
?

2 2

0

0

??

?

??

SMoLCS

SMoLCSThe ToolSet

S; L; T S L T s; l; s

s; s S l L

SMoLCS

SMoLCS

METAL

SMoLCS

METAL

METAL SMoLCS

SMoLCS

METAL SMoLCS

dynamic systems

design speci�cations

one

requirement speci�cations

one class

Dipartimento di Informatica e Scienze dell'Informazione, Universit�a di Genova, Italy

This work has been partly supported by \Progetto Finalizzato Sistemi Informatici e

Calcolo Parallelo" of C.N.R. (Italy) and by HCM{Medicis.

E.Astesiano and G.Reggio have developed the method; F.Morando has devel-

oped the basic algorithm for the prototyper and the overall tool architecture.

Egidio Astesiano, Gianna Reggio, Franco Morando

is a formal method, based on algebraic speci�cations, for specifying

at di�erent levels of abstraction (from initial requirements till

complete design); here by dynamic system we mean a system able to evolve along the

time (e.g. a concurrent/parallel/distributed program, a net of computers, a hydro-

electric central or an information system).

Formally, a dynamic system is a labelled transition system, which is a triple

(), where is a set of states, a set of labels and a set of triples (),

called transitions, with and . The states model the intermediate situa-

tions of a dynamic system, the labels its possible interactions with the external world

and the transitions its possible activity in the sense that each transition corresponds

to an action capability. Thus the behaviour of the dynamic system starting from a

given state is represented by a labelled transition tree, called execution tree.

Since we need to consider di�erent types of dynamic systems, di�erent ways

to compose them and di�erent data structures, we organize all that in an overall

algebraic structure, called dynamic algebra. A dynamic algebra is a many-sorted

algebra with predicates on a dynamic signature, i.e. a signature where some sorts

(dynamic sorts) correspond to states of lts's, and each of them has an associated

sort of labels and a ternary predicate corresponding to the transitions.

speci�cations are pairs consisting of a dynamic signature and a set of

axioms, distinguished in: (with conditional axioms and initial

semantics), which determine dynamic system by describing abstractly its struc-

ture and its activity, including the concurrent cooperations among its components;

(with axioms of �rst-order logic extended by temporal

combinators and loose semantics) which determine of dynamic systems

by stating their properties, like liveness and safety. Moreover, it is formally de�ned

when a design speci�cation correctly implements a requirement speci�cation. The

speci�cations are written in a user-friendly language , supporting both the

design and the requirement level.

A software toolset has been developed to support the development of the

speci�cations, consisting of: a checker of the static correctness of the speci�-

cations (-CHECKER); a rapid prototyper (-RP) which, given a de-

sign speci�cation of a dynamic system and a state, generates the execution tree start-

ing from such state; and a graphic user interface for -RP (TREE WALKER).

-CHECKER takes in input a speci�cation and gives the detailed

list of errors found during the parsing (lexical, syntax and type errors); it also dis-

ambiguates overloadings and signals ambiguous formulae. Moreover it translates a

A

y

ftp.disi.unige.it pub/smolcs

smolcs@disi.unige.it

SMoLCS

SMoLCS

CNA

SCNA

CNA

SMoLCS SCNA

CNA SMoLCS

SMoLCS

SMoLCS

This article was processed using the LT

E

X macro package with LLNCS style

correct speci�cation into the appropriate internal format for -RP, which

generates the execution tree starting from a given state. The user may choose di�er-

ent strategies for building the tree. TREE WALKER shows parts of such tree while

-RP is still producing it; thus also dynamic systems with in�nite execution

tree may be investigated.

The generation of the execution tree requires the solution of queries in an al-

gebraic theory with conditional equations and predicates. Usually, these solutions

are obtained by using conditional narrowing () or similar approaches. Such al-

gorithms are unsuitable for our purposes since they tend to fall into endless proofs

too frequently; hence we devised a more specialized algorithm called , which

is a restriction of proven to be complete for a meaningful decidable subclass of

speci�cations called separable. separates logical deduction and func-

tional evaluation to provide an e�ective complete replacement of . -RP

is able to solve, in a reasonable amount of time, systems of equations in the domain

of separable speci�cations. Thus -RP can build the execution tree and also

prototype the static subparts of the speci�cations (data structures) by evaluating

operations and predicates on particular arguments.

The TREE WALKER uses Diagram Server (a tool for visualizing graphs, devel-

oped by P. Di Battista and his group at the University of Rome) for visualizing the

tree topology and the information associated with the nodes and the arcs. The user

may in this phase decide which nodes do not need to be further expanded (\frozen"

nodes). The frozen nodes may be melted successively and they become eligible for

further expansions. The format with which this information is visualized is de�ned

in a highly-parameterized way by means of unparsing schemas allowing to generate

an output following the preferences of the user. The toolset has been mainly devel-

oped in Prolog, and there is a small part written in C for the interface with Diagram

Server. The Prolog code is written for more than 90% following the DEC-10 stan-

dard and thus, in principle, it might be easily portable on other Prolog interpreters

and compilers. For what concerns the TREE WALKER graphical interface, we have

used the Widget set supplied by the Motif interface of the Quintus Prolog V3.1.

The toolset has been developed on a HP9000/700 under UNIX HP-UX A.08.07 with

Quintus Prolog 3.1 interfaced with Motif 1.0 and X11 Rel. 3. The graphical interface

uses, together with Motif, also Diagram Server V1.1; thus in this stage the toolset

is available on machines that support Quintus Prolog 3.1 and Diagram Server V1.1.

The toolset software has been developed by F.Morando, A.Capani, F. Parodi,

L.Campora and G.Delzanno. A.Giovini (93) also contributed with F.Morando to

the overall architecture.

References and documentations about are available by anonymous ftp

at in the directory ; for further information and

any question e-mail to .

