(X )j

ds

, � 2 PF (LT�;X )

ds

path formulas

{ [ � x: � ℄ 2 PF (LT�;X )

ds

x 2 X

ds

, � 2 F (LT�;X )

{ h�x: �i 2 PF (LT�;X )

ds

x 2 X

lab ds

, � 2 F (LT�;X )

{ �

1

U �

2

2 PF (LT�;X )

ds

�

1

; �

2

2 PF (LT�;X )

ds

{ : �; � ) �

0

; 8 x: � 2 PF (LT�;X )

ds

�; �

0

2 PF (LT�;X )

ds

; x 2 X

s

The formulas of suh logi inlude the usual formulas of �rst-order logi

with equality; if LT� ontains dynami sorts, they also inlude formulas

built with the transition prediates.

The formula4 (t; �) an be read as \for every path � starting in the state

denoted by t, the path formula � holds on �". We anhor these formulas to

states, following the ideas in [MP89℄. The major di�erene with the lassial

temporal logi of Setion 13.2.3 is that we do not speify a single system

but, in general, one or many types of systems, so there is not a single initial

state but several, hene the need for an expliit referene to states (through

terms) in the formulas built with 4 . The formula [�x: � ℄ holds on the path

� whenever � holds at the �rst state of �; while the formula h�x: �i holds on

the path � if � is not just a single state and � holds at the �rst label of �.

Let L be an LT�{struture and v a variable evaluation of X in L; then

we de�ne by multiple indution:

� the validity of � 2 F (LT�;X ) in L w.r.t. v (written L; v j= �),

� the validity of � 2 PF (LT�;X ) on a path � in L w.r.t. v (written

L; v; � j= �),

as follows:

{ L; v j= p(t

1

; : : : ; t

n

) i� hv

#

(t

1

); : : : ; v

#

(t

n

)i 2 p

L

{ L; v j= t

1

= t

2

i� v

#

(t

1

) = v

#

(t

2

)

{ L; v j= 4 (t; �) i� for eah � 2 PATH (L; ds) suh that FirstS(�) =

v

#

(t), L; v; � j= �

{ L; v; � j= [ � x: � ℄ i� L; v[FirstS(�)=x℄ j= �

{ L; v; � j= h�x: �i i� FirstL(�) is de�ned and L; v[FirstL(�)=x℄ j= �

{ L; v; � j= �

1

U �

2

i� there exists j � 0 suh that for all h, 0 < h < j,

L; v; �b

h

j= �

1

and L; v; �b

j

j= �

2

{ : �, � ) �

0

, 8 x: �, : �, � ) �

0

, 8 x: � as usual.



13 Algebrai Spei�ation of Conurrent Systems 39

� is valid in L (written L j= �) i� L; v j= � for all evaluations v.

In the above de�nitions we have used a minimal set of ombinators. How-

ever it is possible to de�ne other, derived, ombinators as for the lassial

logis of Setion 13.2.3; plus 5(t; �) =

def

: 4 (t;: �) (whih means at least

in one ase, i.e., the property represented by � holds at least on one path).

Example 13.9. (Bit using LTL (requirements))As already done in Exam-

ple 13.6, we give here some sample requirements onBit; but in a di�erent way

to before, we speify the system modularly, by onsidering its omponents

�rst and then how they are put together in order to ooperate. Furthermore,

temporal LTL has also edge formulas, so we an also onveniently express

properties onerning the interations of the system with the environment.

Sine properties are anhored to proesses (onurrent systems), we an relate

properties of the system to properties of its omponents.

Below h�l: l = ti is abbreviated to hti.

spe USER =

enrih INT by

dsorts user : ��!

preds Terminated : user

opns PUT ;GET : int ! lab user

axioms Terminated(u) )

4 (u; [�u

0

:Terminated(u

0

)℄)

�� if the user is terminated, it remains so forever (R1)

spe BUFFER =

enrih INT by

dsorts bu�er : ��!

opns RECEIVE ;RETURN : int ! lab bu�er

axioms b

RECEIVE(i)

��������! b

0

) 4 (b

0

; [ � x:9 x

0

: x

RETURN(i)

��������! x

0

℄)

�� after reeiving i the bu�er eventually will have

�� the apability to return i

5(b; hRECEIVE(i)i)

�� the bu�er must be able to reeive any integer (R0)

spe SYSTEM =

enrih BUFFER +USER by

dsorts system : ��!

opns START ;OK ;ERROR; � : ! lab system

j : bu�er � user ! system

axioms 9 b; u: s = b j u

hb; ui

l

��! hb

0

; u

0

i )

(b = b

0

^ u

l

��! u

0

) _

(u = u

0

^ b

l

��! b

0

) _

(9 i: l = � ^ u

GET(i)

�����! u

0

^ b

RETURN(i)

��������! b

0

) _

(9 i: l = � ^ u

PUT(i)

�����! u

0

^ b

RECEIVE(i)

��������! b

0

)

�� (R5)
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5(s; h�l:: l = ERRORi)

�� there always exists a possible \orret" behavior (R2)

Terminated(u) )

4 (b j u; [�s:9 b

0

; u

0

: (s = b

0

j u

0

^ Terminated(u

0

))℄ U

[ � s:: 9 l; s

0

: s

l

��! s

0

℄)

�� if the user is terminated, it remains so until the system stops

s

START

�����! s

0

) 4 (s

0

; (hOK i _ hERRORi))

�� after the system has been started, in any ase eventually

�� it will send out either OK or ERROR (R3)

(s

OK

��! s

0

_ s

ERROR

�����! s

0

) )

4 (s

0

; h�l:: (l = OK _ l = ERROR)i)

�� OK and ERROR are sent at most one, and it annot

�� happen that both are sent (R4)

5(b j u; h�i) ) 5(b; h�i)

�� if the system may eventually only do internal ations,

�� then the bu�er omponent has suh a possibility, too

Some of the axioms of the above spei�ations are just to show the peuliarity

of this logi. For example, the unique axiom of USER requires that it must

remain terminated in isolation; while the axiom of SYSTEM about termi-

nated requires something about the behavior of the user when put within the

system. The last axiom of SYSTEM shows how properties of the omponents

an be related to properties of the whole system.

13.3.2 Rewriting logi (RL)

RL is a formalism for the spei�ation of onurrent systems developed by

Meseguer in the reent years, sharing some of the ideas of LTL; moreover,

its spei�ations are syntatially very similar to those of LTL. For both for-

malisms the behavior of proesses is modeled by means of transition systems;

the states of suh systems are elements of some arriers of an algebra, given

as the initial model of a onditional spei�ation; the struture of a term rep-

resenting one of suh states models the onurrent struture of the system in

that state; and the transitions are de�ned by onditional formulas in whih

the transition symbol (arrow) appears.

Clearly, there are also major di�erenes between the two formalisms: the

transitions are labeled in the ase of LTL and nonlabeled for RL, and have

speial properties in the RL ase, as to be losed by reexivity, transitivity,

and ongruene w.r.t. the operations; and, most important, their intuitive

interpretation is very di�erent in the two ases:

LTL t

l

��! t

0

means that the system in the state represented by t has the

\apability" of passing into the state represented by t

0

by performing

some \atomi" ativity, i.e., an ativity that annot be interrupted, where

no information on the intermediate states is available, whose interation

with the environment is represented by l, and at eah instant a system

an perform only one of these ativities.
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RL t ��! t

0

means that the system in the state represented by t an pass

into the state represented by t

0

by performing some ativity ompletely

independently from the environment; suh ativity may be also the om-

position of several \smaller" ativities of the same system, and so infor-

mation on the intermediate states may be available (for a terminating

system, for example, we may have transitions whih orrespond to whole

evolutions of the system from the beginning till the termination).

A omplete study of the relationship between RL and LTL an be found

in [AR97b℄.

Below we give a short presentation of RL, the main referenes are [Mes92,

MM93℄; notie that in suh papers Meseguer has used the language of ate-

gory theory to present RL, while here, for larity, we use a more logi-algebrai

style.

A rewrite theory, i.e., an RL spei�ation, is a 4-tuple R = h�;E ;L;Ri,

where � = hS ; 
i is a signature, E a set of equations on �, and R a set of

rewrite rules of the form

r : [t℄ ��! [t

0

℄ if [u

1

℄ ��! [v

1

℄ ^ : : : ^ [u

k

℄ ��! [v

k

℄

with r 2 L and [t℄, [t

0

℄, [u

1

℄, [v

1

℄, : : : , [u

k

℄, [v

k

℄ 2 T

�

(X )=�

E

.

The entailment system assoiated with R has the following rules:

1. Reexivity For eah [t℄ 2 T

�

(X )=�

E

[t℄ ��! [t℄

2. Congruene For eah f : s

1

� � � � � s

n

! s 2 


[t

1

℄ ��! [t

0

1

℄ : : : [t

n

℄ ��! [t

0

n

℄

[f (t

1

; : : : ; t

n

)℄ ��! [f (t

0

1

; : : : ; t

0

n

)℄

3. Replaement

0

For eah rewrite rule

r : [t(x)℄ ��! [t

0

(x)℄ if [u

1

(x)℄ ��! [v

1

(x)℄ ^ : : : ^ [u

k

(x)℄ ��! [v

k

(x)℄

belonging to R, where x is the vetor of all variables appearing in the

rule and w a orresponding vetor of elements in T

�

(X )=�

E

[u

1

(w=x)℄ ��! [v

1

(w=x)℄ : : : [u

k

(w=x)℄ ��! [v

k

(w=x)℄

[t(w=x)℄ ��! [t

0

(w=x)℄

4. Transitivity

[t

1

℄ ��! [t

2

℄ [t

2

℄ ��! [t

3

℄

[t

1

℄ ��! [t

3

℄

Here, for simpliity, we use the entailment system above, whih is a

slightly modi�ed version of the original [Mes92℄: rule 3, shown below, has

been hanged to avoid the simultaneous rewriting of an element substituted

for a variable. In [AR97b℄ we show that this entailment system is equivalent
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to the original, sine the entailed sequents are the same and the struture of

the proofs is preserved.

Now we de�ne the models of the rewrite theories using the entailment

system.

� An R-presystem is a diret reexive graph G = (�

0

; �

1

: Edges ! Nodes ;

id), where id : Nodes ! Edges suh that �

0

(id (n)) = �

1

(id(n)) = n (id

expresses the reexivity of the graph) together with:

{ a �{struture on Nodes suh that it satis�es E and the edges respet

the sorts (i.e., for eah edge e, �

0

(e) and �

1

(e) have the same sort);

{ for eah f : s

1

� � � � � s

n

! s 2 
,

a partial operation f : Edges

n

�!Æ Edges suh that

f (e

1

; : : : ; e

n

) is de�ned i� for i = 1; : : : ; n, e

1

, : : : , e

n

are edges of

sorts s

1

, : : : , s

n

respetively, and

�

0

(f (e

1

; : : : ; e

n

)) = f (�

0

(e

1

); : : : ; �

0

(e

n

)),

�

1

(f (e

1

; : : : ; e

n

)) = f (�

1

(e

1

); : : : ; �

1

(e

n

));

{ a partial operation ; : Edges

2

�!Æ Edges suh that e; e

0

is de�ned i�

e and e

0

have the same sort and �

1

(e) = �

0

(e

0

) and �

0

(e; e

0

) = �

0

(e),

�

1

(e; e

0

) = �

1

(e

0

);

{ for eah rewrite rule

r : [t(x)℄ ��! [t

0

(x)℄ if [u

1

(x)℄ ��! [v

1

(x)℄ ^ : : : ^ [u

k

(x)℄ ��! [v

k

(x)℄

belonging to R, a partial operation

4

r : VarEv � Edges

k

�!Æ Edges ,

where VarEv is the set of variable evaluations from x into Nodes ,

suh that r(v; e

1

; : : : ; e

k

) is de�ned i�, for i = 1; : : : ; k, �

0

(e

i

) =

v

#

(u

i

(x)) and �

1

(e

i

) = v

#

(v

i

(x)), and �

0

(r(v; e

1

; : : : ; e

k

) = v

#

(t(x)),

�

1

(r(v; e

1

; : : : ; e

k

)) = v

#

(t

0

(x)).

� A morphism � between two R{presystems P and P

0

is a graph morphism

whih preserves the �{struture on the nodes and the operations on the

edges.

� An R{system is an R{presystem satisfying the following equations on

edges (the adaptation of those of [Mes92℄ to our modi�ed entailment

system):

1. Category (e; e

0

); e

00

= e; (e

0

; e

00

)

2. Funtoriality of the �{struture

for eah f : s

1

� � � � � s

m

! s 2 


f (e

1

; e

0

1

; : : : ; e

m

; e

0

m

) = f (e

1

; : : : ; e

m

); f (e

0

1

; : : : ; e

0

m

)

f (id (n

1

); : : : ; id(n

m

)) = id(f (n

1

; : : : ; n

m

))

3. Axioms in E For eah t(x

1

; : : : ; x

n

) = t

0

(x

1

; : : : ; x

n

) 2 E

t(e

1

; : : : ; e

n

) = t

0

(e

1

; : : : ; e

n

).

� T

R

is the initial element in the lass of the R{systems, i.e., the R{system

where Nodes is T

�

=�

E

, the edges are generated by the operations with

edge types, and the edges represented by two di�erent terms are identi�ed

i� their identi�ation follows from equations 1, 2, and 3 above.

4

If several rules with the same label will result to operations of the same funtion-

ality, then we assume that the names of suh operations are made di�erent.
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The ground terms built by the edge operations bijetively orrespond to

the proofs of sequents in the entailment systems assoiated with R; and the

axioms on edges orrespond to the required identi�ations on the proofs.

R{systems, and therefore also T

R

, an be seen as ategories, where the

objets are the nodes, the morphisms are the edges, and \; " is the omposi-

tion operation on morphisms; axiom 1 and the fat that the graph is reexive

ensure that they really are ategories.

T

R

is onsidered the standard semantis of a theory R.

We an see a striking di�erene between RL and LTL: for LTL the preise

form and number of the axioms of a spei�ation is irrelevant, while the

preise form and number of rules of a theory is extremely important for RL.

If two RL theories R and R

0

have the same signature, equivalent sets of

equations, and !

R

= !

R

0

, then in general T

R

and T

R

0

are not isomorphi.

In LTL we have that for eah spei�ation there exist in�nite isomorphi

spei�ations with di�erent sets of axioms (e.g., they an be obtained by

adding derived axioms).

Furthermore, the rule labels are not relevant in RL, only the rules are;

indeed the same label an be used for several rules but the edges and the

operations over them are determined by the rules, not by the labels; and we

have that appliations of operations assoiated with di�erent rules, labeled

in the same way with premises and onsequenes of the same sorts, must be

disambiguated.

Example 13.10. (Bit using RL)

spe BUFFER =

enrih INT QUEUE [bu�er=queue℄ by

rl �1: b ��! Dup(b)

rl �2: b ��! Put(10

10

;Empty)

spe USER = USER STATUS[user=user status℄,

where USER STATUS has been de�ned in Example 13.8; the latter is a

stati algebrai spei�ation, and thus may be onsidered as a partiular RL

spei�ation without proper transitions.

spe SYSTEM =

enrih BUFFER +USER by

sorts system

opns j : bu�er � user ! system

rl START :Empty j Initial ��! Empty j Putting 0

rl �3: b j Putting 0 ��! Put(0; b) j Putting 1

rl �4: b j Putting 1 ��! Put(1; b) j Reading

rl �5: Not Empty(b) )

b j Reading ��! Remove(b) j Read(First(b))

rl OK : b j Read(0) ��! b j Terminated

rl ERROR :NotEq(i; 0) ) b j Read(i) ��! b j Terminated
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Notie the major di�erenes ompared with the LTL spei�ation of Exam-

ple 13.8, even though the two seem very similar. In this ase the spei�a-

tion is strutured by giving �rst the spei�ations of the two omponents;

but now the ativity of the user is not given in USER, and only part of

that of the bu�er is given in BUFFER. Indeed, if, e.g., we have the rule

Putting 0 ��! Putting 1 in USER, then the user in any ase may perform

suh a transition also without synhronizing with the bu�er.

Furthermore there is no provision for knowing that START , OK , and

ERROR are di�erent interations with the environment, while �1, : : : , �5

orrespond to internal ativities; see [AR97b℄ for a detailed omparison.

13.4 Dynami data-types (A4)

In reent literature various approahes have been proposed to extend the

lassial algebrai framework for the spei�ation of data types to handle

proesses; the �rst one was Goguen and Meseguer's reexive semantis for

objet{orientation in [GM87℄. All these approahes share some ommon fea-

tures, whih have been niely summarized in [EO94℄ by Ehrig and Orejas,

where they report informally a general shema for building an algebrai

framework following the state-as-algebra style:

� states-as-algebras; thus, and impliitly, dynamis is modeled by a (labeled

or not) transition system;

� all the statealgebras extend a �xed algebra of basi nondynami values

(stati or value algebra);

� the elements of the arriers of the nonstati sorts of a statealgebra are the

omponents of the system at that moment, and the nonstati operations

represent how they are organized at that moment;

� state-transformations = transitions from a statealgebra to another stateal-

gebra, orrespond in most ases to operations of a speial kind (dynami

operations) and in general are not homomorphisms (the organization and

the number of omponents may hange).

Notie that dynami operation alls are the ommon mehanism to ex-

press the interations with the environment; but in this way the reation

to an external stimulus (a dynami operation all) must be deterministi

(exept if we leave the lassial algebrai frameworks for some nondeter-

ministi framework).

While the usual algebrai tehniques may be used to de�ne/speify the

value and the statealgebras, there is no standard way to de�ne/speify

the dynami operations (the transitions).

� there is no a general way to handle onurreny/distribution/ooperation

among proess omponents or to give in a strutured way the spei�ation

of a onurrent system by omposing the spei�ations of its omponents;

usually eah approah o�ers ad ho tehniques;



13 Algebrai Spei�ation of Conurrent Systems 45

� most of these approahes have been developed with objet-orientation in

mind rather than onurreny generally.

Here, we briey report on only some approahes; other an be found,

for instane, in [Bau95,PP95℄. Among them, evolving algebras are peuliar;

sine the emphasis is not on the data struture aspets, but more on the

operational idea of state transitions; indeed, reently they have been alled

\Abstrat State Mahines" (ASM).

13.4.1 Evolving algebras (abstrat state mahines)

The basi idea of the \evolving algebras" (see, for instane, [Gur93,Gur95℄)

is perfetly summarized by their name. Essentially an evolving algebra (spe-

i�ation) onsists of a desription of a (nonlabeled) transition system, whose

states are algebras on the same homogeneous signature built over the same

universe (inluding Boolean values). Some of the operation symbols are qual-

i�ed as \stati" and their interpretation is the same in any (algebra whih is

a) state. The transitions are de�ned by rules of the following form:

eond ) up

1

; : : :up

k

where, for eah j = 1; : : : ; k, the funtion update up

j

has form

f

j

(e

j

1

; : : : ; e

j

n

j

) := e

j

;

eond, e

1

1

, : : : , e

1

n

1

, e

1

, : : : , e

k

1

, : : : , e

k

n

k

, e

k

are \desriptions" (any possible

mathematially intelligible expressions) of elements of the universe, the �rst

desribing a Boolean value, and for j = 1; : : : ; k, f

j

is an operation of the

signature of arity n

j

.

The interpretation of one of suh rules is that the system in a state A

suh that eond holds on it, may pass to another algebra B where for eah

operation of the signature f , f

B

(x

1

; : : : ; x

n

) =

{ the interpretation of e

j

in A, if f = f

j

and x

1

; : : : ; x

n

oinide with the

interpretations of e

j

1

; : : : ; e

j

n

j

in A;

{ f

A

(x

1

; : : : ; x

n

), otherwise.

Obviously, the funtion updates up

1

, : : : up

k

in a rule must be onsistent

in the sense that they do not simultaneously update the same funtion on

the same arguments with di�erent values.

Here, for simpliity, we onsider only the basi evolving algebras, where

there is no provision for onurrent struturing; onerning reativity, some

operations of the signature are lassi�ed \external" with the idea that they

an hange under the inuene of (the nonfurther quali�ed) environment and

annot be modi�ed by the rules.

Thus, essentially, to give an evolving algebra spei�ation means to give

a (nonlabeled) transition system where the states are �nite tuples, whih an
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also be of funtional type, desribing the transitions by saying only whih

omponents of the state tuples hange and how, and for the omponents

of funtional type, only for whih arguments hange and how. In this way

state transformations are desribed in a very eonomi way. Consider, for

example, the onditional rules desribing the modi�ation of tuple-like states,

following, e.g., an LTL-style (see Setion 13.3.1), as

eond ) h

1

; : : : ; 

i

; : : : ; 

n

i ! h

1

; : : : ; 

0

i

; : : : ; 

n

i

and

eond )

h

1

; : : : ; 

i

; : : : ; 

n

i ! h

1

; : : : ; � x: if x = a then b else 

i

(x); : : : ; 

n

i

versus the orresponding simpler versions given in an evolving algebra style:

eond ) C

i

:= 

0

i

and eond ) C

i

(a) := b:

After all, evolving algebras are nothing but lts where the states are al-

gebras. As for other purely lts{based approahes, the treatment of liveness

onditions and modular omposition are less elegant.

Example 13.11. (Bit using evolving algebras)

�� SIGNATURE

�� Stati operations

Empty (0{ary)

Remove, Dup, First, Not Empty (1{ary)

Put (2{ary)

Initial, Terminated, Putting 0, Putting 1, Reading (0{ary)

Read (1{ary)

START , OK , ERROR (0{ary)

�� Dynami operations

Buf Cont, User State, Output (0{ary)

�� External operations

Input (0{ary)

�� de�nition of stati operations

.....

�� RULES

Input = START ^ Buf Cont = Empty )

User State := Putting 0

User State = Putting 0 )

User State := Putting 1

Buf Cont := Put(0;Buf Cont)

User State = Putting 1 )

User State := Reading

Buf Cont := Put(1;Buf Cont)
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User State = Reading ^ Not Empty(Buf Cont) )

User State := Read(First(Buf Cont))

Buf Cont := Remove(Buf Cont)

true ) Buf Cont := Put(10

10

;Empty)

true ) Buf Cont := Dup(Buf Cont)

User State = Read(0) )

User State := Terminated

Output := OK

User State 6= Read(0) )

User State := Terminated

Output := ERROR

13.4.2 D{oids

D-oids [AZ95℄ are mathematial strutures aimed at abstratly modeling

onurrent systems by extending the algebrai approah for modeling data

strutures. In [AZ95℄ a very general approah is taken, sine the de�nition of

a d-oid is parameterized by the underlying stati framework for (values and)

statealgebras, but here for simpliity, we �x suh framework to the usual

algebras.

A d-id has a signature, alled a dynami signature. In general a dynami

signature is a pair onsisting of a signature � with a set of sorts S and a

family of dynami operation symbols DOP over S . A dynami operation dop

may have a funtionality dop : w ! [s℄, with w 2 S

�

and [s℄ 2 S [ f�g.

This orresponds to the idea that a dynami operation may also return a null

value. There are also onstant dynami operations dop having funtionality

dop : ! [s℄.

A d{oid over h�;DOP i onsists of a lass A of �{algebras and an inter-

pretation of the dynami operations. If dop : w! [s℄, then an interpretation

of dop is a partial funtion mapping hA; ai, with A 2 A and a 2 jAj

w

, to a

transformation of A into an algebra B 2 A and a returned value v 2 jBj

[s℄

,

when [s℄ is not null. A transformation of A in B is a triple hA; f ;Bi, where f

is a partial map from the arrier of A into the arrier of B, alled a traking

map. The traking map is essential for keeping trak of the identity of the

elements of the system: if e is an element in A, then we an reover it in the

new state B by applying f to e; traking maps allow us to deal in a very

abstrat way with objet reation (nonsurjetive maps) and deletion (non

total traking maps). Traking maps may be noninjetive, to model the ases

where some elements with di�erent identities are glued together.

Stati basi values may be provided by a value part, just an algebra, see

[AZ95℄.
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The interpretation of a onstant dynami operation dop : ! [s℄ is an

algebra A 2 A and a returned value v 2 jAj

[s℄

, whenever [s℄ is not null.

Finally, it is possible to extend in a natural way the notion of term to

the dynami ase. Terms de�ne a syntati struture, the term d{oid, whih

is, under some assumptions, a free struture for the appropriate ategorial

setting [AZ96℄.

Conerning spei�ations based on d-oids, [Zu96℄ presents a general way

to build institutions for dynami data type spei�ations and shows an ap-

pliation to the d-oid ase. The formulas of the proposed logi allow us to

express stati properties, preisely on the value part and the statealgebras (a

kind of system invariants). Conerning the properties on dynamis, it allows

formulas for expressing pre- and post-onditions on sequential ompositions

of dynami operations, represented by the elements of the term d-oid, and for

requiring that two ompositions are the same, i.e., they represent the same

transformation.

Example 13.12. (Bit using d-oids) The value part is given by the ini-

tial model of following algebrai spei�ation, where USER STATUS and

MESSAGE have been given respetively in Examples 13.8 and 13.3, and

INT QUEUE is in Appendix A.

spe VALUE = INT QUEUE + USER STATUS + MESSAGE

spe SYSTEM =

enrih VALUE by �� value part

�� statealgebra part

Buf Cont : ! queue

User State : ! user status

Output : ! message

�� dynami operations

START ; INT1 ; INT2 ; INT3 : !

OUTPUT : ! message

�� dynami properties

fBuf Cont = Empty ^ User State = InitialgSTART

fUser State = Putting 0g

fUser State = Putting 0g INT1

fUser State = Putting 1 ^ Buf Cont = Put(0;Buf Cont)g

fUser State = Putting 1g INT1

fUser State = Reading ^ Buf Cont = Put(1;Buf Cont)g

fUser State = Reading ^ Not Empty(Buf Cont)g INT1

fUser State = Read(First(Buf Cont)) ^

Buf Cont = Remove(Buf Cont)g

INT2 fBuf Cont = Put(10

10

;Empty)g

INT3 fBuf Cont = Dup(Buf Cont)g

fUser State = Read(0)g INT1

fUser State = Terminated ^ Output = OK g

fUser State = Read(i) ^ : (i = 0)g INT1

fUser State = Terminated ^ Output = ERRORg

fUser State = Terminatedg m OUTPUT
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13.4.3 Algebrai spei�ations with impliit state

The spei�ation formalism of Dauhy and Gaudel [DG93,GDK96℄ is based

on the notion of elementary aess funtion and elementary modi�er. Elemen-

tary aess funtions haraterize the struture of the states of the system, as

kinds of observation funtions, while elementary modi�ers allow us to perform

updates of the elementary aesses without returning any value. Elementary

modi�ers are built-in features of the spei�ation language, assoiated with

the elementary aess funtions.

A spei�ation in this formalism is a 4{tuple

hh�;AX i; h�

a

;AX

a

i; h�

mod

;Def

mod

i;AX

init

i;

where:

{ h�;AX i is the spei�ation of the stati values used.

{ h�

a

;AX

a

i is the spei�ation of the aess funtions and is a onser-

vative extension (see, Chapter 6) of h�;AX i with no new sort (thus

� � �

a

). Some of the aess funtions are elementary, while the others

are de�ned in terms of the elementary ones by the aess axioms of AX

a

.

{ The admissible initial states are haraterized by the set of axiomsAX

init

.

{ The de�nition of the elementary aess funtions makes impliitly avail-

able the orresponding elementary modi�ers in the following way: given

an elementary aess funtion f with funtionality s

1

� � � � � s

n

! s,

the orresponding elementary modi�er is �-f with domain s

1

�� � ��s

n

s.

Elementary modi�ers are the tools for desribing the statealgebras trans-

formation.

Given some terms with variables t

1

, : : : , t

n

of sorts s

1

, : : : , s

n

and a term

t of sort s, the meaning of the statement �-f(t

1

; : : : ; t

n

; t) is a modi�ation

of f . More preisely, it transforms a statealgebra A into a statealgebra B

suh that:

* f

B

(v

1

; : : : ; v

n

) = (�(t))

B

if there exists a ground substitution � suh

that for i = 1; : : : ; n v

i

= (�(t

i

))

A

;

* f

B

(v

1

; : : : ; v

n

) = f

A

(v

1

; : : : ; v

n

) otherwise;

* derived aess funtions whih depend on f are hanged aordingly;

* any other operation and all arriers are unhanged.

h�

mod

;Def

mod

i de�ne some omposite modi�ers, the funtionalities of

whih have no range. The axioms in Def

mod

are positive onditional and

their premises are built on �

a

. They de�ne the modi�ers using state-

ments built from the elementary modi�ers and the following onstruts:

nil identity; ; sequential omposition; and omposition in any order (it

is responsibility of the spei�er to hek that the result of the omposi-

tion does not depend on the order); � denotes modi�ations made on the

same state, i.e., all preonditions and arguments of the involved modi-

�ers must be evaluated in the initial state prior to doing all orresponding

modi�ations.
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Example 13.13. (Bit using aess funtions and modi�ers)Let VALUE

be the algebrai spei�ation de�ned in Example 13.12.

spe SYSTEM =

enrih VALUE by �� basi stati values

�� elementary aesses

Buf Cont : ! queue

User State : ! user status

Output : ! message

�� modi�ers

START : !

� : !

�� modi�er de�nitions

User State = Initial ^ Buf Cont = Empty )

START = �-User State(Putting 0)

� =

ases

User State = Putting 0 )

(�-User State(Putting 1) ^ �-Buf Cont(Put(0;Buf Cont)))

_ (�-Buf Cont(Put(10

10

;Empty)))

_ (�-Buf Cont(Dup(Buf Cont)))

User State = Putting 1 )

(�-User State(Reading) ^ �-Buf Cont(Put(1;Buf Cont)))

_ (�-Buf Cont(Put(10

10

;Empty)))

_ (�-Buf Cont(Dup(Buf Cont)))

User State = Reading ^ Not Empty(Buf Cont) )

(�-User State(Read(First(Buf Cont))) ^

�-Buf Cont(Remove(Buf Cont)))

_ (�-Buf Cont(Put(10

10

;Empty)))

_ (�-Buf Cont(Dup(Buf Cont)))

User State = Read(0) )

(�-User State(Terminated) ^ �-Output(OK ))

_ (�-Buf Cont(Put(10

10

;Empty)))

_ (�-Buf Cont(Dup(Buf Cont)))

User State = Read(i) ^ NotEq(i; 0) = True )

(�-User State(Terminated) ^ �-Output(ERROR))

_ (�-Buf Cont(Put(10

10

;Empty)))

_ (�-Buf Cont(Dup(Buf Cont)))

end ases

13.4.4 Statealgebras with referenes

In [GR95,GR97℄ Gro�e-Rhode presents a state-as-algebra approah based on

a general idea of \referene".

A statealgebra is a partial algebra whih is an extension of a given alge-

bra A, alled the base model (stati value algebra). More preisely, a state

is onsidered as a stati data type where referenes are added. For some
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sorts, say s, a speial referene sort ref (s) and a ontents operation symbol

!

s

: ref (s)! s are introdued in the signature. The base model is a model of a

normal partial equational spei�ation, alled the base spei�ation, with ex-

istene equations and some minor restritions onerning equations between

referenes.

For a list of (pairwise di�erent) referenes d

!

= d

1

: : :d

n

with d

i

2

jAj

ref (s

i

)

and a orresponding list of values a

!

= a

1

: : :a

n

with a

i

2 jAj

s

i

, the

state A

[d

!

:=a

!

℄

on the base model A, where the referenes d

i

have ontents

a

i

, is formally de�ned as a free extension of A by an existene equation of

the form !

s

1

(d

1

) = a

1

^ : : : ^ !

s

n

(d

n

) = a

n

.

The de�nition of states as free extensions of the base model allows one to

formalize the notion of persistent state: a persistent state on A is a model of

the base spei�ation whose restrition to the signature of the value datatypes

(disregarding the referene sorts) is isomorphi to A. Intuitively a persistent

state an be regarded as an extension with the ontent funtions of A, i.e.,

as a pair hA; envi, where env is an environment whih is a family of partial

funtions mapping referenes to values. It is proved that persistent states are

in a one-to-one orrespondene with the pairs hA; envi.

On top of a base spei�ation a transition spei�ation an be de�ned.

Dynami operations are spei�ed by a set of method de�nitions, whih are

onditional parallel assignments. It is possible to have several assignments

for the same method with overlapping onditions, hene dynami operations

are nondeterministi. Finally, state transitions are spei�ed by method ex-

pressions built by the appliation of methods to arguments and by sequential

omposition of them.

Some interesting results onern strutured spei�ations; following the

well-established theory of omposition of spei�ations and of parametri

spei�ations in an arbitrary institution, Gro�e-Rhode proves that his spei-

�ations enjoy the properties needed for de�ning the usual struturing meh-

anisms for omposing spei�ations.

Example 13.14. (Bit using statealgebras with referenes) Let VALUE

be the spei�ation de�ned in Example 13.12.

spe VALUE�REF =

enrih VALUE[bu�er=queue℄ by

sorts ref (user status); ref (bu�er); ref (message)

refs U : ! ref (user status)

B : ! ref (bu�er)

Output : ! ref (message)

spe SYSTEM =

enrih VALUE�REF by

�� methods

START : ! ref (user status)

!U = Initial ^ !B = Empty ) START (U) := Putting 0: O
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INT1 : ! ref (bu�er) � ref (user status)

!U = Putting 0 ) INT1 (B;U) :=< Put(0; !B);Putting 1 > :O

!U = Putting 1 ) INT1 (B;U) :=< Put(1; !B);Reading > :O

!U = Reading ^ Not Empty(!B) )

INT1 (B;U) :=< Remove(!B);Read(First(!B)) > :O

INT2 : ! ref (bu�er)

INT2 (B) := Put(10

10

;Empty)

INT2 (B) := Dup(!B)

INT3 : ! ref (user status)� ref (message)

!U = Read(0) ) INT3(U;Output) :=< Terminated;OK > :O

!U = Read(i) ^ NotEq(i; 0) )

INT3 (U;Output) :=< Terminated;ERROR > :O

13.5 Conlusion

We have distinguished four main approahes in the use of algebrai tehniques

for the spei�ation of reative, and onurrent systems and presented some

methods illustrative of the di�erent viewpoints. There has not been room to

inlude all methods, in partiular those more reent (like the oalgebrai)

or requiring a deeper treatment (like hidden spei�ations), but we have

provided pointers to the relevant literature. Nor we have made any attempt at

omparing the di�erent methods, sine a thorough omparison should follow

some rigorous riteria, whih are still under disussion (see, e.g., some hints

in [AR97a℄). Instead we have provided a guided tour, hopefully stimulating

further reading and researh.

Looking bak, we an now observe that, in order to handle properly the

features typial of onurrent and reative systems, the algebrai tehniques

need some kind of extension of a very di�erent nature. First they all need an

underlying model able to deal with the onurreny issues (like Petri nets or

Labeled Transition Systems). Then there are spei� adjustments either at

the level of the spei�ation language (A2), or of some basi tehnial point

(generalized bisimulations, oalgebras instead of algebras, hidden spei�a-

tions), or at the method level [BCPR96℄.

In general any really usable formalismfor the spei�ation of systems must

be omplemented by a spei�ation formalism for data and in this respet

algebrai tehniques have the advantage of being very abstrat and linked to

languages supporting modularity . This is the rationale behind the suess of

methods following viewpoint A2, like LOTOS.

We an also observe that only the algebrai methods following approah

A3 keep the fully axiomati avor of the original algebrai spei�ations; this

would apply to the hidden spei�ation and oalgebrai methods too.

An issue whih has only been mentioned as an aside, but of paramount

importane, is the support of automati tools both for development and ver-

i�ation. This is a fast developing �eld, whih ould provide one basi key
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to the suessful use of algebrai tehniques in the future. Another key ould

ome from a standardization of the algebrai notation and of the assoiated

methods, ontrary to the diretion of the urrent proliferation of notations. In

this respet we are greatly looking forward to the outome of CoFI, the ongo-

ing Common Framework Initiative, sponsored by the IFIP WG 2.2 [Mos97℄.
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A Spei�ations of data types used by Bit

Below we report the algebrai spei�ations of the data types, integers and

�nite queues of integers, whih are used in various spei�ations of Bit.

spe INT =

sorts int

opns 0: ! int

S; P : int ! int

+ : int � int ! int

preds < ;NotEq : int � int

axioms 0 + i = i

S(i) + i

0

= S(i + i

0

)

P (i) + i

0

= P (i+ i

0

)

0 < S(0)

P (0) < 0

i < i

0

) (S(i) < S(i

0

) ^ P (i) < P (i

0

) ^ i < S(i

0

) ^ P (i) < i

0

)

(i < i

0

_ i

0

< i) ) NotEq(i; i

0

)

spe INT QUEUE =

enrih INT by

sorts queue

opns Empty : ! queue

Put : int � queue! queue

First : queue ! int

Remove;Dup : queue ! queue

�� Dup dupliates the �rst element of a queue

preds Not Empty : queue

axioms Not Empty(Put(i; q))

First(Empty) = 0

First(Put(i;Empty)) = i

First(Put(i;Put(i

0

; q))) = First(Put(i

0

; q))

Remove(Empty) = Empty

Remove(Put(i;Empty)) = Empty

Remove(Put(i;Put(i

0

; q))) = Put(i;Remove(Put(i

0

; q)))

Dup(Empty) = Empty

Dup(Put(i;Empty)) = Put(i;Put(i;Empty))

Dup(Put(i;Put(i

0

; q))) = Put(i;Dup(Put(i

0

; q)))
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