
13 Algebraic Speci�cation of Concurrent

Systems

Egidio Astesiano1, Manfred Broy2, and Gianna Reggio1

1 DISI { Dipartimento di Informatica e Scienze dell'Informazione
Universit�a di Genova { Via Dodecaneso, 35 { Genova 16146 { Italy
{astes,reggio}@disi.unige.it http://www.disi.unige.it

2 Institut f�ur Informatik der Technischen Universit�at M�unchen
80333 M�unchen { Germany
broy@informatik.tu-muenchen.de

http://wwwbroy.informatik.tu-muenchen.de/

Introduction

A process is a unit with the capacity of performing an activity by which it
may interact with other units and/or with the environment. The interactions
may involve communicating, synchronizing, cooperating, acting in parallel,
competing for resources with other processes and/or with the environment.
By \concurrent systems" we mean processes which may consist of other pro-
cesses (or in turn concurrent systems) operating concurrently.

Most software systems are concerned with concurrent systems and thus
it is of paramount importance to provide good formal support to the speci-
�cation, design, and implementation of concurrent systems. Algebraic/logic
methods have also found interesting applications in this �eld, especially to
treat at the right level of abstraction the relevant features of a system, helping
to hide the unnecessary details and thus to master system complexity.

Due to the particularly complex nature of concurrent systems, and con-
trary to the case of classical (static) data structures, there are di�erent ways
of exploiting algebraic methods in concurrency. First of all, we do not have a
single satisfactory model and view for processes and concurrent systems, like
input{output functions for sequential input{output systems. Hence, algebraic
methods need to be applied to di�erent models. Moreover, in the literature,
we can distinguish at least four kinds of approaches.

A1 The algebraic techniques are used at the metalevel, for instance, in the
de�nition or in the use of speci�cation languages. Then a speci�cation
involves de�ning one or more expressions of the language, representing
one or more systems. This is, for example, the case in ACP, CCS, and
CSP [BK86,Mil89,Hoa85].

A2 A particular speci�cation language (technique) for concurrent systems
is complemented with the possibility of abstractly specifying the (static)
data handled by the systems considered using algebraic speci�cations.

2 Egidio Astesiano, Manfred Broy, and Gianna Reggio

We can qualify the approaches of this kind by the slogan \plus algebraic
speci�cations of static data types".

A3 These methods use particular algebraic speci�cations having \dynamic
sorts", which are sorts whose elements are/correspond to concurrent sys-
tems. In such approaches there is only one \algebraic model" (for in-
stance, a �rst-order structure or algebra) in which some elements repre-
sent concurrent systems.
We can qualify the approaches of this kind as \algebraic speci�cations
of dynamic-data types", which are types of dynamic data (processes/
concurrent systems).

A4 These methods allow us to specify an (abstract) data type, which is
dynamically changing with time. In such approaches we have di�erent
\algebraic" models corresponding to di�erent states of the system.
We can qualify the approaches of this kind as \algebraic speci�cations of
dynamic data-types"; here the data types are dynamic.

We have organized the paper around the classi�cation above, providing
signi�cant illustrative examples for each of the classes. The list of the exam-
ples is not exhaustive; moreover, we have given a greater emphasis to the
approaches representing an extension to concurrency of algebraic speci�ca-
tion techniques. For example, this is why for A1 we have presented in some
detail only CCS, the Calculus of Communicating Systems of R. Milner, as the
�rst and paradigmatic example, though the various versions of CSP,ACP, and
the like are of comparable importance as for abundance of literature, theoret-
ical investigations and illustrative applications. Indeed the viewpoint of the
process algebra approach is more concerned with formal models of processes
via appropriate combinators, in which case the speci�cation problem is han-
dled by adopting a model-oriented approach. The same applies to Petri nets,
which represent the earliest attempt (apart from automata) to provide formal
models for processes and are as important as CCS, CSP, and the like. Here,
withinA2, we have outlined a formalism concerned with algebraic extensions
of Petri nets.

To present a more complete overview, we should also treat another class
of approaches, which can be termed \algebraic techniques/tools for dynam-
ics". These are interesting approaches where technical tools developed in the
algebraic �eld are used formally to capture the dynamic nature of processes.
Among them, we can recall the use of the hidden sort algebras and speci�-
cations, see, for instance, [GD94], and the use of coalgebras and coalgebraic
speci�cations, see [JR97], also for further references. However we cannot cover
these approaches, essentially for lack of space; moreover, coalgebraic methods
methods are quite recent and in full development, compared to those covered
in this chapter.

Similarly we do not have space to present other methods, where the usual
algebraic speci�cations of static data types are used instead in a particular
clever way to specify processes, see, for instance, [BCPR96].

13 Algebraic Speci�cation of Concurrent Systems 3

Particular examples of approaches of the four kinds, presented in Sec-
tions 13.1 { 13.4 respectively, are neither a complete list, nor have they been
chosen because we think they are the best representatives.

Our rationale has been mainly to present representatives. In particular,
there is no intention of providing a comparative study of the methods. This
is a goal outside the scope of the book.

The general notions about the speci�cation of concurrency needed for
understanding the approaches presented are brie
y summarized at the be-
ginning of the various sections.

We use a common example for the presentation of all approaches, a very
simple concurrent system consisting of a bu�er and a user, informally de-
scribed below.

The Bit example

The system Bit (called Bit since it is really very small) consists of two com-
ponents in parallel: a user and a bu�er. The bu�er is organized as a queue
and contains integers; it may obviously receive and return integer values; it
may break down, in which case its content will be 1010, and, moreover, it
may happen that the last element of its content is duplicated.

When the system is started by the environment, the bu�er is empty and
the user puts in sequence 0 and 1 on the bu�er; then it gets the �rst element
from the bu�er. If this element is the number 0 the user must inform the
environment of the correct working of the bu�er, otherwise it must signal
that there is an error.

Thus Bit is an interactive concurrent system with components having
both autonomous activities (as the bu�er failures) and cooperations (the
user writing/reading the bu�er), and using some static data (integers); fur-
thermore it also has some relevant static/functional aspects, as the queue
organization of the bu�er.

Some relevant requirements on Bit are:

R0 The bu�er must always be able to receive any integer value.
R1 When the user is terminated, it cannot perform an activity again.
R2 In at least one case, the system must behave correctly.
R3 After being started, it will eventually signal OK or ERROR.
R4 OK and ERROR are signaled at most once, and it cannot happen that

both are signaled.
R5 The user puts integers on and gets integers from the bu�er.

13.1 Process algebras

Process Algebras and Calculi, exempli�ed by CCS, CSP, ACP, and the like,
are the most notable example of the use of algebraic methods in the de�nition
and the use of speci�cation languages (approach A1).

4 Egidio Astesiano, Manfred Broy, and Gianna Reggio

Labeled transition systems (abbreviated to lts), as models of processes,
underlie CCS and many other variations of process algebras, and are also used
in many logical/algebraic speci�cation formalisms. Thus we start this section
with the fundamental concepts about lts's and their semantics. Note that the
�rst appearance of lts was in the theory of nondeterministic automata; how-
ever, the key idea of using labeled transitions to represent the capabilities of
interactions (or participation in events) for describing open systems is gen-
erally attributed to Robin Milner in CCS. The related fundamental concept
of bisimulation semantics, especially its formalization by maximum �xpoint,
is due to David Park.

13.1.1 Modeling processes with labeled transition systems

For the �rst use of labeled transition systems for the modeling concurrency,
see [Mil80,Plo83].

A labeled transition system (lts) is a triple

hSTATE ;LABEL;!i;

where STATE and LABEL are two sets, the states and labels of the system,
and !� STATE � LABEL � STATE is the transition relation. A triple

hs; l; s0i 2! is said to be a transition and is usually written s
l
��! s0.

Given an lts we can associate with each s0 2 STATE the so-called tran-
sition tree, that is, the tree whose root is s0, where the order of the branches
is not considered, two identically decorated subtrees with the same root are
considered as a unique subtree, and if it has a node n decorated with s and

s
l
��! s0, then it has a node n0 decorated with s0 and an arc decorated with

l from n to n0.
A process P is thus modeled by a transition tree determined by an lts

hSTATE ;LABEL;!i and an initial state s0 2 STATE ; the nodes in the tree
represent the intermediate (interesting) states of the life of P, and the arcs
of the tree the possibilities of P of passing from one state to another. It is

important to note here that an arc (a transition) s
l
��! s0 has the following

meaning: P in the state s has the capability of passing into the state s0 by
performing a transition, where the label l represents the interaction with
the environment during such a move; thus l contains information on the
conditions on the environment for the capability to become e�ective, and
on the transformation of such environment induced by the execution of the
action.

Concurrent systems, which are processes having cooperating components
that are in turn other processes (or concurrent systems), can be modeled
through particular lts obtained by composing other lts describing such com-
ponents.

By associating with a process P the transition tree having root P we
give P an operational semantics: two processes are operationally equivalent

13 Algebraic Speci�cation of Concurrent Systems 5

whenever the associated transition trees are the same, see [Mil80]. However
in most cases such semantics is too �ne, since it takes into account all op-
erational details of the process activity. It may happen that two processes
which we consider semantically equivalent have associated di�erent transi-
tion trees. A simple case is when we consider the trees associated with two
deterministic processes interacting with the environment only by returning
a �nal result (e.g., two PASCAL programs) represented by two states p and
p0: they only perform internal activities except for the last transitions, and
thus the associated transition trees reported below are:

p
�
��! p1

�
��! : : :

�
��! pn

OUT (r)
�����! pF

p0
�
��! p01

�
��! : : :

�
��! p0m

OUT (r0)
������! p0F

If we consider an input{output semantics, then the two processes are
equivalent i� p, p0 are equivalent w.r.t. the input and r, r0 are equivalent; the
di�erences concerning other aspects (intermediate states, number of interme-
diate transitions, etc.) are not considered.

From this simple example, we can also appreciate that we get various
interesting semantics on processes modeled by lts depending on what we ob-
serve (see, e.g., [Mil80,NH84]). For instance, consider the well{known strong
bisimulation semantics of Park [Par81] and Milner [Mil80] and the trace se-
mantics [Hoa85]. In the �rst case, two processes are equivalent i� they have
the same associated transition trees after the states have been forgotten. In
the second case, two processes are equivalent i� the corresponding sets of
traces (streams of labels), obtained traveling along the maximal paths of the
associated transition trees, are the same. In general, the semantics of pro-
cesses depends on what we are interested in observing.

Now we show how to de�ne precisely strong bisimulation over an lts
hSTATE ;LABEL;!i. A binary relation R on STATE is a strong bisimula-
tion i�, for all s1, s2 2 STATE , if s1 R s2, then

1. if s1
l
��! s01, then there exists s02 such that s01 R s02 and s2

l
��! s02;

2. if s2
l
��! s02, then there exists s01 such that s01 R s02 and s1

l
��! s01.

The maximum strong bisimulation � for an lts is de�ned as the union of
all strong bisimulations. We have that � is a strong bisimulation and that
for all strong bisimulations R , R � � .

Similarly we can de�ne weak bisimulation over an lts; in this case the
internal transitions, i.e., those corresponding to a null interaction with the
environment, are not considered when they have no visible consequence. Tech-
nically we use � 2 LABEL to label internal transitions.1 We de�ne an auxil-
iary transition relation

)� STATE � LABEL� STATE

1 The symbol � was used for the �rst time by Milner for CCS internal transitions,
see Section 13.1.2.

6 Egidio Astesiano, Manfred Broy, and Gianna Reggio

as follows:
s

�
=) s,

if s
l
��! s0, then s

l
=) s0,

if s
�
��! s0 and s0

l
=) s00, then s

l
=) s00,

if s
l

=) s0 and s0
�
��! s00, then s

l
=) s00.

A binary relation R on STATE is a weak bisimulation i�,
for all s1, s2 2 STATE , if s1 R s2, then

1. if s1
l

=) s01, then there exists s02 such that s01 R s02 and s2
l

=) s02;

2. if s2
l

=) s02, then there exists s01 such that s01 R s02 and s1
l

=) s01.

The maximum weak bisimulation � is the union of all weak bisim-
ulations. We have that � is a weak bisimulation and that for all weak
bisimulations R , R � � .

Example 13.1. (Bit using labeled transition systems) Here we give the
lts modeling the two components of Bit, the user and the bu�er, and Bit
itself respectively.

USER = hSTATEU ;LABELU ;!Ui

STATEU =
fInitial;Putting 0;Putting 1;Reading ;Terminatedg [fRead i j i 2 g

LABELU = fSTART ;ERROR;OKg [fPUT i;GET i j i 2 g
!U is graphically represented by depicting the resulting graph in Figure 13.1.
Notice that in the state Reading the user has in�nite action capabilities, one
for each possible value that can be obtained from the bu�er.

BUFFER = h �;LABELB ;!Bi

LABELB = fRECEIVE i;RETURN i j i 2 g [f�g
!B contains the following triples, where i 2 , q 2 �:

q
RECEIVE i���������!B q � i i � q

RETURN i��������!B q
i � q

�
��!B i � i � q q

�
��!B 1010,

SYSTEM = hSTATES ;LABELS ;!Si

STATES consists of pairs of states of the bu�er and the user.
LABELS = fSTART ; �;OK ;ERRORg
!S contains the following triples, where i 2 , u; u0 2 STATEU , b; b

0 2
STATEB, hi is the empty stream:

hhi; ui
START
������!S hhi; u0i if u

START
������!U u0

hb; ui
�
��!S hb0; u0i if b

RECEIVE i���������!B b0 and u
PUT i�����!U u0,

hb; ui
�
��!S hb0; u0i if b

RETURN i��������!B b0 and u
GET i�����!U u0,

hb; ui
OK
����!S hb; u0i if u

OK
����!U u0,

13 Algebraic Speci�cation of Concurrent Systems 7

Initial

?
START

Putting 0

?
PUT0

Putting 1

?
PUT1

Reading

?
GET 0

Read0

?
OK

Terminated

�������
GET�1

Read�1

@
@
@R

ERROR

: : :

HHHHHHj
GET 1

Read1

�
�
�	

ERROR

: : :

Fig. 13.1. The transitions of the user

hb; ui
ERROR
�������!S hb; u

0i if u
ERROR
�������!U u0,

hb; ui
�
��!S hb0; ui if b

�
��!B b0

Notice that SYSTEM , de�ned in a modular way by using USER and
BUFFER, is an example of how we can compose processes operating in par-
allel. However, if we forget how it has been de�ned, then we cannot see its
concurrent structure. For example, the fact that the transition

h0 � 1;Readingi
�

��!S h1;Read0i

corresponds to the synchronous execution of the bu�er and user action ca-
pabilities, labeled by RETURN 0 and GET 0 respectively, cannot be deduced
by examining SYSTEM alone.

13.1.2 Process calculi and algebras

By process calculi and algebras we mean those approaches which specify
processes, whose foremost representatives are the many formalisms known
under the collective names CCS, CSP, and ACP. The formalisms, though quite
di�erent in some fundamental technical aspects, share some basic underlying
ideas:

{ as in �{calculi, processes are represented by terms built over a set of
combinators concerning all aspects of process behavior, from
ow of con-

8 Egidio Astesiano, Manfred Broy, and Gianna Reggio

trol of single processes to operators for composing processes in parallel;
the combinators are di�erent, both as a matter of taste and for technical
reasons;

{ processes are essentially modeled by transition trees;
{ the primitive means of interaction between processes is synchronization,
that can be interpreted equivalently as synchronization of exchanging
data and simultaneous participation in an event;

{ emphasis is laid on algebraic laws stating equivalence of processes;
{ a concept of re�nement is based on containment of behaviors: re�ning
means reducing the amount of possible behaviors.

We present the basic features of CCS, considered a breakthrough in the
�eld, and will brie
y comment on ACP and CSP.

CCS, developed by Robin Milner, basically adopts an operational (tran-
sition) semantics, associating with each process a transition tree (graph); on
the basis of the transition semantics, some equivalences are de�ned on the
processes (various bisimulations and operational equivalences), and laws are
proven stating equivalences on processes; the set of laws is usually a complete
axiomatization of the semantics over �nite processes.

We refer to [Mil89] as a basic reference.
For explanatory purposes, we can start by looking at CCS as a language

for describing possibly in�nite transition trees.
If A denotes a set of basic names, then A = fa j a 2 Ag is the set of the

conames and L = A [A, with l = l. A special label � indicates the so-
called silent action, i.e., an action not visible outside, since it corresponds to
a communication taking place within the process; the set of the actions (or,
more acurately, capabilities of action), i.e., the labels, is then ACT = L [f�g,
ranged over by �.

First we have the basic combinators for describing �nite depth transition
trees:

(1) pre�xing � : E
(2) summation �i2IEi, I an indexing set

where E denotes a generic CCS expression.

Assume that E represents a tree

E

t
�
��

@
@@

with root E, then � : E
represents the tree

� : E

�

E

t
�
��

@
@@

13 Algebraic Speci�cation of Concurrent Systems 9

with root � :E. This is formalized by an appropriate semantic clause (induc-
tive rule de�ning !)

Act
� : E

�
��! E

.

Assume that each Ei represents a tree

Ei

ti
�
��

@
@@

with root Ei, then
�i2IEi represents the tree

�i2IEi

: : :

����������

�
�
�
�

�
ti

: : :

HHHHHHHHHH

@
@
@
@
@

tj

: : :

.

The related semantic clause is

Sumj

Ej
�
��! E0j

�i2IEi
�
��! E0j

j 2 I .

In other words clause (1) allows us to describe adding an arc and clause (2)
to describe branching. Notice that for I = ;, clause (2) de�nes one expression,
also written nil or 0, corresponding to a leaf on a tree.

In�nite depth trees are de�ned as usual by recursion, say A =def P , where
the name of the process A (a constant) may appear in P , which denotes an
expression. Of course multiple recursion is possible. The semantics is as usual

Con
P

�
��! P 0

A
�
��! P 0

A =def P .

To handle interaction between processes, a basic combinator for paral-
lelism is introduced:

(3) E1 jj E2

There are many ways to de�ne the semantics of the combinator jj ; the
original one, which we report here, formalizes a notion of synchronization/
communication by handshaking communication (Comm3) and of parallel
execution by interleaving (Comm1, Comm2).

Comm1
E

�
��! E0

E jj F
�
��! E0 jj F

Comm2
F

�
��! F 0

E jj F
�
��! E jj F 0

Comm3
E

l
��! E0 F

l
��! F 0

E jj F
�
��! E0 jj F 0

l 2 L

Rule Comm3 says that synchronization may take place whenever the capa-
bilities are complementary (l and l).

In CCS we also have two other operations,

(4) E=L Restriction

10 Egidio Astesiano, Manfred Broy, and Gianna Reggio

(5) E[f] Relabeling,

where L � L denotes a set of nonsilent actions, and f is a function from L
to L such that f(l) = f(l); f can be extended to ACT by setting f(�) = � .

The semantics of (4) and (5) is given by

Res
E

�
��! E0

E=L
�
��! E0=L

(� 62 L [L) Rel
E

�
��! E0

E[f]
f(�)
���! E0[f]

.

Notice that relabeling is essentially a user facility for de�ning processes,
with no behavioral meaning, while restriction means hiding from the outside
all the action capabilities in L and its complementary set.

The given semantics is operational in nature (though it can also be given
in a denotational way) and serves the main purpose of associating a labeled
transition system with process expressions.

As we have seen in the preceding section, various semantics can be as-
sociated with lts. Depending on the chosen semantics, various laws can be
proved about CCS expressions. For example, adopting strong bisimulation
semantics, denoted by � , the following laws hold (P +Q = �fP;Qg)

(1) (� : Q)=L =

�
nil if � 2 L [L

� : (Q=L) otherwise
(2) (� : Q)[f] = f(�) : Q[f]
(3) (Q + R)=L = Q=L + R=L
(4) (Q + R)[f] = Q[f] + R[f]
(5) P + Q = Q + P
(6) P + (Q + R) = (P + Q) + R
(7) P + P = P
(8) P + nil = P

Also a fundamental law, called the expansion law, can be proved, show-
ing that we can eliminate from a process expression the parallel operator,
restriction, and relabeling, thus showing the essence of interleaving seman-
tics as reducing parallel execution to nondeterministic choice. A simpler form
concerned only with the parallel combinator is as follows:

(9) P1 jj : : : jj Pn =

�f� : (P1 : : : jj P 0i jj : : : jj Pn) j Pi
�
��! P 0i ; 1 � i � ng +

�f� : (P1 : : : jj P 0i jj : : : jj P
0
j jj : : : jj Pn) j

Pi
l
��! P 0i ; Pj

l
��! P 0j; 1 � i < j � ng

It can be shown that strong bisimulation is a congruence for CCS, since it
is substitutive under all combinators and recursive de�nitions. For example,
if P1 � P2, then we have

� : P1 � � : P2 P1 + Q � P2 + Q, etc.
Also, under reasonable conditions, recursive de�nitions uniquely identify

a process modulo its bisimulation.

13 Algebraic Speci�cation of Concurrent Systems 11

Unfortunately, passing to weak bisimulation (observation equivalence in
[Mil89]), we do not get a congruence any longer and thus another equiva-
lence is introduced, called equality (or observation congruence), which im-
plies weak bisimulation. It can be shown that, since CCS is as powerful as
Turing machines, no e�ective axiomatization of equality exists. However the
laws provide e�ective axiomatization for smaller classes of processes, such as
the �nite processes.

Our presentation shows the role of laws in CCS, as derived theorems from
essentially operational semantics. A somewhat di�erent approach has been
taken by ACP, mainly developed by Bergstra, Klop, and Baeten (see [BW90]
also for references). There the starting point is a complete axiomatization
(usually by equations or conditional axioms) of some equivalence (e.g., strong
or weak bisimulation) for �nite processes; thus two �nite processes are equiv-
alent i� their equality can be proven by equational/conditional deduction.
Then recursion is added and semantics is again given in terms of graphs,
labeled transition systems, or projective limits.

The approach is highly hierarchical, introducing laws for new combinators
in a conservative way. Some of the combinators introduced in ACP are due
to the technical needs for obtaining complete axiomatizations.

Di�erent again is the CSP approach [Hoa85], where the semantics is de-
notational and the laws are derived from semantics, and used for reasoning
about correctness. The denoted values are di�erent, depending on the rich-
ness of the combinators; they range from sets of traces to the so-called refusal
sets.

A common problem with the process algebra/calculi approaches is the
enormous variety of possible meaningful semantics and thus of the associated
derived laws; in one paper [vG90] Van Glabbeek analyzes from a modal logic
unifying viewpoint, as many as 155 di�erent semantics.

Example 13.2. (Bit using CCS) The process corresponding to the user is
de�ned by

USER = START :PUT 0:PUT 1:(GET 0:OK :nil+ �i2 �f0gGET i:ERROR:nil);

the process bu�er is de�ned by the following, mutually recursive de�nitions
BUFFERhi = �i2 PUT i : BUFFERi + � :BUFFER1010

BUFFERi1�����ik =
�i2 PUT i :BUFFERi�i1 �:::�ik + GET ik :BUFFERi1 �:::�ik�1

+

� :BUFFER1010 + � :BUFFERi1 �i1�:::�ik , i1 � : : : � ik 2
+

Finally the system is the parallel composition of the two processes above
(initially the bu�er is empty)

SYSTEM = (BUFFERhi jj USER)=fPUT i;GET i j i 2 g.

The example illustrates the use of CCS in the speci�cation phase, which
follows a model-oriented approach: with the help of the CCS language a pro-
cess is described and then a class of models is de�ned corresponding to the
equivalence class of the process (w.r.t. some equivalence).

12 Egidio Astesiano, Manfred Broy, and Gianna Reggio

13.2 Algebraic speci�cation of static data types

In this section we brie
y present some speci�cation techniques following the
approach A2 to the algebraic speci�cation of concurrent systems, that is,
approaches integrating a formalism for the concurrent aspects with algebraic
speci�cations of the static data types.

13.2.1 Process calculi plus algebraic speci�cation of data types

In this subsection we brie
y present two speci�cation formalisms, LOTOS and
PSF, designed following approach A2, where the processes are de�ned by a
process{algebra style calculus. The di�erences between LOTOS and PSF are
in the formalism for the algebraic speci�cation part (ACT ONE [EFH83] and
ASF [BHK89], respectively) and in the combinators of the process calculus
chosen (inspired by those of CCS and ACP, respectively, see Section 13.1).

Process speci�cation formalism (PSF). PSF [MV89,MV90] is the process
speci�cation formalism developed by Mauw and Veltink as a base for a set
of tools to support the process algebras. The main goal in the design of PSF
was to provide a speci�cation language with a formal syntax similar to the
process algebra ACP [BW90, Section 4] but also with a notion of data type;
to this end ASF (the Algebraic Speci�cation Formalismof [BHK89]) has been
incorporated.

The basic speci�cation formalism is equational logic with total algebras.
The theory and language of ASF are adopted for handling modular and pa-
rameterized speci�cations.

A PSF speci�cation consists of a series of modules, divided into data mod-
ules and process modules. Data modules are algebraic speci�cations with ini-
tial semantics. Process modules are ACP speci�cations of processes. Formally,
a process module consists of

{ declarations of the operation symbols for actions and processes (which
may have the static data as arguments),

{ explicit de�nitions of the synchronization among such actions,
{ process de�nitions of the form P (x1; : : : ; xn) = ACP{expression, in which
the operators like \+", \k", \;", \hide" and \encaps", elementary pro-
cesses, pure atomic actions, and also P (thus allowing recursive de�ni-
tions) may appear.

Processes are particular data structures obtained by a given (equational) ax-
iomatization which determines a particular semantics over these structures,
embodying ideas of concurrency. This is best understood by looking at the
hidden basic concurrent models behind process algebra, which are lts as in
CCS and many other approaches; then the axioms provide semantics like
strong, trace, or bisimulation semantics and others, see Section 13.1.1. The

13 Algebraic Speci�cation of Concurrent Systems 13

hidden model is made evident in some presentations of PSF, where ACP

processes are described by means of lts. In any case, since ACP essentially
provides a language schema for processes, it is irrelevant, other than for build-
ing the tools, how its semantics is given, either by equations or by labeled
transitions plus semantic equivalences.

It is instead important to note that in PSF:

{ the synchronization of actions can be de�ned explicitly in the commu-
nication part; as a consequence, the synchronization mechanism is not
�xed and is parameterized;

{ the execution mode is interleaving.

The interface between processes and data types is as follows:

{ the atomic actions may have as components some values of the speci�ed
data types;

{ it is possible to de�ne recursively families of processes indexed on the
elements of some sort;

{ an in�nitary nondeterministic choice indexed on the elements of a sort is
available.

The semantics of the data part is a classical algebraic semantics by ini-
tiality; the semantics of processes is strong bisimulation, which gives a con-
gruence over the term algebra. Thus the semantics identi�es an isomorphism
class of structures, as for a data type.

The data part is strictly separated from the process part. Thus it is an
A2 approach; but the concurrent structure here is also speci�ed algebraically,
though with a �xed set of primitives parameterized on the actions and the
synchronization structure. The result is a completely algebraic speci�cation
to which all the techniques and results of ASF can be conveniently applied.

Particularly powerful are the modularization mechanisms in PSF, which
are borrowed from ASF but truly deal with the integration of data types
and processes; the module concept also supports the import and export of
processes and actions.

There is a vast literature on the use of process algebras, with a detailed
treatment of classical examples and correctness proofs for implementation.
However, these examples should not be confused with applications of a spec-
i�cation method like PSF, which have indeed been introduced for supporting
industrial applications. Clearly PSF is applicable to a wide range of signi�-
cant cases in practice, see, for instance, [MV93], but we see a limitation in its
strict policy of message passing and no provision for data sharing. In many
cases some amount of coding is required which is not in the spirit of abstract
speci�cations. The same remark applies to execution modes other than in-
terleaving, which have to be simulated by appropriate use of synchronization
and restriction mechanisms.

PSF has been devised as a basis for the development of a toolset (see,
e.g., [MV89,MV91,PSF97]); in particular, a simulator, a term rewriting, and
a proof assistant have been implemented.

14 Egidio Astesiano, Manfred Broy, and Gianna Reggio

LOTOS. LOTOS was probably the �rst internationally known (since 1984),
algebraic speci�cation formalism for concurrency [BB87,I.S89]; most impor-
tantly, it is an oÆcial ISO speci�cation language for open distributed systems,
a quali�cation which alone would rank it high in an ideal value scale of pos-
sible important applications. However, LOTOS is interesting also because it
represents an early paradigm of which PSF can be considered an improve-
ment. Because of this, we do not go into a detailed discussion of LOTOS; it
is enough to compare it with PSF to understand its structure.

LOTOS adds classical algebraic speci�cations into a language for concur-
rency like PSF; but it uses ACT ONE [EFH83] instead of ASF and a process
description based on an extension of CCS with several derived combinators
(e.g., input/output of structured values, sequential composition with possi-
ble value passing, enabling/disabling operators) instead of the process algebra
ACP. The basic speci�cation formalism (equational logic with total algebras)
and process bisimulation semantics are the same.

PSF is an improvement over LOTOS (see a discussion in [MV89]), since
it allows more freedom in the de�nition of synchronization mechanisms and
supports import/export of action/processes, thus becoming more
exible for
stepwise development.

Throughout these years LOTOS has been used in several practical appli-
cations and nowadays tools for helping to write correct LOTOS speci�cations
have been developed (see, for instance, the ESPRIT project LOTOSHERE
[vE91]). Recently a new, revised version of LOTOS (E-LOTOS, for Enhance-
ment to LOTOS) has been developed and presented as a standard [LOT97],
taking into account the needs that emerged through its application; enhance-
ments concern the data part (built{in, partial operations), the concurrency
part (noninterleaving semantics, real time, priorities), and the whole organi-
zation of the speci�cations (introduction of modules).

Example 13.3. (Bit using LOTOS) The data part is given by the speci�ca-
tion INT QUEUE , shown in Appendix A, and by the following:

spec MESSAGE =
sorts message �� messages exchanged with the environment
opns OK ;ERROR : ! message

Bit is given as the parallel composition of two processes corresponding to
the bu�er and the user.

The gates of such processes and their connections are graphically repre-
sented in Figure 13.2.

Below \?" and \!" distinguish input/output actions, \;", \: : : ! : : :",
\[]", \jjj", and \i" denote respectively action pre�xing, Boolean guards, non-
deterministic choice, parallel combinator and internal action.

In the de�nition of BUFFER, Put and Get are the gates and q is a process
parameter of sort queue .

13 Algebraic Speci�cation of Concurrent Systems 15

BUFFER

Put

Get

USER

Initial

Output

Put

Get

BUFFER

Put

Get

USER

Initial

Output

SYSTEM

Fig. 13.2. Structure of the LOTOS speci�cation of Bit

process BUFFER[Put;Get](q : queue) :=
[Not Empty(q)] ! Get !First(q);BUFFER[Put;Get](Remove(q)) []

Put ? x : int;BUFFER[Put;Get](Put(x; q)) []
i;BUFFER[Put;Get](Put(1010;Empty)) []
i;BUFFER[Put;Get](Dup(q))

end process

process USER[Initial;Put;Get;Output] :=
Initial ?; Put ! 0;Put ! 1;Get ?x : int;

([not(x = 0)]! Output !ERROR []
[x = 0]! Output !OK)

end process

process System[Initial;Output] :=
BUFFER[Put;Get](Empty) jjj USER[Initial;Put;Get;Output]
end process

Note the similarity between LOTOS and CCS.

13.2.2 Petri nets

Petri nets are among the earliest and most in
uential models of concurrency.

Net models. Here we brie
y present (elementary) nets, the basic models
for the various speci�cation formalisms generally called \Petri nets"; all vari-
ants arise either by putting some restrictions on the allowed nets, adding
minor features, or o�ering more compact/simple ways to present the nets

16 Egidio Astesiano, Manfred Broy, and Gianna Reggio

(e.g., colored nets, high-level nets, : : :); in some cases, a slightly di�erent
terminology is used. [Rei85,RT86] give general overviews and further refer-
ences for net models, while [Rei98] is more concerned with the use of nets for
specifying concurrent systems.

A net N is a triple hP ;T ;F i, where P and T are two sets and F is a
subset of (P �T) [(T �P); P , T , and F are respectively called the sets of
the places, the transitions, and the arcs of the net; F is also called the
ow
relation.

Nets are graphically represented by depicting places, transitions, and arcs
respectively as circles, boxes, and arrows, see, e.g., Figure 13.3.

Example 13.4. (Bit using Petri nets)A Petri net modelingBit is reported
in Figure 13.3; note that to make the drawing small enough we have assumed
that the bu�er may only fail when its content is 01.

The behavior of a net is de�ned as follows.
Given a transition t 2 T , we de�ne �t = fp j p 2 P ; hp; ti 2 Fg (the

preconditions of t) and t� = fp j p 2 P ; ht; pi 2 Fg (the postconditions of t).
Any function s from P into is called a (global) state (or marking) of

N ; graphically represented by putting s(p) �'s (called tokens) on the place p,
for any p 2 P ; the net in Figure 13.3 is in a state characterized just by one
token on each of the places Initial and Empty.

A transition t 2 T is enabled in a state s (or may �re) i�, for any p 2 �t,
s(p) > 1. If t is enabled in s, then

s0 = �p:

8<
:
s(p) � 1 if 2 �t� t�
s(p) + 1 ifp 2 t � � � t
s(p) otherwise

is called the successor state of s with t (or the state obtained after the �ring

of t in s) and s
t
��! s0 is called a step in N .

A system net (s-net for short) is a net N , together with a state, called
the initial state.

The single steps of an s{net can be composed in runs: hsi
ti��! si+1ii2I

with s0 the initial state and I = f0; : : : ; ng (I =) is a �nite (in�nite)
interleaved run.

Empty : 1; Initial : 1
START
�����! Empty : 1;Putting 0 : 1

INT1
����!

0 : 1;Putting 1 : 1
INT2
����! 01 : 1;Reading : 1

INT3
����! 01 : 1;Ok : 1

BREAK
�����!

1010 : 1;Ok : 1
OK
��! 1010 : 1;Terminated : 1

is an example of an interleaved run of the net in Figure 13.3, where a state is
represented by listing the places with the number of their tokens, forgetting
those without tokens.

Some occurrences of transitions in an interleaved run that are seen as
ordered one after the other may be independent. Thus they may also have

13 Algebraic Speci�cation of Concurrent Systems 17

Initial

START

Putting_0

Putting_1

Reading

Ok

Empty

INT1

INT2

0

01

INT3

DUP

011
INT4

BREAK

1010

ERROR

OK

Terminated

Fig. 13.3. A Petri net modeling Bit

happened in the reverse order; in the run depicted above, the two last tran-
sitions are independent. We give another de�nition of a run, making explicit
the concurrent aspects.

Concurrent runs are represented by special nets; the underlying idea is
that a concurrent run of N is a net, whose places and transitions are labeled
with the places and transitions of the original net N and correspond to their
occurrences and �rings in the run, and where the
ow relation corresponds
to the causal relationships among them.

18 Egidio Astesiano, Manfred Broy, and Gianna Reggio

Due to lack of space we skip the complete de�nition of concurrent runs,
and just give in Figure 13.4, as an example, the concurrent run corresponding
to the run above; here we can see how the two last transitions are not causally
related.

Initial

START

Putting_0

Putting_1

Reading

Ok

Empty

INT1

INT2

0

01

INT3

BREAK

10
10

OK

Terminated

01

Fig. 13.4. A concurrent run of the net modeling Bit

The features of concurrent systems that can be nicely handled by modeling
them with nets are as follows:

13 Algebraic Speci�cation of Concurrent Systems 19

{ local and global states abstractly represented as token distributions over
the places;

{ atomic actions (the transitions);
{ (local) causality and e�ect between actions and states;
{ mutual independence/causality of actions;

while there is no acceptable way to model

{ the (distributed) structure of the system;
{ the modular decomposition of systems;
{ open/interacting/reactive systems (no distinction between internal and
external transitions/places: in the net in Figure 13.3, START, OK, and
ERROR should be the external transitions), and therefore no way to
de�ne modularly the net corresponding to a complex system by putting
together the nets corresponding to its components.

Clearly many new formalisms extending nets with other features have been
proposed in the literature overcoming some of these problems.

Nets are particularly apt for analyzing the modeled systems, formally
checking whether the system has or does not have some properties, including
both safety and liveness properties (see Section 13.2.3); several techniques
have been provided for that, one of the most relevant is based on \place{
invariants".

A place{invariant is a linear combination (summation) with (also zero)
integer coeÆcients of the number of tokens contained in the places, which is
not changed by the �ring of the transitions; all place{invariants of a net may
be found by solving a linear system of equations with integer coeÆcients,
thus it is possible to have software tools for �nding them.

For example, two invariants of the net in Figure 13.3 are:

1�Initial +1�Putting 0 +1�Putting 1 +1�Reading +1�Ok+1�Terminated = 1

1 � Empty + 1 � 0 + 1 � 01 + 1 � 011 + 1 � 1010 = 1

(corresponding to saying that the user and the bu�er are always in one and
only one state); while

1 �Ok � 1 � 01 = 0

is not an invariant (the user may be in the Ok state while the bu�er content
is not 01).

High-level algebraic Petri nets. Nets, as presented in Section 13.2.2,
allow us to model several aspects of concurrent systems. However, if we want
to use them for signi�cant examples we have to handle very large (if not
in�nite) nets; e.g., consider the Petri net modeling a system using integer
numbers. Moreover in practical applications we have also to handle complex
data structures.

20 Egidio Astesiano, Manfred Broy, and Gianna Reggio

To �x the �rst kind of problem, the basic nets have been extended in
several ways: a transition �ring can test for the presence of, delete, and add
�nite sets of tokens (creating Petri nets as originally de�ned). Later on, the
unique black token was replaced by colored tokens, producing the so-called
\Colored nets"; here the �ring of a transition also depends on the colors of
the tokens present in the places, and its �ring deletes and adds sets of colored
tokens. More generally, tokens can be considered to be data taken in some
data structure; this leads to the so-called \algebraic nets" where such a data
structure is given by a (many-sorted) algebra.

A richer structure of the tokens allows us to introduce \high-level" nets,
where the basic idea is that the arcs are decorated with symbolic expres-
sions, describing in a compact way the sets of tokens causing the �ring of a
transition, and those deleted and added by such �ring. Moreover, now the
transitions may also be decorated by some expression corresponding to per-
forming some checks on the tokens present in the places in the premise of
the transition, for instance, putting in relation the color of the token in a
place with that of the token in another place (the token of type natural in
one place should be the length of the token of type queue in another). In the
literature it is possible to �nd several proposals for high-level algebraic nets
(see, for instance, [Rei91,BCM88,DH91,Vau87]). The reader interested in a
more detailed study of such nets may, for instance, consult [JR91]; here we
just brie
y present their basic features.

A high-level algebraic net system consists of:

{ a net N = hP ;T ;F i (the schema);
{ a signature � and a set of sorted variables X ;
{ an association with each place in P of a sort of � (places are typed with
the sorts);

{ an association with each arc in F of a set of terms built on � and X
having the sort of the place source or target of the arc (arc inscriptions);

{ an association with each transition in T of a �rst-order (conditional, : : :)
formula built on � and X , where only the variables appearing in the
inscriptions of the arcs entering in the transition may appear (transition
inscriptions);

{ a �{algebra A (the data part);
{ an association with each place p in P of a set of elements of jAjs , where
s is the sort associated with p (initial state).

In some approaches, sets are replaced by multisets, and in others the
signatures and the algebras are extended to have sorts and operations for
handling sets/multisets of elements of the original sorts; thus arcs are in-
scribed by terms of sort set(s)/mset(s) and the initial marking consists of
elements of the carriers of these set/mset sorts. The algebras used in algebraic
nets may be of whichever kind; e.g., there are approaches using homogeneous
total algebras and others using many-sorted partial algebras.

13 Algebraic Speci�cation of Concurrent Systems 21

The abstraction level of high-level algebraic nets may be enhanced by
abstractly giving the data part as an algebraic speci�cation with initial se-
mantics.

Example 13.5. (Bit using algebraic high-level nets) Here we give a spec-
i�cation of Bitwhich is an improvement on that presented in Figure 13.3; the
bu�er is now organized as a queue and contains integer numbers, and so it is
possible to check whether its �rst element is 0. Notice that the corresponding
non-high-level net is in�nite.

The data part is given by the following algebraic speci�cation with initial
semantics

spec DATA =
enrich INT QUEUE by
sorts token
opns � : ! token

The place Bu�er has sort queue, while Initial , Putting 0,Putting 1,Reading ,
Ok , and Terminated have sort token.

The net is shown in Figure 13.5.

Like classical Petri nets, high-level algebraic nets su�er from their lacking
modularity.

13.2.3 Temporal logic

In the �eld of concurrency, speci�cations following an axiomatic, or, better,
property{oriented style, have been widely used, in general to give the formal
speci�cation of the requirements on a concurrent system. In these cases, a
speci�cation is just a set of formulas of some logic expressing the require-
ments on the speci�ed system; among the commonest and most relevant
requirements, we have:

1. liveness properties: (under some condition) something good will happen
eventually in the system; for instance, the system will eventually react to
the reception of some stimuli/after that some situation has been reached;

2. safety properties: (under some condition) something bad will never hap-
pen in the system; for instance, after receiving some stimuli/reaching
some situation, some (incorrect) output will not be produced/some (in-
correct) situation will be not reached;

3. fairness properties: the repeated choice between two alternative activities
of the system must be fair (i.e., it cannot happen that one of the two
alternatives will be chosen forever); e.g., in the case of two processes
trying to access a shared resource, it cannot happen that only one will
succeed;

22 Egidio Astesiano, Manfred Broy, and Gianna Reggio

Initial

START

Putting_0

Putting_1

Reading

Ok

INT1

INT2

Buffer

INT3

BREAK

ERROR

OK

Terminated

q

Put(0,q)

Put(1,q)

q

q

q

First(q) = 0

DUP

q Dup(q)

q
Put(10 ,Empty)

10

q

q

Empty

First(q) › 0

Fig. 13.5. A high-level algebraic net modeling Bit

4. priority/precedence properties: some activity can be executed i� some
other activity cannot be executed; e.g., a process component of a system
can write to a bu�er i� no other process in the system can read it, a
process with priority n can access a resource i� no process with priority
higher than n can;

5. : : : .

13 Algebraic Speci�cation of Concurrent Systems 23

First-order logic is not suÆcient to express properties such as those above
in full generality: some properties are related to the evolution of the system
over time (2), others related to the possible activities of a system (1), or
of the components of a system. Following the way indicated by Pnueli in a
landmark paper [Pnu77], in recent years various modal/temporal logics have
been widely and satisfactorily used to express properties like (1) and (2), or
special variants particularly tailored for the system model chosen have been
developed (see, e.g., [CR97,Mil89]). Concerning properties such as (3, 4), no
fully satisfactory proposal has yet been found (some initial attempts are in
[Reg91,ES95]).

Here we only brie
y introduce the basic (linear and branching) temporal
logics, and afterwards we show how �rst-order temporal logic with equality
may be used to give requirement speci�cations of concurrent systems where
the static data are speci�ed by loose algebraic speci�cations, following an
A2 approach; in Section 13.3, we present an alternative approach based on
temporal logic of kind A3.

Variations of temporal logics. Here we brie
y recall the de�nition of a
linear/branching temporal logic and give some examples of use of its formulas
to express requirements on concurrent systems; for references, see [Sti92,
Pnu86,Eme90].

A propositional linear temporal logic. TL is a propositional linear temporal
logic with a minimal set of combinators.

Assume that Q is a set of propositional symbols; thus the formulas of TL
are de�ned by:

� ::= Q j �1) �2 j : � j �1 U �2

The models of TL are sequences of states M = hsiii2 , where a state s is
a function from Q into fT; Fg, the set of the truth values.

The validity of a formula � over a modelM = hsiii2 is de�ned as follows:

M j= � i� i;M j= � for all i 2 ;

where

{ i;M j= Q i� si(Q) = T
{ i;M j= �1) �2 i� i;M j= : �1 or i;M j= �2
{ i;M j= : � i� i;M 6j= �
{ i;M j= �1 U �2 i� there exists j � 0 such that for all h, i < h < j,
h;M j= �1 and j;M j= �2.

The term \linear" means that in this case the behavior of a system is
modeled by a set of executions represented by linear sequences of states, and
thus at a given instant state, there is exactly one successor state.

24 Egidio Astesiano, Manfred Broy, and Gianna Reggio

When TL is used to specify a system, we have that the models and the
formulas represent respectively the executions of that system and the prop-
erties on such executions. For example, �1 U �2 corresponds to saying that
in any execution the property represented by �1 holds until the property rep-
resented by �2 holds, and that �2 surely will hold. Thus a set of TL formulas
� could be used to specify the requirements on a system: � determines the
class of all systems whose possible executions are included in the class of the
models of �.

U is the basic combinator; many others suitable for expressing further
relevant properties can be derived; among them:

{ true , false , _ , ^ , and , , de�ned in the usual way
{ � =def true U � (eventually the property represented by � will hold)
{ � =def : : � (the property represented by � will hold forever)
{ �1 WU �2 =def (�1 U �2) _ �1 (the property represented by �1 holds
until �2 will hold, but it is not required that �2 will eventually hold).

A propositional branching temporal logic. BTL is a propositional branching
temporal logic with a minimal set of combinators given, following a CTL
style. The term \branching" means that in this case the behavior of a system
is modeled by a tree whose nodes are decorated by states, and thus at a given
instant there may be several di�erent successor states.

As before, assume that Q is a set of propositional symbols; then the for-
mulas of BTL are the following, where 4 is the combinator for \quantifying
over paths":

� ::= Q j 4 � j �1) �2 j : � j �1 U �2:

The models of BTL are transition systems or Kripke structures, where a
function from Q into the set of the truth values is associated with each state.
Precisely, a model M is a triple hSTATE ;!; vi, where STATE is a set,
!� STATE2 and v is a function from STATE into the set of the functions
from Q into fT; Fg.

The validity of a formula � over a model M is de�ned as follows.
First we de�ne the set of paths over M:

PATH (M) =
fhsiii2 j 8 i 2 : ((si ! si+1 _ (8 j: j > i) (sj = si ^ 6 9s: si ! s))g.

Given � = hsiii2 2 PATH (M) and h � 0, �bh denotes the path
sh sh+1 sh+2 : : : .

M j= � i� �;M j= � for all � 2 PATH (M);

where

{ �;M j= Q i� v(s0)(Q) = T

13 Algebraic Speci�cation of Concurrent Systems 25

{ �;M j= �1) �2 i� �;M j= : �1 or �;M j= �2
{ �;M j= : � i� �;M 6j= �

{ �;M j= �1 U �2 i� there exists j � 0 such that for all h, 0 < h < j,
�bh;M j= �1 and �bj ;M j= �2

{ �;M j=4 � i� �0;M j= � for all �0 2 PATH (M) such that s0 = s00.

When BTL is used to specify a system, we have that a model represents the
whole behavior of such a system, i.e., all its possible executions and at which
point the nondeterministic choices are made, and then the formulas represent
properties on such behavior. For example, : 4 (true U �) corresponds
to saying that it is not true that in any case the executions of the system
will eventually satisfy the property represented by � (if � corresponds to
failing, then the formula requires that the system has at least an execution
without failures). Thus a set of BTL formulas � could be used to specify
the requirements on a system: � determines the class of all systems whose
behavior is described by an element of the class of the models of �.

4 is the basic branching combinator; many others that are suitable to
express further relevant system properties can be derived; among them

5� =def : 4 : �

(at least in one case, i.e., the property represented by � holds in at least one
path).

The derived combinators for the path formulas, and , can be de�ned
as for the linear{time logic.

Further temporal logics. In the previous paragraphs we have brie
y sketched
two simple logics. In the literature and in the \practice" of speci�cation
of concurrent systems, a large number of variants have been proposed; the
di�erences are related to:

anchored version In the model a state (set of states) is singled out to be
initial, determined by a special propositional symbol, and the validity of
a formula is changed to hold only on such states (paths starting from such
states). Formally, for the branching{time case, assume that s0 2 STATE
is the initial state, thus

M j= � i� �;M j= � for all � 2 PATH (M) such that s0 = s0:

edge formulas The models, instead of just being sequences (trees) of states,
allow the labeling of the transitions from a state to another; thus they
are sequences of states and labels or trees where the arcs are labeled
(labeled transition systems). Clearly, the formulas are extended to include
\edge formulas" expressing conditions on the next label (see, e.g., [Lam83,
CR97]).

26 Egidio Astesiano, Manfred Broy, and Gianna Reggio

�rst-order The basic formulas, instead of being propositional, are �rst-
order. Now there is the problem of the evaluation of the variables appear-
ing in a formula; usually the symbols appearing in a formula (operations,
predicates, variables) are classi�ed into: rigid, whose interpretation does
not depend on the state where the formula is evaluated, and
exible,
whose interpretation depends on the state where the formula is evalu-
ated. Consequently a model consists of a standard �rst-order structure,
a variable evaluation (for interpreting the rigid symbols) and a sequence
(tree) of states, where with each state is associated a �rst-order structure
and a variable evaluation, for interpreting the
exible symbols. Clearly
the carriers of such structures must coincide with those of the structure
used for rigid symbols (no sensible and usable proposal is available for
overcoming this restriction).

Temporal logic and algebraic speci�cations (A2). First-order tem-
poral logics allow us to give speci�cations of concurrent systems, where the
properties on the dynamic activity are given using the temporal combinators,
while the involved (static) data structures are speci�ed by �rst-order loose
algebraic speci�cations. The sort symbols plus the rigid symbols give the sig-
nature of the data structure, while the
exible symbols describe the states
of the system (notice a similarity with the dynamic data-type approach in
Section 13.4).

Example 13.6. (Bit using temporal logic (requirements)) In this case
we try to give some requirements on Bit (see p. 3), instead of specifying its
design, as done in previous examples.

The static data structure is now speci�ed by the following loose algebraic
speci�cation, where we do not �x the policy followed by the bu�er for storing
values (e.g., as a queue or as a stack).2

spec INT BUNCH =
enrich INT by
sorts bunch
opns Empty : ! bunch

Put : int � bunch! bunch
First : bunch ! int
Remove : bunch ! bunch

preds Not Empty : bunch
Is In : int � bunch

axioms Empty and Put are generators for bunch
: Is In(i;Empty)
Is In(i;Put(i0; b)) , (i = i0 _ Is In(i; b))

2 In this chapter, for simplicity, we omit the universal quanti�ers when
writing the speci�cation axioms; thus, e.g., : Is In(i;Empty) stands for
8 i : int:: Is In(i;Empty).

13 Algebraic Speci�cation of Concurrent Systems 27

Not Empty(b) , 9 i: Is In(i; b)
Is In(First(b); b)
Is In(i;Remove(b))) Is In(i; b)

The states of the system are then characterized by the following
exible
symbols:

opns Buf Cont : ! bunch �� the bu�er content
preds Putting : int

�� is the user putting a given integer in the bu�er ?
Reading : int
�� is the user reading a given integer from the bu�er ?
Terminated :
�� has the user terminated its activity ?
Error :
�� has something erroneous happened in the system ?

The following formulas express requirements on Bit.

Putting(i)) 4 (Is In(i;Buf Cont) _ Error)

If the user is putting i in the bu�er, then in any case, eventually, either i will
be in the bu�er or something erroneous will happen (R5).

4 (Reading (i)) i = First(Buf Cont))

or equivalently
Reading (i)) i = First(Buf Cont)

In any case, always, if the user is reading i, then i is the �rst element of the
bu�er (R5).

Terminated) Terminated

Once the user has terminated its activity, it cannot restart (R1).

5 : Error

There always exists a possible \correct" behavior (R2).
There is no way to express (R0), since we cannot express the bu�er

capabilities of interacting with the user within the system.

13.2.4 Streams and data
ow

A model of concurrency where the data structures representing the
ow of
interaction are made explicit is data
ow concepts based on streams. Of
course, these temporal formulas do not specify all the interesting properties
of a bu�er; rather they specify a subset. Temporal logic is not well suited
for comprehensive speci�cations. Therefore it is better to combine it with
methods that are more appropriate for specifying safety properties.

28 Egidio Astesiano, Manfred Broy, and Gianna Reggio

Data
ow models. For references, see, for instance, [Bro87,Bro97,Bro93,
Bro96].

Data
ow models of systems are often represented by data
ow graphs
(also called data
ow diagrams). A data
ow graph is a directed graph, the
nodes of which are called data
ow nodes and the arcs of which are called
data
ow arcs. Some arcs may have no sources. These are called input arcs.
Others may have no target. These are called output arcs.

Data
ow models are used in many methods in software engineering.
They provide a structural view of a system by representing the computing
agents by data
ow nodes and their communication interconnection by the
arrows connecting them. Although data
ow diagrams are used in nearly all
methods (SA, SADT, SSADM, OMT, SDL, etc.), as well as in many books
on operating systems, their meaning is often not well de�ned and leads to
many misinterpretations. The stream model can help to provide a precise
meaning for data
ow graphics.

There are a number of variations of data
ow models. In acyclic data
ow
models often only one data value is associated with each data
ow arc. The
data
ow nodes are then functions that receive their arguments on their input
arcs (one on each arc) and produce one result on each of their output arcs. The
data
ow diagram accordingly shows a computation tree or a computation
graph. This is related to the single assignment languages.

In more sophisticated data
ow graphs, we associate a stream of data
elements with each data
ow arc. This leads to Kahn networks [Kah74]. In the
deterministic case each node is associated with a stream processing function
that receives its argument streams on its input arcs (one at each arc) and
produces one result stream on each of its output arcs. These graphs may be
cyclic. This leads to cyclic (recursive) de�nitions for the streams associated
with the arcs. A simple mathematical model for data
ow diagrams can be
obtained by stream processing functions. Nondeterministic data
ow diagrams
can be handled by associating sets of functions with each node.

The idea of data
ow was heavily in
uenced by the concept of Petri nets.
Pioneering papers on data
ow were based on the �ring rule semantics of Petri
nets [Den80]. On the other hand the development of data
ow in
uenced the
generaliZation of Petri nets. High-level Petri nets are special cases of such
data
ow diagrams. Both places and transitions in Petri nets can be seen as
data
ow nodes.

Functional system speci�cation. In this section we give a brief sum-
mary of the basic mathematical concepts of stream-based functional system
models. We consider system components with a �nite number of input and
output channels. Messages are exchanged over the channels. A channel his-
tory is mathematically modeled by a stream of messages. The behavior of
a (deterministic) component corresponds to a function mapping the streams
on its input channels onto streams for its output channels.

13 Algebraic Speci�cation of Concurrent Systems 29

A stream of messages over a given message set M is a �nite or in�nite
sequence of messages. We de�ne the set of stream by

M ! =def M
� [M1:

By x
_

y we denote the result of concatenating two streams x and y. We
assume that x

_

y = x, if x is in�nite. By hi we denote the empty stream.
For simplicity we write for a 2M , x 2M !

a
_

x instead of hai
_

x and x
_

a instead of x
_

hai.
If a stream x is a pre�x of a stream y, we write x v y. The relation v is
called pre�x order. It is formally speci�ed by

x v y =def 9 z 2M ! : x
_

z = y:

The relation v is a partial order on the set of streams. The empty stream hi
is the least element.

Given a partially ordered set, a subset is called directed if, for any pair of
elements in S, there exists an upper bound in S. A partially ordered set is
called complete if, for every directed set of streams, there exists a least upper
bound. The set of streams ordered by the pre�x order is complete. The least
upper bound of a directed set S is denoted by lub S.

The behavior of deterministic interactive systems with n input channels
and m output channels is modeled by pre�x monotonic functions

f : (M !)n ! (M !)m

called (m, n){ary stream processing functions.

A function f mapping a complete partially ordered set onto a complete
partially ordered set is called continuous, if, for every directed set S,

f(lub S) = lub ff(x) j x 2 Sg

The set of all pre�x continuous stream processing functions of function-
ality (M !)n ! (M !)m is denoted by

SPFn
m:

For simplicity, we do not consider type information here and assume M
to be just a set of messages.

The following functions on streams are useful in speci�cations:

rt : M ! !M ! rest of a stream
ft : M ! !M [f?g �rst element of a stream
#: M ! ! [f1g length of a stream
c
 : P(M) �M ! !M ! �lter of a stream

30 Egidio Astesiano, Manfred Broy, and Gianna Reggio

Here ? is used as a dummy to avoid partial functions. These functions are
easily speci�ed by the following algebraic equations (let x 2 M !, m 2 M ,
S � M):

rt(hi) = hi; rt(m
_

x) = x;
ft(hi) = ?; ft(m

_

x) = m;
#(hi) = 0; #(m

_

x) = 1 +#(x);

S c
hi = hi;
S c
 (m

_

x) = m
_

(S c
x); if m 2 S
S c
 (m

_

x) = S c
x; if m =2 S

These axioms specify the functions completely. They are useful in proofs, too.
Stream processing functions can easily be speci�ed by logical formulas in

the style of algebraic equations as is demonstrated for the running example
below. Given such functions, we may compose them.

We use two forms of composition: parallel composition and sequential
composition. Given functions f 2 SPFn

k , g 2 SPF k
m we write

f ; g

for the sequential composition of f and g which yields a function in SPFn
m,

where
(f ; g)(x) = g(f(x)):

Given functions f 2 SPFn
m, g 2 SPFn0

m0 we write

fkg

for the parallel composition of f and g which yields a function in SPFn+n0

m+m0 ,

where (let x 2 (M !)n, y 2 (M !)n
0

):

(fkg)(hx; yi) = hf(x); g(y)i

Finally, given a function
f 2 SPF n

m

we may construct a function by the feedback operator leading an output line
back to an input line. We write

�kjf 2 SPFn�1
m�1

for the function de�ned by the equation (1 � k � n; 1 � j � m)

�kj f(x1; : : : ; xk�1; xk+1; : : : ; xn) = (y1; : : : ; yj�1; yj+1; : : : ; ym)

where z is the pre�x least stream such that the following equation holds

f(x1; : : : ; xk�1; z; xk+1; : : : ; xn) = (y1; : : : ; yj�1; z; yj+1; : : : ; ym)

13 Algebraic Speci�cation of Concurrent Systems 31

k

1 n... ...

1 m

j

... ...

k-1 k+1 ...

j-1 j+1

f

Fig. 13.6. Data
ow graph for feedback

See Figure 13.6.
Since f is pre�x monotonic, such a stream least solution (least �x point)

always exists. Of course, it is unique.
By SPECn

m we denote the set of all predicates Q where

Q : SPFn
m ! fT; Fg

The set SPECn
m denotes the set of all component speci�cations for a compo-

nent with n input channels and m output channels.
We want to compose speci�cations of components to networks. Each

form of composition introduced for functions can be extended to compo-
nent speci�cations in a straightforward way. Given component speci�cations
Q 2 SPECn

k , R 2 SPEC k
m we write

Q;R

for the predicate in SPECn
m where

(Q;R)(f) , 9 q; r: f = q; r ^ Q(q) ^ R(r)

Trivially, we have for all speci�cations Q 2 SPECn
m the following equations,

where I denotes the identity function:

Q; I = Q and I;Q = Q:

Given speci�cations Q 2 SPEC n
m, R 2 SPEC n0

m0 we write

QkR

for the predicate in SPECn+n0

m+m0 where

(QkR)(f) , 9 q; r: f = qkr ^ Q(q) ^ R(r):

32 Egidio Astesiano, Manfred Broy, and Gianna Reggio

Feedback also carries over in a straightforward manner to speci�cations.

(�kjQ)(f) � 9 f 0: Q(f 0) ^ f = (�kjf
0)

Any data
ow graph can be described by parallel composition and feedback.
This is easily seen. To build a compositional form for a given data
ow di-
agram where the nodes are described by speci�cations of stream processing
functions, we form a large parallel composition of all data
ow nodes. Then
we connect the output lines to input lines by feedback as shown by the data

ow diagram.

A speci�cation Q 2 SPECn
m is called a property re�nement of a speci�-

cation Q 2 SPECn
m if, for all functions f , we have Q(f)) Q(f). We write

then
Q) Q

In other words, Q is a property re�nement of Q if the set of functions de-
scribed by Q is a subset of the set of functions described by Q. More sophis-
ticated notions of re�nement are obtained by abstraction and representation
speci�cations as introduced in [Bro97].

A pair of speci�cations A and R are called abstraction and representation,
if

R;A = I

Let A1 be an abstraction speci�cation and R2 be a representation speci�ca-
tion. A speci�cation C0 is called a re�nement of speci�cation C if we have

C0) A1;C;R2

Given the corresponding abstraction speci�cation A2 and a representation
speci�cation R1, the identities

R1;A1 = I R2;A2 = I

allows us to deduce

R1;C
0;A2) C:

The actual speci�cation of data
ow nodes can be done by logical formulas
describing the relationship between the input and output streams.

The strong aspect of stream processing concepts is their modularity. They
allow for a modular speci�cation, composition, and re�nement of interacting
systems.

Example 13.7. (Bit using stream functions)
First we specify the two components, bu�er and user.
For each component we �rst give its functionality, then we give the spec-

ifying axioms.
BUFFER : ([f GETg)! ! !

13 Algebraic Speci�cation of Concurrent Systems 33

8h 2 ; z 2 �; x 2 ([f GETg)!:
BUFFER(h

_

z
_

GET
_

x) = h
_

BUFFER(z
_

x) _
BUFFER(h

_

z
_

GET
_

x) = h
_

BUFFER(h
_

z
_

GET
_

x) _
BUFFER(h

_

z
_

GET
_

x) = h1010i

The user is modeled by the function

USER : ! � f STARTg! ! ([f GETg)! � fOK ;ERRORg!

which is speci�ed by the equation

USER(x; hSTART i) = h0
_

1
_

GET ; INSPECT (x)i

where the auxiliary function

INSPECT : ! ! fOK ;ERRORg!

is speci�ed by the equations (i 2 ^ x 2 �)

INSPECT (0
_

x) = hOK i
INSPECT (i

_

x) = hERRORi; i 6= 0

The system is formed by the parallel composition of BUFFER and USER,
and a feedback ofOutputI to Input and of Output to InputI ; see its graphical
explanation in Figure 13.7.

USER

Input_E

Output_E

Input_I

Output_I

BUFFER

Input

Output

Fig. 13.7. Structure of Bit speci�ed using stream-processing functions

34 Egidio Astesiano, Manfred Broy, and Gianna Reggio

The structure of the data
ow diagram is captured logically by the equa-
tions

Output = BUFFER(Input)
(Output I ;Output E) = USER(Input I ; Input E)
Input I = Output
Input = Output I
Input E = hSTART i

Given these equations and the specifyig equations above, we may begin a
straightforward reasoning about the value of Output E .

Integration with algebraic data type speci�cations. The integration
of stream processing functions with algebraic speci�cation is quite simple.
Streams are nothing other than an abstract data type, just slightly more
complex because they may be in�nite. The data types forming the messages
in a stream are easily speci�ed by algebraic speci�cations.

Stream processing functions can also be speci�ed by algebraic speci�ca-
tions. Similarly sequential composition, parallel composition, and feedback
can be described by algebraic speci�cations. Here we need higher-order al-
gebraic speci�cations, of course. The algebraic equations for the composition
operators lead to a rich algebra of stream processing components.

13.3 Dynamic-data types (A3)

As shown in the section on CCS, labeled transition systems (lts) are an e�ec-
tive way to give an operational semantics to a process algebra. In this section
we show how lts can be directly used for the speci�cation of system behavior.

13.3.1 Labelled transition logic (LTL)

The main references for LTL are [AR87,AR96b,CR97]; the �rst appearance
is in [AMRW85]. Notice that in the past the terms \algebraic transition sys-
tems" (e.g., in [AMRW85,AR87]) and \dynamic speci�cations" (e.g., in [CR97,
Reg93,AR96a]) have also been used for the speci�cations built using LTL.

To model processes LTL uses labeled transition systems, see Section 13.1.1,
and supplies two di�erent kinds of speci�cations at di�erent levels of abstrac-
tion:

requirement for expressing the requirements on a concurrent system; a re-
quirement speci�cation should determine a class of nonisomorphic mod-
els, all those formally and abstractly describing systems having such re-
quirements;

design for expressing the abstract design of a concurrent system, to de�ne
abstractly and formally the way in which we intend to design the system;
a design speci�cation should determine one model, the one formally and
abstractly describing the designed system.

13 Algebraic Speci�cation of Concurrent Systems 35

LT-Structures. An lts can be represented by a �rst-order structure (an alge-
bra with predicates) A on a signature with at least two sorts, state and label ,
whose elements correspond respectively to the states and labels of the sys-
tem, and a predicate ��! : state� label�state representing the transition
relation. The triple hjAjstate; jAjlabel;!Ai is the corresponding lts. Obviously
we can have lts whose states are built by states of other lts (for modeling
concurrent systems); in such a case we use structures whose signature has
di�erent sorts corresponding to states and labels, and di�erent predicates
corresponding to transition relations.

In a formal model for concurrent systems we may need to consider data,
too (for example, the data manipulated by a system such as natural numbers);
to handle these cases we consider structures which also have sorts that just
correspond to data and not to states or labels of lts.

The �rst-order structures (algebras) corresponding to lts are called LT-
structures and are formally de�ned as follows.

� An LT-signature LT� is a pair h�;DS i, where:
* � = hS ;
;�i is a �rst-order signature,
* DS � S (the elements in DS are the dynamic sorts, which are the
sorts corresponding to states of lts),

* for all ds 2 DS there exist a sort lab ds 2 S � DS (labels of the
transitions of the processes of sort ds) and a predicate
��! : ds � lab ds � ds 2 �3 (transition relation of the dynamic

elements of sort ds).
� An LT-structure on LT� (abbreviated to LT�-structure) is a �{�rst-
order structure (a �-algebra with predicates).

Design LT-speci�cations. LT-speci�cations are particular algebraic/logic
speci�cations for LT-structures where conditional formulas are used as ax-
ioms; since transitions are described by predicate symbols, such formulas also
allow us to express properties on the activity of processes.

An LT-speci�cation is a pair SP = hLT�;AX i, where LT� = h�;DS i is
an LT-signature and AX a set of conditional formulas on LT� having form

^i=1;:::;n �i) �n+1;

where for i = 1; : : : ; n + 1, �i is an atom, i.e., a formula having the form
either t = t0 or p(t1; : : : ; tm).

We can give SP di�erent semantics, as initial and observational, brie
y
presented below.

The initial semantics of SP determines one (up to isomorphism) LT-
structure, precisely IMod(SP) = T�=�AX , where �AX is the congruence

3 In this paper, for some of the operation and predicate symbols we use a mix�x

notation; for instance, ��! : ds lab ds ds means that we shall write t
t0

��! t00

instead of ��! (t; t0; t00).

36 Egidio Astesiano, Manfred Broy, and Gianna Reggio

over T� generated by the Birkho� deductive system for conditional speci�ca-
tions, sound and complete w.r.t. the models of SP and the atomic formulas,
see Chapter 3.

Since in an LT-structure the transitions correspond to the truth of the
ground atoms built by the transition predicates, we have that the transitions
in the initial model of an LT-speci�cation are just those whose corresponding
atoms can be proved by using the Birkho� system.

In most cases the initial semantics of an LT-speci�cation is too �ne, since
it takes into account all details of the activity of the processes (as intermediate
states). It may happen that we want to consider as semantically equivalent
two processes having di�erent associated transition trees, see Section 13.1.1.

There is a general way to give an observational semantics to LT-speci�-
cations introduced in the general case of conditional speci�cations by some
of the authors and A. Giovini (see [AGR92] for a full presentation); this
approach is well suited for use in LT-speci�cations, which specify concur-
rent systems, since it generalizes and extends the Milner{Park's bisimulation
technique to a purely algebraic setting.

Example 13.8. (Bit using LTL) We �rst specify the two components of the
system, the bu�er and the user, and then how they cooperate.

Below \dsort : : : : : : :" is the construct for declaring dynamic sorts, the
second argument is the syntactic form of the transition predicate; thus

dsort bu�er : ��!
declares the dynamic sort bu�er , the associated sort of the labels lab bu�er ,
and the transition predicate ��! : bu�er � lab bu�er � bu�er .

spec BUFFER =
enrich INT QUEUE [bu�er=queue] by
dsorts bu�er : ��!
opns � : ! lab bu�er

RECEIVE ;RETURN : int ! lab bu�er

axioms Not Empty(b)) b
RETURN(First(b))
������������! Remove(b)

b
RECEIVE(i)
��������! Put(i; b)

b
�
��! Put(1010;Empty)

Not Empty(b)) b
�
��! Dup(b)

spec USER STATUS =
enrich INT by
sorts user status
opns Initial;Putting 0;Putting 1;Reading;Terminated : ! user status

Read : int ! user status

spec USER =
enrich USER STATUS [user=user status] by
dsorts user : ��!
opns START ;OK ;ERROR : ! lab user

PUT ;GET : int ! lab user

13 Algebraic Speci�cation of Concurrent Systems 37

axioms Initial
START

�����! Putting 0

Putting 0
PUT(0)
�����! Putting 1

Putting 1
PUT(1)
�����! Reading

Reading
GET (i)
�����! Read(i)

Read(0)
OK

��! Terminated

NotEq(i; 0)) Read(i)
ERROR

�����! Terminated

spec SYSTEM =
enrich BUFFER +USER by
dsorts system : ��!
opns j : bu�er � user ! system

START ;OK ;ERROR; � : ! lab system

axioms u
START

�����! u0) Empty j u
START

�����! Empty j u0

b
RECEIVE(i)
��������! b0 ^ u

PUT(i)
�����! u0) b j u

�
��! b0 j u0

b
RETURN(i)
��������! b0 ^ u

GET (i)
�����! u0) b j u

�
��! b0 j u0

u
OK

��! u0) b j u
OK

��! b j u0

u
ERROR

�����! u0) b j u
ERROR

�����! b j u0

b
�
��! b0) b j u

�
��! b0 j u

Requirement LT-speci�cations. SP = hLT�;AX i with loose semantics
determines the class of its models, Mod(SP), i.e., all LT�{structures satis-
fying all formulas in AX .

LT-speci�cations with loose semantics can be used to specify the require-
ments on a concurrent system, thus determining a class of systems (all those
satisfying such requirements), instead of abstractly de�ning one particular
system. However, conditional formulas are too limited to express all relevant
requirements on concurrent systems, thus various extensions of �rst-order
logic are used, e.g., including combinators of the branching{time temporal
logic [CR97], the deontic logic [CR96], using the concept of \abstract event"
[AR93], etc. Below we brie
y present the extension of [CR97] with branching-
time temporal combinators (see Section 13.2.3).

Let LT� = hhS ;
;�i;DS i be an LT-signature, L an LT�-structure, and
ds 2 DS . We need the following technical de�nitions. PATH (L; ds) denotes
the set of the paths for the elements of sort ds , i.e., all sequences of transitions
having the form either (1) or (2) below:

(1) d0 l0 d1 l1 d2 l2 : : :
(2) d0 l0 d1 l1 d2 l2 : : : dn n � 0

where for all i � 0, di 2 jLjds, li 2 jLjlab ds , and (di; li; di+1) 2 !L.
FirstS(�) denotes the �rst state of �; and FirstL(�) denotes the �rst label

of �, if exists, i.e., if � is not just a state.
� 2 PATH (L; ds) is maximal i� either it is in�nite or there do not exist

l, d0 such that hdn; l; d0i 2 !L.

38 Egidio Astesiano, Manfred Broy, and Gianna Reggio

Given � = d0 l0 d1 l1 d2 l2 : : : and h � 0, if dh exists, then �bh denotes
the path dh lh dh+1 lh+1 dh+2 : : : , otherwise unde�ned.

The set of formulas, denoted by F (LT�;X), and the family of the sets
of path formulas, denoted by hPF (LT�;X)dsids2DS , on LT�, and variables
X are de�ned by multiple induction as follows. For each s 2 S and ds 2 DS :

formulas
{ p(t1; : : : ; tn) 2 F (LT�;X) p : s1 � � � � � sn 2 �, ti 2 jTLT�(X)jsi
{ t1 = t2 2 F (LT�;X) t1; t2 2 jTLT�(X)js
{ : �; �) �0; 8 x: � 2 F (LT�;X) �; �0 2 F (LT�;X); x 2 X
{ 4 (t; �) 2 F (LT�;X) t 2 jTLT�(X)jds, � 2 PF (LT�;X)ds
path formulas
{ [� x: �] 2 PF (LT�;X)ds x 2 Xds , � 2 F (LT�;X)
{ h�x: �i 2 PF (LT�;X)ds x 2 Xlab ds , � 2 F (LT�;X)
{ �1 U �2 2 PF (LT�;X)ds �1; �2 2 PF (LT�;X)ds
{ : �; �) �0; 8 x: � 2 PF (LT�;X)ds �; �0 2 PF (LT�;X)ds ; x 2 Xs

The formulas of such logic include the usual formulas of �rst-order logic
with equality; if LT� contains dynamic sorts, they also include formulas
built with the transition predicates.

The formula4 (t; �) can be read as \for every path � starting in the state
denoted by t, the path formula � holds on �". We anchor these formulas to
states, following the ideas in [MP89]. The major di�erence with the classical
temporal logic of Section 13.2.3 is that we do not specify a single system
but, in general, one or many types of systems, so there is not a single initial
state but several, hence the need for an explicit reference to states (through
terms) in the formulas built with 4 . The formula [�x: �] holds on the path
� whenever � holds at the �rst state of �; while the formula h�x: �i holds on
the path � if � is not just a single state and � holds at the �rst label of �.

Let L be an LT�{structure and v a variable evaluation of X in L; then
we de�ne by multiple induction:

� the validity of � 2 F (LT�;X) in L w.r.t. v (written L; v j= �),
� the validity of � 2 PF (LT�;X) on a path � in L w.r.t. v (written
L; v; � j= �),

as follows:

{ L; v j= p(t1; : : : ; tn) i� hv#(t1); : : : ; v#(tn)i 2 pL
{ L; v j= t1 = t2 i� v#(t1) = v#(t2)
{ L; v j= 4 (t; �) i� for each � 2 PATH (L; ds) such that FirstS(�) =
v#(t), L; v; � j= �

{ L; v; � j= [� x: �] i� L; v[FirstS(�)=x] j= �
{ L; v; � j= h�x: �i i� FirstL(�) is de�ned and L; v[FirstL(�)=x] j= �
{ L; v; � j= �1 U �2 i� there exists j � 0 such that for all h, 0 < h < j,
L; v; �bhj= �1 and L; v; �bj j= �2

{ : �, �) �0, 8 x: �, : �, �) �0, 8 x: � as usual.

13 Algebraic Speci�cation of Concurrent Systems 39

� is valid in L (written L j= �) i� L; v j= � for all evaluations v.
In the above de�nitions we have used a minimal set of combinators. How-

ever it is possible to de�ne other, derived, combinators as for the classical
logics of Section 13.2.3; plus 5(t; �) =def : 4 (t;: �) (which means at least
in one case, i.e., the property represented by � holds at least on one path).

Example 13.9. (Bit using LTL (requirements))As already done in Exam-
ple 13.6, we give here some sample requirements onBit; but in a di�erent way
to before, we specify the system modularly, by considering its components
�rst and then how they are put together in order to cooperate. Furthermore,
temporal LTL has also edge formulas, so we can also conveniently express
properties concerning the interactions of the system with the environment.
Since properties are anchored to processes (concurrent systems), we can relate
properties of the system to properties of its components.

Below h�l: l = ti is abbreviated to hti.

spec USER =
enrich INT by
dsorts user : ��!
preds Terminated : user
opns PUT ;GET : int ! lab user
axioms Terminated(u))

4 (u; [�u0:Terminated(u0)])
�� if the user is terminated, it remains so forever (R1)

spec BUFFER =
enrich INT by
dsorts bu�er : ��!
opns RECEIVE ;RETURN : int ! lab bu�er

axioms b
RECEIVE(i)
��������! b0) 4 (b0; [� x:9 x0: x

RETURN(i)
��������! x0])

�� after receiving i the bu�er eventually will have
�� the capability to return i
5(b; hRECEIVE(i)i)
�� the bu�er must be able to receive any integer (R0)

spec SYSTEM =
enrich BUFFER +USER by
dsorts system : ��!
opns START ;OK ;ERROR; � : ! lab system

j : bu�er � user ! system
axioms 9 b; u: s = b j u

hb; ui
l
��! hb0; u0i)

(b = b0 ^ u
l
��! u0) _

(u = u0 ^ b
l
��! b0) _

(9 i: l = � ^ u
GET(i)
�����! u0 ^ b

RETURN(i)
��������! b0) _

(9 i: l = � ^ u
PUT(i)
�����! u0 ^ b

RECEIVE(i)
��������! b0)

�� (R5)

40 Egidio Astesiano, Manfred Broy, and Gianna Reggio

5(s; h�l:: l = ERRORi)
�� there always exists a possible \correct" behavior (R2)
Terminated(u))
4 (b j u; [�s:9 b0; u0: (s = b0 j u0 ^ Terminated(u0))] U

[� s:: 9 l; s0: s
l
��! s0])

�� if the user is terminated, it remains so until the system stops

s
START

�����! s0) 4 (s0; (hOK i _ hERRORi))
�� after the system has been started, in any case eventually
�� it will send out either OK or ERROR (R3)

(s
OK

��! s0 _ s
ERROR

�����! s0))
4 (s0; h�l:: (l = OK _ l = ERROR)i)

�� OK and ERROR are sent at most once, and it cannot
�� happen that both are sent (R4)
5(b j u; h�i)) 5(b; h�i)
�� if the system may eventually only do internal actions,
�� then the bu�er component has such a possibility, too

Some of the axioms of the above speci�cations are just to show the peculiarity
of this logic. For example, the unique axiom of USER requires that it must
remain terminated in isolation; while the axiom of SYSTEM about termi-
nated requires something about the behavior of the user when put within the
system. The last axiom of SYSTEM shows how properties of the components
can be related to properties of the whole system.

13.3.2 Rewriting logic (RL)

RL is a formalism for the speci�cation of concurrent systems developed by
Meseguer in the recent years, sharing some of the ideas of LTL; moreover,
its speci�cations are syntactically very similar to those of LTL. For both for-
malisms the behavior of processes is modeled by means of transition systems;
the states of such systems are elements of some carriers of an algebra, given
as the initial model of a conditional speci�cation; the structure of a term rep-
resenting one of such states models the concurrent structure of the system in
that state; and the transitions are de�ned by conditional formulas in which
the transition symbol (arrow) appears.

Clearly, there are also major di�erences between the two formalisms: the
transitions are labeled in the case of LTL and nonlabeled for RL, and have
special properties in the RL case, as to be closed by re
exivity, transitivity,
and congruence w.r.t. the operations; and, most important, their intuitive
interpretation is very di�erent in the two cases:

LTL t
l
��! t0 means that the system in the state represented by t has the

\capability" of passing into the state represented by t0 by performing
some \atomic" activity, i.e., an activity that cannot be interrupted, where
no information on the intermediate states is available, whose interaction
with the environment is represented by l, and at each instant a system
can perform only one of these activities.

13 Algebraic Speci�cation of Concurrent Systems 41

RL t ��! t0 means that the system in the state represented by t can pass
into the state represented by t0 by performing some activity completely
independently from the environment; such activity may be also the com-
position of several \smaller" activities of the same system, and so infor-
mation on the intermediate states may be available (for a terminating
system, for example, we may have transitions which correspond to whole
evolutions of the system from the beginning till the termination).

A complete study of the relationship between RL and LTL can be found
in [AR97b].

Below we give a short presentation of RL, the main references are [Mes92,
MM93]; notice that in such papers Meseguer has used the language of cate-
gory theory to present RL, while here, for clarity, we use a more logic-algebraic
style.

A rewrite theory, i.e., an RL speci�cation, is a 4-tuple R = h�;E ;L;Ri,
where � = hS ;
i is a signature, E a set of equations on �, and R a set of
rewrite rules of the form

r : [t] ��! [t0] if [u1] ��! [v1] ^ : : : ^ [uk] ��! [vk]

with r 2 L and [t], [t0], [u1], [v1], : : : , [uk], [vk] 2 T�(X)=�E .
The entailment system associated with R has the following rules:

1. Re
exivity For each [t] 2 T�(X)=�E
[t] ��! [t]

2. Congruence For each f : s1 � � � � � sn ! s 2

[t1] ��! [t01] : : : [tn] ��! [t0n]

[f (t1; : : : ; tn)] ��! [f (t01; : : : ; t
0
n)]

3. Replacement0 For each rewrite rule

r : [t(x)] ��! [t0(x)] if [u1(x)] ��! [v1(x)] ^ : : : ^ [uk(x)] ��! [vk(x)]

belonging to R, where x is the vector of all variables appearing in the
rule and w a corresponding vector of elements in T�(X)=�E

[u1(w=x)] ��! [v1(w=x)] : : : [uk(w=x)] ��! [vk(w=x)]

[t(w=x)] ��! [t0(w=x)]

4. Transitivity
[t1] ��! [t2] [t2] ��! [t3]

[t1] ��! [t3]

Here, for simplicity, we use the entailment system above, which is a
slightly modi�ed version of the original [Mes92]: rule 3, shown below, has
been changed to avoid the simultaneous rewriting of an element substituted
for a variable. In [AR97b] we show that this entailment system is equivalent

42 Egidio Astesiano, Manfred Broy, and Gianna Reggio

to the original, since the entailed sequents are the same and the structure of
the proofs is preserved.

Now we de�ne the models of the rewrite theories using the entailment
system.

� An R-presystem is a direct re
exive graph G = (�0; �1 : Edges ! Nodes ;
id), where id : Nodes ! Edges such that �0(id (n)) = �1(id(n)) = n (id
expresses the re
exivity of the graph) together with:
{ a �{structure on Nodes such that it satis�es E and the edges respect
the sorts (i.e., for each edge e, �0(e) and �1(e) have the same sort);

{ for each f : s1 � � � � � sn ! s 2
,
a partial operation f : Edgesn �!Æ Edges such that
f (e1; : : : ; en) is de�ned i� for i = 1; : : : ; n, e1, : : : , en are edges of
sorts s1, : : : , sn respectively, and
�0(f (e1; : : : ; en)) = f (�0(e1); : : : ; �0(en)),
�1(f (e1; : : : ; en)) = f (�1(e1); : : : ; �1(en));

{ a partial operation ; : Edges2 �!Æ Edges such that e; e0 is de�ned i�
e and e0 have the same sort and �1(e) = �0(e0) and �0(e; e0) = �0(e),
�1(e; e0) = �1(e0);

{ for each rewrite rule
r : [t(x)] ��! [t0(x)] if [u1(x)] ��! [v1(x)] ^ : : : ^ [uk(x)] ��! [vk(x)]
belonging to R, a partial operation4 r : VarEv � Edgesk �!Æ Edges ,
where VarEv is the set of variable evaluations from x into Nodes ,
such that r(v; e1; : : : ; ek) is de�ned i�, for i = 1; : : : ; k, �0(ei) =
v#(ui(x)) and �1(ei) = v#(vi(x)), and �0(r(v; e1; : : : ; ek) = v#(t(x)),
�1(r(v; e1; : : : ; ek)) = v#(t0(x)).

� A morphism � between two R{presystems P and P 0 is a graph morphism
which preserves the �{structure on the nodes and the operations on the
edges.

� An R{system is an R{presystem satisfying the following equations on
edges (the adaptation of those of [Mes92] to our modi�ed entailment
system):
1. Category (e; e0); e00 = e; (e0; e00)
2. Functoriality of the �{structure

for each f : s1 � � � � � sm ! s 2

f (e1; e01; : : : ; em; e

0
m) = f (e1; : : : ; em); f (e01; : : : ; e

0
m)

f (id (n1); : : : ; id(nm)) = id(f (n1; : : : ; nm))
3. Axioms in E For each t(x1; : : : ; xn) = t0(x1; : : : ; xn) 2 E

t(e1; : : : ; en) = t0(e1; : : : ; en).
� TR is the initial element in the class of the R{systems, i.e., the R{system
where Nodes is T�=�E , the edges are generated by the operations with
edge types, and the edges represented by two di�erent terms are identi�ed
i� their identi�cation follows from equations 1, 2, and 3 above.

4 If several rules with the same label will result to operations of the same function-
ality, then we assume that the names of such operations are made di�erent.

13 Algebraic Speci�cation of Concurrent Systems 43

The ground terms built by the edge operations bijectively correspond to
the proofs of sequents in the entailment systems associated with R; and the
axioms on edges correspond to the required identi�cations on the proofs.

R{systems, and therefore also TR, can be seen as categories, where the
objects are the nodes, the morphisms are the edges, and \; " is the composi-
tion operation on morphisms; axiom 1 and the fact that the graph is re
exive
ensure that they really are categories.

TR is considered the standard semantics of a theory R.
We can see a striking di�erence between RL and LTL: for LTL the precise

form and number of the axioms of a speci�cation is irrelevant, while the
precise form and number of rules of a theory is extremely important for RL.
If two RL theories R and R0 have the same signature, equivalent sets of
equations, and !R = !R0 , then in general TR and TR0 are not isomorphic.

In LTL we have that for each speci�cation there exist in�nite isomorphic
speci�cations with di�erent sets of axioms (e.g., they can be obtained by
adding derived axioms).

Furthermore, the rule labels are not relevant in RL, only the rules are;
indeed the same label can be used for several rules but the edges and the
operations over them are determined by the rules, not by the labels; and we
have that applications of operations associated with di�erent rules, labeled
in the same way with premises and consequences of the same sorts, must be
disambiguated.

Example 13.10. (Bit using RL)

spec BUFFER =
enrich INT QUEUE [bu�er=queue] by
rl �1: b ��! Dup(b)
rl �2: b ��! Put(1010;Empty)

spec USER = USER STATUS[user=user status],

where USER STATUS has been de�ned in Example 13.8; the latter is a
static algebraic speci�cation, and thus may be considered as a particular RL
speci�cation without proper transitions.

spec SYSTEM =
enrich BUFFER +USER by
sorts system
opns j : bu�er � user ! system
rl START :Empty j Initial ��! Empty j Putting 0
rl �3: b j Putting 0 ��! Put(0; b) j Putting 1
rl �4: b j Putting 1 ��! Put(1; b) j Reading
rl �5: Not Empty(b))

b j Reading ��! Remove(b) j Read(First(b))
rl OK : b j Read(0) ��! b j Terminated
rl ERROR :NotEq(i; 0)) b j Read(i) ��! b j Terminated

44 Egidio Astesiano, Manfred Broy, and Gianna Reggio

Notice the major di�erences compared with the LTL speci�cation of Exam-
ple 13.8, even though the two seem very similar. In this case the speci�ca-
tion is structured by giving �rst the speci�cations of the two components;
but now the activity of the user is not given in USER, and only part of
that of the bu�er is given in BUFFER. Indeed, if, e.g., we have the rule
Putting 0 ��! Putting 1 in USER, then the user in any case may perform
such a transition also without synchronizing with the bu�er.

Furthermore there is no provision for knowing that START , OK , and
ERROR are di�erent interactions with the environment, while �1, : : : , �5
correspond to internal activities; see [AR97b] for a detailed comparison.

13.4 Dynamic data-types (A4)

In recent literature various approaches have been proposed to extend the
classical algebraic framework for the speci�cation of data types to handle
processes; the �rst one was Goguen and Meseguer's re
exive semantics for
object{orientation in [GM87]. All these approaches share some common fea-
tures, which have been nicely summarized in [EO94] by Ehrig and Orejas,
where they report informally a general schema for building an algebraic
framework following the state-as-algebra style:

� states-as-algebras; thus, and implicitly, dynamics is modeled by a (labeled
or not) transition system;

� all the statealgebras extend a �xed algebra of basic nondynamic values
(static or value algebra);

� the elements of the carriers of the nonstatic sorts of a statealgebra are the
components of the system at that moment, and the nonstatic operations
represent how they are organized at that moment;

� state-transformations = transitions from a statealgebra to another stateal-
gebra, correspond in most cases to operations of a special kind (dynamic
operations) and in general are not homomorphisms (the organization and
the number of components may change).
Notice that dynamic operation calls are the common mechanism to ex-
press the interactions with the environment; but in this way the reaction
to an external stimulus (a dynamic operation call) must be deterministic
(except if we leave the classical algebraic frameworks for some nondeter-
ministic framework).
While the usual algebraic techniques may be used to de�ne/specify the
value and the statealgebras, there is no standard way to de�ne/specify
the dynamic operations (the transitions).

� there is no a general way to handle concurrency/distribution/cooperation
among process components or to give in a structured way the speci�cation
of a concurrent system by composing the speci�cations of its components;
usually each approach o�ers ad hoc techniques;

13 Algebraic Speci�cation of Concurrent Systems 45

� most of these approaches have been developed with object-orientation in
mind rather than concurrency generally.

Here, we brie
y report on only some approaches; other can be found,
for instance, in [Bau95,PP95]. Among them, evolving algebras are peculiar;
since the emphasis is not on the data structure aspects, but more on the
operational idea of state transitions; indeed, recently they have been called
\Abstract State Machines" (ASM).

13.4.1 Evolving algebras (abstract state machines)

The basic idea of the \evolving algebras" (see, for instance, [Gur93,Gur95])
is perfectly summarized by their name. Essentially an evolving algebra (spec-
i�cation) consists of a description of a (nonlabeled) transition system, whose
states are algebras on the same homogeneous signature built over the same
universe (including Boolean values). Some of the operation symbols are qual-
i�ed as \static" and their interpretation is the same in any (algebra which is
a) state. The transitions are de�ned by rules of the following form:

econd) up1; : : :upk

where, for each j = 1; : : : ; k, the function update upj has form

fj(e
j
1; : : : ; e

j
nj
) := ej ;

econd, e11, : : : , e
1
n1
, e1, : : : , ek1, : : : , e

k
nk
, ek are \descriptions" (any possible

mathematically intelligible expressions) of elements of the universe, the �rst
describing a Boolean value, and for j = 1; : : : ; k, fj is an operation of the
signature of arity nj .

The interpretation of one of such rules is that the system in a state A
such that econd holds on it, may pass to another algebra B where for each
operation of the signature f , fB(x1; : : : ; xn) =

{ the interpretation of ej in A, if f = fj and x1; : : : ; xn coincide with the

interpretations of ej1; : : : ; e
j
nj

in A;
{ fA(x1; : : : ; xn), otherwise.

Obviously, the function updates up1, : : : upk in a rule must be consistent
in the sense that they do not simultaneously update the same function on
the same arguments with di�erent values.

Here, for simplicity, we consider only the basic evolving algebras, where
there is no provision for concurrent structuring; concerning reactivity, some
operations of the signature are classi�ed \external" with the idea that they
can change under the in
uence of (the nonfurther quali�ed) environment and
cannot be modi�ed by the rules.

Thus, essentially, to give an evolving algebra speci�cation means to give
a (nonlabeled) transition system where the states are �nite tuples, which can

46 Egidio Astesiano, Manfred Broy, and Gianna Reggio

also be of functional type, describing the transitions by saying only which
components of the state tuples change and how, and for the components
of functional type, only for which arguments change and how. In this way
state transformations are described in a very economic way. Consider, for
example, the conditional rules describing the modi�cation of tuple-like states,
following, e.g., an LTL-style (see Section 13.3.1), as

econd) hc1; : : : ; ci; : : : ; cni ! hc1; : : : ; c
0
i; : : : ; cni

and

econd)
hc1; : : : ; ci; : : : ; cni ! hc1; : : : ; � x: if x = a then b else ci(x); : : : ; cni

versus the corresponding simpler versions given in an evolving algebra style:

econd) Ci := c0i and econd) Ci(a) := b:

After all, evolving algebras are nothing but lts where the states are al-
gebras. As for other purely lts{based approaches, the treatment of liveness
conditions and modular composition are less elegant.

Example 13.11. (Bit using evolving algebras)

�� SIGNATURE
�� Static operations

Empty (0{ary)
Remove, Dup, First, Not Empty (1{ary)
Put (2{ary)
Initial, Terminated, Putting 0, Putting 1, Reading (0{ary)
Read (1{ary)
START , OK , ERROR (0{ary)

�� Dynamic operations
Buf Cont, User State, Output (0{ary)

�� External operations
Input (0{ary)

�� de�nition of static operations
.....

�� RULES

Input = START ^ Buf Cont = Empty)
User State := Putting 0

User State = Putting 0)
User State := Putting 1
Buf Cont := Put(0;Buf Cont)

User State = Putting 1)
User State := Reading
Buf Cont := Put(1;Buf Cont)

13 Algebraic Speci�cation of Concurrent Systems 47

User State = Reading ^ Not Empty(Buf Cont))
User State := Read(First(Buf Cont))
Buf Cont := Remove(Buf Cont)

true) Buf Cont := Put(1010;Empty)

true) Buf Cont := Dup(Buf Cont)

User State = Read(0))
User State := Terminated
Output := OK

User State 6= Read(0))
User State := Terminated
Output := ERROR

13.4.2 D{oids

D-oids [AZ95] are mathematical structures aimed at abstractly modeling
concurrent systems by extending the algebraic approach for modeling data
structures. In [AZ95] a very general approach is taken, since the de�nition of
a d-oid is parameterized by the underlying static framework for (values and)
statealgebras, but here for simplicity, we �x such framework to the usual
algebras.

A d-id has a signature, called a dynamic signature. In general a dynamic
signature is a pair consisting of a signature � with a set of sorts S and a
family of dynamic operation symbols DOP over S . A dynamic operation dop
may have a functionality dop : w ! [s], with w 2 S� and [s] 2 S [f�g.
This corresponds to the idea that a dynamic operation may also return a null
value. There are also constant dynamic operations dop having functionality
dop : ! [s].

A d{oid over h�;DOP i consists of a class A of �{algebras and an inter-
pretation of the dynamic operations. If dop : w! [s], then an interpretation
of dop is a partial function mapping hA; ai, with A 2 A and a 2 jAjw, to a
transformation of A into an algebra B 2 A and a returned value v 2 jBj[s],
when [s] is not null. A transformation of A in B is a triple hA; f ;Bi, where f
is a partial map from the carrier of A into the carrier of B, called a tracking
map. The tracking map is essential for keeping track of the identity of the
elements of the system: if e is an element in A, then we can recover it in the
new state B by applying f to e; tracking maps allow us to deal in a very
abstract way with object creation (nonsurjective maps) and deletion (non
total tracking maps). Tracking maps may be noninjective, to model the cases
where some elements with di�erent identities are glued together.

Static basic values may be provided by a value part, just an algebra, see
[AZ95].

48 Egidio Astesiano, Manfred Broy, and Gianna Reggio

The interpretation of a constant dynamic operation dop : ! [s] is an
algebra A 2 A and a returned value v 2 jAj[s] , whenever [s] is not null.

Finally, it is possible to extend in a natural way the notion of term to
the dynamic case. Terms de�ne a syntactic structure, the term d{oid, which
is, under some assumptions, a free structure for the appropriate categorical
setting [AZ96].

Concerning speci�cations based on d-oids, [Zuc96] presents a general way
to build institutions for dynamic data type speci�cations and shows an ap-
plication to the d-oid case. The formulas of the proposed logic allow us to
express static properties, precisely on the value part and the statealgebras (a
kind of system invariants). Concerning the properties on dynamics, it allows
formulas for expressing pre- and post-conditions on sequential compositions
of dynamic operations, represented by the elements of the term d-oid, and for
requiring that two compositions are the same, i.e., they represent the same
transformation.

Example 13.12. (Bit using d-oids) The value part is given by the ini-
tial model of following algebraic speci�cation, where USER STATUS and
MESSAGE have been given respectively in Examples 13.8 and 13.3, and
INT QUEUE is in Appendix A.

spec VALUE = INT QUEUE + USER STATUS + MESSAGE

spec SYSTEM =
enrich VALUE by �� value part

�� statealgebra part
Buf Cont : ! queue
User State : ! user status
Output : ! message
�� dynamic operations
START ; INT1 ; INT2 ; INT3 : !
OUTPUT : ! message
�� dynamic properties
fBuf Cont = Empty ^ User State = InitialgSTART

fUser State = Putting 0g
fUser State = Putting 0g INT1

fUser State = Putting 1 ^ Buf Cont = Put(0;Buf Cont)g
fUser State = Putting 1g INT1

fUser State = Reading ^ Buf Cont = Put(1;Buf Cont)g
fUser State = Reading ^ Not Empty(Buf Cont)g INT1

fUser State = Read(First(Buf Cont)) ^
Buf Cont = Remove(Buf Cont)g

INT2 fBuf Cont = Put(1010;Empty)g
INT3 fBuf Cont = Dup(Buf Cont)g
fUser State = Read(0)g INT1

fUser State = Terminated ^ Output = OK g
fUser State = Read(i) ^ : (i = 0)g INT1

fUser State = Terminated ^ Output = ERRORg
fUser State = Terminatedg m OUTPUT

13 Algebraic Speci�cation of Concurrent Systems 49

13.4.3 Algebraic speci�cations with implicit state

The speci�cation formalism of Dauchy and Gaudel [DG93,GDK96] is based
on the notion of elementary access function and elementary modi�er. Elemen-
tary access functions characterize the structure of the states of the system, as
kinds of observation functions, while elementary modi�ers allow us to perform
updates of the elementary accesses without returning any value. Elementary
modi�ers are built-in features of the speci�cation language, associated with
the elementary access functions.

A speci�cation in this formalism is a 4{tuple

hh�;AX i; h�ac;AX aci; h�mod;Defmodi;AX initi;

where:

{ h�;AX i is the speci�cation of the static values used.
{ h�ac;AX aci is the speci�cation of the access functions and is a conser-
vative extension (see, Chapter 6) of h�;AX i with no new sort (thus
� � �ac). Some of the access functions are elementary, while the others
are de�ned in terms of the elementary ones by the access axioms of AX ac.

{ The admissible initial states are characterized by the set of axiomsAX init.
{ The de�nition of the elementary access functions makes implicitly avail-
able the corresponding elementary modi�ers in the following way: given
an elementary access function f with functionality s1 � � � � � sn ! s,
the corresponding elementary modi�er is �-f with domain s1�� � ��sn s.
Elementary modi�ers are the tools for describing the statealgebras trans-
formation.
Given some terms with variables t1, : : : , tn of sorts s1, : : : , sn and a term
t of sort s, the meaning of the statement �-f(t1; : : : ; tn; t) is a modi�cation
of f . More precisely, it transforms a statealgebra A into a statealgebra B
such that:
* fB(v1; : : : ; vn) = (�(t))B if there exists a ground substitution � such
that for i = 1; : : : ; n vi = (�(ti))

A;
* fB(v1; : : : ; vn) = fA(v1; : : : ; vn) otherwise;
* derived access functions which depend on f are changed accordingly;
* any other operation and all carriers are unchanged.
h�mod;Defmodi de�ne some composite modi�ers, the functionalities of
which have no range. The axioms in Def mod are positive conditional and
their premises are built on �ac. They de�ne the modi�ers using state-
ments built from the elementary modi�ers and the following constructs:
nil identity; ; sequential composition; and composition in any order (it
is responsibility of the speci�er to check that the result of the composi-
tion does not depend on the order); � denotes modi�cations made on the
same state, i.e., all preconditions and arguments of the involved modi-
�ers must be evaluated in the initial state prior to doing all corresponding
modi�cations.

50 Egidio Astesiano, Manfred Broy, and Gianna Reggio

Example 13.13. (Bit using access functions and modi�ers)Let VALUE
be the algebraic speci�cation de�ned in Example 13.12.

spec SYSTEM =
enrich VALUE by �� basic static values

�� elementary accesses
Buf Cont : ! queue
User State : ! user status
Output : ! message
�� modi�ers
START : !
� : !
�� modi�er de�nitions
User State = Initial ^ Buf Cont = Empty)

START = �-User State(Putting 0)

� =
cases
User State = Putting 0)

(�-User State(Putting 1) ^ �-Buf Cont(Put(0;Buf Cont)))
_ (�-Buf Cont(Put(1010;Empty)))
_ (�-Buf Cont(Dup(Buf Cont)))

User State = Putting 1)
(�-User State(Reading) ^ �-Buf Cont(Put(1;Buf Cont)))
_ (�-Buf Cont(Put(1010;Empty)))
_ (�-Buf Cont(Dup(Buf Cont)))

User State = Reading ^ Not Empty(Buf Cont))
(�-User State(Read(First(Buf Cont))) ^
�-Buf Cont(Remove(Buf Cont)))
_ (�-Buf Cont(Put(1010;Empty)))
_ (�-Buf Cont(Dup(Buf Cont)))

User State = Read(0))
(�-User State(Terminated) ^ �-Output(OK))
_ (�-Buf Cont(Put(1010;Empty)))
_ (�-Buf Cont(Dup(Buf Cont)))

User State = Read(i) ^ NotEq(i; 0) = True)
(�-User State(Terminated) ^ �-Output(ERROR))
_ (�-Buf Cont(Put(1010;Empty)))
_ (�-Buf Cont(Dup(Buf Cont)))

end cases

13.4.4 Statealgebras with references

In [GR95,GR97] Gro�e-Rhode presents a state-as-algebra approach based on
a general idea of \reference".

A statealgebra is a partial algebra which is an extension of a given alge-
bra A, called the base model (static value algebra). More precisely, a state
is considered as a static data type where references are added. For some

13 Algebraic Speci�cation of Concurrent Systems 51

sorts, say s, a special reference sort ref (s) and a contents operation symbol
!s : ref (s)! s are introduced in the signature. The base model is a model of a
normal partial equational speci�cation, called the base speci�cation, with ex-
istence equations and some minor restrictions concerning equations between
references.

For a list of (pairwise di�erent) references d! = d1 : : :dn with di 2
jAjref (si) and a corresponding list of values a! = a1 : : :an with ai 2 jAjsi, the

state A[d! :=a!] on the base model A, where the references di have contents
ai, is formally de�ned as a free extension of A by an existence equation of
the form !s1(d1) = a1 ^ : : : ^ !sn(dn) = an.

The de�nition of states as free extensions of the base model allows one to
formalize the notion of persistent state: a persistent state on A is a model of
the base speci�cation whose restriction to the signature of the value datatypes
(disregarding the reference sorts) is isomorphic to A. Intuitively a persistent
state can be regarded as an extension with the content functions of A, i.e.,
as a pair hA; envi, where env is an environment which is a family of partial
functions mapping references to values. It is proved that persistent states are
in a one-to-one correspondence with the pairs hA; envi.

On top of a base speci�cation a transition speci�cation can be de�ned.
Dynamic operations are speci�ed by a set of method de�nitions, which are
conditional parallel assignments. It is possible to have several assignments
for the same method with overlapping conditions, hence dynamic operations
are nondeterministic. Finally, state transitions are speci�ed by method ex-
pressions built by the application of methods to arguments and by sequential
composition of them.

Some interesting results concern structured speci�cations; following the
well-established theory of composition of speci�cations and of parametric
speci�cations in an arbitrary institution, Gro�e-Rhode proves that his speci-
�cations enjoy the properties needed for de�ning the usual structuring mech-
anisms for composing speci�cations.

Example 13.14. (Bit using statealgebras with references) Let VALUE
be the speci�cation de�ned in Example 13.12.

spec VALUE�REF =
enrich VALUE[bu�er=queue] by
sorts ref (user status); ref (bu�er); ref (message)
refs U : ! ref (user status)

B : ! ref (bu�er)
Output : ! ref (message)

spec SYSTEM =
enrich VALUE�REF by

�� methods
START : ! ref (user status)
!U = Initial ^ !B = Empty) START (U) := Putting 0:O

52 Egidio Astesiano, Manfred Broy, and Gianna Reggio

INT1 : ! ref (bu�er)� ref (user status)
!U = Putting 0) INT1 (B;U) :=< Put(0; !B);Putting 1 > :O
!U = Putting 1) INT1 (B;U) :=< Put(1; !B);Reading > :O
!U = Reading ^ Not Empty(!B))

INT1 (B;U) :=< Remove(!B);Read(First(!B)) > :O

INT2 : ! ref (bu�er)
INT2 (B) := Put(1010;Empty)
INT2 (B) := Dup(!B)

INT3 : ! ref (user status)� ref (message)
!U = Read(0)) INT3(U;Output) :=< Terminated;OK > :O
!U = Read(i) ^ NotEq(i; 0))

INT3 (U;Output) :=< Terminated;ERROR > :O

13.5 Conclusion

We have distinguished four main approaches in the use of algebraic techniques
for the speci�cation of reactive, and concurrent systems and presented some
methods illustrative of the di�erent viewpoints. There has not been room to
include all methods, in particular those more recent (like the coalgebraic)
or requiring a deeper treatment (like hidden speci�cations), but we have
provided pointers to the relevant literature. Nor we have made any attempt at
comparing the di�erent methods, since a thorough comparison should follow
some rigorous criteria, which are still under discussion (see, e.g., some hints
in [AR97a]). Instead we have provided a guided tour, hopefully stimulating
further reading and research.

Looking back, we can now observe that, in order to handle properly the
features typical of concurrent and reactive systems, the algebraic techniques
need some kind of extension of a very di�erent nature. First they all need an
underlying model able to deal with the concurrency issues (like Petri nets or
Labeled Transition Systems). Then there are speci�c adjustments either at
the level of the speci�cation language (A2), or of some basic technical point
(generalized bisimulations, coalgebras instead of algebras, hidden speci�ca-
tions), or at the method level [BCPR96].

In general any really usable formalismfor the speci�cation of systems must
be complemented by a speci�cation formalism for data and in this respect
algebraic techniques have the advantage of being very abstract and linked to
languages supporting modularity . This is the rationale behind the success of
methods following viewpoint A2, like LOTOS.

We can also observe that only the algebraic methods following approach
A3 keep the fully axiomatic
avor of the original algebraic speci�cations; this
would apply to the hidden speci�cation and coalgebraic methods too.

An issue which has only been mentioned as an aside, but of paramount
importance, is the support of automatic tools both for development and ver-
i�cation. This is a fast developing �eld, which could provide one basic key

13 Algebraic Speci�cation of Concurrent Systems 53

to the successful use of algebraic techniques in the future. Another key could
come from a standardization of the algebraic notation and of the associated
methods, contrary to the direction of the current proliferation of notations. In
this respect we are greatly looking forward to the outcome of CoFI, the ongo-
ing Common Framework Initiative, sponsored by the IFIP WG 2.2 [Mos97].

Acknowledgement. We thank Davide Ancona and Elena Zucca for Section
13.4.

Work partially funded by HCM project Express and MURST 40%Modelli
della computazione e dei linguaggi di programmazione.

54 Egidio Astesiano, Manfred Broy, and Gianna Reggio

A Speci�cations of data types used by Bit

Below we report the algebraic speci�cations of the data types, integers and
�nite queues of integers, which are used in various speci�cations of Bit.

spec INT =
sorts int
opns 0: ! int

S; P : int ! int
+ : int � int ! int

preds < ;NotEq : int � int
axioms 0 + i = i

S(i) + i0 = S(i + i0)
P (i) + i0 = P (i+ i0)
0 < S(0)
P (0) < 0
i < i0) (S(i) < S(i0) ^ P (i) < P (i0) ^ i < S(i0) ^ P (i) < i0)
(i < i0 _ i0 < i)) NotEq(i; i0)

spec INT QUEUE =
enrich INT by
sorts queue
opns Empty : ! queue

Put : int � queue! queue
First : queue ! int
Remove;Dup : queue ! queue
�� Dup duplicates the �rst element of a queue

preds Not Empty : queue
axioms Not Empty(Put(i; q))

First(Empty) = 0
First(Put(i;Empty)) = i
First(Put(i;Put(i0; q))) = First(Put(i0; q))
Remove(Empty) = Empty
Remove(Put(i;Empty)) = Empty
Remove(Put(i;Put(i0; q))) = Put(i;Remove(Put(i0; q)))
Dup(Empty) = Empty
Dup(Put(i;Empty)) = Put(i;Put(i;Empty))
Dup(Put(i;Put(i0; q))) = Put(i;Dup(Put(i0; q)))

13 Algebraic Speci�cation of Concurrent Systems 55

References

[AGR92] E. Astesiano, A. Giovini, and G. Reggio. Observational structures and
their logic. Theoretical Computer Science, 96(1):249{283, 1992.

[AMRW85] E. Astesiano, G.F. Mascari, G. Reggio, and M. Wirsing. On the pa-
rameterized algebraic speci�cation of concurrent systems. In H. Ehrig,
C. Floyd, M. Nivat, and J. Thatcher, editors, Proc. TAPSOFT'85,
Vol. 1, volume 185 of Lecture Notes in Computer Science. Springer,
1985.

[AR87] E. Astesiano and G. Reggio. SMoLCS-driven concurrent calculi. In
H. Ehrig, R. Kowalski, G. Levi, and U. Montanari, editors, Proc. TAP-
SOFT'87, Vol. 1, volume 249 of Lecture Notes in Computer Science.
Springer, 1987.

[AR93] E. Astesiano and G. Reggio. Specifying reactive systems by abstract
events. In Proc. 7th Intl. Workshop on Software Speci�cation and De-
sign (IWSSD-7), Los Alamitos, CA, 1993. IEEE Computer Society.

[AR96a] E. Astesiano and G. Reggio. A dynamic speci�cation of the RPC-
memory problem. In M. Broy, S. Merz, and K. Spies, editors, Formal
System Speci�cation: The RPC-Memory Speci�cation Case Study, vol-
ume 1169 of Lecture Notes in Computer Science. Springer, 1996.

[AR96b] E. Astesiano and G. Reggio. Labelled transition logic: An outline. Tech-
nical Report DISI{TR{96{20, DISI { Universit�a di Genova, Italy, 1996.

[AR97a] E. Astesiano and G. Reggio. Formalism and method. In M. Bidoit and
M. Dauchet, editors, Proc. TAPSOFT'97, volume 1214 of Lecture Notes
in Computer Science. Springer, 1997.

[AR97b] E. Astesiano and G. Reggio. On the relationship between labelled tran-
sition logic and rewriting logic. Technical Report DISI{TR{97{23, DISI
{ Universit�a di Genova, Italy, 1997.

[AZ95] E. Astesiano and E. Zucca. D-oids: a model for dynamic data types.
Mathematical Structures in Computer Science, 5(2):257{282, 1995.

[AZ96] E. Astesiano and E. Zucca. A free construction of dynamic terms.
Journal of Computer and System Sciences, 52(1), 1996.

[Bau95] H. Baumeister. Relations as abstract datatypes: An institution to
specify relations between algebras. In P.D. Mosses, M. Nielsen, and
M.I. Schwartzbach, editors, Proc. TAPSOFT'95, volume 915 of Lecture
Notes in Computer Science. Springer, 1995.

[BB87] T. Bolognesi and E. Brinksma. Introduction to the ISO speci�cation
language LOTOS. Computer Networks and ISDN Systems, 14, 1987.

[BCM88] E. Battiston, F. De Cindio, and G. Mauri. OBJSA nets: a class of
high-level nets having objects as domains. In G. Rozenberg, editor, Ad-
vances in Petri Nets, volume 340 of Lecture Notes in Computer Science.
Springer, 1988.

[BCPR96] M. Bidoit, C. Chevenier, C. Pellen, and J. Ryckbosh. An algebraic spec-
i�cation of the steam-boiler control system. In J.-R. Abrial, E. Borger,
and H. Langmaack, editors, Formal Methods for Industrial Applications,
volume 1165 of Lecture Notes in Computer Science. Springer, 1996.

[BHK89] J.A. Bergstra, J. Heering, and P. Klint. The algebraic speci�cation
formalism ASF. In J.A. Bergstra, J. Heering, and P. Klint, editors, Al-
gebraic Speci�cation,ACM Press Frontier Series. Addison-Wesley, 1989.

56 Egidio Astesiano, Manfred Broy, and Gianna Reggio

[BK86] J.A. Bergstra and J.W. Klop. Process algebra: Speci�cation and veri�-
cation in bisimulation semantics. In M. Hazewinkel, J.K. Lenstra, and
L.G.L.T. Meertesen, editors, Math. & Comp. Sci. II, volume 4 of CWI
Monograph. North Holland, 1986.

[Bro87] M. Broy. Semantics of �nite or in�nite networks of communicating
agents. Distributed Computing, 2, 1987.

[Bro93] M. Broy. Interaction re�nement: The easy way. In M. Broy, editor,
Program Design Calculi, volume 118 of NATO ASI Series, Series F:
Computer and System Sciences. Springer, 1993.

[Bro96] M. Broy. Speci�cation and re�nement of a bu�er of length one. In
M. Broy, editor, Deductive Program Design, volume 152 of NATO ASI
Series, Series F: Computer and System Sciences. Springer, 1996.

[Bro97] M. Broy. Compositional re�nement of interactive system. Journal of
the ACM, 44(6), 1997.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Uni-
versity Press, 1990.

[CR96] E. Coscia and G. Reggio. Deontic concepts in the algebraic speci�cation
of dynamic systems: The permission case. In O.-J. Dahl, M. Haveraan,
and O. Owe, editors, Recent Trends in Data Types Speci�cation, Proc.
11th Workshop on Speci�cation of Abstract Data Types joint with the
8th General COMPASS Meeting, volume 1130 of Lecture Notes in Com-
puter Science, pages 182{199. Springer, 1996.

[CR97] G. Costa and G. Reggio. Speci�cation of abstract dynamic data types:
A temporal logic approach. Theoretical Computer Science, 173(2), 1997.

[Dav65] M. Davis, editor. The Undecidable. Raven Press, New York, 1965.

[Den80] J.B. Dennis. Data
ow supercomputers. IEEE Computer, 13(11), 1980.

[DG93] P. Dauchy and M.-C. Gaudel. Implicit state in algebraic speci�cations.
In U.W. Lipeck and G. Koschorreck, editors, Proc. Intl. Workshop Is-
Core'93, Hannover (Germany). Universit�at Hannover, 1993.

[DH91] C. Dimitrovici and U. Hummert. Composition of algebraic high-level
nets. In H. Ehrig, K.P. Jantke, F. Orejas, and H. Reichel, editors, Recent
Trends in Data Type Speci�cation, Proc. 7th Workshop on Speci�cation
of Abstract Data Types, volume 534 of Lecture Notes in Computer Sci-
ence. Springer, 1991.

[EFH83] H. Ehrig, W. Fey, and H. Hansen. ACT ONE: An algebraic speci�-
cation language with two levels of semantics. Technical Report 83-01,
Technische Universit�at Berlin, 1983.

[Eme90] A.E. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B. Elsevier Science
Publishers B.V. (North Holland), 1990.

[EO94] H. Ehrig and F. Orejas. Dynamic abstract data types: An informal
proposal. EATCS Bulletin, 53, 1994.

[ES95] H.-D. Ehrich and A. Sernadas. Local speci�cation of distributed fam-
ilies of sequential objects. In E. Astesiano, G. Reggio, and A. Tar-
lecki, editors, Recent Trends in Data Type Speci�cation: 10th Workshop
on Speci�cation of Abstract Data Types joint with the 5th COMPASS
Workshop, volume 906 of Lecture Notes in Computer Science, pages
218{235. Springer, 1995.

13 Algebraic Speci�cation of Concurrent Systems 57

[GD94] J.A. Goguen and R. Diaconescu. Towards an algebraic semantics for
the object paradigm. In H. Ehrig and F. Orejas, editors, Recent Trends
in Data Type Speci�cation, volume 785 of Lecture Notes in Computer
Science, pages 1{29. Springer, 1994.

[GDK96] M.-C. Gaudel, P. Dauchy, and C. Khoury. A formal speci�cation of the
steam-boiler control problem by algebraic speci�cation with implicit
state. In J.-R. Abrial, E. Borger, and H. Langmaack, editors, Formal
Methods for Industrial Applications, volume 1165 of Lecture Notes in
Computer Science. Springer, 1996.

[GG94] Dov Gabbay and Franz Guenthner, editors. What is a Logical System?
Oxford University Press, 1994.

[GM87] J.A. Goguen and J. Meseguer. Unifying functional, object-oriented
and relational programming with logical semantics. In B. Shriver anf
P. Wegner, editor, Research Direction in Object-Oriented Programming,
Computer System Series, pages 417{477. MIT Press, 1987.

[GR95] M. Gro�e-Rhode. Speci�cation of Transition Categories { An Approach
to Dynamic Abstract Data Types. PhD thesis, Technische Universit�at
Berlin, 1995.

[GR97] M. Gro�e-Rhode. Transition speci�cations for dynamic abstract data
types. Applied Categorical Structures, 5, 1997.

[Gur93] Y. Gurevich. Evolving algebras, an attempt to discovery semantics. In
G. Rozenberg and A. Salomaa, editors, Current Trends in Theoretical
Computer Science. World Scienti�c, 1993.

[Gur95] Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. B�orger, editor,
Speci�cation and Validation Methods. Oxford University Press, 1995.

[Hoa85] C.A.R. Hoare, editor. Communicating Sequential Processes. Prentice
Hall, 1985.

[I.S89] I.S.O. ISO 8807. information processing systems { open systems in-
terconnection { LOTOS { a formal description technique based on the
temporal ordering of observational behaviour. Is, International Orga-
nization for Standardization, 1989.

[JR91] K. Jensen and G. Rozenberg, editors. High-Level Petri Nets { Theory
and Application. Springer, 1991.

[JR97] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction.
EATCS Bulletin, 62:222{259, 1997.

[Kah74] G. Kahn. The semantics of a simple language for parallel programming.
In J.L. Rosenfeld, editor, Information Processing 77. North-Holland,
1974.

[Lam83] L. Lamport. Specifying concurrent program modules. ACM TOPLAS,
3, 1983.

[LOT97] Enhanced LOTOS Documentation, 1997. Available at ftp://ftp.dit.
upm.es/pub/lotos/elotos/.

[Mes92] J. Meseguer. Conditional rewriting logic as a uni�ed model of concur-
rency. Theoretical Computer Science, 96(1):73{155, 1992.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer, 1980.

[Mil89] R. Milner. Communication and concurrency. Prentice Hall, London,
1989.

58 Egidio Astesiano, Manfred Broy, and Gianna Reggio

[MM93] Narciso Mart��-Oliet and Jos�e Meseguer. Rewriting logic as a logical
and semantic framework. Technical Report SRI-CSL-93-05, Computer
Science Laboratory, SRI International, 1993.

[Mos97] Peter D. Mosses. CoFI: The common framework initiative for algebraic
speci�cation and development. In M. Bidoit and M. Dauchet, editors,
Proc. TAPSOFT'97, volume 1214 of Lecture Notes in Computer Sci-
ence, pages 115{137. Springer, 1997.

[MP89] Z. Manna and A. Pnueli. The anchored version of the temporal frame-
work. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors,
Linear Time, Branching Time and Partial Order in Logics and Models
for Concurrency, volume 354 of Lecture Notes in Computer Science.
Springer, 1989.

[MV89] S. Mauw and G.J. Veltink. An introduction to psfd. In J. Diaz and
F. Orejas, editors, Proc. TAPSOFT'89, Vol. 2, volume 352 of Lecture
Notes in Computer Science, pages 375{389. Springer, 1989.

[MV90] S. Mauw and G.J. Veltink. A process speci�cation formalism. Funda-
menta Informaticae, XIII, 1990.

[MV91] S. Mauw and G.J. Veltink. A proof assistant for PSF. In K. Larsen and
A. Skou, editors, Proc. 3rd Workshop on Computer Aided Veri�cation,
Vol. 1, Aalborg, Denmark, 1991. The University of Aalborg.

[MV93] S. Mauw and G.J. Veltink. Algebraic Speci�cation of Communication
Protocols, volume 36 of Cambridge Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, Aalborg, Denmark, 1993.

[NH84] R. De Nicola and M. Hennessy. Testing equivalence for processes. The-
oretical Computer Science, 34:83{133, 1984.

[Par81] D. Park. Concurrency and automata on in�nite sequences. In Proc.
5th GI Conference, volume 104 of Lecture Notes in Computer Science.
Springer, 1981.

[Plo83] Gordon D. Plotkin. An operational semantics for CSP. In D. Bj�rner,
editor, Formal Description of Programming Concepts { II, Proc. IFIP
TC-2 Working Conference, pages 199{225. North-Holland, 1983.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th Annual
Symposium on Foundations of Computer Science, pages 46{57, New
York, 1977. IEEE Computer Society Press.

[Pnu86] A. Pnueli. Applications of temporal logic to the speci�cation and ver-
i�cation of reactive systems: a survey of current trends. In Current
Trends in Concurrency, volume 224 of Lecture Notes in Computer Sci-
ence. Springer, 1986.

[PP95] F. Parisi-Presicce and A. Pierantonio. Dynamical behaviour of object
systems. In E. Astesiano, G. Reggio, and A. Tarlecki, editors, Recent
Trends in Data Type Speci�cation: 10th Workshop on Speci�cation of
Abstract Data Types { Selected Papers, volume 906 of Lecture Notes in
Computer Science. Springer, 1995.

[PSF97] PSF toolkit manual pages. Technical report, WINS, University of Am-
sterdam, 1997. Available at http://www.wins.uva.nl/~bobd/work/.

[Reg91] G. Reggio. Entities: an institution for dynamic systems. In H. Ehrig,
K.P. Jantke, F. Orejas, and H. Reichel, editors, Recent Trends in Data
Type Speci�cation, Proc. 7th Workshop on Speci�cation of Abstract
Data Types, volume 534 of Lecture Notes in Computer Science. Springer,
1991.

13 Algebraic Speci�cation of Concurrent Systems 59

[Reg93] G. Reggio. Event logic for specifying abstract dynamic data types. In
M. Bidoit and C. Choppy, editors, Recent Trends in Data Type Speci�ca-
tion, Proc. Workshop on Speci�cation of Abstract Data Types ADT'91,
volume 655 of Lecture Notes in Computer Science. Springer, 1993.

[Rei85] W. Reisig. Petri Nets: an Introduction, volume 4 of EATCS Monographs
on Theoretical Computer Science. Springer, 1985.

[Rei91] W. Reisig. Petri nets and algebraic speci�cations. Theoretical Computer
Science, 80(1):1{34, 1991.

[Rei98] W. Reisig. Elements of Distributed Algoritms: Modelling and Analysis
with Petri Nets. Springer, 1998.

[RT86] G. Rozenberg and P.S. Thiagarajan. Petri nets: Basic notions, struc-
ture, behaviour. In Current Trends in Concurrency, volume 224 of
Lecture Notes in Computer Science. Springer, 1986.

[Sti92] C. Stirling. Modal and temporal logics. In S. Abramsky, Dov M. Gab-
bay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer Sci-
ence, Vol. 2, pages 477{563. Clarendon Press, Oxford, 1992.

[Vau87] J. Vautherin. Parallel system speci�cations with coloured petri nets
and algebraic data types. In G. Rozenberg, editor, Advances in Petri
Nets, volume 266 of Lecture Notes in Computer Science. Springer, 1987.

[vE91] P. van Eijk. Tools for LOTOS, a lotosfere overview. Memoranda In-
formatica 91-25, Universiteit Twente - Faculteit der Informatica, En-
schede, 1991.

[vG90] R.J. van Glabbeek. The linear time { branching time spectrum. In
J.C.M. Baeten and J.W. Klop, editors, Proc. CONCUR'90, Theories of
Concurrency: Uni�cation and Extension, volume 458 of Lecture Notes
in Computer Science. Springer, 1990. Extended abstract.

[Zuc96] E. Zucca. From static to dynamic abstract data types. In W. Penczek
and A. Szlas, editors, Proc. MFCS'96, volume 1113 of Lecture Notes in
Computer Science. Springer, 1996.

