From Requirement Specification to Prototype Execution:
a Combination of a Multiview Use-Case Driven Method
and Agent-Oriented Techniques

E. Astesano M. Martelli

V. Mascardi

G. Reggio

Email: {astes, martelli, mascardi, reggio} @disi.unige.it

Abstract

In this paper we discuss how to combine a multiview
use-case driven method for the requirement specification of
a system with an agent-oriented method for developing a
working prototype. The rationale behind this combination
is to cover the complete software development cycle, while
the two methods it originates from only cover a part of it.
The prototype execution allows to obtain useful feedbacks
on the coherence of the UML artifacts produced during the
requirement specification phase.

Keywords: Automated Software Specification, Require-
ment Specification, UML, Use-Case Driven Methods, Vali-
dation and Verification.

1 Introduction

Research on methods for modelling and programming
multi-agent systems, where autonomous, distributed and
heterogeneous components interact following sophisticated
protocols, spans across the fields of artificial intelligence
and software engineering. The metaphor underlying that
research is that any component of the application is an intel-
ligent agent, namely, according to [8], ““... a computer sys-
tem, situated in some environment, that is capable of flexible
autonomous actions in order to meet its design objectives.”

The correct and efficient engineering of real-world ap-
plications conceptualized as multi-agent systems (MASS)
is the main goal of agent oriented software engineering
(AOSE), a very active research area seeking abstractions,
languages, methodologies and tools for MAS modelling,
verification, validation and implementation.

Agent-oriented methodologies can be broadly divided
into two groups [6]: those that take their inspiration from
object-oriented (OO) development and those that adopt
knowledge engineering or other techniques.

To take advantage of the potential of both approaches,
a third, orthogonal category of AOSE methods is recently

emerging, based on the idea of composing method features
to create new AOSE methodologies [9, 10]. The bene-
fit of the modular approach is obvious: instead of creat-
ing incompatible techniques, models and CASE tools for
each method, modular and reusable solutions can be created
once, and shared within different methods.

In this paper we show how to apply the modular AOSE
approach to two existing software engineering methods.
The first method, presented in sect. 2, concerns the require-
ment specification, is UML-based, proposes a stringent way
of structuring and representing the Requirement Specifica-
tion artifacts, and presents a number of novelties w.r.t. the
best-known current methods. The second method (sect. 3)
concerns with architectural design, detailed design and pro-
totype implementation of MASs. The composed method
covers the software development cycle from early require-
ment specification to prototype implementation and allows
to check the coherence of the UML artifacts produced as an
output of the requirement analysis stage thanks to the exe-
cution of the working prototype. Checking the coherence
of UML diagrams is a well known and still open problem.
By composing the two methods we obtain a tool for facing
this issue almost for free. A case study, first used in sect. 2
to introduce the method for requirement specification, prac-
tically exemplifies in sect. 4 how this is possible. Sect. 5
concludes.

2 A multi-view, use-case driven and UML-
based method for requirement specification

The work presented in [2] (see [3] for an updated and
extended version) refines and extends existing proposals of
use-case driven methods for requirement specification com-
bined with object-oriented techniques, particularly in con-
nection with visual notations such as UML [12].

The proposed method, rigorously multiview, use-case
driven and UML-based, presents some novelties, somewhat
departing from traditional object-oriented dogmas and in-
corporating some good, but perhaps lost, ideas found in

well-known methods, such as Structured Analysis [17], and
in the work of some pioneers, such as M. Jackson’s [7].
Indeed, central to this approach are the following three con-
cepts:

o the total separation of the Domain Model from the
System, a distinction somewhat blurred in many
object-oriented approaches;

o the distinction between the System and the environ-
ment, formalized in a Context View, that will be the
basis for the definition of the requirements about the
interaction between the System and the context, in
conjunction with the use case diagram;

e the use of a very Abstract State, instead of the many
optional use case states, to allow expressing abstract
requirements about the interaction of the System
and the context, without providing an object-oriented
structuring at a stage when such a structure is not re-
quired and can be premature; such System concept
would disappear in the following Design stages.

It is worthwhile to note that the proposal relies on the use
of a well-chosen subset of UML that can be given a rigorous
semantic foundation, see, e.g., [16, 15].

The Requirement Specification structure and activity
proposed by the method assume that the Problem Domain
Modelling produces as an artifact a UML package, thus de-
scribing in an object-oriented fashion the part of the real
world that concerns the System, but without any refer-
ence to the System itself nor to the problem to which the
System provides a solution. The Requirement Specifica-
tion artifacts consist of different views of the System, plus
a part, Dictionary, needed to give a rigorous description of
such views. Its structure is shown in fig. 1 by a UML class
diagram. Some of the above views (e.g., Internal View and
Context View) are new w.r.t. the current methods for the
OO0 UML-based specification of requirements. They play a
fundamental role to help ensure the consistency among the
various use cases and of the whole specification.

We present directly the resulting specification of the re-
quirement on a simple running system (shortly System in
the following), whose natural language description is given
in fig. 2; refer to [2] for seeing how it has been produced.

Dictionary The Dictionary lists and makes precise all
the entities appearing in the various views of the System to
help guarantee the consistency of the concepts used in such
views. We do not report here the Dictionary of the running
example for lack of room; it can be found in [2].

Use Case Diagram The Use Case View, as it is now
standard, shows the main ways to use the System (use

UseCase UseCase UseCase
Behaviour View Interaction View Causal View
definition: Statechart | |definition: Collaboration | | definition: ActivityDiagram
1 * 0.1

UseCase Description

textualDescription: String

5

Internal View UseCase View Context View

definition: Package || summary: UseCase Diagram| | definition: Package

[1 1 B

¢

| Requirement Specification |

1
Dictionary

definition: Package

Figure 1. Requirement Specification artifacts

The system involves an ““algebraic lottery”” where tick-
ets are numbered by integer numbers, winners are deter-
mined by means of an order over such numbers, and a
player buys a ticket by selecting its number. Whenever a
player buys a ticket, she/he gets the right to have another
free ticket, which will be given at some future time, fully
depending on the lottery manager decision. The number
of a free ticket is generated by the set of the numbers of
the already assigned tickets following some law. Thus a
lottery is characterized by an order over the integers de-
termining the winners and a law for generating the num-
bers of the free tickets. The tickets must be bought and
paid on-line using credit cards with the help of an exter-
nal service handling them. Possible clients must register
with the lottery system to play, becoming players; and
players access the system in a session-like way. An ex-
ternal service takes care of the registration of the players
and of the distribution of the session keys.

Figure 2. Specification of the running exam-
ple

\ Access
Handler

Connect
Buy a ticket
Register
Give free tickets
Manager
T~ Start a new lottery

Figure 3. Use Case Diagram for System

PlayerU

CreditCard
Handler

Client

cases), making clear which actors take parts in them. Such
actors are just roles (generic instances) for some context
entities depicted in the Context View.

The Use Case Diagram for System is shown in fig. 3. It
depicts that the lottery system will use external services (vi-
sually represented by \="\) for handling the credit cards
and the accesses to the system. Furthermore, it will use the
email to communicate with the players. The System will

provide services to the users (visually represented by Name)
PlayerU, Client and Manager.

Context View The Context View describes the context
of the System, that is which entities (context entities) and
of which kinds may interact with the System, and in which
way they can do that. Such entities are further classified
into those taking advantage of the System (service users),
and into those cooperating to accomplish the System aims
(service providers).

The explicit splitting between the System and the con-
text entities should help avoid confusions between what ex-
ists and needs just to be precisely described (context enti-
ties) and what instead has to be developed (System).

The Context View is a UML package importing the Dic-
tionary containing at least a class diagram, where all classes
are all of the following three stereotypes: <<System>>
that stands for the System (exactly one class in the di-
agram with this stereotype), <<SU>> (System user) or
<<SP>> (System provider). In such class diagram there
is one binary association from the System class into each
other class, and these are all the associations.

Because the actors in the Use Case Diagram are just
generic instances of <<SU>> and <<SP>> classes ap-
pearing in this view, they should be in accord.

The operations of the <<SU>>-<<SP>> classes and
of the <<System>> class model their mutual interfaces,
that is in which way they may interact.

\CreditCard Handler \ "\ _Email \|
1 1

EMAIL
AH Access
1 \\Handler
AN
* * 1

Client PlayerU Manager

CCH

<<System>>
AlgebraicLottery

AccessHandler Each call of register will
return always new codes|
It will never return a key

already used.

register(PersonalData,CreditCardData): Codd
check(PersonalData,Code)

AlgebraicLottery CreditCard Handler

charged check(CreditCardData)
notCharged charge(CreditCardData, Int)
okCard(CreditCardData)

okCode(PersonalData,Code,Key) Email
wrongCard(CreditCardData)
wrongCode(PersonalData,Code)

send(String, String)

Figure 4. Context View

| PlayerS | | Ticket | | Lottery |
* * 1
Players Tickets Lottery

| <<A_Executor>> |

Figure 5. Internal View

Notice that the Context View presents also what we
know on the context entities (assumptions on their be-
haviours, on how they interact, ...). It is important to do
this task before describing the use cases, since the context
entities are not under the responsibility of the System de-
veloper, but they are already existing.

Usually we factorize the presentation of the Context
View in a diagram showing only the class names and the as-
sociations and in another one showing the operations of the
various classes, and, if any, the property on the behaviour of
the context entity classes (fig. 4).

Internal View The Internal View describes abstractly
the internal structure of the System, that is essentially its
Abstract State. It will help precisely describe the be-
haviour of the use cases, by allowing to express how they
read and update it. UML allows a single use case to have a
proper state, but in this method there is a unique state for all
the use cases, to help model their mutual relationships (e.g.,
if two use cases update the same information, it is possible
to detect and to handle possible conflicts).

The Internal View (fig. 5) of the running example is rep-
resented by a class diagram importing Dictionary that de-
scribes at an extremely abstract level the structure (archi-

tecture) of the System. This structure consists of a unique
active object able to perform the System activities (abstract
executor) and by many passive objects abstractly describing
the System Abstract State (Ticket, Lottery and PlayerS,
note that these classes are defined in the Dictionary).

From an agent-oriented point of view, the abstract execu-
tor is the only entity in the System that fully deserves the
name of “agent”. The other passive entities will be “agenti-
fied” to make the prototype execution possible.

Use Case Description Each use case appearing in the use
case diagram will be then described by a Use Case De-
scription that consists of a textual presentation of the use
case, and of one or more views, which may be of the three
kinds: behaviour (describing the complete behaviour of the
System with respect to such use case), interaction (repre-
senting the interactions happening in a scenario of the use
case) and causal (describing all the relevant facts happening
during the use case and their causal relationships).

In the following we will describe the Use Case Be-
haviour View and Use Case Interaction View for the
Register use case (see [2] for the others). This use case
is textually described by: “A client may register by giv-
ing her/his personal data and those of a credit card. If
her/his data are correct and those about the credit card
are accepted by its handler, then she/he will receive a code,
determined by the access handler, and will be considered
registered; otherwise she/he will be informed that her/his
registration has been refused.”. The Use Case Behaviour
View and Use Case Interaction View diagrams are shown
in fig. 6.

The Use Case Behaviour View is mandatory for each
use case and is defined by a statechart for the < <System>>
class such that 1) the conditions on its transitions may
test only the System Abstract State given in the Inter-
nal View; 2) the actions appearing on its transitions may
include only calls of the operations of the context entity
classes, as defined in the Context View, and may update
the System Abstract State; 3) the events on its tran-
sitions may be only call events of the operations of the
<<System>>> class, as presented in the Context View. To
support the definition of the D-CaseLP protocol diagram
starting from the behaviour view, we annotate, using the
UML note facility (the box with the small ear), the event
calls with the “role” making such calls.

A Use Case Interaction View is defined by a se-
quence (or collaboration) diagram representing the interac-
tions happening in a scenario of the use case among the
context entities, the System and the internal abstract con-
stituents of the System, as presented in the Internal View
(the abstract executor and the passive components). In the
visual representation we split the diagram in two swimlanes,
by a dashed line, to show what is happening inside and out-

Use Case Behaviour View:

regi'sterMe(CL,D,C)
[not D.ok() or not C.ok()] /
CL.failedRegistration();

é CreditCardHandleﬂ

wrongCard(C) /
CL.failedRegistration();

registe‘:rMe(CL,D,C)
[D.ok() and C.ok()]/

CCH.check(C); éCreditCardHandleﬂ

okCard(C) /
cod =AH.register(D,C);
pr = create(PlayerR,
CreditCard = C,
COD = cod,
data = D);
Players = Players U {pr};
CL.areRegistered(cod);

Use Case Interaction View:

|

I i

| . CreditCard Accesses
| cl: Client _Handler Handler

registerMe(cl,D,C)

E

check(C)

okCard(C)
cod = rggister(D,C)

create(CreditCard=C,

PlayerR COD=cod,
Y data=D)

|
1
|
|
]
|
ar%Registered(cod
|

Figure 6. Behaviour and Interaction Views

side the System, and the lifeline corresponding to the ab-
stract executor will be marked by a big E. There are no re-
strictions on the number of the Use Case Interaction View
present in this description, but they must be coherent with
the behaviour view of the same use case (that is, they must
represent particular executions of the complete behaviour
described by such view). This coherence can be verified
executing the MAS prototype (see below).

The Use Case Causal View is defined by an activity
diagram describing all the relevant facts happening during
the use case and their causal relationships. For sake of syn-
thesis we do not show this view for the running example.

3 The D-CaseLP AOSE tool

D-CaseLP (Distributed CaseLP, [1]) is a MAS rapid
prototyping environment designed and developed by the
Logic Programming Group of the CS Dept. of Genova Uni-
versity. It supports the MAS designer from the architectural
and detailed design to the development of a MAS prototype.

D-CaseLP agents are characterized by their architec-
ture, roles and ontologies. The agent’s architecture is de-
termined by both the agent internal data structures and the
control flow among them, called the engine of the archi-
tecture. Roles (for example seller, buyer, client, manager,
...) are characterized by the set of services required and

provided and by the communication protocols for exchang-
ing complementary services. Ontologies are structures that
hold information about entities, their properties, and rela-
tionships among them that are possible in a specific domain
of knowledge. D-CaseLP ontologies are similar in spirit to
the Dictionary structure introduced in sect. 2.

From a computational point of view, agents modelled in
D-CaseLP are characterized by a state, a program and an
engine. The state includes data that may change during the
execution, the program contains information that does not
change during the execution of the agent, and the engine
controls the execution of the agent. The architecture of an
agent contains components for its state and its program, and
an engine operating on them. Agents which share the same
roles, architecture and ontologies can be grouped into agent
classes: an agent class is determined by the engine and the
program. Agent instances belonging to the same class only
differ in their state.

In order to develop and execute a working prototype with
D-CaseLP, three steps must be followed: architectural de-
sign, implementation, and execution/debugging.

Architectural design This stage consists in determining
the roles necessary for the application, establishing the
complete role model (i.e., the interaction protocols which
may take place among roles), grouping the roles into agent
classes, assigning the most suitable architecture to each
class and finally determining the needed agent instances.
The languages provided for facing the architectural design
stage include an extension of UML and its XML-based tex-
tual counterpart, D-CaseLP-XML. The D-CaseLP role
model is specified by means of D-CaseLP protocol dia-
grams based on AUML [13, 14]. With respect to AUML,
the D-CaseLP protocol diagrams have some restrictions to
avoid ambiguities and to allow a complete automation of the
translation from the protocol diagrams into the JESS rule-
based language used to implement agents. In D-CaseLP,
actors of protocols are roles. The association between a
role, the agent classes playing that role and their architec-
ture is defined in an architecture diagram while the asso-
ciation between an agent instance and its agent class is de-
fined in an agent diagram. Both diagrams are similar to the
ones proposed in [5]. Diagrams which only include stan-
dard UML constructs can be graphically modelled with ex-
isting UML-based modelling tools, otherwise D-CaseLP-
XML may be adopted.

At the time of writing only the JESS rule-based archi-
tecture has been integrated into D-CaseLP, thus there is
only one choice for the architecture to assign to each agent
class. This limitation turns out to be an advantage for de-
velopers who want to use D-CaseLP simply as a tool for
animating UML diagrams and checking their consistence,
and not as a MAS prototyping environment. These devel-

opers do not need to face the choice of “the right agent ar-
chitecture to do the right thing” [11]. They do not even
need to know what exaclty an agent architecture is: accord-
ing to the developer’s needs and skills, the agent concepts
and technology which characterize D-CaseLP may be kept
in the background.

Implementation The implementation of the working pro-
totype exploits the xslt technology and the ability to export
UML diagrams into the XML Metadata Interchange Format
XMI to automatically generate rules which respect the given
UML diagrams. The rule-based language we chose for
the implementation of D-CaseLP agents is JESS (ht t p:
/I her zber g. ca. sandi a. gov/ j ess/). More in de-
tail, if the UML-based modelling tool allows to export UML
diagrams into XMI, the XMl file can be automatically trans-
lated into the proprietary intermediate format, D-CaseLP-
XML. The diagrams which cannot be modelled using ex-
isting tools must be defined directly in D-CaseLP-XML.
D-CaselLP-XML specifications can be automatically trans-
lated into rule-based JESS code. Some portions of the gen-
erated code must be completed by the developer in order to
make it executable.

Execution Once completed by the developer, the JESS
code can be integrated into the FIPA-compliant JADE
platform [4], and the resulting JADE prototype can be
executed. Running the prototype allows to follow the
interactions that take place between the agents in the MAS
thanks to a set of monitoring facilities provided by JADE. If
the agents are programmed for interacting in different ways
according to the content of their state, the MAS developer
can manually modify the files defining the agents’ initial
state and run the prototype starting from many different
initial situations. This will result in different sequences of
messages exchanged by the agents that the MAS developer
will observe to get feedbacks on the correctness of the
agents definition.

To summarize, the concatenation of modelling, imple-
mentation and execution stages results in the process de-
picted in fig. 7. At the left side of the picture, activities that
the developer must face “by hand” are represented. At the
right side, activities fully faced by software applications are
represented.

4 Combining the approaches: a case study

The SE approaches described in sect. 2 and sect. 3 may
be concatenated in order to cover the SE process from the
requirement capture and specification to the development
of a working prototype and to get feedbacks on the require-

1) choose UML modeling tool and define models

Spec. in Spec. in Spec. in
Ration. Rose Together ArgoUML
\ [\
| P
Spec. in) expor
XMI
3a) specify 3b) translate g
Specification in
D-CaselP-XML
4) translate g
5) complete |
Yava classes to
%2 JESS rules interface JESS
with JADE

6) execute
ADE+JESS | <———

Figure 7. Development steps in D-CaselLP

ment specification correctness thanks to the prototype exe-
cution. As clearly stated in [2], the requirement specifica-
tion discussed in sect. 2 is preliminary to design and does
not commit to any system model. This makes it possible to
use the output of the requirement capture for specifying an
application modelled as a MAS, and to use D-CaseLP for
developing a working prototype of the given specification.

In this section we use the simple running example taken
from [2], whose requirement specification has been given
in sect. 2, to practically show how the two approaches can
be combined. The application we will model is intention-
ally simple and not all the entities involved in it show the
features of intelligent agents as defined in [8]; for this ap-
plication D-CaseLP is mainly exploited as a tool for UML
protocol diagram animation rather than as an agent-based
environment.

4.1 MASmodelling with D-CaseLP

From the artifacts composing the requirement specifica-
tion, see sect. 2, we have most of the information we need
to model the MAS: we just need to complete the given spec-
ification by providing the D-CaseLP protocol, architecture
and agent diagrams.

As far as the protocol diagrams are concerned, their def-
inition can be easily derived from the use cases defined dur-
ing the requirement specification stage. We need to slightly
modify the entities involved in the use case diagrams for use
in D-CaseLP because, since all the entities in the system
are now treated as agents, they are no more passive service
provides and they must always use asynchronous message
exchange instead of method calls. The main sources of in-
formation for developing the protocol diagrams are the tex-
tual description and the behaviour view.

Starting from the Register use case discussed in the pre-
vious section we developed the D-CaseLP protocol dia-

PlayerR_

Handler

E ‘ ‘ Client Handler

REQUEST
registerMe
¢l D, C)

ret{jt7Card7 Accesses_
Handler

REFUSE
(failedReg(

REQUEST
(check(C))

REFUSE
(wrongCard(C))

REFUSE
(failedReg())

AGREE
INFORM(okCard(C))

REQUEST
(register(D, C))
AGREE

INFORM
(registered(D, C, cod))

— REQUEST
(create(C, cod, D))

AGREE

INFORM
(created(C, cpd, D, pr))

AGREE

INFORM
(areRegistered(cod))

Figure 8. D-CaseLP protocol diagram for the
Register use case

gram shown in fig. 8. Similar protocol diagrams are de-
fined for each use case appearing in the requirement spec-
ification (precisely in the use case view). The way these
diagrams can be composed to obtain a unique D-CaselLP
running prototype is not yet fully defined; for the moment,
we limit ourselves to run the parts of the prototype related
to each use case separately. We are working to extend D-
CaseLP method and support tools to be able to combine
all the protocol diagrams and to run the resulting complete
prototype. In the D-CaseLP protocol diagram the method
calls appearing in the Behaviour View are transformed into
FIPA messages. As an example, the registerMe(cl, D, C)
request becomes a REQUEST (registerMe(cl, D, C)) mes-
sage (first message exchanged starting from the top of the
protocol diagram). If the not C.ok() or not D.ok() condi-
tion stated in the Behaviour View is satisfied, the abstract
executor sends a REFUSE message to the client, specifying
that the registration failed. Otherwise it asks to the Credit
Card Handler to check the given card code, and, accord-
ing to the answer provided (wrongCard(C) or, respectively,
okCard(C)), it sends a REFUSE message to the client or,
respectively, goes on with the register protocol by contact-
ing the Accesses Handler and the PlayerR Handler. Note
that the conditions for sending messages stated in the Be-
haviour View are not explicitly present in the D-CaselLP
protocol diagram, thus the JESS code generated from the

REQUEST.O (333 33]

b
L g
AGREED (333 380 333)

INFOR MO (232 411 E33)

REFUSE 14543

Figure 9. Personal and CC data are not ok

D-CaseLP protocol diagram will not include these condi-
tions. It is up to the prototype developer to manually com-
plete the JESS code in a coherent way with the rest of the
specification. This task is not difficult to face because the
Use Case Behaviour View clearly defines these condi-
tions.

As far as class and agent diagrams are concerned, we as-
sume that there is a one-to-one relation between roles and
classes, identified by role name plus “_Class”, and that there
is only one agent instance for each class: PlayerR_1 of
class PlayerR_Handler_Class, E_1 of class E_Class, and
so on.

4.2 Development and execution of the prototype

From the D-CaseLP protocol, architecture and agent di-
agrams we can automatically generate the JESS code for
the given agent classes. As alredy observed, the code for
the agent classes program must be completed by adding the
conditions under which a message can be sent. These con-
ditions are explicitly stated in the Use Case Behaviour
View (fig. 6), thus the developer can easily add them to the
JESS code. Once the code is completed and the initial state
of the agent instances has been defined, the Java classes for
interfacing JESS and JADE can be automatically created
and the resulting JADE prototype can be executed.

The agent’s initial state determines the protocol diagram
branch that will be followed in a simulation run. As an ex-
ample, let us suppose that the client agent Client_1 sends
a registerMe request with credit card data 23300 and per-
sonal data viviana_mascardi to E_1. If E_1 initial state
does not include the information that both data are ok, the
client request cannot be accepted, leading to the situation
shown in fig. 9. This figure shows the output of the JADE
Sniffer agent. Besides the agents from the algebraic lottery
application, there is a directory facilitator agent (df, the last
one on the right) which is automatically provided by JADE
to offer a yellow pages service to the user-defined agents.

If E_1 state includes the information (ok 23300) and
(ok viviana_mascardi) (i.e., both data sent by Client_1 are
ok), E_1 will send a request to CrediCard_1 to know if the
given credit card can be accepted or not. If CrediCard_1

REal.resm 238 238) A
+
AGREED (238 286 338)

- .

INFORM 0 (238 332 P38)

REPUES‘IH (122

RECREST:2 (394 394)

'“ AGREE:2 (394 119 394) »
é MEQEN2 034 +41 384
REQUESTJ (122 3 o

REFUSE (122)

FUSE:1 (122

&l

Figure 10. Credit card number is wrong

initial state contains an atom stating the 23300 is a wrong
credit card number, the situation illustrated in fig. 10 will
take place, otherwise the registration will end up with a suc-
cess (not shown).

Thanks to the prototype execution, it is possible to check
if the interaction views for the use case are coherent with the
other views. By running the prototype a sufficient number
of times starting from as many different agents’ initial states
as possible, all the possible situations should be observed.
If the software engineer who captured the requirements of
the system forgot to describe some interaction views or de-
scribed them incorrectly, the prototype execution may help
her/him in completing (resp. correcting) the missing (resp.
incorrect) interaction views, ensuring their coherence with
the other views. For example, let us suppose that the only
interaction view described by the requirement analyst was
the one described by the Use Case Interaction View of
fig. 6: the execution run leading to the message exchange
shown in fig. 9 and fig. 10 helps the analyst in understand-
ing that there are more scenarios she/he should take into
account.

5 Conclusions

The compositional approach to the development of SE
methodologies in general, and AOSE ones in particular, is
a very recent approach to engineer MAS applications. It
is based on the idea of an AOSE feature, namely an en-
tity which encapsulates software engineering techniques,
models, CASE tools and development knowledge. Every
SE/AOSE method provides a set of features which can be
isolated and dealt with like atomic bricks to pick up and
compose in a new modular method.

We used the Use Case Behaviour View provided by
the method discussed in sect. 2 to produce the D-CaseLP
protocol diagram and create a “trait-d’union” between
the methods (fig. 11). The method resulting from this
concatenation process is definitely more powerful than the

Use-case Driven Method

Problem Domain Modeling
Context View
Internal View
Use Case Interaction View
Use Case Causal View
Use Case Behaviour View /
Protocol Diagram
Agent Diagram
Architecture Diagram
Modeling Languages
Validation and Verification Tools
Execution Tools

D—-CaselP Method

Figure 11. AOSE features

two methods it originates from. It supports a very well
structured requirement capture stage which abstracts from
any specific architecture in modelling the System and
the roles involved in the application. It provides a set of
languages and guidelines for “agentifying” the application
by grouping roles into agent classes, establishing the inter-
action patterns among roles, assigning an agent architecture
to each agent class and defining the agent instances of each
agent class. It allows to execute the resulting agentified
specification; the burden on the prototype developed is
very light because, thanks to the detailed requirement
specification, all the conditions that she/he has to add to the
generated JESS code can be easily found in the use case
descriptions. Finally, it allows to check that the artifacts
produced during the requirement specification stage are all
the ones necessary for describing the system requirements,
and moreover that they are correct. This “coherence check”
is done by comparing the results of the execution runs
with the interaction views. Since the prototype is based
on protocol diagrams built from the behaviour views, the
coherence between the prototype results and the interaction
views implies a coherence between the behaviour view and
the interaction view.

Acknowledgements
The authors thank Stefano Miglia for his collaboration in
developing the D-CaseLP “Algebraic Lottery” prototype.

References

[1] R. Albertoni, M. Martelli, V. Mascardi, and S. Miglia. Speci-
fica, implementazione ed esecuzione di un prototipo di sis-
tema multi-agente in D-CaseLP. In F. De Paoli, S. Manzoni,
and A. Poggi, editors, Proc. of WOA, Milano, Italy, 2002.

[2] E. Astesiano and G. Reggio. Knowledge Structuring and
Representation in Requirement Specification. In Proc. of
SEKE 2002. ACM Press, 2002.

[3] E. Astesiano and G. Reggio. Tight Structuring for
Precise UML-based Requirement Specifications: Com-

[4]

[5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

plete Version. Technical Report DISI-TR-03-06,
DISI, Universita di Genova, Italy, 2003. Available at
ftp://ftp.disi.unige.it/person/Reggi od
Ast esi anoReggi 003c. pdf.

F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-
agent systems with JADE. In Intelligent Agents VII. Springer
Verlag, 2001. LNAI 1986.

F. Bergenti and A. Poggi. Exploiting UML in the design of
multi-agent systems. In Engineering Societies in the Agents
World. Springer Verlag, 2000. LNCS 1972.

P. Ciancarini and M. Wooldridge. Agent-oriented software
engineering: The state of the art. In P. Ciancarini and
M. Wooldridge, editors, Agent-Oriented Software Engineer-
ing - First International Workshop, AOSE 2000, Limerick,
Ireland, 2000. Springer Verlag.

M. Jackson. Software Requirements & Specifications: a
Lexicon of Practice, Principles and Prejudices. Addison-
Wesley, 1995.

N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap
of agent research and development. Autonomous Agents and
Multi-Agent Systems, 1:7-38, 1998.

T. Juan, M. Martelli, V. Mascardi, and L. Sterling. Cus-
tomizing AOSE methodologies by reusing AOSE features.
To appear in: Proc. of the 2nd International Conference on
AAMAS, 2003.

T. Juan and L. Sterling M. Winikoff. Assembling agent-
oriented software engineering methodologies from features.
In Proc. of the 3rd International Workshop on AOSE, at AA-
MAS’02, Bologna, Italy, 2002.

J. P. Miiller. The right agent (architecture) to do the right
thing. In Intelligent Agents V. Springer-Verlag, 1999.

Object Modeling Group. Unified Modelling Language Spec-
ification, version 1.3, 2000.

J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML
for agents. In Proc. of the Agent-Oriented Information Sys-
tem Workshop at the 17th National Conference on Artificial
Intelligence, 2000.

J. Odell, H. V. D. Parunak, and B. Bauer. Representing
agent interaction protocols in UML. In P. Ciancarini and
M. Wooldridge, editors, Agent-Oriented Software Engineer-
ing - First International Workshop, AOSE 2000, Limerick,
Ireland, 2000. Springer Verlag.

G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann.
Analysing UML Active Classes and Associated State Ma-
chines — A Lightweight Formal Approach. In T. Maibaum,
editor, Proc. FASE 2000, Berlin, 2000. Springer Verlag.
LNCS 1783.

G. Reggio, M. Cerioli, and E. Astesiano. Towards a Rigorous
Semantics of UML Supporting its Approach. In H. Huss-
mann, editor, Proc. of FASE 2001, Berlin, 2001. Springer
Verlag. LNCS 2029.

E. Yourdon.
1989.

Modern Structured Analysis. Prentice-Hall,

