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Introdu
tion

A pro
ess is a unit with the 
apa
ity of performing an a
tivity by whi
h it

may intera
t with other units and/or with the environment. The intera
tions

may involve 
ommuni
ating, syn
hronizing, 
ooperating, a
ting in parallel,


ompeting for resour
es with other pro
esses and/or with the environment.

By \
on
urrent systems" we mean pro
esses whi
h may 
onsist of other pro-


esses (or in turn 
on
urrent systems) operating 
on
urrently.

Most software systems are 
on
erned with 
on
urrent systems and thus

it is of paramount importan
e to provide good formal support to the spe
i-

�
ation, design, and implementation of 
on
urrent systems. Algebrai
/logi


methods have also found interesting appli
ations in this �eld, espe
ially to

treat at the right level of abstra
tion the relevant features of a system, helping

to hide the unne
essary details and thus to master system 
omplexity.

Due to the parti
ularly 
omplex nature of 
on
urrent systems, and 
on-

trary to the 
ase of 
lassi
al (stati
) data stru
tures, there are di�erent ways

of exploiting algebrai
 methods in 
on
urren
y. First of all, we do not have a

single satisfa
tory model and view for pro
esses and 
on
urrent systems, like

input{output fun
tions for sequential input{output systems. Hen
e, algebrai


methods need to be applied to di�erent models. Moreover, in the literature,

we 
an distinguish at least four kinds of approa
hes.

A1 The algebrai
 te
hniques are used at the metalevel, for instan
e, in the

de�nition or in the use of spe
i�
ation languages. Then a spe
i�
ation

involves de�ning one or more expressions of the language, representing

one or more systems. This is, for example, the 
ase in ACP, CCS, and

CSP [BK86,Mil89,Hoa85℄.

A2 A parti
ular spe
i�
ation language (te
hnique) for 
on
urrent systems

is 
omplemented with the possibility of abstra
tly spe
ifying the (stati
)

data handled by the systems 
onsidered using algebrai
 spe
i�
ations.
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We 
an qualify the approa
hes of this kind by the slogan \plus algebrai


spe
i�
ations of stati
 data types".

A3 These methods use parti
ular algebrai
 spe
i�
ations having \dynami


sorts", whi
h are sorts whose elements are/
orrespond to 
on
urrent sys-

tems. In su
h approa
hes there is only one \algebrai
 model" (for in-

stan
e, a �rst-order stru
ture or algebra) in whi
h some elements repre-

sent 
on
urrent systems.

We 
an qualify the approa
hes of this kind as \algebrai
 spe
i�
ations

of dynami
-data types", whi
h are types of dynami
 data (pro
esses/


on
urrent systems).

A4 These methods allow us to spe
ify an (abstra
t) data type, whi
h is

dynami
ally 
hanging with time. In su
h approa
hes we have di�erent

\algebrai
" models 
orresponding to di�erent states of the system.

We 
an qualify the approa
hes of this kind as \algebrai
 spe
i�
ations of

dynami
 data-types"; here the data types are dynami
.

We have organized the paper around the 
lassi�
ation above, providing

signi�
ant illustrative examples for ea
h of the 
lasses. The list of the exam-

ples is not exhaustive; moreover, we have given a greater emphasis to the

approa
hes representing an extension to 
on
urren
y of algebrai
 spe
i�
a-

tion te
hniques. For example, this is why for A1 we have presented in some

detail only CCS, the Cal
ulus of Communi
ating Systems of R. Milner, as the

�rst and paradigmati
 example, though the various versions of CSP,ACP, and

the like are of 
omparable importan
e as for abundan
e of literature, theoret-

i
al investigations and illustrative appli
ations. Indeed the viewpoint of the

pro
ess algebra approa
h is more 
on
erned with formal models of pro
esses

via appropriate 
ombinators, in whi
h 
ase the spe
i�
ation problem is han-

dled by adopting a model-oriented approa
h. The same applies to Petri nets,

whi
h represent the earliest attempt (apart from automata) to provide formal

models for pro
esses and are as important as CCS, CSP, and the like. Here,

withinA2, we have outlined a formalism 
on
erned with algebrai
 extensions

of Petri nets.

To present a more 
omplete overview, we should also treat another 
lass

of approa
hes, whi
h 
an be termed \algebrai
 te
hniques/tools for dynam-

i
s". These are interesting approa
hes where te
hni
al tools developed in the

algebrai
 �eld are used formally to 
apture the dynami
 nature of pro
esses.

Among them, we 
an re
all the use of the hidden sort algebras and spe
i�-


ations, see, for instan
e, [GD94℄, and the use of 
oalgebras and 
oalgebrai


spe
i�
ations, see [JR97℄, also for further referen
es. However we 
annot 
over

these approa
hes, essentially for la
k of spa
e; moreover, 
oalgebrai
 methods

methods are quite re
ent and in full development, 
ompared to those 
overed

in this 
hapter.

Similarly we do not have spa
e to present other methods, where the usual

algebrai
 spe
i�
ations of stati
 data types are used instead in a parti
ular


lever way to spe
ify pro
esses, see, for instan
e, [BCPR96℄.
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Parti
ular examples of approa
hes of the four kinds, presented in Se
-

tions 13.1 { 13.4 respe
tively, are neither a 
omplete list, nor have they been


hosen be
ause we think they are the best representatives.

Our rationale has been mainly to present representatives. In parti
ular,

there is no intention of providing a 
omparative study of the methods. This

is a goal outside the s
ope of the book.

The general notions about the spe
i�
ation of 
on
urren
y needed for

understanding the approa
hes presented are brie
y summarized at the be-

ginning of the various se
tions.

We use a 
ommon example for the presentation of all approa
hes, a very

simple 
on
urrent system 
onsisting of a bu�er and a user, informally de-

s
ribed below.

The Bit example

The system Bit (
alled Bit sin
e it is really very small) 
onsists of two 
om-

ponents in parallel: a user and a bu�er. The bu�er is organized as a queue

and 
ontains integers; it may obviously re
eive and return integer values; it

may break down, in whi
h 
ase its 
ontent will be 10

10

, and, moreover, it

may happen that the last element of its 
ontent is dupli
ated.

When the system is started by the environment, the bu�er is empty and

the user puts in sequen
e 0 and 1 on the bu�er; then it gets the �rst element

from the bu�er. If this element is the number 0 the user must inform the

environment of the 
orre
t working of the bu�er, otherwise it must signal

that there is an error.

Thus Bit is an intera
tive 
on
urrent system with 
omponents having

both autonomous a
tivities (as the bu�er failures) and 
ooperations (the

user writing/reading the bu�er), and using some stati
 data (integers); fur-

thermore it also has some relevant stati
/fun
tional aspe
ts, as the queue

organization of the bu�er.

Some relevant requirements on Bit are:

R0 The bu�er must always be able to re
eive any integer value.

R1 When the user is terminated, it 
annot perform an a
tivity again.

R2 In at least one 
ase, the system must behave 
orre
tly.

R3 After being started, it will eventually signal OK or ERROR.

R4 OK and ERROR are signaled at most on
e, and it 
annot happen that

both are signaled.

R5 The user puts integers on and gets integers from the bu�er.

13.1 Pro
ess algebras

Pro
ess Algebras and Cal
uli, exempli�ed by CCS, CSP, ACP, and the like,

are the most notable example of the use of algebrai
 methods in the de�nition

and the use of spe
i�
ation languages (approa
h A1).



4 Egidio Astesiano, Manfred Broy, and Gianna Reggio

Labeled transition systems (abbreviated to lts), as models of pro
esses,

underlie CCS and many other variations of pro
ess algebras, and are also used

in many logi
al/algebrai
 spe
i�
ation formalisms. Thus we start this se
tion

with the fundamental 
on
epts about lts's and their semanti
s. Note that the

�rst appearan
e of lts was in the theory of nondeterministi
 automata; how-

ever, the key idea of using labeled transitions to represent the 
apabilities of

intera
tions (or parti
ipation in events) for des
ribing open systems is gen-

erally attributed to Robin Milner in CCS. The related fundamental 
on
ept

of bisimulation semanti
s, espe
ially its formalization by maximum �xpoint,

is due to David Park.

13.1.1 Modeling pro
esses with labeled transition systems

For the �rst use of labeled transition systems for the modeling 
on
urren
y,

see [Mil80,Plo83℄.

A labeled transition system (lts) is a triple

hSTATE ;LABEL;!i;

where STATE and LABEL are two sets, the states and labels of the system,

and !� STATE � LABEL � STATE is the transition relation. A triple

hs; l; s

0

i 2! is said to be a transition and is usually written s

l

��! s

0

.

Given an lts we 
an asso
iate with ea
h s

0

2 STATE the so-
alled tran-

sition tree, that is, the tree whose root is s

0

, where the order of the bran
hes

is not 
onsidered, two identi
ally de
orated subtrees with the same root are


onsidered as a unique subtree, and if it has a node n de
orated with s and

s

l

��! s

0

, then it has a node n

0

de
orated with s

0

and an ar
 de
orated with

l from n to n

0

.

A pro
ess P is thus modeled by a transition tree determined by an lts

hSTATE ;LABEL;!i and an initial state s

0

2 STATE ; the nodes in the tree

represent the intermediate (interesting) states of the life of P, and the ar
s

of the tree the possibilities of P of passing from one state to another. It is

important to note here that an ar
 (a transition) s

l

��! s

0

has the following

meaning: P in the state s has the 
apability of passing into the state s

0

by

performing a transition, where the label l represents the intera
tion with

the environment during su
h a move; thus l 
ontains information on the


onditions on the environment for the 
apability to be
ome e�e
tive, and

on the transformation of su
h environment indu
ed by the exe
ution of the

a
tion.

Con
urrent systems, whi
h are pro
esses having 
ooperating 
omponents

that are in turn other pro
esses (or 
on
urrent systems), 
an be modeled

through parti
ular lts obtained by 
omposing other lts des
ribing su
h 
om-

ponents.

By asso
iating with a pro
ess P the transition tree having root P we

give P an operational semanti
s: two pro
esses are operationally equivalent
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whenever the asso
iated transition trees are the same, see [Mil80℄. However

in most 
ases su
h semanti
s is too �ne, sin
e it takes into a

ount all op-

erational details of the pro
ess a
tivity. It may happen that two pro
esses

whi
h we 
onsider semanti
ally equivalent have asso
iated di�erent transi-

tion trees. A simple 
ase is when we 
onsider the trees asso
iated with two

deterministi
 pro
esses intera
ting with the environment only by returning

a �nal result (e.g., two PASCAL programs) represented by two states p and

p

0

: they only perform internal a
tivities ex
ept for the last transitions, and

thus the asso
iated transition trees reported below are:

p

�

��! p

1

�

��! : : :

�

��! p

n

OUT (r)

�����! p

F

p

0

�

��! p

0

1

�

��! : : :

�

��! p

0

m

OUT (r

0

)

������! p

0

F

If we 
onsider an input{output semanti
s, then the two pro
esses are

equivalent i� p, p

0

are equivalent w.r.t. the input and r, r

0

are equivalent; the

di�eren
es 
on
erning other aspe
ts (intermediate states, number of interme-

diate transitions, et
.) are not 
onsidered.

From this simple example, we 
an also appre
iate that we get various

interesting semanti
s on pro
esses modeled by lts depending on what we ob-

serve (see, e.g., [Mil80,NH84℄). For instan
e, 
onsider the well{known strong

bisimulation semanti
s of Park [Par81℄ and Milner [Mil80℄ and the tra
e se-

manti
s [Hoa85℄. In the �rst 
ase, two pro
esses are equivalent i� they have

the same asso
iated transition trees after the states have been forgotten. In

the se
ond 
ase, two pro
esses are equivalent i� the 
orresponding sets of

tra
es (streams of labels), obtained traveling along the maximal paths of the

asso
iated transition trees, are the same. In general, the semanti
s of pro-


esses depends on what we are interested in observing.

Now we show how to de�ne pre
isely strong bisimulation over an lts

hSTATE ;LABEL;!i. A binary relation R on STATE is a strong bisimula-

tion i�, for all s

1

, s

2

2 STATE , if s

1

R s

2

, then

1. if s

1

l

��! s

0

1

, then there exists s

0

2

su
h that s

0

1

R s

0

2

and s

2

l

��! s

0

2

;

2. if s

2

l

��! s

0

2

, then there exists s

0

1

su
h that s

0

1

R s

0

2

and s

1

l

��! s

0

1

.

The maximum strong bisimulation � for an lts is de�ned as the union of

all strong bisimulations. We have that � is a strong bisimulation and that

for all strong bisimulations R , R � � .

Similarly we 
an de�ne weak bisimulation over an lts; in this 
ase the

internal transitions, i.e., those 
orresponding to a null intera
tion with the

environment, are not 
onsidered when they have no visible 
onsequen
e. Te
h-

ni
ally we use � 2 LABEL to label internal transitions.

1

We de�ne an auxil-

iary transition relation

)� STATE � LABEL� STATE

1

The symbol � was used for the �rst time by Milner for CCS internal transitions,

see Se
tion 13.1.2.
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as follows:

s

�

=) s,

if s

l

��! s

0

, then s

l

=) s

0

,

if s

�

��! s

0

and s

0

l

=) s

00

, then s

l

=) s

00

,

if s

l

=) s

0

and s

0

�

��! s

00

, then s

l

=) s

00

.

A binary relation R on STATE is a weak bisimulation i�,

for all s

1

, s

2

2 STATE , if s

1

R s

2

, then

1. if s

1

l

=) s

0

1

, then there exists s

0

2

su
h that s

0

1

R s

0

2

and s

2

l

=) s

0

2

;

2. if s

2

l

=) s

0

2

, then there exists s

0

1

su
h that s

0

1

R s

0

2

and s

1

l

=) s

0

1

.

The maximum weak bisimulation � is the union of all weak bisim-

ulations. We have that � is a weak bisimulation and that for all weak

bisimulations R , R � � .

Example 13.1. (Bit using labeled transition systems) Here we give the

lts modeling the two 
omponents of Bit, the user and the bu�er, and Bit

itself respe
tively.

USER = hSTATE

U

;LABEL

U

;!

U

i

STATE

U

=

fInitial;Putting 0;Putting 1;Reading ;Terminatedg [ fRead

i

j i 2 g

LABEL

U

= fSTART ;ERROR;OKg [ fPUT

i

;GET

i

j i 2 g

!

U

is graphi
ally represented by depi
ting the resulting graph in Figure 13.1.

Noti
e that in the state Reading the user has in�nite a
tion 
apabilities, one

for ea
h possible value that 
an be obtained from the bu�er.

BUFFER = h

�

;LABEL

B

;!

B

i

LABEL

B

= fRECEIVE

i

;RETURN

i

j i 2 g [ f�g

!

B


ontains the following triples, where i 2 , q 2

�

:

q

RECEIVE

i

���������!

B

q � i i � q

RETURN

i

��������!

B

q

i � q

�

��!

B

i � i � q q

�

��!

B

10

10

,

SYSTEM = hSTATE

S

;LABEL

S

;!

S

i

STATE

S


onsists of pairs of states of the bu�er and the user.

LABEL

S

= fSTART ; �;OK ;ERRORg

!

S


ontains the following triples, where i 2 , u; u

0

2 STATE

U

, b; b

0

2

STATE

B

, hi is the empty stream:

hhi; ui

START

������!

S

hhi; u

0

i if u

START

������!

U

u

0

hb; ui

�

��!

S

hb

0

; u

0

i if b

RECEIVE

i

���������!

B

b

0

and u

PUT

i

�����!

U

u

0

,

hb; ui

�

��!

S

hb

0

; u

0

i if b

RETURN

i

��������!

B

b

0

and u

GET

i

�����!

U

u

0

,

hb; ui

OK

����!

S

hb; u

0

i if u

OK

����!

U

u

0

,
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Initial

?

START

Putting 0

?

PUT

0

Putting 1

?

PUT

1

Reading

?

GET

0

Read

0

?

OK

Terminated

�

�

�

�

�

��

GET

�1

Read

�1

�

�

�R

ERROR

: : :

H

H

H

H

H

Hj

GET

1

Read

1

�

�

�	

ERROR

: : :

Fig. 13.1. The transitions of the user

hb; ui

ERROR

�������!

S

hb; u

0

i if u

ERROR

�������!

U

u

0

,

hb; ui

�

��!

S

hb

0

; ui if b

�

��!

B

b

0

Noti
e that SYSTEM , de�ned in a modular way by using USER and

BUFFER, is an example of how we 
an 
ompose pro
esses operating in par-

allel. However, if we forget how it has been de�ned, then we 
annot see its


on
urrent stru
ture. For example, the fa
t that the transition

h0 � 1;Readingi

�

��!

S

h1;Read

0

i


orresponds to the syn
hronous exe
ution of the bu�er and user a
tion 
a-

pabilities, labeled by RETURN

0

and GET

0

respe
tively, 
annot be dedu
ed

by examining SYSTEM alone.

13.1.2 Pro
ess 
al
uli and algebras

By pro
ess 
al
uli and algebras we mean those approa
hes whi
h spe
ify

pro
esses, whose foremost representatives are the many formalisms known

under the 
olle
tive names CCS, CSP, and ACP. The formalisms, though quite

di�erent in some fundamental te
hni
al aspe
ts, share some basi
 underlying

ideas:

{ as in �{
al
uli, pro
esses are represented by terms built over a set of


ombinators 
on
erning all aspe
ts of pro
ess behavior, from 
ow of 
on-
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trol of single pro
esses to operators for 
omposing pro
esses in parallel;

the 
ombinators are di�erent, both as a matter of taste and for te
hni
al

reasons;

{ pro
esses are essentially modeled by transition trees;

{ the primitive means of intera
tion between pro
esses is syn
hronization,

that 
an be interpreted equivalently as syn
hronization of ex
hanging

data and simultaneous parti
ipation in an event;

{ emphasis is laid on algebrai
 laws stating equivalen
e of pro
esses;

{ a 
on
ept of re�nement is based on 
ontainment of behaviors: re�ning

means redu
ing the amount of possible behaviors.

We present the basi
 features of CCS, 
onsidered a breakthrough in the

�eld, and will brie
y 
omment on ACP and CSP.

CCS, developed by Robin Milner, basi
ally adopts an operational (tran-

sition) semanti
s, asso
iating with ea
h pro
ess a transition tree (graph); on

the basis of the transition semanti
s, some equivalen
es are de�ned on the

pro
esses (various bisimulations and operational equivalen
es), and laws are

proven stating equivalen
es on pro
esses; the set of laws is usually a 
omplete

axiomatization of the semanti
s over �nite pro
esses.

We refer to [Mil89℄ as a basi
 referen
e.

For explanatory purposes, we 
an start by looking at CCS as a language

for des
ribing possibly in�nite transition trees.

If A denotes a set of basi
 names, then A = fa j a 2 Ag is the set of the


onames and L = A [ A, with l = l. A spe
ial label � indi
ates the so-


alled silent a
tion, i.e., an a
tion not visible outside, sin
e it 
orresponds to

a 
ommuni
ation taking pla
e within the pro
ess; the set of the a
tions (or,

more a
urately, 
apabilities of a
tion), i.e., the labels, is then ACT = L [ f�g,

ranged over by �.

First we have the basi
 
ombinators for des
ribing �nite depth transition

trees:

(1) pre�xing � : E

(2) summation �

i2I

E

i

, I an indexing set

where E denotes a generi
 CCS expression.

Assume that E represents a tree

E

t

�

�

�

�

�

�

with root E, then � : E

represents the tree

� : E

�

E

t

�

�

�

�

�

�
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with root � :E. This is formalized by an appropriate semanti
 
lause (indu
-

tive rule de�ning !)

A
t

� : E

�

��! E

.

Assume that ea
h E

i

represents a tree

E

i

t

i

�

�

�

�

�

�

with root E

i

, then

�

i2I

E

i

represents the tree

�

i2I

E

i

: : :

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

t

i

: : :

H

H

H

H

H

H

H

H

H

H

�

�

�

�

�

t

j

: : :

.

The related semanti
 
lause is

Sum

j

E

j

�

��! E

0

j

�

i2I

E

i

�

��! E

0

j

j 2 I .

In other words 
lause (1) allows us to des
ribe adding an ar
 and 
lause (2)

to des
ribe bran
hing. Noti
e that for I = ;, 
lause (2) de�nes one expression,

also written nil or 0, 
orresponding to a leaf on a tree.

In�nite depth trees are de�ned as usual by re
ursion, say A =

def

P , where

the name of the pro
ess A (a 
onstant) may appear in P , whi
h denotes an

expression. Of 
ourse multiple re
ursion is possible. The semanti
s is as usual

Con

P

�

��! P

0

A

�

��! P

0

A =

def

P .

To handle intera
tion between pro
esses, a basi
 
ombinator for paral-

lelism is introdu
ed:

(3) E

1

jj E

2

There are many ways to de�ne the semanti
s of the 
ombinator jj ; the

original one, whi
h we report here, formalizes a notion of syn
hronization/


ommuni
ation by handshaking 
ommuni
ation (Comm

3

) and of parallel

exe
ution by interleaving (Comm

1

, Comm

2

).

Comm

1

E

�

��! E

0

E jj F

�

��! E

0

jj F

Comm

2

F

�

��! F

0

E jj F

�

��! E jj F

0

Comm

3

E

l

��! E

0

F

l

��! F

0

E jj F

�

��! E

0

jj F

0

l 2 L

Rule Comm

3

says that syn
hronization may take pla
e whenever the 
apa-

bilities are 
omplementary (l and l).

In CCS we also have two other operations,

(4) E=L Restri
tion
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(5) E[f ℄ Relabeling,

where L � L denotes a set of nonsilent a
tions, and f is a fun
tion from L

to L su
h that f(l) = f(l); f 
an be extended to ACT by setting f(� ) = � .

The semanti
s of (4) and (5) is given by

Res

E

�

��! E

0

E=L

�

��! E

0

=L

(� 62 L [ L) Rel

E

�

��! E

0

E[f ℄

f(�)

���! E

0

[f ℄

.

Noti
e that relabeling is essentially a user fa
ility for de�ning pro
esses,

with no behavioral meaning, while restri
tion means hiding from the outside

all the a
tion 
apabilities in L and its 
omplementary set.

The given semanti
s is operational in nature (though it 
an also be given

in a denotational way) and serves the main purpose of asso
iating a labeled

transition system with pro
ess expressions.

As we have seen in the pre
eding se
tion, various semanti
s 
an be as-

so
iated with lts. Depending on the 
hosen semanti
s, various laws 
an be

proved about CCS expressions. For example, adopting strong bisimulation

semanti
s, denoted by � , the following laws hold (P +Q = �fP;Qg)

(1) (� : Q)=L =

�

nil if � 2 L [ L

� : (Q=L) otherwise

(2) (� : Q)[f ℄ = f(�) : Q[f ℄

(3) (Q + R)=L = Q=L + R=L

(4) (Q + R)[f ℄ = Q[f ℄ + R[f ℄

(5) P + Q = Q + P

(6) P + (Q + R) = (P + Q) + R

(7) P + P = P

(8) P + nil = P

Also a fundamental law, 
alled the expansion law, 
an be proved, show-

ing that we 
an eliminate from a pro
ess expression the parallel operator,

restri
tion, and relabeling, thus showing the essen
e of interleaving seman-

ti
s as redu
ing parallel exe
ution to nondeterministi
 
hoi
e. A simpler form


on
erned only with the parallel 
ombinator is as follows:

(9) P

1

jj : : : jj P

n

=

�f� : (P

1

: : : jj P

0

i

jj : : : jj P

n

) j P

i

�

��! P

0

i

; 1 � i � ng +

�f� : (P

1

: : : jj P

0

i

jj : : : jj P

0

j

jj : : : jj P

n

) j

P

i

l

��! P

0

i

; P

j

l

��! P

0

j

; 1 � i < j � ng

It 
an be shown that strong bisimulation is a 
ongruen
e for CCS, sin
e it

is substitutive under all 
ombinators and re
ursive de�nitions. For example,

if P

1

� P

2

, then we have

� : P

1

� � : P

2

P

1

+ Q � P

2

+ Q, et
.

Also, under reasonable 
onditions, re
ursive de�nitions uniquely identify

a pro
ess modulo its bisimulation.
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Unfortunately, passing to weak bisimulation (observation equivalen
e in

[Mil89℄), we do not get a 
ongruen
e any longer and thus another equiva-

len
e is introdu
ed, 
alled equality (or observation 
ongruen
e), whi
h im-

plies weak bisimulation. It 
an be shown that, sin
e CCS is as powerful as

Turing ma
hines, no e�e
tive axiomatization of equality exists. However the

laws provide e�e
tive axiomatization for smaller 
lasses of pro
esses, su
h as

the �nite pro
esses.

Our presentation shows the role of laws in CCS, as derived theorems from

essentially operational semanti
s. A somewhat di�erent approa
h has been

taken by ACP, mainly developed by Bergstra, Klop, and Baeten (see [BW90℄

also for referen
es). There the starting point is a 
omplete axiomatization

(usually by equations or 
onditional axioms) of some equivalen
e (e.g., strong

or weak bisimulation) for �nite pro
esses; thus two �nite pro
esses are equiv-

alent i� their equality 
an be proven by equational/
onditional dedu
tion.

Then re
ursion is added and semanti
s is again given in terms of graphs,

labeled transition systems, or proje
tive limits.

The approa
h is highly hierar
hi
al, introdu
ing laws for new 
ombinators

in a 
onservative way. Some of the 
ombinators introdu
ed in ACP are due

to the te
hni
al needs for obtaining 
omplete axiomatizations.

Di�erent again is the CSP approa
h [Hoa85℄, where the semanti
s is de-

notational and the laws are derived from semanti
s, and used for reasoning

about 
orre
tness. The denoted values are di�erent, depending on the ri
h-

ness of the 
ombinators; they range from sets of tra
es to the so-
alled refusal

sets.

A 
ommon problem with the pro
ess algebra/
al
uli approa
hes is the

enormous variety of possible meaningful semanti
s and thus of the asso
iated

derived laws; in one paper [vG90℄ Van Glabbeek analyzes from a modal logi


unifying viewpoint, as many as 155 di�erent semanti
s.

Example 13.2. (Bit using CCS) The pro
ess 
orresponding to the user is

de�ned by

USER = START :PUT

0

:PUT

1

:(GET

0

:OK :nil+ �

i2 �f0g

GET

i

:ERROR:nil);

the pro
ess bu�er is de�ned by the following, mutually re
ursive de�nitions

BUFFER

hi

= �

i2

PUT

i

: BUFFER

i

+ � :BUFFER

10

10

BUFFER

i

1

�����i

k

=

�

i2

PUT

i

:BUFFER

i�i

1

�:::�i

k

+ GET

i

k

:BUFFER

i

1

�:::�i

k�1

+

� :BUFFER

10

10 + � :BUFFER

i

1

�i

1

�:::�i

k

, i

1

� : : : � i

k

2

+

Finally the system is the parallel 
omposition of the two pro
esses above

(initially the bu�er is empty)

SYSTEM = (BUFFER

hi

jj USER)=fPUT

i

;GET

i

j i 2 g.

The example illustrates the use of CCS in the spe
i�
ation phase, whi
h

follows a model-oriented approa
h: with the help of the CCS language a pro-


ess is des
ribed and then a 
lass of models is de�ned 
orresponding to the

equivalen
e 
lass of the pro
ess (w.r.t. some equivalen
e).
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13.2 Algebrai
 spe
i�
ation of stati
 data types

In this se
tion we brie
y present some spe
i�
ation te
hniques following the

approa
h A2 to the algebrai
 spe
i�
ation of 
on
urrent systems, that is,

approa
hes integrating a formalism for the 
on
urrent aspe
ts with algebrai


spe
i�
ations of the stati
 data types.

13.2.1 Pro
ess 
al
uli plus algebrai
 spe
i�
ation of data types

In this subse
tion we brie
y present two spe
i�
ation formalisms, LOTOS and

PSF, designed following approa
h A2, where the pro
esses are de�ned by a

pro
ess{algebra style 
al
ulus. The di�eren
es between LOTOS and PSF are

in the formalism for the algebrai
 spe
i�
ation part (ACT ONE [EFH83℄ and

ASF [BHK89℄, respe
tively) and in the 
ombinators of the pro
ess 
al
ulus


hosen (inspired by those of CCS and ACP, respe
tively, see Se
tion 13.1).

Pro
ess spe
i�
ation formalism (PSF). PSF [MV89,MV90℄ is the pro
ess

spe
i�
ation formalism developed by Mauw and Veltink as a base for a set

of tools to support the pro
ess algebras. The main goal in the design of PSF

was to provide a spe
i�
ation language with a formal syntax similar to the

pro
ess algebra ACP [BW90, Se
tion 4℄ but also with a notion of data type;

to this end ASF (the Algebrai
 Spe
i�
ation Formalismof [BHK89℄) has been

in
orporated.

The basi
 spe
i�
ation formalism is equational logi
 with total algebras.

The theory and language of ASF are adopted for handling modular and pa-

rameterized spe
i�
ations.

A PSF spe
i�
ation 
onsists of a series of modules, divided into data mod-

ules and pro
ess modules. Data modules are algebrai
 spe
i�
ations with ini-

tial semanti
s. Pro
ess modules are ACP spe
i�
ations of pro
esses. Formally,

a pro
ess module 
onsists of

{ de
larations of the operation symbols for a
tions and pro
esses (whi
h

may have the stati
 data as arguments),

{ expli
it de�nitions of the syn
hronization among su
h a
tions,

{ pro
ess de�nitions of the form P (x

1

; : : : ; x

n

) = ACP{expression, in whi
h

the operators like \+", \k", \;", \hide" and \en
aps", elementary pro-


esses, pure atomi
 a
tions, and also P (thus allowing re
ursive de�ni-

tions) may appear.

Pro
esses are parti
ular data stru
tures obtained by a given (equational) ax-

iomatization whi
h determines a parti
ular semanti
s over these stru
tures,

embodying ideas of 
on
urren
y. This is best understood by looking at the

hidden basi
 
on
urrent models behind pro
ess algebra, whi
h are lts as in

CCS and many other approa
hes; then the axioms provide semanti
s like

strong, tra
e, or bisimulation semanti
s and others, see Se
tion 13.1.1. The
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hidden model is made evident in some presentations of PSF, where ACP

pro
esses are des
ribed by means of lts. In any 
ase, sin
e ACP essentially

provides a language s
hema for pro
esses, it is irrelevant, other than for build-

ing the tools, how its semanti
s is given, either by equations or by labeled

transitions plus semanti
 equivalen
es.

It is instead important to note that in PSF:

{ the syn
hronization of a
tions 
an be de�ned expli
itly in the 
ommu-

ni
ation part; as a 
onsequen
e, the syn
hronization me
hanism is not

�xed and is parameterized;

{ the exe
ution mode is interleaving.

The interfa
e between pro
esses and data types is as follows:

{ the atomi
 a
tions may have as 
omponents some values of the spe
i�ed

data types;

{ it is possible to de�ne re
ursively families of pro
esses indexed on the

elements of some sort;

{ an in�nitary nondeterministi
 
hoi
e indexed on the elements of a sort is

available.

The semanti
s of the data part is a 
lassi
al algebrai
 semanti
s by ini-

tiality; the semanti
s of pro
esses is strong bisimulation, whi
h gives a 
on-

gruen
e over the term algebra. Thus the semanti
s identi�es an isomorphism


lass of stru
tures, as for a data type.

The data part is stri
tly separated from the pro
ess part. Thus it is an

A2 approa
h; but the 
on
urrent stru
ture here is also spe
i�ed algebrai
ally,

though with a �xed set of primitives parameterized on the a
tions and the

syn
hronization stru
ture. The result is a 
ompletely algebrai
 spe
i�
ation

to whi
h all the te
hniques and results of ASF 
an be 
onveniently applied.

Parti
ularly powerful are the modularization me
hanisms in PSF, whi
h

are borrowed from ASF but truly deal with the integration of data types

and pro
esses; the module 
on
ept also supports the import and export of

pro
esses and a
tions.

There is a vast literature on the use of pro
ess algebras, with a detailed

treatment of 
lassi
al examples and 
orre
tness proofs for implementation.

However, these examples should not be 
onfused with appli
ations of a spe
-

i�
ation method like PSF, whi
h have indeed been introdu
ed for supporting

industrial appli
ations. Clearly PSF is appli
able to a wide range of signi�-


ant 
ases in pra
ti
e, see, for instan
e, [MV93℄, but we see a limitation in its

stri
t poli
y of message passing and no provision for data sharing. In many


ases some amount of 
oding is required whi
h is not in the spirit of abstra
t

spe
i�
ations. The same remark applies to exe
ution modes other than in-

terleaving, whi
h have to be simulated by appropriate use of syn
hronization

and restri
tion me
hanisms.

PSF has been devised as a basis for the development of a toolset (see,

e.g., [MV89,MV91,PSF97℄); in parti
ular, a simulator, a term rewriting, and

a proof assistant have been implemented.
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LOTOS. LOTOS was probably the �rst internationally known (sin
e 1984),

algebrai
 spe
i�
ation formalism for 
on
urren
y [BB87,I.S89℄; most impor-

tantly, it is an oÆ
ial ISO spe
i�
ation language for open distributed systems,

a quali�
ation whi
h alone would rank it high in an ideal value s
ale of pos-

sible important appli
ations. However, LOTOS is interesting also be
ause it

represents an early paradigm of whi
h PSF 
an be 
onsidered an improve-

ment. Be
ause of this, we do not go into a detailed dis
ussion of LOTOS; it

is enough to 
ompare it with PSF to understand its stru
ture.

LOTOS adds 
lassi
al algebrai
 spe
i�
ations into a language for 
on
ur-

ren
y like PSF; but it uses ACT ONE [EFH83℄ instead of ASF and a pro
ess

des
ription based on an extension of CCS with several derived 
ombinators

(e.g., input/output of stru
tured values, sequential 
omposition with possi-

ble value passing, enabling/disabling operators) instead of the pro
ess algebra

ACP. The basi
 spe
i�
ation formalism (equational logi
 with total algebras)

and pro
ess bisimulation semanti
s are the same.

PSF is an improvement over LOTOS (see a dis
ussion in [MV89℄), sin
e

it allows more freedom in the de�nition of syn
hronization me
hanisms and

supports import/export of a
tion/pro
esses, thus be
oming more 
exible for

stepwise development.

Throughout these years LOTOS has been used in several pra
ti
al appli-


ations and nowadays tools for helping to write 
orre
t LOTOS spe
i�
ations

have been developed (see, for instan
e, the ESPRIT proje
t LOTOSHERE

[vE91℄). Re
ently a new, revised version of LOTOS (E-LOTOS, for Enhan
e-

ment to LOTOS) has been developed and presented as a standard [LOT97℄,

taking into a

ount the needs that emerged through its appli
ation; enhan
e-

ments 
on
ern the data part (built{in, partial operations), the 
on
urren
y

part (noninterleaving semanti
s, real time, priorities), and the whole organi-

zation of the spe
i�
ations (introdu
tion of modules).

Example 13.3. (Bit using LOTOS) The data part is given by the spe
i�
a-

tion INT QUEUE , shown in Appendix A, and by the following:

spe
 MESSAGE =

sorts message �� messages ex
hanged with the environment

opns OK ;ERROR : ! message

Bit is given as the parallel 
omposition of two pro
esses 
orresponding to

the bu�er and the user.

The gates of su
h pro
esses and their 
onne
tions are graphi
ally repre-

sented in Figure 13.2.

Below \?" and \!" distinguish input/output a
tions, \;", \: : : ! : : :",

\[℄", \jjj", and \i" denote respe
tively a
tion pre�xing, Boolean guards, non-

deterministi
 
hoi
e, parallel 
ombinator and internal a
tion.

In the de�nition of BUFFER, Put and Get are the gates and q is a pro
ess

parameter of sort queue .
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BUFFER

Put

Get

USER

Initial

Output

Put

Get

BUFFER

Put

Get

USER

Initial

Output

SYSTEM

Fig. 13.2. Stru
ture of the LOTOS spe
i�
ation of Bit

pro
ess BUFFER[Put;Get℄(q : queue) :=

[Not Empty(q)℄ ! Get !First(q);BUFFER[Put;Get℄(Remove(q)) [℄

Put ? x : int;BUFFER[Put;Get℄(Put(x; q)) [℄

i;BUFFER[Put;Get℄(Put(10

10

;Empty)) [℄

i;BUFFER[Put;Get℄(Dup(q))

end pro
ess

pro
ess USER[Initial;Put;Get; Output℄ :=

Initial ?; Put ! 0;Put ! 1;Get ?x : int;

([not(x = 0)℄! Output !ERROR [℄

[x = 0℄! Output !OK )

end pro
ess

pro
ess System[Initial; Output℄ :=

BUFFER[Put;Get℄(Empty) jjj USER[Initial;Put;Get; Output℄

end pro
ess

Note the similarity between LOTOS and CCS.

13.2.2 Petri nets

Petri nets are among the earliest and most in
uential models of 
on
urren
y.

Net models. Here we brie
y present (elementary) nets, the basi
 models

for the various spe
i�
ation formalisms generally 
alled \Petri nets"; all vari-

ants arise either by putting some restri
tions on the allowed nets, adding

minor features, or o�ering more 
ompa
t/simple ways to present the nets
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(e.g., 
olored nets, high-level nets, : : : ); in some 
ases, a slightly di�erent

terminology is used. [Rei85,RT86℄ give general overviews and further refer-

en
es for net models, while [Rei98℄ is more 
on
erned with the use of nets for

spe
ifying 
on
urrent systems.

A net N is a triple hP ;T ;F i, where P and T are two sets and F is a

subset of (P �T ) [ (T �P); P , T , and F are respe
tively 
alled the sets of

the pla
es, the transitions, and the ar
s of the net; F is also 
alled the 
ow

relation.

Nets are graphi
ally represented by depi
ting pla
es, transitions, and ar
s

respe
tively as 
ir
les, boxes, and arrows, see, e.g., Figure 13.3.

Example 13.4. (Bit using Petri nets)A Petri net modelingBit is reported

in Figure 13.3; note that to make the drawing small enough we have assumed

that the bu�er may only fail when its 
ontent is 01.

The behavior of a net is de�ned as follows.

Given a transition t 2 T , we de�ne �t = fp j p 2 P ; hp; ti 2 Fg (the

pre
onditions of t) and t� = fp j p 2 P ; ht; pi 2 Fg (the post
onditions of t).

Any fun
tion s from P into is 
alled a (global) state (or marking) of

N ; graphi
ally represented by putting s(p) �'s (
alled tokens) on the pla
e p,

for any p 2 P ; the net in Figure 13.3 is in a state 
hara
terized just by one

token on ea
h of the pla
es Initial and Empty.

A transition t 2 T is enabled in a state s (or may �re) i�, for any p 2 �t,

s(p) > 1. If t is enabled in s, then

s

0

= �p:

8

<

:

s(p) � 1 if 2 �t� t�

s(p) + 1 ifp 2 t � � � t

s(p) otherwise

is 
alled the su

essor state of s with t (or the state obtained after the �ring

of t in s) and s

t

��! s

0

is 
alled a step in N .

A system net (s-net for short) is a net N , together with a state, 
alled

the initial state.

The single steps of an s{net 
an be 
omposed in runs: hs

i

t

i

��! s

i+1

i

i2I

with s

0

the initial state and I = f0; : : : ; ng (I = ) is a �nite (in�nite)

interleaved run.

Empty : 1; Initial : 1

START

�����! Empty : 1;Putting 0 : 1

INT1

����!

0 : 1;Putting 1 : 1

INT2

����! 01 : 1;Reading : 1

INT3

����! 01 : 1;Ok : 1

BREAK

�����!

10

10

: 1;Ok : 1

OK

��! 10

10

: 1;Terminated : 1

is an example of an interleaved run of the net in Figure 13.3, where a state is

represented by listing the pla
es with the number of their tokens, forgetting

those without tokens.

Some o

urren
es of transitions in an interleaved run that are seen as

ordered one after the other may be independent. Thus they may also have
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Initial

START

Putting_0

Putting_1

Reading

Ok

Empty

INT1

INT2

0

01

INT3

DUP

011
INT4

BREAK

1010

ERROR

OK

Terminated

Fig. 13.3. A Petri net modeling Bit

happened in the reverse order; in the run depi
ted above, the two last tran-

sitions are independent. We give another de�nition of a run, making expli
it

the 
on
urrent aspe
ts.

Con
urrent runs are represented by spe
ial nets; the underlying idea is

that a 
on
urrent run of N is a net, whose pla
es and transitions are labeled

with the pla
es and transitions of the original net N and 
orrespond to their

o

urren
es and �rings in the run, and where the 
ow relation 
orresponds

to the 
ausal relationships among them.
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Due to la
k of spa
e we skip the 
omplete de�nition of 
on
urrent runs,

and just give in Figure 13.4, as an example, the 
on
urrent run 
orresponding

to the run above; here we 
an see how the two last transitions are not 
ausally

related.

Initial

START

Putting_0

Putting_1

Reading

Ok

Empty

INT1

INT2

0

01

INT3

BREAK

10
10

OK

Terminated

01

Fig. 13.4. A 
on
urrent run of the net modeling Bit

The features of 
on
urrent systems that 
an be ni
ely handled by modeling

them with nets are as follows:
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{ lo
al and global states abstra
tly represented as token distributions over

the pla
es;

{ atomi
 a
tions (the transitions);

{ (lo
al) 
ausality and e�e
t between a
tions and states;

{ mutual independen
e/
ausality of a
tions;

while there is no a

eptable way to model

{ the (distributed) stru
ture of the system;

{ the modular de
omposition of systems;

{ open/intera
ting/rea
tive systems (no distin
tion between internal and

external transitions/pla
es: in the net in Figure 13.3, START, OK, and

ERROR should be the external transitions), and therefore no way to

de�ne modularly the net 
orresponding to a 
omplex system by putting

together the nets 
orresponding to its 
omponents.

Clearly many new formalisms extending nets with other features have been

proposed in the literature over
oming some of these problems.

Nets are parti
ularly apt for analyzing the modeled systems, formally


he
king whether the system has or does not have some properties, in
luding

both safety and liveness properties (see Se
tion 13.2.3); several te
hniques

have been provided for that, one of the most relevant is based on \pla
e{

invariants".

A pla
e{invariant is a linear 
ombination (summation) with (also zero)

integer 
oeÆ
ients of the number of tokens 
ontained in the pla
es, whi
h is

not 
hanged by the �ring of the transitions; all pla
e{invariants of a net may

be found by solving a linear system of equations with integer 
oeÆ
ients,

thus it is possible to have software tools for �nding them.

For example, two invariants of the net in Figure 13.3 are:

1�Initial +1�Putting 0 +1�Putting 1 +1�Reading +1�Ok+1�Terminated = 1

1 � Empty + 1 � 0 + 1 � 01 + 1 � 011 + 1 � 10

10

= 1

(
orresponding to saying that the user and the bu�er are always in one and

only one state); while

1 �Ok � 1 � 01 = 0

is not an invariant (the user may be in the Ok state while the bu�er 
ontent

is not 01).

High-level algebrai
 Petri nets. Nets, as presented in Se
tion 13.2.2,

allow us to model several aspe
ts of 
on
urrent systems. However, if we want

to use them for signi�
ant examples we have to handle very large (if not

in�nite) nets; e.g., 
onsider the Petri net modeling a system using integer

numbers. Moreover in pra
ti
al appli
ations we have also to handle 
omplex

data stru
tures.
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To �x the �rst kind of problem, the basi
 nets have been extended in

several ways: a transition �ring 
an test for the presen
e of, delete, and add

�nite sets of tokens (
reating Petri nets as originally de�ned). Later on, the

unique bla
k token was repla
ed by 
olored tokens, produ
ing the so-
alled

\Colored nets"; here the �ring of a transition also depends on the 
olors of

the tokens present in the pla
es, and its �ring deletes and adds sets of 
olored

tokens. More generally, tokens 
an be 
onsidered to be data taken in some

data stru
ture; this leads to the so-
alled \algebrai
 nets" where su
h a data

stru
ture is given by a (many-sorted) algebra.

A ri
her stru
ture of the tokens allows us to introdu
e \high-level" nets,

where the basi
 idea is that the ar
s are de
orated with symboli
 expres-

sions, des
ribing in a 
ompa
t way the sets of tokens 
ausing the �ring of a

transition, and those deleted and added by su
h �ring. Moreover, now the

transitions may also be de
orated by some expression 
orresponding to per-

forming some 
he
ks on the tokens present in the pla
es in the premise of

the transition, for instan
e, putting in relation the 
olor of the token in a

pla
e with that of the token in another pla
e (the token of type natural in

one pla
e should be the length of the token of type queue in another). In the

literature it is possible to �nd several proposals for high-level algebrai
 nets

(see, for instan
e, [Rei91,BCM88,DH91,Vau87℄). The reader interested in a

more detailed study of su
h nets may, for instan
e, 
onsult [JR91℄; here we

just brie
y present their basi
 features.

A high-level algebrai
 net system 
onsists of:

{ a net N = hP ;T ;F i (the s
hema);

{ a signature � and a set of sorted variables X ;

{ an asso
iation with ea
h pla
e in P of a sort of � (pla
es are typed with

the sorts);

{ an asso
iation with ea
h ar
 in F of a set of terms built on � and X

having the sort of the pla
e sour
e or target of the ar
 (ar
 ins
riptions);

{ an asso
iation with ea
h transition in T of a �rst-order (
onditional, : : : )

formula built on � and X , where only the variables appearing in the

ins
riptions of the ar
s entering in the transition may appear (transition

ins
riptions);

{ a �{algebra A (the data part);

{ an asso
iation with ea
h pla
e p in P of a set of elements of jAj

s

, where

s is the sort asso
iated with p (initial state).

In some approa
hes, sets are repla
ed by multisets, and in others the

signatures and the algebras are extended to have sorts and operations for

handling sets/multisets of elements of the original sorts; thus ar
s are in-

s
ribed by terms of sort set(s)/mset(s) and the initial marking 
onsists of

elements of the 
arriers of these set/mset sorts. The algebras used in algebrai


nets may be of whi
hever kind; e.g., there are approa
hes using homogeneous

total algebras and others using many-sorted partial algebras.
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The abstra
tion level of high-level algebrai
 nets may be enhan
ed by

abstra
tly giving the data part as an algebrai
 spe
i�
ation with initial se-

manti
s.

Example 13.5. (Bit using algebrai
 high-level nets) Here we give a spe
-

i�
ation of Bitwhi
h is an improvement on that presented in Figure 13.3; the

bu�er is now organized as a queue and 
ontains integer numbers, and so it is

possible to 
he
k whether its �rst element is 0. Noti
e that the 
orresponding

non-high-level net is in�nite.

The data part is given by the following algebrai
 spe
i�
ation with initial

semanti
s

spe
 DATA =

enri
h INT QUEUE by

sorts token

opns � : ! token

The pla
e Bu�er has sort queue, while Initial , Putting 0,Putting 1,Reading ,

Ok , and Terminated have sort token.

The net is shown in Figure 13.5.

Like 
lassi
al Petri nets, high-level algebrai
 nets su�er from their la
king

modularity.

13.2.3 Temporal logi


In the �eld of 
on
urren
y, spe
i�
ations following an axiomati
, or, better,

property{oriented style, have been widely used, in general to give the formal

spe
i�
ation of the requirements on a 
on
urrent system. In these 
ases, a

spe
i�
ation is just a set of formulas of some logi
 expressing the require-

ments on the spe
i�ed system; among the 
ommonest and most relevant

requirements, we have:

1. liveness properties: (under some 
ondition) something good will happen

eventually in the system; for instan
e, the system will eventually rea
t to

the re
eption of some stimuli/after that some situation has been rea
hed;

2. safety properties: (under some 
ondition) something bad will never hap-

pen in the system; for instan
e, after re
eiving some stimuli/rea
hing

some situation, some (in
orre
t) output will not be produ
ed/some (in-


orre
t) situation will be not rea
hed;

3. fairness properties: the repeated 
hoi
e between two alternative a
tivities

of the system must be fair (i.e., it 
annot happen that one of the two

alternatives will be 
hosen forever); e.g., in the 
ase of two pro
esses

trying to a

ess a shared resour
e, it 
annot happen that only one will

su

eed;
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Initial

START

Putting_0

Putting_1

Reading

Ok

INT1

INT2

Buffer

INT3

BREAK

ERROR

OK

Terminated

q

Put(0,q)

Put(1,q)

q

q

q

First(q) = 0

DUP

q Dup(q)

q
Put(10   ,Empty)

10

q

q

Empty

First(q) � 0

Fig. 13.5. A high-level algebrai
 net modeling Bit

4. priority/pre
eden
e properties: some a
tivity 
an be exe
uted i� some

other a
tivity 
annot be exe
uted; e.g., a pro
ess 
omponent of a system


an write to a bu�er i� no other pro
ess in the system 
an read it, a

pro
ess with priority n 
an a

ess a resour
e i� no pro
ess with priority

higher than n 
an;

5. : : : .
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First-order logi
 is not suÆ
ient to express properties su
h as those above

in full generality: some properties are related to the evolution of the system

over time (2), others related to the possible a
tivities of a system (1), or

of the 
omponents of a system. Following the way indi
ated by Pnueli in a

landmark paper [Pnu77℄, in re
ent years various modal/temporal logi
s have

been widely and satisfa
torily used to express properties like (1) and (2), or

spe
ial variants parti
ularly tailored for the system model 
hosen have been

developed (see, e.g., [CR97,Mil89℄). Con
erning properties su
h as (3, 4), no

fully satisfa
tory proposal has yet been found (some initial attempts are in

[Reg91,ES95℄).

Here we only brie
y introdu
e the basi
 (linear and bran
hing) temporal

logi
s, and afterwards we show how �rst-order temporal logi
 with equality

may be used to give requirement spe
i�
ations of 
on
urrent systems where

the stati
 data are spe
i�ed by loose algebrai
 spe
i�
ations, following an

A2 approa
h; in Se
tion 13.3, we present an alternative approa
h based on

temporal logi
 of kind A3.

Variations of temporal logi
s. Here we brie
y re
all the de�nition of a

linear/bran
hing temporal logi
 and give some examples of use of its formulas

to express requirements on 
on
urrent systems; for referen
es, see [Sti92,

Pnu86,Eme90℄.

A propositional linear temporal logi
. TL is a propositional linear temporal

logi
 with a minimal set of 
ombinators.

Assume that Q is a set of propositional symbols; thus the formulas of TL

are de�ned by:

� ::= Q j �

1

) �

2

j : � j �

1

U �

2

The models of TL are sequen
es of states M = hs

i

i

i2

, where a state s is

a fun
tion from Q into fT; Fg, the set of the truth values.

The validity of a formula � over a modelM = hs

i

i

i2

is de�ned as follows:

M j= � i� i;M j= � for all i 2 ;

where

{ i;M j= Q i� s

i

(Q) = T

{ i;M j= �

1

) �

2

i� i;M j= : �

1

or i;M j= �

2

{ i;M j= : � i� i;M 6j= �

{ i;M j= �

1

U �

2

i� there exists j � 0 su
h that for all h, i < h < j,

h;M j= �

1

and j;M j= �

2

.

The term \linear" means that in this 
ase the behavior of a system is

modeled by a set of exe
utions represented by linear sequen
es of states, and

thus at a given instant state, there is exa
tly one su

essor state.
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When TL is used to spe
ify a system, we have that the models and the

formulas represent respe
tively the exe
utions of that system and the prop-

erties on su
h exe
utions. For example, �

1

U �

2


orresponds to saying that

in any exe
ution the property represented by �

1

holds until the property rep-

resented by �

2

holds, and that �

2

surely will hold. Thus a set of TL formulas

� 
ould be used to spe
ify the requirements on a system: � determines the


lass of all systems whose possible exe
utions are in
luded in the 
lass of the

models of �.

U is the basi
 
ombinator; many others suitable for expressing further

relevant properties 
an be derived; among them:

{ true , false , _ , ^ , and , , de�ned in the usual way

{ � =

def

true U � (eventually the property represented by � will hold)

{ � =

def

: : � (the property represented by � will hold forever)

{ �

1

WU �

2

=

def

(�

1

U �

2

) _ �

1

(the property represented by �

1

holds

until �

2

will hold, but it is not required that �

2

will eventually hold).

A propositional bran
hing temporal logi
. BTL is a propositional bran
hing

temporal logi
 with a minimal set of 
ombinators given, following a CTL

style. The term \bran
hing" means that in this 
ase the behavior of a system

is modeled by a tree whose nodes are de
orated by states, and thus at a given

instant there may be several di�erent su

essor states.

As before, assume that Q is a set of propositional symbols; then the for-

mulas of BTL are the following, where 4 is the 
ombinator for \quantifying

over paths":

� ::= Q j 4 � j �

1

) �

2

j : � j �

1

U �

2

:

The models of BTL are transition systems or Kripke stru
tures, where a

fun
tion from Q into the set of the truth values is asso
iated with ea
h state.

Pre
isely, a model M is a triple hSTATE ;!; vi, where STATE is a set,

!� STATE

2

and v is a fun
tion from STATE into the set of the fun
tions

from Q into fT; Fg.

The validity of a formula � over a model M is de�ned as follows.

First we de�ne the set of paths over M:

PATH (M) =

fhs

i

i

i2

j 8 i 2 : ((s

i

! s

i+1

_ (8 j: j > i ) (s

j

= s

i

^ 6 9s: s

i

! s))g.

Given � = hs

i

i

i2

2 PATH (M) and h � 0, �b

h

denotes the path

s

h

s

h+1

s

h+2

: : : .

M j= � i� �;M j= � for all � 2 PATH (M);

where

{ �;M j= Q i� v(s

0

)(Q) = T
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{ �;M j= �

1

) �

2

i� �;M j= : �

1

or �;M j= �

2

{ �;M j= : � i� �;M 6j= �

{ �;M j= �

1

U �

2

i� there exists j � 0 su
h that for all h, 0 < h < j,

�b

h

;M j= �

1

and �b

j

;M j= �

2

{ �;M j=4 � i� �

0

;M j= � for all �

0

2 PATH (M) su
h that s

0

= s

0

0

.

When BTL is used to spe
ify a system, we have that a model represents the

whole behavior of su
h a system, i.e., all its possible exe
utions and at whi
h

point the nondeterministi
 
hoi
es are made, and then the formulas represent

properties on su
h behavior. For example, : 4 ( true U �) 
orresponds

to saying that it is not true that in any 
ase the exe
utions of the system

will eventually satisfy the property represented by � (if � 
orresponds to

failing, then the formula requires that the system has at least an exe
ution

without failures). Thus a set of BTL formulas � 
ould be used to spe
ify

the requirements on a system: � determines the 
lass of all systems whose

behavior is des
ribed by an element of the 
lass of the models of �.

4 is the basi
 bran
hing 
ombinator; many others that are suitable to

express further relevant system properties 
an be derived; among them

5� =

def

: 4 : �

(at least in one 
ase, i.e., the property represented by � holds in at least one

path).

The derived 
ombinators for the path formulas, and , 
an be de�ned

as for the linear{time logi
.

Further temporal logi
s. In the previous paragraphs we have brie
y sket
hed

two simple logi
s. In the literature and in the \pra
ti
e" of spe
i�
ation

of 
on
urrent systems, a large number of variants have been proposed; the

di�eren
es are related to:

an
hored version In the model a state (set of states) is singled out to be

initial, determined by a spe
ial propositional symbol, and the validity of

a formula is 
hanged to hold only on su
h states (paths starting from su
h

states). Formally, for the bran
hing{time 
ase, assume that s

0

2 STATE

is the initial state, thus

M j= � i� �;M j= � for all � 2 PATH (M) su
h that s

0

= s

0

:

edge formulas The models, instead of just being sequen
es (trees) of states,

allow the labeling of the transitions from a state to another; thus they

are sequen
es of states and labels or trees where the ar
s are labeled

(labeled transition systems). Clearly, the formulas are extended to in
lude

\edge formulas" expressing 
onditions on the next label (see, e.g., [Lam83,

CR97℄).
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�rst-order The basi
 formulas, instead of being propositional, are �rst-

order. Now there is the problem of the evaluation of the variables appear-

ing in a formula; usually the symbols appearing in a formula (operations,

predi
ates, variables) are 
lassi�ed into: rigid, whose interpretation does

not depend on the state where the formula is evaluated, and 
exible,

whose interpretation depends on the state where the formula is evalu-

ated. Consequently a model 
onsists of a standard �rst-order stru
ture,

a variable evaluation (for interpreting the rigid symbols) and a sequen
e

(tree) of states, where with ea
h state is asso
iated a �rst-order stru
ture

and a variable evaluation, for interpreting the 
exible symbols. Clearly

the 
arriers of su
h stru
tures must 
oin
ide with those of the stru
ture

used for rigid symbols (no sensible and usable proposal is available for

over
oming this restri
tion).

Temporal logi
 and algebrai
 spe
i�
ations (A2). First-order tem-

poral logi
s allow us to give spe
i�
ations of 
on
urrent systems, where the

properties on the dynami
 a
tivity are given using the temporal 
ombinators,

while the involved (stati
) data stru
tures are spe
i�ed by �rst-order loose

algebrai
 spe
i�
ations. The sort symbols plus the rigid symbols give the sig-

nature of the data stru
ture, while the 
exible symbols des
ribe the states

of the system (noti
e a similarity with the dynami
 data-type approa
h in

Se
tion 13.4).

Example 13.6. (Bit using temporal logi
 (requirements)) In this 
ase

we try to give some requirements on Bit (see p. 3), instead of spe
ifying its

design, as done in previous examples.

The stati
 data stru
ture is now spe
i�ed by the following loose algebrai


spe
i�
ation, where we do not �x the poli
y followed by the bu�er for storing

values (e.g., as a queue or as a sta
k).

2

spe
 INT BUNCH =

enri
h INT by

sorts bun
h

opns Empty : ! bun
h

Put : int � bun
h! bun
h

First : bun
h ! int

Remove : bun
h ! bun
h

preds Not Empty : bun
h

Is In : int � bun
h

axioms Empty and Put are generators for bun
h

: Is In(i;Empty)

Is In(i;Put(i

0

; b)) , (i = i

0

_ Is In(i; b))

2

In this 
hapter, for simpli
ity, we omit the universal quanti�ers when

writing the spe
i�
ation axioms; thus, e.g., : Is In(i;Empty) stands for

8 i : int:: Is In(i;Empty).
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Not Empty(b) , 9 i: Is In(i; b)

Is In(First(b); b)

Is In(i;Remove(b)) ) Is In(i; b)

The states of the system are then 
hara
terized by the following 
exible

symbols:

opns Buf Cont : ! bun
h �� the bu�er 
ontent

preds Putting : int

�� is the user putting a given integer in the bu�er ?

Reading : int

�� is the user reading a given integer from the bu�er ?

Terminated :

�� has the user terminated its a
tivity ?

Error :

�� has something erroneous happened in the system ?

The following formulas express requirements on Bit.

Putting(i) ) 4 (Is In(i;Buf Cont) _ Error)

If the user is putting i in the bu�er, then in any 
ase, eventually, either i will

be in the bu�er or something erroneous will happen (R5).

4 (Reading (i) ) i = First(Buf Cont))

or equivalently

Reading (i) ) i = First(Buf Cont)

In any 
ase, always, if the user is reading i, then i is the �rst element of the

bu�er (R5).

Terminated ) Terminated

On
e the user has terminated its a
tivity, it 
annot restart (R1).

5 : Error

There always exists a possible \
orre
t" behavior (R2).

There is no way to express (R0), sin
e we 
annot express the bu�er


apabilities of intera
ting with the user within the system.

13.2.4 Streams and data 
ow

A model of 
on
urren
y where the data stru
tures representing the 
ow of

intera
tion are made expli
it is data 
ow 
on
epts based on streams. Of


ourse, these temporal formulas do not spe
ify all the interesting properties

of a bu�er; rather they spe
ify a subset. Temporal logi
 is not well suited

for 
omprehensive spe
i�
ations. Therefore it is better to 
ombine it with

methods that are more appropriate for spe
ifying safety properties.
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Data 
ow models. For referen
es, see, for instan
e, [Bro87,Bro97,Bro93,

Bro96℄.

Data 
ow models of systems are often represented by data 
ow graphs

(also 
alled data 
ow diagrams). A data 
ow graph is a dire
ted graph, the

nodes of whi
h are 
alled data 
ow nodes and the ar
s of whi
h are 
alled

data 
ow ar
s. Some ar
s may have no sour
es. These are 
alled input ar
s.

Others may have no target. These are 
alled output ar
s.

Data 
ow models are used in many methods in software engineering.

They provide a stru
tural view of a system by representing the 
omputing

agents by data 
ow nodes and their 
ommuni
ation inter
onne
tion by the

arrows 
onne
ting them. Although data 
ow diagrams are used in nearly all

methods (SA, SADT, SSADM, OMT, SDL, et
.), as well as in many books

on operating systems, their meaning is often not well de�ned and leads to

many misinterpretations. The stream model 
an help to provide a pre
ise

meaning for data 
ow graphi
s.

There are a number of variations of data 
ow models. In a
y
li
 data 
ow

models often only one data value is asso
iated with ea
h data 
ow ar
. The

data 
ow nodes are then fun
tions that re
eive their arguments on their input

ar
s (one on ea
h ar
) and produ
e one result on ea
h of their output ar
s. The

data 
ow diagram a

ordingly shows a 
omputation tree or a 
omputation

graph. This is related to the single assignment languages.

In more sophisti
ated data 
ow graphs, we asso
iate a stream of data

elements with ea
h data 
ow ar
. This leads to Kahn networks [Kah74℄. In the

deterministi
 
ase ea
h node is asso
iated with a stream pro
essing fun
tion

that re
eives its argument streams on its input ar
s (one at ea
h ar
) and

produ
es one result stream on ea
h of its output ar
s. These graphs may be


y
li
. This leads to 
y
li
 (re
ursive) de�nitions for the streams asso
iated

with the ar
s. A simple mathemati
al model for data 
ow diagrams 
an be

obtained by stream pro
essing fun
tions. Nondeterministi
 data 
ow diagrams


an be handled by asso
iating sets of fun
tions with ea
h node.

The idea of data 
ow was heavily in
uen
ed by the 
on
ept of Petri nets.

Pioneering papers on data 
ow were based on the �ring rule semanti
s of Petri

nets [Den80℄. On the other hand the development of data 
ow in
uen
ed the

generaliZation of Petri nets. High-level Petri nets are spe
ial 
ases of su
h

data 
ow diagrams. Both pla
es and transitions in Petri nets 
an be seen as

data 
ow nodes.

Fun
tional system spe
i�
ation. In this se
tion we give a brief sum-

mary of the basi
 mathemati
al 
on
epts of stream-based fun
tional system

models. We 
onsider system 
omponents with a �nite number of input and

output 
hannels. Messages are ex
hanged over the 
hannels. A 
hannel his-

tory is mathemati
ally modeled by a stream of messages. The behavior of

a (deterministi
) 
omponent 
orresponds to a fun
tion mapping the streams

on its input 
hannels onto streams for its output 
hannels.
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A stream of messages over a given message set M is a �nite or in�nite

sequen
e of messages. We de�ne the set of stream by

M

!

=

def

M

�

[ M

1

:

By x

_

y we denote the result of 
on
atenating two streams x and y. We

assume that x

_

y = x, if x is in�nite. By hi we denote the empty stream.

For simpli
ity we write for a 2M , x 2M

!

a

_

x instead of hai

_

x and x

_

a instead of x

_

hai.

If a stream x is a pre�x of a stream y, we write x v y. The relation v is


alled pre�x order. It is formally spe
i�ed by

x v y =

def

9 z 2M

!

: x

_

z = y:

The relation v is a partial order on the set of streams. The empty stream hi

is the least element.

Given a partially ordered set, a subset is 
alled dire
ted if, for any pair of

elements in S, there exists an upper bound in S. A partially ordered set is


alled 
omplete if, for every dire
ted set of streams, there exists a least upper

bound. The set of streams ordered by the pre�x order is 
omplete. The least

upper bound of a dire
ted set S is denoted by lub S.

The behavior of deterministi
 intera
tive systems with n input 
hannels

and m output 
hannels is modeled by pre�x monotoni
 fun
tions

f : (M

!

)

n

! (M

!

)

m


alled (m, n){ary stream pro
essing fun
tions.

A fun
tion f mapping a 
omplete partially ordered set onto a 
omplete

partially ordered set is 
alled 
ontinuous, if, for every dire
ted set S,

f(lub S) = lub ff(x) j x 2 Sg

The set of all pre�x 
ontinuous stream pro
essing fun
tions of fun
tion-

ality (M

!

)

n

! (M

!

)

m

is denoted by

SPF

n

m

:

For simpli
ity, we do not 
onsider type information here and assume M

to be just a set of messages.

The following fun
tions on streams are useful in spe
i�
ations:

rt : M

!

!M

!

rest of a stream

ft : M

!

!M [ f?g �rst element of a stream

#: M

!

! [ f1g length of a stream




 : P(M ) �M

!

!M

!

�lter of a stream
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Here ? is used as a dummy to avoid partial fun
tions. These fun
tions are

easily spe
i�ed by the following algebrai
 equations (let x 2 M

!

, m 2 M ,

S � M ):

rt(hi) = hi; rt(m

_

x) = x;

ft(hi) = ?; ft(m

_

x) = m;

#(hi) = 0; #(m

_

x) = 1 +#(x);

S



hi = hi;

S



 (m

_

x) = m

_

(S



x); if m 2 S

S



 (m

_

x) = S



x; if m =2 S

These axioms spe
ify the fun
tions 
ompletely. They are useful in proofs, too.

Stream pro
essing fun
tions 
an easily be spe
i�ed by logi
al formulas in

the style of algebrai
 equations as is demonstrated for the running example

below. Given su
h fun
tions, we may 
ompose them.

We use two forms of 
omposition: parallel 
omposition and sequential


omposition. Given fun
tions f 2 SPF

n

k

, g 2 SPF

k

m

we write

f ; g

for the sequential 
omposition of f and g whi
h yields a fun
tion in SPF

n

m

,

where

(f ; g)(x) = g(f(x)):

Given fun
tions f 2 SPF

n

m

, g 2 SPF

n

0

m

0
we write

fkg

for the parallel 
omposition of f and g whi
h yields a fun
tion in SPF

n+n

0

m+m

0

,

where (let x 2 (M

!

)

n

, y 2 (M

!

)

n

0

):

(fkg)(hx; yi) = hf(x); g(y)i

Finally, given a fun
tion

f 2 SPF

n

m

we may 
onstru
t a fun
tion by the feedba
k operator leading an output line

ba
k to an input line. We write

�

k

j

f 2 SPF

n�1

m�1

for the fun
tion de�ned by the equation (1 � k � n; 1 � j � m)

�

k

j

f(x

1

; : : : ; x

k�1

; x

k+1

; : : : ; x

n

) = (y

1

; : : : ; y

j�1

; y

j+1

; : : : ; y

m

)

where z is the pre�x least stream su
h that the following equation holds

f(x

1

; : : : ; x

k�1

; z; x

k+1

; : : : ; x

n

) = (y

1

; : : : ; y

j�1

; z; y

j+1

; : : : ; y

m

)
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k

1 n... ...

1 m

j

... ...

k-1 k+1 ...

j-1 j+1

f

Fig. 13.6. Data 
ow graph for feedba
k

See Figure 13.6.

Sin
e f is pre�x monotoni
, su
h a stream least solution (least �x point)

always exists. Of 
ourse, it is unique.

By SPEC

n

m

we denote the set of all predi
ates Q where

Q : SPF

n

m

! fT; Fg

The set SPEC

n

m

denotes the set of all 
omponent spe
i�
ations for a 
ompo-

nent with n input 
hannels and m output 
hannels.

We want to 
ompose spe
i�
ations of 
omponents to networks. Ea
h

form of 
omposition introdu
ed for fun
tions 
an be extended to 
ompo-

nent spe
i�
ations in a straightforward way. Given 
omponent spe
i�
ations

Q 2 SPEC

n

k

, R 2 SPEC

k

m

we write

Q;R

for the predi
ate in SPEC

n

m

where

(Q;R)(f) , 9 q; r: f = q; r ^ Q(q) ^ R(r)

Trivially, we have for all spe
i�
ations Q 2 SPEC

n

m

the following equations,

where I denotes the identity fun
tion:

Q; I = Q and I;Q = Q:

Given spe
i�
ations Q 2 SPEC

n

m

, R 2 SPEC

n

0

m

0

we write

QkR

for the predi
ate in SPEC

n+n

0

m+m

0

where

(QkR)(f) , 9 q; r: f = qkr ^ Q(q) ^ R(r):
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Feedba
k also 
arries over in a straightforward manner to spe
i�
ations.

(�

k

j

Q)(f) � 9 f

0

: Q(f

0

) ^ f = (�

k

j

f

0

)

Any data 
ow graph 
an be des
ribed by parallel 
omposition and feedba
k.

This is easily seen. To build a 
ompositional form for a given data 
ow di-

agram where the nodes are des
ribed by spe
i�
ations of stream pro
essing

fun
tions, we form a large parallel 
omposition of all data 
ow nodes. Then

we 
onne
t the output lines to input lines by feedba
k as shown by the data


ow diagram.

A spe
i�
ation Q 2 SPEC

n

m

is 
alled a property re�nement of a spe
i�-


ation Q 2 SPEC

n

m

if, for all fun
tions f , we have Q(f) ) Q(f). We write

then

Q ) Q

In other words, Q is a property re�nement of Q if the set of fun
tions de-

s
ribed by Q is a subset of the set of fun
tions des
ribed by Q. More sophis-

ti
ated notions of re�nement are obtained by abstra
tion and representation

spe
i�
ations as introdu
ed in [Bro97℄.

A pair of spe
i�
ations A and R are 
alled abstra
tion and representation,

if

R;A = I

Let A

1

be an abstra
tion spe
i�
ation and R

2

be a representation spe
i�
a-

tion. A spe
i�
ation C

0

is 
alled a re�nement of spe
i�
ation C if we have

C

0

) A

1

;C;R

2

Given the 
orresponding abstra
tion spe
i�
ation A

2

and a representation

spe
i�
ation R

1

, the identities

R

1

;A

1

= I R

2

;A

2

= I

allows us to dedu
e

R

1

;C

0

;A

2

) C:

The a
tual spe
i�
ation of data 
ow nodes 
an be done by logi
al formulas

des
ribing the relationship between the input and output streams.

The strong aspe
t of stream pro
essing 
on
epts is their modularity. They

allow for a modular spe
i�
ation, 
omposition, and re�nement of intera
ting

systems.

Example 13.7. (Bit using stream fun
tions)

First we spe
ify the two 
omponents, bu�er and user.

For ea
h 
omponent we �rst give its fun
tionality, then we give the spe
-

ifying axioms.

BUFFER : ( [ f GETg)

!

!

!
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8h 2 ; z 2

�

; x 2 ( [ f GETg)

!

:

BUFFER(h

_

z

_

GET

_

x) = h

_

BUFFER(z

_

x) _

BUFFER(h

_

z

_

GET

_

x) = h

_

BUFFER(h

_

z

_

GET

_

x) _

BUFFER(h

_

z

_

GET

_

x) = h10

10

i

The user is modeled by the fun
tion

USER :

!

� f STARTg

!

! ( [ f GETg)

!

� fOK ;ERRORg

!

whi
h is spe
i�ed by the equation

USER(x; hSTART i) = h0

_

1

_

GET ; INSPECT (x)i

where the auxiliary fun
tion

INSPECT :

!

! fOK ;ERRORg

!

is spe
i�ed by the equations (i 2 ^ x 2

�

)

INSPECT (0

_

x) = hOK i

INSPECT (i

_

x) = hERRORi; i 6= 0

The system is formed by the parallel 
omposition of BUFFER and USER,

and a feedba
k ofOutput

I

to Input and of Output to Input

I

; see its graphi
al

explanation in Figure 13.7.

USER

Input_E

Output_E

Input_I

Output_I

BUFFER

Input

Output

Fig. 13.7. Stru
ture of Bit spe
i�ed using stream-pro
essing fun
tions
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The stru
ture of the data 
ow diagram is 
aptured logi
ally by the equa-

tions

Output = BUFFER(Input)

(Output I ;Output E ) = USER(Input I ; Input E )

Input I = Output

Input = Output I

Input E = hSTART i

Given these equations and the spe
ifyig equations above, we may begin a

straightforward reasoning about the value of Output E .

Integration with algebrai
 data type spe
i�
ations. The integration

of stream pro
essing fun
tions with algebrai
 spe
i�
ation is quite simple.

Streams are nothing other than an abstra
t data type, just slightly more


omplex be
ause they may be in�nite. The data types forming the messages

in a stream are easily spe
i�ed by algebrai
 spe
i�
ations.

Stream pro
essing fun
tions 
an also be spe
i�ed by algebrai
 spe
i�
a-

tions. Similarly sequential 
omposition, parallel 
omposition, and feedba
k


an be des
ribed by algebrai
 spe
i�
ations. Here we need higher-order al-

gebrai
 spe
i�
ations, of 
ourse. The algebrai
 equations for the 
omposition

operators lead to a ri
h algebra of stream pro
essing 
omponents.

13.3 Dynami
-data types (A3)

As shown in the se
tion on CCS, labeled transition systems (lts) are an e�e
-

tive way to give an operational semanti
s to a pro
ess algebra. In this se
tion

we show how lts 
an be dire
tly used for the spe
i�
ation of system behavior.

13.3.1 Labelled transition logi
 (LTL)

The main referen
es for LTL are [AR87,AR96b,CR97℄; the �rst appearan
e

is in [AMRW85℄. Noti
e that in the past the terms \algebrai
 transition sys-

tems" (e.g., in [AMRW85,AR87℄) and \dynami
 spe
i�
ations" (e.g., in [CR97,

Reg93,AR96a℄) have also been used for the spe
i�
ations built using LTL.

To model pro
esses LTL uses labeled transition systems, see Se
tion 13.1.1,

and supplies two di�erent kinds of spe
i�
ations at di�erent levels of abstra
-

tion:

requirement for expressing the requirements on a 
on
urrent system; a re-

quirement spe
i�
ation should determine a 
lass of nonisomorphi
 mod-

els, all those formally and abstra
tly des
ribing systems having su
h re-

quirements;

design for expressing the abstra
t design of a 
on
urrent system, to de�ne

abstra
tly and formally the way in whi
h we intend to design the system;

a design spe
i�
ation should determine one model, the one formally and

abstra
tly des
ribing the designed system.
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LT-Stru
tures. An lts 
an be represented by a �rst-order stru
ture (an alge-

bra with predi
ates) A on a signature with at least two sorts, state and label ,

whose elements 
orrespond respe
tively to the states and labels of the sys-

tem, and a predi
ate ��! : state� label�state representing the transition

relation. The triple hjAj

state

; jAj

label

;!

A

i is the 
orresponding lts. Obviously

we 
an have lts whose states are built by states of other lts (for modeling


on
urrent systems); in su
h a 
ase we use stru
tures whose signature has

di�erent sorts 
orresponding to states and labels, and di�erent predi
ates


orresponding to transition relations.

In a formal model for 
on
urrent systems we may need to 
onsider data,

too (for example, the data manipulated by a system su
h as natural numbers);

to handle these 
ases we 
onsider stru
tures whi
h also have sorts that just


orrespond to data and not to states or labels of lts.

The �rst-order stru
tures (algebras) 
orresponding to lts are 
alled LT-

stru
tures and are formally de�ned as follows.

� An LT-signature LT� is a pair h�;DS i, where:

* � = hS ; 
;�i is a �rst-order signature,

* DS � S (the elements in DS are the dynami
 sorts, whi
h are the

sorts 
orresponding to states of lts),

* for all ds 2 DS there exist a sort lab ds 2 S � DS (labels of the

transitions of the pro
esses of sort ds) and a predi
ate

��! : ds � lab ds � ds 2 �

3

(transition relation of the dynami


elements of sort ds).

� An LT-stru
ture on LT� (abbreviated to LT�-stru
ture) is a �{�rst-

order stru
ture (a �-algebra with predi
ates).

Design LT-spe
i�
ations. LT-spe
i�
ations are parti
ular algebrai
/logi


spe
i�
ations for LT-stru
tures where 
onditional formulas are used as ax-

ioms; sin
e transitions are des
ribed by predi
ate symbols, su
h formulas also

allow us to express properties on the a
tivity of pro
esses.

An LT-spe
i�
ation is a pair SP = hLT�;AX i, where LT� = h�;DS i is

an LT-signature and AX a set of 
onditional formulas on LT� having form

^

i=1;:::;n

�

i

) �

n+1

;

where for i = 1; : : : ; n + 1, �

i

is an atom, i.e., a formula having the form

either t = t

0

or p(t

1

; : : : ; t

m

).

We 
an give SP di�erent semanti
s, as initial and observational, brie
y

presented below.

The initial semanti
s of SP determines one (up to isomorphism) LT-

stru
ture, pre
isely IMod(SP ) = T

�

=�

AX

, where �

AX

is the 
ongruen
e

3

In this paper, for some of the operation and predi
ate symbols we use a mix�x

notation; for instan
e, ��! : ds lab ds ds means that we shall write t

t

0

��! t

00

instead of ��! (t; t

0

; t

00

).
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over T

�

generated by the Birkho� dedu
tive system for 
onditional spe
i�
a-

tions, sound and 
omplete w.r.t. the models of SP and the atomi
 formulas,

see Chapter 3.

Sin
e in an LT-stru
ture the transitions 
orrespond to the truth of the

ground atoms built by the transition predi
ates, we have that the transitions

in the initial model of an LT-spe
i�
ation are just those whose 
orresponding

atoms 
an be proved by using the Birkho� system.

In most 
ases the initial semanti
s of an LT-spe
i�
ation is too �ne, sin
e

it takes into a

ount all details of the a
tivity of the pro
esses (as intermediate

states). It may happen that we want to 
onsider as semanti
ally equivalent

two pro
esses having di�erent asso
iated transition trees, see Se
tion 13.1.1.

There is a general way to give an observational semanti
s to LT-spe
i�-


ations introdu
ed in the general 
ase of 
onditional spe
i�
ations by some

of the authors and A. Giovini (see [AGR92℄ for a full presentation); this

approa
h is well suited for use in LT-spe
i�
ations, whi
h spe
ify 
on
ur-

rent systems, sin
e it generalizes and extends the Milner{Park's bisimulation

te
hnique to a purely algebrai
 setting.

Example 13.8. (Bit using LTL) We �rst spe
ify the two 
omponents of the

system, the bu�er and the user, and then how they 
ooperate.

Below \dsort : : : : : : :" is the 
onstru
t for de
laring dynami
 sorts, the

se
ond argument is the synta
ti
 form of the transition predi
ate; thus

dsort bu�er : ��!

de
lares the dynami
 sort bu�er , the asso
iated sort of the labels lab bu�er ,

and the transition predi
ate ��! : bu�er � lab bu�er � bu�er .

spe
 BUFFER =

enri
h INT QUEUE [bu�er=queue℄ by

dsorts bu�er : ��!

opns � : ! lab bu�er

RECEIVE ;RETURN : int ! lab bu�er

axioms Not Empty(b) ) b

RETURN(First(b))

������������! Remove(b)

b

RECEIVE(i)

��������! Put(i; b)

b

�

��! Put(10

10

;Empty)

Not Empty(b) ) b

�

��! Dup(b)

spe
 USER STATUS =

enri
h INT by

sorts user status

opns Initial;Putting 0;Putting 1;Reading;Terminated : ! user status

Read : int ! user status

spe
 USER =

enri
h USER STATUS [user=user status℄ by

dsorts user : ��!

opns START ;OK ;ERROR : ! lab user

PUT ;GET : int ! lab user
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axioms Initial

START

�����! Putting 0

Putting 0

PUT(0)

�����! Putting 1

Putting 1

PUT(1)

�����! Reading

Reading

GET (i)

�����! Read(i)

Read(0)

OK

��! Terminated

NotEq(i; 0) ) Read(i)

ERROR

�����! Terminated

spe
 SYSTEM =

enri
h BUFFER +USER by

dsorts system : ��!

opns j : bu�er � user ! system

START ;OK ;ERROR; � : ! lab system

axioms u

START

�����! u

0

) Empty j u

START

�����! Empty j u

0

b

RECEIVE(i)

��������! b

0

^ u

PUT(i)

�����! u

0

) b j u

�

��! b

0

j u

0

b

RETURN(i)

��������! b

0

^ u

GET (i)

�����! u

0

) b j u

�

��! b

0

j u

0

u

OK

��! u

0

) b j u

OK

��! b j u

0

u

ERROR

�����! u

0

) b j u

ERROR

�����! b j u

0

b

�

��! b

0

) b j u

�

��! b

0

j u

Requirement LT-spe
i�
ations. SP = hLT�;AX i with loose semanti
s

determines the 
lass of its models, Mod(SP ), i.e., all LT�{stru
tures satis-

fying all formulas in AX .

LT-spe
i�
ations with loose semanti
s 
an be used to spe
ify the require-

ments on a 
on
urrent system, thus determining a 
lass of systems (all those

satisfying su
h requirements), instead of abstra
tly de�ning one parti
ular

system. However, 
onditional formulas are too limited to express all relevant

requirements on 
on
urrent systems, thus various extensions of �rst-order

logi
 are used, e.g., in
luding 
ombinators of the bran
hing{time temporal

logi
 [CR97℄, the deonti
 logi
 [CR96℄, using the 
on
ept of \abstra
t event"

[AR93℄, et
. Below we brie
y present the extension of [CR97℄ with bran
hing-

time temporal 
ombinators (see Se
tion 13.2.3).

Let LT� = hhS ; 
;�i;DS i be an LT-signature, L an LT�-stru
ture, and

ds 2 DS . We need the following te
hni
al de�nitions. PATH (L; ds) denotes

the set of the paths for the elements of sort ds , i.e., all sequen
es of transitions

having the form either (1) or (2) below:

(1) d

0

l

0

d

1

l

1

d

2

l

2

: : :

(2) d

0

l

0

d

1

l

1

d

2

l

2

: : : d

n

n � 0

where for all i � 0, d

i

2 jLj

ds

, l

i

2 jLj

lab ds

, and (d

i

; l

i

; d

i+1

) 2 !

L

.

FirstS(�) denotes the �rst state of �; and FirstL(�) denotes the �rst label

of �, if exists, i.e., if � is not just a state.

� 2 PATH (L; ds) is maximal i� either it is in�nite or there do not exist

l, d

0

su
h that hd

n

; l; d

0

i 2 !

L

.
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Given � = d

0

l

0

d

1

l

1

d

2

l

2

: : : and h � 0, if d

h

exists, then �b

h

denotes

the path d

h

l

h

d

h+1

l

h+1

d

h+2

: : : , otherwise unde�ned.

The set of formulas, denoted by F (LT�;X ), and the family of the sets

of path formulas, denoted by hPF (LT�;X )

ds

i

ds2DS

, on LT�, and variables

X are de�ned by multiple indu
tion as follows. For ea
h s 2 S and ds 2 DS :

formulas

{ p(t

1

; : : : ; t

n

) 2 F (LT�;X ) p : s

1

� � � � � s

n

2 �, t

i

2 jT

LT�

(X )j

s

i

{ t

1

= t

2

2 F (LT�;X ) t

1

; t

2

2 jT

LT�

(X )j

s

{ : �; � ) �

0

; 8 x: � 2 F (LT�;X ) �; �

0

2 F (LT�;X ); x 2 X

{ 4 (t; �) 2 F (LT�;X ) t 2 jT

LT�

(X )j

ds

, � 2 PF (LT�;X )

ds

path formulas

{ [ � x: � ℄ 2 PF (LT�;X )

ds

x 2 X

ds

, � 2 F (LT�;X )

{ h�x: �i 2 PF (LT�;X )

ds

x 2 X

lab ds

, � 2 F (LT�;X )

{ �

1

U �

2

2 PF (LT�;X )

ds

�

1

; �

2

2 PF (LT�;X )

ds

{ : �; � ) �

0

; 8 x: � 2 PF (LT�;X )

ds

�; �

0

2 PF (LT�;X )

ds

; x 2 X

s

The formulas of su
h logi
 in
lude the usual formulas of �rst-order logi


with equality; if LT� 
ontains dynami
 sorts, they also in
lude formulas

built with the transition predi
ates.

The formula4 (t; �) 
an be read as \for every path � starting in the state

denoted by t, the path formula � holds on �". We an
hor these formulas to

states, following the ideas in [MP89℄. The major di�eren
e with the 
lassi
al

temporal logi
 of Se
tion 13.2.3 is that we do not spe
ify a single system

but, in general, one or many types of systems, so there is not a single initial

state but several, hen
e the need for an expli
it referen
e to states (through

terms) in the formulas built with 4 . The formula [�x: � ℄ holds on the path

� whenever � holds at the �rst state of �; while the formula h�x: �i holds on

the path � if � is not just a single state and � holds at the �rst label of �.

Let L be an LT�{stru
ture and v a variable evaluation of X in L; then

we de�ne by multiple indu
tion:

� the validity of � 2 F (LT�;X ) in L w.r.t. v (written L; v j= �),

� the validity of � 2 PF (LT�;X ) on a path � in L w.r.t. v (written

L; v; � j= �),

as follows:

{ L; v j= p(t

1

; : : : ; t

n

) i� hv

#

(t

1

); : : : ; v

#

(t

n

)i 2 p

L

{ L; v j= t

1

= t

2

i� v

#

(t

1

) = v

#

(t

2

)

{ L; v j= 4 (t; �) i� for ea
h � 2 PATH (L; ds) su
h that FirstS(�) =

v

#

(t), L; v; � j= �

{ L; v; � j= [ � x: � ℄ i� L; v[FirstS(�)=x℄ j= �

{ L; v; � j= h�x: �i i� FirstL(�) is de�ned and L; v[FirstL(�)=x℄ j= �

{ L; v; � j= �

1

U �

2

i� there exists j � 0 su
h that for all h, 0 < h < j,

L; v; �b

h

j= �

1

and L; v; �b

j

j= �

2

{ : �, � ) �

0

, 8 x: �, : �, � ) �

0

, 8 x: � as usual.
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� is valid in L (written L j= �) i� L; v j= � for all evaluations v.

In the above de�nitions we have used a minimal set of 
ombinators. How-

ever it is possible to de�ne other, derived, 
ombinators as for the 
lassi
al

logi
s of Se
tion 13.2.3; plus 5(t; �) =

def

: 4 (t;: �) (whi
h means at least

in one 
ase, i.e., the property represented by � holds at least on one path).

Example 13.9. (Bit using LTL (requirements))As already done in Exam-

ple 13.6, we give here some sample requirements onBit; but in a di�erent way

to before, we spe
ify the system modularly, by 
onsidering its 
omponents

�rst and then how they are put together in order to 
ooperate. Furthermore,

temporal LTL has also edge formulas, so we 
an also 
onveniently express

properties 
on
erning the intera
tions of the system with the environment.

Sin
e properties are an
hored to pro
esses (
on
urrent systems), we 
an relate

properties of the system to properties of its 
omponents.

Below h�l: l = ti is abbreviated to hti.

spe
 USER =

enri
h INT by

dsorts user : ��!

preds Terminated : user

opns PUT ;GET : int ! lab user

axioms Terminated(u) )

4 (u; [�u

0

:Terminated(u

0

)℄)

�� if the user is terminated, it remains so forever (R1)

spe
 BUFFER =

enri
h INT by

dsorts bu�er : ��!

opns RECEIVE ;RETURN : int ! lab bu�er

axioms b

RECEIVE(i)

��������! b

0

) 4 (b

0

; [ � x:9 x

0

: x

RETURN(i)

��������! x

0

℄)

�� after re
eiving i the bu�er eventually will have

�� the 
apability to return i

5(b; hRECEIVE(i)i)

�� the bu�er must be able to re
eive any integer (R0)

spe
 SYSTEM =

enri
h BUFFER +USER by

dsorts system : ��!

opns START ;OK ;ERROR; � : ! lab system

j : bu�er � user ! system

axioms 9 b; u: s = b j u

hb; ui

l

��! hb

0

; u

0

i )

(b = b

0

^ u

l

��! u

0

) _

(u = u

0

^ b

l

��! b

0

) _

(9 i: l = � ^ u

GET(i)

�����! u

0

^ b

RETURN(i)

��������! b

0

) _

(9 i: l = � ^ u

PUT(i)

�����! u

0

^ b

RECEIVE(i)

��������! b

0

)

�� (R5)
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5(s; h�l:: l = ERRORi)

�� there always exists a possible \
orre
t" behavior (R2)

Terminated(u) )

4 (b j u; [�s:9 b

0

; u

0

: (s = b

0

j u

0

^ Terminated(u

0

))℄ U

[ � s:: 9 l; s

0

: s

l

��! s

0

℄)

�� if the user is terminated, it remains so until the system stops

s

START

�����! s

0

) 4 (s

0

; (hOK i _ hERRORi))

�� after the system has been started, in any 
ase eventually

�� it will send out either OK or ERROR (R3)

(s

OK

��! s

0

_ s

ERROR

�����! s

0

) )

4 (s

0

; h�l:: (l = OK _ l = ERROR)i)

�� OK and ERROR are sent at most on
e, and it 
annot

�� happen that both are sent (R4)

5(b j u; h�i) ) 5(b; h�i)

�� if the system may eventually only do internal a
tions,

�� then the bu�er 
omponent has su
h a possibility, too

Some of the axioms of the above spe
i�
ations are just to show the pe
uliarity

of this logi
. For example, the unique axiom of USER requires that it must

remain terminated in isolation; while the axiom of SYSTEM about termi-

nated requires something about the behavior of the user when put within the

system. The last axiom of SYSTEM shows how properties of the 
omponents


an be related to properties of the whole system.

13.3.2 Rewriting logi
 (RL)

RL is a formalism for the spe
i�
ation of 
on
urrent systems developed by

Meseguer in the re
ent years, sharing some of the ideas of LTL; moreover,

its spe
i�
ations are synta
ti
ally very similar to those of LTL. For both for-

malisms the behavior of pro
esses is modeled by means of transition systems;

the states of su
h systems are elements of some 
arriers of an algebra, given

as the initial model of a 
onditional spe
i�
ation; the stru
ture of a term rep-

resenting one of su
h states models the 
on
urrent stru
ture of the system in

that state; and the transitions are de�ned by 
onditional formulas in whi
h

the transition symbol (arrow) appears.

Clearly, there are also major di�eren
es between the two formalisms: the

transitions are labeled in the 
ase of LTL and nonlabeled for RL, and have

spe
ial properties in the RL 
ase, as to be 
losed by re
exivity, transitivity,

and 
ongruen
e w.r.t. the operations; and, most important, their intuitive

interpretation is very di�erent in the two 
ases:

LTL t

l

��! t

0

means that the system in the state represented by t has the

\
apability" of passing into the state represented by t

0

by performing

some \atomi
" a
tivity, i.e., an a
tivity that 
annot be interrupted, where

no information on the intermediate states is available, whose intera
tion

with the environment is represented by l, and at ea
h instant a system


an perform only one of these a
tivities.
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RL t ��! t

0

means that the system in the state represented by t 
an pass

into the state represented by t

0

by performing some a
tivity 
ompletely

independently from the environment; su
h a
tivity may be also the 
om-

position of several \smaller" a
tivities of the same system, and so infor-

mation on the intermediate states may be available (for a terminating

system, for example, we may have transitions whi
h 
orrespond to whole

evolutions of the system from the beginning till the termination).

A 
omplete study of the relationship between RL and LTL 
an be found

in [AR97b℄.

Below we give a short presentation of RL, the main referen
es are [Mes92,

MM93℄; noti
e that in su
h papers Meseguer has used the language of 
ate-

gory theory to present RL, while here, for 
larity, we use a more logi
-algebrai


style.

A rewrite theory, i.e., an RL spe
i�
ation, is a 4-tuple R = h�;E ;L;Ri,

where � = hS ; 
i is a signature, E a set of equations on �, and R a set of

rewrite rules of the form

r : [t℄ ��! [t

0

℄ if [u

1

℄ ��! [v

1

℄ ^ : : : ^ [u

k

℄ ��! [v

k

℄

with r 2 L and [t℄, [t

0

℄, [u

1

℄, [v

1

℄, : : : , [u

k

℄, [v

k

℄ 2 T

�

(X )=�

E

.

The entailment system asso
iated with R has the following rules:

1. Re
exivity For ea
h [t℄ 2 T

�

(X )=�

E

[t℄ ��! [t℄

2. Congruen
e For ea
h f : s

1

� � � � � s

n

! s 2 


[t

1

℄ ��! [t

0

1

℄ : : : [t

n

℄ ��! [t

0

n

℄

[f (t

1

; : : : ; t

n

)℄ ��! [f (t

0

1

; : : : ; t

0

n

)℄

3. Repla
ement

0

For ea
h rewrite rule

r : [t(x)℄ ��! [t

0

(x)℄ if [u

1

(x)℄ ��! [v

1

(x)℄ ^ : : : ^ [u

k

(x)℄ ��! [v

k

(x)℄

belonging to R, where x is the ve
tor of all variables appearing in the

rule and w a 
orresponding ve
tor of elements in T

�

(X )=�

E

[u

1

(w=x)℄ ��! [v

1

(w=x)℄ : : : [u

k

(w=x)℄ ��! [v

k

(w=x)℄

[t(w=x)℄ ��! [t

0

(w=x)℄

4. Transitivity

[t

1

℄ ��! [t

2

℄ [t

2

℄ ��! [t

3

℄

[t

1

℄ ��! [t

3

℄

Here, for simpli
ity, we use the entailment system above, whi
h is a

slightly modi�ed version of the original [Mes92℄: rule 3, shown below, has

been 
hanged to avoid the simultaneous rewriting of an element substituted

for a variable. In [AR97b℄ we show that this entailment system is equivalent
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to the original, sin
e the entailed sequents are the same and the stru
ture of

the proofs is preserved.

Now we de�ne the models of the rewrite theories using the entailment

system.

� An R-presystem is a dire
t re
exive graph G = (�

0

; �

1

: Edges ! Nodes ;

id), where id : Nodes ! Edges su
h that �

0

(id (n)) = �

1

(id(n)) = n (id

expresses the re
exivity of the graph) together with:

{ a �{stru
ture on Nodes su
h that it satis�es E and the edges respe
t

the sorts (i.e., for ea
h edge e, �

0

(e) and �

1

(e) have the same sort);

{ for ea
h f : s

1

� � � � � s

n

! s 2 
,

a partial operation f : Edges

n

�!Æ Edges su
h that

f (e

1

; : : : ; e

n

) is de�ned i� for i = 1; : : : ; n, e

1

, : : : , e

n

are edges of

sorts s

1

, : : : , s

n

respe
tively, and

�

0

(f (e

1

; : : : ; e

n

)) = f (�

0

(e

1

); : : : ; �

0

(e

n

)),

�

1

(f (e

1

; : : : ; e

n

)) = f (�

1

(e

1

); : : : ; �

1

(e

n

));

{ a partial operation ; : Edges

2

�!Æ Edges su
h that e; e

0

is de�ned i�

e and e

0

have the same sort and �

1

(e) = �

0

(e

0

) and �

0

(e; e

0

) = �

0

(e),

�

1

(e; e

0

) = �

1

(e

0

);

{ for ea
h rewrite rule

r : [t(x)℄ ��! [t

0

(x)℄ if [u

1

(x)℄ ��! [v

1

(x)℄ ^ : : : ^ [u

k

(x)℄ ��! [v

k

(x)℄

belonging to R, a partial operation

4

r : VarEv � Edges

k

�!Æ Edges ,

where VarEv is the set of variable evaluations from x into Nodes ,

su
h that r(v; e

1

; : : : ; e

k

) is de�ned i�, for i = 1; : : : ; k, �

0

(e

i

) =

v

#

(u

i

(x)) and �

1

(e

i

) = v

#

(v

i

(x)), and �

0

(r(v; e

1

; : : : ; e

k

) = v

#

(t(x)),

�

1

(r(v; e

1

; : : : ; e

k

)) = v

#

(t

0

(x)).

� A morphism � between two R{presystems P and P

0

is a graph morphism

whi
h preserves the �{stru
ture on the nodes and the operations on the

edges.

� An R{system is an R{presystem satisfying the following equations on

edges (the adaptation of those of [Mes92℄ to our modi�ed entailment

system):

1. Category (e; e

0

); e

00

= e; (e

0

; e

00

)

2. Fun
toriality of the �{stru
ture

for ea
h f : s

1

� � � � � s

m

! s 2 


f (e

1

; e

0

1

; : : : ; e

m

; e

0

m

) = f (e

1

; : : : ; e

m

); f (e

0

1

; : : : ; e

0

m

)

f (id (n

1

); : : : ; id(n

m

)) = id(f (n

1

; : : : ; n

m

))

3. Axioms in E For ea
h t(x

1

; : : : ; x

n

) = t

0

(x

1

; : : : ; x

n

) 2 E

t(e

1

; : : : ; e

n

) = t

0

(e

1

; : : : ; e

n

).

� T

R

is the initial element in the 
lass of the R{systems, i.e., the R{system

where Nodes is T

�

=�

E

, the edges are generated by the operations with

edge types, and the edges represented by two di�erent terms are identi�ed

i� their identi�
ation follows from equations 1, 2, and 3 above.

4

If several rules with the same label will result to operations of the same fun
tion-

ality, then we assume that the names of su
h operations are made di�erent.
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The ground terms built by the edge operations bije
tively 
orrespond to

the proofs of sequents in the entailment systems asso
iated with R; and the

axioms on edges 
orrespond to the required identi�
ations on the proofs.

R{systems, and therefore also T

R

, 
an be seen as 
ategories, where the

obje
ts are the nodes, the morphisms are the edges, and \; " is the 
omposi-

tion operation on morphisms; axiom 1 and the fa
t that the graph is re
exive

ensure that they really are 
ategories.

T

R

is 
onsidered the standard semanti
s of a theory R.

We 
an see a striking di�eren
e between RL and LTL: for LTL the pre
ise

form and number of the axioms of a spe
i�
ation is irrelevant, while the

pre
ise form and number of rules of a theory is extremely important for RL.

If two RL theories R and R

0

have the same signature, equivalent sets of

equations, and !

R

= !

R

0

, then in general T

R

and T

R

0

are not isomorphi
.

In LTL we have that for ea
h spe
i�
ation there exist in�nite isomorphi


spe
i�
ations with di�erent sets of axioms (e.g., they 
an be obtained by

adding derived axioms).

Furthermore, the rule labels are not relevant in RL, only the rules are;

indeed the same label 
an be used for several rules but the edges and the

operations over them are determined by the rules, not by the labels; and we

have that appli
ations of operations asso
iated with di�erent rules, labeled

in the same way with premises and 
onsequen
es of the same sorts, must be

disambiguated.

Example 13.10. (Bit using RL)

spe
 BUFFER =

enri
h INT QUEUE [bu�er=queue℄ by

rl �1: b ��! Dup(b)

rl �2: b ��! Put(10

10

;Empty)

spe
 USER = USER STATUS[user=user status℄,

where USER STATUS has been de�ned in Example 13.8; the latter is a

stati
 algebrai
 spe
i�
ation, and thus may be 
onsidered as a parti
ular RL

spe
i�
ation without proper transitions.

spe
 SYSTEM =

enri
h BUFFER +USER by

sorts system

opns j : bu�er � user ! system

rl START :Empty j Initial ��! Empty j Putting 0

rl �3: b j Putting 0 ��! Put(0; b) j Putting 1

rl �4: b j Putting 1 ��! Put(1; b) j Reading

rl �5: Not Empty(b) )

b j Reading ��! Remove(b) j Read(First(b))

rl OK : b j Read(0) ��! b j Terminated

rl ERROR :NotEq(i; 0) ) b j Read(i) ��! b j Terminated
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Noti
e the major di�eren
es 
ompared with the LTL spe
i�
ation of Exam-

ple 13.8, even though the two seem very similar. In this 
ase the spe
i�
a-

tion is stru
tured by giving �rst the spe
i�
ations of the two 
omponents;

but now the a
tivity of the user is not given in USER, and only part of

that of the bu�er is given in BUFFER. Indeed, if, e.g., we have the rule

Putting 0 ��! Putting 1 in USER, then the user in any 
ase may perform

su
h a transition also without syn
hronizing with the bu�er.

Furthermore there is no provision for knowing that START , OK , and

ERROR are di�erent intera
tions with the environment, while �1, : : : , �5


orrespond to internal a
tivities; see [AR97b℄ for a detailed 
omparison.

13.4 Dynami
 data-types (A4)

In re
ent literature various approa
hes have been proposed to extend the


lassi
al algebrai
 framework for the spe
i�
ation of data types to handle

pro
esses; the �rst one was Goguen and Meseguer's re
exive semanti
s for

obje
t{orientation in [GM87℄. All these approa
hes share some 
ommon fea-

tures, whi
h have been ni
ely summarized in [EO94℄ by Ehrig and Orejas,

where they report informally a general s
hema for building an algebrai


framework following the state-as-algebra style:

� states-as-algebras; thus, and impli
itly, dynami
s is modeled by a (labeled

or not) transition system;

� all the statealgebras extend a �xed algebra of basi
 nondynami
 values

(stati
 or value algebra);

� the elements of the 
arriers of the nonstati
 sorts of a statealgebra are the


omponents of the system at that moment, and the nonstati
 operations

represent how they are organized at that moment;

� state-transformations = transitions from a statealgebra to another stateal-

gebra, 
orrespond in most 
ases to operations of a spe
ial kind (dynami


operations) and in general are not homomorphisms (the organization and

the number of 
omponents may 
hange).

Noti
e that dynami
 operation 
alls are the 
ommon me
hanism to ex-

press the intera
tions with the environment; but in this way the rea
tion

to an external stimulus (a dynami
 operation 
all) must be deterministi


(ex
ept if we leave the 
lassi
al algebrai
 frameworks for some nondeter-

ministi
 framework).

While the usual algebrai
 te
hniques may be used to de�ne/spe
ify the

value and the statealgebras, there is no standard way to de�ne/spe
ify

the dynami
 operations (the transitions).

� there is no a general way to handle 
on
urren
y/distribution/
ooperation

among pro
ess 
omponents or to give in a stru
tured way the spe
i�
ation

of a 
on
urrent system by 
omposing the spe
i�
ations of its 
omponents;

usually ea
h approa
h o�ers ad ho
 te
hniques;
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� most of these approa
hes have been developed with obje
t-orientation in

mind rather than 
on
urren
y generally.

Here, we brie
y report on only some approa
hes; other 
an be found,

for instan
e, in [Bau95,PP95℄. Among them, evolving algebras are pe
uliar;

sin
e the emphasis is not on the data stru
ture aspe
ts, but more on the

operational idea of state transitions; indeed, re
ently they have been 
alled

\Abstra
t State Ma
hines" (ASM).

13.4.1 Evolving algebras (abstra
t state ma
hines)

The basi
 idea of the \evolving algebras" (see, for instan
e, [Gur93,Gur95℄)

is perfe
tly summarized by their name. Essentially an evolving algebra (spe
-

i�
ation) 
onsists of a des
ription of a (nonlabeled) transition system, whose

states are algebras on the same homogeneous signature built over the same

universe (in
luding Boolean values). Some of the operation symbols are qual-

i�ed as \stati
" and their interpretation is the same in any (algebra whi
h is

a) state. The transitions are de�ned by rules of the following form:

e
ond ) up

1

; : : :up

k

where, for ea
h j = 1; : : : ; k, the fun
tion update up

j

has form

f

j

(e

j

1

; : : : ; e

j

n

j

) := e

j

;

e
ond, e

1

1

, : : : , e

1

n

1

, e

1

, : : : , e

k

1

, : : : , e

k

n

k

, e

k

are \des
riptions" (any possible

mathemati
ally intelligible expressions) of elements of the universe, the �rst

des
ribing a Boolean value, and for j = 1; : : : ; k, f

j

is an operation of the

signature of arity n

j

.

The interpretation of one of su
h rules is that the system in a state A

su
h that e
ond holds on it, may pass to another algebra B where for ea
h

operation of the signature f , f

B

(x

1

; : : : ; x

n

) =

{ the interpretation of e

j

in A, if f = f

j

and x

1

; : : : ; x

n


oin
ide with the

interpretations of e

j

1

; : : : ; e

j

n

j

in A;

{ f

A

(x

1

; : : : ; x

n

), otherwise.

Obviously, the fun
tion updates up

1

, : : : up

k

in a rule must be 
onsistent

in the sense that they do not simultaneously update the same fun
tion on

the same arguments with di�erent values.

Here, for simpli
ity, we 
onsider only the basi
 evolving algebras, where

there is no provision for 
on
urrent stru
turing; 
on
erning rea
tivity, some

operations of the signature are 
lassi�ed \external" with the idea that they


an 
hange under the in
uen
e of (the nonfurther quali�ed) environment and


annot be modi�ed by the rules.

Thus, essentially, to give an evolving algebra spe
i�
ation means to give

a (nonlabeled) transition system where the states are �nite tuples, whi
h 
an
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also be of fun
tional type, des
ribing the transitions by saying only whi
h


omponents of the state tuples 
hange and how, and for the 
omponents

of fun
tional type, only for whi
h arguments 
hange and how. In this way

state transformations are des
ribed in a very e
onomi
 way. Consider, for

example, the 
onditional rules des
ribing the modi�
ation of tuple-like states,

following, e.g., an LTL-style (see Se
tion 13.3.1), as

e
ond ) h


1

; : : : ; 


i

; : : : ; 


n

i ! h


1

; : : : ; 


0

i

; : : : ; 


n

i

and

e
ond )

h


1

; : : : ; 


i

; : : : ; 


n

i ! h


1

; : : : ; � x: if x = a then b else 


i

(x); : : : ; 


n

i

versus the 
orresponding simpler versions given in an evolving algebra style:

e
ond ) C

i

:= 


0

i

and e
ond ) C

i

(a) := b:

After all, evolving algebras are nothing but lts where the states are al-

gebras. As for other purely lts{based approa
hes, the treatment of liveness


onditions and modular 
omposition are less elegant.

Example 13.11. (Bit using evolving algebras)

�� SIGNATURE

�� Stati
 operations

Empty (0{ary)

Remove, Dup, First, Not Empty (1{ary)

Put (2{ary)

Initial, Terminated, Putting 0, Putting 1, Reading (0{ary)

Read (1{ary)

START , OK , ERROR (0{ary)

�� Dynami
 operations

Buf Cont, User State, Output (0{ary)

�� External operations

Input (0{ary)

�� de�nition of stati
 operations

.....

�� RULES

Input = START ^ Buf Cont = Empty )

User State := Putting 0

User State = Putting 0 )

User State := Putting 1

Buf Cont := Put(0;Buf Cont)

User State = Putting 1 )

User State := Reading

Buf Cont := Put(1;Buf Cont)
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User State = Reading ^ Not Empty(Buf Cont) )

User State := Read(First(Buf Cont))

Buf Cont := Remove(Buf Cont)

true ) Buf Cont := Put(10

10

;Empty)

true ) Buf Cont := Dup(Buf Cont)

User State = Read(0) )

User State := Terminated

Output := OK

User State 6= Read(0) )

User State := Terminated

Output := ERROR

13.4.2 D{oids

D-oids [AZ95℄ are mathemati
al stru
tures aimed at abstra
tly modeling


on
urrent systems by extending the algebrai
 approa
h for modeling data

stru
tures. In [AZ95℄ a very general approa
h is taken, sin
e the de�nition of

a d-oid is parameterized by the underlying stati
 framework for (values and)

statealgebras, but here for simpli
ity, we �x su
h framework to the usual

algebras.

A d-id has a signature, 
alled a dynami
 signature. In general a dynami


signature is a pair 
onsisting of a signature � with a set of sorts S and a

family of dynami
 operation symbols DOP over S . A dynami
 operation dop

may have a fun
tionality dop : w ! [s℄, with w 2 S

�

and [s℄ 2 S [ f�g.

This 
orresponds to the idea that a dynami
 operation may also return a null

value. There are also 
onstant dynami
 operations dop having fun
tionality

dop : ! [s℄.

A d{oid over h�;DOP i 
onsists of a 
lass A of �{algebras and an inter-

pretation of the dynami
 operations. If dop : w! [s℄, then an interpretation

of dop is a partial fun
tion mapping hA; ai, with A 2 A and a 2 jAj

w

, to a

transformation of A into an algebra B 2 A and a returned value v 2 jBj

[s℄

,

when [s℄ is not null. A transformation of A in B is a triple hA; f ;Bi, where f

is a partial map from the 
arrier of A into the 
arrier of B, 
alled a tra
king

map. The tra
king map is essential for keeping tra
k of the identity of the

elements of the system: if e is an element in A, then we 
an re
over it in the

new state B by applying f to e; tra
king maps allow us to deal in a very

abstra
t way with obje
t 
reation (nonsurje
tive maps) and deletion (non

total tra
king maps). Tra
king maps may be noninje
tive, to model the 
ases

where some elements with di�erent identities are glued together.

Stati
 basi
 values may be provided by a value part, just an algebra, see

[AZ95℄.
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The interpretation of a 
onstant dynami
 operation dop : ! [s℄ is an

algebra A 2 A and a returned value v 2 jAj

[s℄

, whenever [s℄ is not null.

Finally, it is possible to extend in a natural way the notion of term to

the dynami
 
ase. Terms de�ne a synta
ti
 stru
ture, the term d{oid, whi
h

is, under some assumptions, a free stru
ture for the appropriate 
ategori
al

setting [AZ96℄.

Con
erning spe
i�
ations based on d-oids, [Zu
96℄ presents a general way

to build institutions for dynami
 data type spe
i�
ations and shows an ap-

pli
ation to the d-oid 
ase. The formulas of the proposed logi
 allow us to

express stati
 properties, pre
isely on the value part and the statealgebras (a

kind of system invariants). Con
erning the properties on dynami
s, it allows

formulas for expressing pre- and post-
onditions on sequential 
ompositions

of dynami
 operations, represented by the elements of the term d-oid, and for

requiring that two 
ompositions are the same, i.e., they represent the same

transformation.

Example 13.12. (Bit using d-oids) The value part is given by the ini-

tial model of following algebrai
 spe
i�
ation, where USER STATUS and

MESSAGE have been given respe
tively in Examples 13.8 and 13.3, and

INT QUEUE is in Appendix A.

spe
 VALUE = INT QUEUE + USER STATUS + MESSAGE

spe
 SYSTEM =

enri
h VALUE by �� value part

�� statealgebra part

Buf Cont : ! queue

User State : ! user status

Output : ! message

�� dynami
 operations

START ; INT1 ; INT2 ; INT3 : !

OUTPUT : ! message

�� dynami
 properties

fBuf Cont = Empty ^ User State = InitialgSTART

fUser State = Putting 0g

fUser State = Putting 0g INT1

fUser State = Putting 1 ^ Buf Cont = Put(0;Buf Cont)g

fUser State = Putting 1g INT1

fUser State = Reading ^ Buf Cont = Put(1;Buf Cont)g

fUser State = Reading ^ Not Empty(Buf Cont)g INT1

fUser State = Read(First(Buf Cont)) ^

Buf Cont = Remove(Buf Cont)g

INT2 fBuf Cont = Put(10

10

;Empty)g

INT3 fBuf Cont = Dup(Buf Cont)g

fUser State = Read(0)g INT1

fUser State = Terminated ^ Output = OK g

fUser State = Read(i) ^ : (i = 0)g INT1

fUser State = Terminated ^ Output = ERRORg

fUser State = Terminatedg m OUTPUT
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13.4.3 Algebrai
 spe
i�
ations with impli
it state

The spe
i�
ation formalism of Dau
hy and Gaudel [DG93,GDK96℄ is based

on the notion of elementary a

ess fun
tion and elementary modi�er. Elemen-

tary a

ess fun
tions 
hara
terize the stru
ture of the states of the system, as

kinds of observation fun
tions, while elementary modi�ers allow us to perform

updates of the elementary a

esses without returning any value. Elementary

modi�ers are built-in features of the spe
i�
ation language, asso
iated with

the elementary a

ess fun
tions.

A spe
i�
ation in this formalism is a 4{tuple

hh�;AX i; h�

a


;AX

a


i; h�

mod

;Def

mod

i;AX

init

i;

where:

{ h�;AX i is the spe
i�
ation of the stati
 values used.

{ h�

a


;AX

a


i is the spe
i�
ation of the a

ess fun
tions and is a 
onser-

vative extension (see, Chapter 6) of h�;AX i with no new sort (thus

� � �

a


). Some of the a

ess fun
tions are elementary, while the others

are de�ned in terms of the elementary ones by the a

ess axioms of AX

a


.

{ The admissible initial states are 
hara
terized by the set of axiomsAX

init

.

{ The de�nition of the elementary a

ess fun
tions makes impli
itly avail-

able the 
orresponding elementary modi�ers in the following way: given

an elementary a

ess fun
tion f with fun
tionality s

1

� � � � � s

n

! s,

the 
orresponding elementary modi�er is �-f with domain s

1

�� � ��s

n

s.

Elementary modi�ers are the tools for des
ribing the statealgebras trans-

formation.

Given some terms with variables t

1

, : : : , t

n

of sorts s

1

, : : : , s

n

and a term

t of sort s, the meaning of the statement �-f(t

1

; : : : ; t

n

; t) is a modi�
ation

of f . More pre
isely, it transforms a statealgebra A into a statealgebra B

su
h that:

* f

B

(v

1

; : : : ; v

n

) = (�(t))

B

if there exists a ground substitution � su
h

that for i = 1; : : : ; n v

i

= (�(t

i

))

A

;

* f

B

(v

1

; : : : ; v

n

) = f

A

(v

1

; : : : ; v

n

) otherwise;

* derived a

ess fun
tions whi
h depend on f are 
hanged a

ordingly;

* any other operation and all 
arriers are un
hanged.

h�

mod

;Def

mod

i de�ne some 
omposite modi�ers, the fun
tionalities of

whi
h have no range. The axioms in Def

mod

are positive 
onditional and

their premises are built on �

a


. They de�ne the modi�ers using state-

ments built from the elementary modi�ers and the following 
onstru
ts:

nil identity; ; sequential 
omposition; and 
omposition in any order (it

is responsibility of the spe
i�er to 
he
k that the result of the 
omposi-

tion does not depend on the order); � denotes modi�
ations made on the

same state, i.e., all pre
onditions and arguments of the involved modi-

�ers must be evaluated in the initial state prior to doing all 
orresponding

modi�
ations.
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Example 13.13. (Bit using a

ess fun
tions and modi�ers)Let VALUE

be the algebrai
 spe
i�
ation de�ned in Example 13.12.

spe
 SYSTEM =

enri
h VALUE by �� basi
 stati
 values

�� elementary a

esses

Buf Cont : ! queue

User State : ! user status

Output : ! message

�� modi�ers

START : !

� : !

�� modi�er de�nitions

User State = Initial ^ Buf Cont = Empty )

START = �-User State(Putting 0)

� =


ases

User State = Putting 0 )

(�-User State(Putting 1) ^ �-Buf Cont(Put(0;Buf Cont)))

_ (�-Buf Cont(Put(10

10

;Empty)))

_ (�-Buf Cont(Dup(Buf Cont)))

User State = Putting 1 )

(�-User State(Reading) ^ �-Buf Cont(Put(1;Buf Cont)))

_ (�-Buf Cont(Put(10

10

;Empty)))

_ (�-Buf Cont(Dup(Buf Cont)))

User State = Reading ^ Not Empty(Buf Cont) )

(�-User State(Read(First(Buf Cont))) ^

�-Buf Cont(Remove(Buf Cont)))

_ (�-Buf Cont(Put(10

10

;Empty)))

_ (�-Buf Cont(Dup(Buf Cont)))

User State = Read(0) )

(�-User State(Terminated) ^ �-Output(OK ))

_ (�-Buf Cont(Put(10

10

;Empty)))

_ (�-Buf Cont(Dup(Buf Cont)))

User State = Read(i) ^ NotEq(i; 0) = True )

(�-User State(Terminated) ^ �-Output(ERROR))

_ (�-Buf Cont(Put(10

10

;Empty)))

_ (�-Buf Cont(Dup(Buf Cont)))

end 
ases

13.4.4 Statealgebras with referen
es

In [GR95,GR97℄ Gro�e-Rhode presents a state-as-algebra approa
h based on

a general idea of \referen
e".

A statealgebra is a partial algebra whi
h is an extension of a given alge-

bra A, 
alled the base model (stati
 value algebra). More pre
isely, a state

is 
onsidered as a stati
 data type where referen
es are added. For some
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sorts, say s, a spe
ial referen
e sort ref (s) and a 
ontents operation symbol

!

s

: ref (s)! s are introdu
ed in the signature. The base model is a model of a

normal partial equational spe
i�
ation, 
alled the base spe
i�
ation, with ex-

isten
e equations and some minor restri
tions 
on
erning equations between

referen
es.

For a list of (pairwise di�erent) referen
es d

!

= d

1

: : :d

n

with d

i

2

jAj

ref (s

i

)

and a 
orresponding list of values a

!

= a

1

: : :a

n

with a

i

2 jAj

s

i

, the

state A

[d

!

:=a

!

℄

on the base model A, where the referen
es d

i

have 
ontents

a

i

, is formally de�ned as a free extension of A by an existen
e equation of

the form !

s

1

(d

1

) = a

1

^ : : : ^ !

s

n

(d

n

) = a

n

.

The de�nition of states as free extensions of the base model allows one to

formalize the notion of persistent state: a persistent state on A is a model of

the base spe
i�
ation whose restri
tion to the signature of the value datatypes

(disregarding the referen
e sorts) is isomorphi
 to A. Intuitively a persistent

state 
an be regarded as an extension with the 
ontent fun
tions of A, i.e.,

as a pair hA; envi, where env is an environment whi
h is a family of partial

fun
tions mapping referen
es to values. It is proved that persistent states are

in a one-to-one 
orresponden
e with the pairs hA; envi.

On top of a base spe
i�
ation a transition spe
i�
ation 
an be de�ned.

Dynami
 operations are spe
i�ed by a set of method de�nitions, whi
h are


onditional parallel assignments. It is possible to have several assignments

for the same method with overlapping 
onditions, hen
e dynami
 operations

are nondeterministi
. Finally, state transitions are spe
i�ed by method ex-

pressions built by the appli
ation of methods to arguments and by sequential


omposition of them.

Some interesting results 
on
ern stru
tured spe
i�
ations; following the

well-established theory of 
omposition of spe
i�
ations and of parametri


spe
i�
ations in an arbitrary institution, Gro�e-Rhode proves that his spe
i-

�
ations enjoy the properties needed for de�ning the usual stru
turing me
h-

anisms for 
omposing spe
i�
ations.

Example 13.14. (Bit using statealgebras with referen
es) Let VALUE

be the spe
i�
ation de�ned in Example 13.12.

spe
 VALUE�REF =

enri
h VALUE[bu�er=queue℄ by

sorts ref (user status); ref (bu�er); ref (message)

refs U : ! ref (user status)

B : ! ref (bu�er)

Output : ! ref (message)

spe
 SYSTEM =

enri
h VALUE�REF by

�� methods

START : ! ref (user status)

!U = Initial ^ !B = Empty ) START (U) := Putting 0: O
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INT1 : ! ref (bu�er) � ref (user status)

!U = Putting 0 ) INT1 (B;U) :=< Put(0; !B);Putting 1 > :O

!U = Putting 1 ) INT1 (B;U) :=< Put(1; !B);Reading > :O

!U = Reading ^ Not Empty(!B) )

INT1 (B;U) :=< Remove(!B);Read(First(!B)) > :O

INT2 : ! ref (bu�er)

INT2 (B) := Put(10

10

;Empty)

INT2 (B) := Dup(!B)

INT3 : ! ref (user status)� ref (message)

!U = Read(0) ) INT3(U;Output) :=< Terminated;OK > :O

!U = Read(i) ^ NotEq(i; 0) )

INT3 (U;Output) :=< Terminated;ERROR > :O

13.5 Con
lusion

We have distinguished four main approa
hes in the use of algebrai
 te
hniques

for the spe
i�
ation of rea
tive, and 
on
urrent systems and presented some

methods illustrative of the di�erent viewpoints. There has not been room to

in
lude all methods, in parti
ular those more re
ent (like the 
oalgebrai
)

or requiring a deeper treatment (like hidden spe
i�
ations), but we have

provided pointers to the relevant literature. Nor we have made any attempt at


omparing the di�erent methods, sin
e a thorough 
omparison should follow

some rigorous 
riteria, whi
h are still under dis
ussion (see, e.g., some hints

in [AR97a℄). Instead we have provided a guided tour, hopefully stimulating

further reading and resear
h.

Looking ba
k, we 
an now observe that, in order to handle properly the

features typi
al of 
on
urrent and rea
tive systems, the algebrai
 te
hniques

need some kind of extension of a very di�erent nature. First they all need an

underlying model able to deal with the 
on
urren
y issues (like Petri nets or

Labeled Transition Systems). Then there are spe
i�
 adjustments either at

the level of the spe
i�
ation language (A2), or of some basi
 te
hni
al point

(generalized bisimulations, 
oalgebras instead of algebras, hidden spe
i�
a-

tions), or at the method level [BCPR96℄.

In general any really usable formalismfor the spe
i�
ation of systems must

be 
omplemented by a spe
i�
ation formalism for data and in this respe
t

algebrai
 te
hniques have the advantage of being very abstra
t and linked to

languages supporting modularity . This is the rationale behind the su

ess of

methods following viewpoint A2, like LOTOS.

We 
an also observe that only the algebrai
 methods following approa
h

A3 keep the fully axiomati
 
avor of the original algebrai
 spe
i�
ations; this

would apply to the hidden spe
i�
ation and 
oalgebrai
 methods too.

An issue whi
h has only been mentioned as an aside, but of paramount

importan
e, is the support of automati
 tools both for development and ver-

i�
ation. This is a fast developing �eld, whi
h 
ould provide one basi
 key
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to the su

essful use of algebrai
 te
hniques in the future. Another key 
ould


ome from a standardization of the algebrai
 notation and of the asso
iated

methods, 
ontrary to the dire
tion of the 
urrent proliferation of notations. In

this respe
t we are greatly looking forward to the out
ome of CoFI, the ongo-

ing Common Framework Initiative, sponsored by the IFIP WG 2.2 [Mos97℄.
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A Spe
i�
ations of data types used by Bit

Below we report the algebrai
 spe
i�
ations of the data types, integers and

�nite queues of integers, whi
h are used in various spe
i�
ations of Bit.

spe
 INT =

sorts int

opns 0: ! int

S; P : int ! int

+ : int � int ! int

preds < ;NotEq : int � int

axioms 0 + i = i

S(i) + i

0

= S(i + i

0

)

P (i) + i

0

= P (i+ i

0

)

0 < S(0)

P (0) < 0

i < i

0

) (S(i) < S(i

0

) ^ P (i) < P (i

0

) ^ i < S(i

0

) ^ P (i) < i

0

)

(i < i

0

_ i

0

< i) ) NotEq(i; i

0

)

spe
 INT QUEUE =

enri
h INT by

sorts queue

opns Empty : ! queue

Put : int � queue! queue

First : queue ! int

Remove;Dup : queue ! queue

�� Dup dupli
ates the �rst element of a queue

preds Not Empty : queue

axioms Not Empty(Put(i; q))

First(Empty) = 0

First(Put(i;Empty)) = i

First(Put(i;Put(i

0

; q))) = First(Put(i

0

; q))

Remove(Empty) = Empty

Remove(Put(i;Empty)) = Empty

Remove(Put(i;Put(i

0

; q))) = Put(i;Remove(Put(i

0

; q)))

Dup(Empty) = Empty

Dup(Put(i;Empty)) = Put(i;Put(i;Empty))

Dup(Put(i;Put(i

0

; q))) = Put(i;Dup(Put(i

0

; q)))
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