
From Formal Techniques to Well-Founded

Software Development Methods

?

E. Astesiano, G. Reggio, and M. Cerioli

DISI, Universit�a di Genova - Italy

Abstract. We look at the main issue of the Colloquium \Formal Meth-

ods at the Crossroads from Panacea to Foundational Support" re
ecting

on our rather long experience of active engagement in the development

and use of formal techniques. In the years, we have become convinced

of the necessity of an approach more concerned with the real needs of

the software development practice. Consequently, we have shifted our

work to include methodological aspects, learning a lot from the software

engineering practices and principles.

After motivating our current position, mainly re
ecting on our own expe-

rience, we suggest a Virtuous Cycle for the formal techniques having the

chance of a real impact on the software development practices. Then, to

provide some concrete illustration of the suggested principles, we propose

and advocate a strategy that we call Well-Founded Software Development

Methods, of which we outline two instantiations.

1 Introduction

The concern re
ected in the title of the Colloquium

1

and explained in its moti-

vation came as a no surprise to us. We have been involved in the development

and experimental use of formal techniques since more than twenty years and we

have witnessed and experienced dramatic changes. The changes, positive and

negative, refer to many aspects of the research in the �eld: quality, amount,

scope, relevance and acceptance. In our community of formal techniques there

is no need to push for more research in theoretical work in general, since the

advocates of the merits and value of such research abound, as much as the good

papers in the �eld (see, e.g., the over 8000 pages of the 2001 issues of a pres-

tigious journal such as TCS). Thus, here we concentrate more on some critical

issues, mainly concerning our personal experience from which we try to learn

some lessons.

The �rst uncontroversial fact is the large gap between theory and practice and

the increasing awareness, starting in the middle 90's, that the many hopes for a

?

Work supported by the Italian National Project SAHARA (Architetture Software

per infrastrutture di rete ad accesso eterogeneo).

1

The 10th Anniversary Colloquium of the United Nations University International

Institute for Software Technology (UNU/IIST): Formal Methods at the Crossroads

from Panacea to Foundational Support. Lisbon - Portugal, March 18-21, 2002.

prominent role of formal techniques in software development were fading away,

as recognized even by some of the pioneers and more convinced supporters (see

[12]). Things have not changed much since, but in a sense they have worsened for

what concerns academic research on software engineering in general, as noticed

by B. Meyer in [20]:

\When considering the evolution of the �eld over the last decades, we cannot

escape the possibly unpleasant observation that if much of the innovation in

the `60s and 70's came from academic institutions, contributions from small

entrepreneurial companies and the research labs of large companies dominated

the `80s and `90s."

The reactions to the existence of such gap between theory and practice have

been mixed and sometimes diverging. In his invited lecture at Formal Methods

Europe '96 in Oxford [14] T. Hoare was suggesting

\We must aim our future theoretical research on goals which are as far ahead

of the current state of the art as the current state of industrial practice lags

behind the research we did in the past. Twenty years perhaps?"

History shows that such remark may well be applied to few fundamental

pioneering concepts and insights, but cannot be taken as a rule for research in

formal techniques. For example, more than twenty years ago, the foundations

have been laid down for a neat formal treatment of requirement and design

speci�cations, including clean semantics. Consider e.g., the enormous e�ort in

the techniques for algebraic speci�cation, as summarized in an IFIP State-of-

the-art Report jointly produced by the members of the IFIP WG 1.3. [2], not

to mention the wealth of results on denotational and operational semantic, for

almost any kind of languages.

Now, after so many years of work in formal techniques, what do we have on

the table of the current practice in the corresponding area? The most evident

phenomenon is the Uni�ed Modeling Language UML (see, e.g., [29]), not only

a standard of the Object Management Group (OMG

2

), but a de facto industry

standard for modelling/specifying systems at di�erent levels of abstraction and

from di�erent viewpoints. The UML intends to \provide a formal basis for un-

derstanding the modeling language" and indeed it tries to incorporate not only

many lessons from the software engineering side, but also some good ideas about

abstraction, encapsulation, and dynamic behavior developed by researchers in

formal techniques in the years before. Nevertheless, the result for most of us is

frustrating: not even the static/syntactic semantics is clear, and as for the se-

mantics in general \UML expresses the operational meaning of most constructs

in precise natural language".

3

Still the UML represents a signi�cant advance

over current industry practices, for what concerns, e.g., the use of an appropri-

ate level of abstraction and the separation between modelling/speci�cation and

implementation, an issue emphasized very recently by the adoption of the Model

2

http://www.omg.org/

3

By the way, in this regard we can even �nd in the reference manual [29] a pearl

statement such as \The fully formal approach taken to specify languages such as

ALGOL 68 was not approachable enough for most practical usage".

Driven Architecture (MDA) [18] by the OMG, as a separate step from the build-

ing of a Platform Driven Architecture. Moreover, to be fair, one has to say more

generally that, if on one side the �gures related to failures in software projects

are appalling, on the other side one can be amazed that the existing software is

quite often satisfactory enough. Signi�cantly, indeed, the cited talk by T. Hoare

at Formal Methods Europe '96 [14] had the curious title \How did software get

so reliable without proof?". I must however mention that the software consumer

view may be di�erent and not so positive, as explained in a very interesting book

The software Conspiracy by M. Minasi [21].

All the above to say that, apart from some very few remarkable exceptions,

there is little chance for theory in isolation to �lter in the practice in a sensible

way. We need to look ourselves at what is going on in the practice of software

development. We are encouraged in this belief by the following two remarks,

always by T. Hoare in [14], \personal involvement in current practices . . .may

lead to quite rapid bene�ts, both to the practitioner and to the theorist" and

\the in
uence of practice on the development of theory is more bene�cial and

actually quicker than the other way round." Indeed, the last two remarks may

sound surprising w.r.t. the previous statement on the quest for theories looking

twenty years ahead. We are instead inclined to believe that the three remarks

complement each other to give a correct perspective. Here, obviously we restrict

our attention to the interplay between research in formal techniques and its im-

pact on software development practices. That restriction relies on an assumption

better phrased, and with the authority of a pioneer of formal methods, by our

good friend C. Jones in his invited talk at the �rst ETAPS-FASE'98 [17] \I

assume that the purpose of developing formal methods is to in
uence practical

engineering of computer systems (whether hardware or software)." Such assump-

tion should sound trivial, but it must not be so, since he adds immediately: \It

is a measure of my unease with some research in the area of computer science

that I feel necessary to state this fact". That quotation leads us to introduce the

main general thesis of our contribution and position, as an answer to the debate

raised by this colloquium.

Let us assume that our concern is software development and then let us try to

de�ne a suitable role for formalization. Here we are soon faced with an ill-de�ned

dichotomy that has to be dismissed, as pointed out by B. Meyer in [19]:

\For some scientists, software development is a branch of mathematics; for

some engineering it is branch of applied technology. In reality, it is both."

Thus, inevitably the Great General Challenge of the work in formal tech-

niques is to address in a recognized way the relevant issues in software develop-

ment, paying more attention at the engineering needs. We are well aware that

the above statement sounds like preaching and needs to be made concrete. So, in

the following we try to motivate and articulate our thesis. First we re
ect on our

own experience to draw some lessons (Sect. 2); then, to illustrate more concretely

our view, we outline some of our current directions of research towards a viable

strategy that we call Well-Founded Software Development Methods (Sect. 3).

Recall that in the conclusions we try to summarize and make an assessment of

the proposed strategy.

2 Shifting the Focus and the Attitude of our Research in

Formal Techniques

The following re
ections are certainly biased by our experience and thus we

think it is better to present them mainly as re
ections on the work our group

has done in the years on the subject.

2.1 On the Formalist Side

For what matters in this context, the work of our group on the use of formal

techniques in the speci�cation of systems has started at the beginning of the '80

when we have been engaged in a very ambitious national project on the pro-

totypical design and implementation of a local area network, the Cnet project.

Our task was the formal speci�cation of the rather sophisticated software archi-

tecture, in two levels: the intra-node with Ada-like tasks and the inter-node with

both point-to-point and broadcast communication. After some serious attempt

at using CCS and CSP, we soon became aware that higher-level speci�cation

techniques, also able to manipulate complex structures, data and processes as

data, were required. That led us to develop in the years an approach to the

speci�cation of possibly concurrent/reactive systems (see [4] and [6] for a later

comprehensive outline), which, with some further improvement [3], was then

used successfully and adopted as the technical basis in the EEC project (lead by

D. Bj�orner) for the full Formal De�nition of Ada ('85/'87).

In those years, and during those projects, we have experienced the value

of our formal setting to make precise any aspect of the modelled systems in

an unambiguous way. First, in the Cnet project there was an endless feedback

with the designers of the architecture and always the formalization was proved

helpful. Then, in the Ada project the people in the board for the language

standard were forced to accept some of our proposed modi�cations to make

the language consistent. The presentation of the full de�nition, in a 13 hours

seminar (by the �rst author and by J. St�rbark Pedersen, then at DDC, DK)

at Triangle Park-USA, to the people of the Ada Joint Program O�ce, and later

at an international school, was received with enthusiastic comments, which were

then forwarded to the EEC o�cers.

That was a time when we were convinced that the formal techniques were the

real solution to put software development on a �rm basis. That atmosphere was

re
ected in the title of another EEC initiative, lasting altogether seven years,

the Esprit BR WG COMPASS (COMPrehensive Algebraic Approach to Soft-

ware Speci�cation) '89-96. It is within that project that was conceived the idea of

publishing a comprehensive book on the algebraic speci�cation of systems lead-

ing to the mentioned IFIP State-of-the-art Report sponsored by IFIP WG 1.3.

[2]. Moreover, just before the end of the COMPASS initiative, we contributed

to start the CoFI initiative (Common Framework Initiative for algebraic speci-

�cation and development of software) [22], whose �rst aim was to de�ne, within

a future family of related extension and restriction languages, CASL, the Com-

mon Algebraic Speci�cation Language, approved by the IFIP WG1.3, see [1]. Of

course CASL, which encompasses all previously designed algebraic speci�cation

languages, has a clean, perfectly de�ned semantics. Within CoFI, some exten-

sions of CASL have been provided to deal, e.g., with concurrency and reactivity;

our LTL [6] can be seen as one of these extensions. Still the target of the work

within CoFI was and is the research community and not industry practice.

2.2 Some Lessons from the Practice and the Software Engineering

Sides

While contributing to the development and improvement of formal techniques

we have been involved in some projects with industry to apply our techniques

to real-size case studies. It was soon evident that our (us and our community)

work had not taken into consideration some aspects of paramount importance in

software development, generally quali�able as methodological aspects. That has

led us �rst to take care in some way of those aspects in the application of our

techniques, and then to re
ect on our approach. The results of our re
ections

were presented at the last TAPSOFT in Lille in '97 (for a journal version, see

[5]). The main �ndings of that investigation, signi�cantly titled Formalism and

Method, were

{ the distinction between formalism and method,

{ the inclusion of a formalism, if any, as a part of a method,

{ the essential relevance of modelling rationale as the link between the end

product (system, item) and the formal structures (models) representing it,

{ the role of pragmatics.

In Fig. 1 we outline those distinctions for the case when our aim is to provide

a rigorous speci�cation of a system, at some level of abstraction. In that paper

we have also suggested the use of some systematic way of presenting a method,

with the use of method patterns. The target of that study was essentially the

formalist community. We were arguing that the impact of formalisms would

much bene�t from the habit of systematically and carefully relating formalisms

to methods and to the engineering context. In addition, we were opposing the

widespread attitude of con
ating formalism and method, with the inevitable

consequence, within a community of formalists, of emphasizing the formalism

or even just neglecting the methodological aspects. Curiously enough, we dis-

covered that in a sense the abused phrase formal method is somewhat strange

etymologically, since the word method comes fromGreek and means way through

and its Latin translation (both ratio et via and via et ratio) was making explicit

that that word was conveying the meaning of something rational with the purpose

of achieving something, together with the way of achieving it. Later it was very

illuminating and encouraging to discover that more or less the same remarks,

End products / Specifiable items of interest goal

Formal semantic models

Specification artifacts

Semantics

formalism

User guidelines

Presentation

Documentation

Modelling Rationale, as a relationship between

End products Formal semantic models

abstraction

interpretation

pragmatics

Fig. 1. Formalism and Method

but from a methodological viewpoint relating software development to the usual

other engineering practices, were made by D. Parnas, who at about the same

time was writing in [23] \the phrase "formal methods" is strange and the issue

of technology transfer of such methods even stranger".

Since then, we were always trying to look at the lessons from the Software

Engineering side. For example, the work of M. Jackson [15,16] with his careful

analysis of the method and modelling aspects was and is very inspiring. More

generally, we have personally learnt how much it is advisable for people working

in the area of the formal techniques to try to put the work into the perspective of

what is considered essential for the development of software. To be short, we can,

for example, look at the notions that A.I. Wassermann in his '96 Stevens lec-

ture [30] considers fundamental in software engineering, which are Abstraction,

Analysis and Design Methods and Notations, Prototyping, Software Architec-

ture, Software Process, Reuse, Measurement, Tools and Integrated Environment.

De�nitely, the area of formal techniques has contributed enormously to provide

tools for Abstraction, and a wealth of Notations; but how many of those are

really linked to, or exploitable by, Methods of Analysis and Design? Then, it

would be quite interesting to make a serious assessment of the contributions to

the other six notions.

Another useful lesson and challenge comes from the continuous evolution in

today's applications. In the words of C. Jones [17]

\Much has happened in computing since the stack and the problem of Dining

Philosophers were �rst taken as important paradigms on which to test formal

approaches. Whatever the disadvantage of modern software (and I know many

of them), signi�cant systems are now constructed on top of
exible and general

interfaces to packages which handle much of the detail of - for example - the

precise presentation on the screen."

We do not believe that we formalists have coped with the evolution fast

enough. Let us just mention one paradigmatic example. We have available plenty

of formal techniques for explaining the principles of programming languages (not

to say of the multitude of researchers still working on the minimal details even

of languages sometimes quite dated). But when, early this year, we have tried to

set up a university course providing viable clean principles for building software

in a component-based way, using open systems, and the like, we could not �nd

any rigorous setting allowing us to teach the basic techniques without having to

come out just with teaching the Java/SUN or the Microsoft/DCOM/.Net way.

We are still looking around

2.3 The UML Case

We single out the emergence of the UML as a de facto standard (it is anyway

an OMG standard) because it is for us a paradigmatic example of an avoidable

mismatch between formal techniques and practical software engineering. In a bit

more ideal world we would speak of a lost opportunity for good formalisms to

meet best practices.

Indeed, the UML and the related work is trying to provide an answer to rea-

sonable requests from the software developers. It is visual, multiview, o�ering

notations for di�erent phases of the development from requirements to docu-

ment management, supportable and supported by tools. Moreover, in principle

it incorporates a number of concepts and techniques provided in the years by

various streams of research: object orientation; abstraction in a number of ways,

starting with the central concept of model/speci�cation; behaviour description

by means of statemachines (borrowed from D. Harel's work) and activity dia-

grams (from Petri Nets); though not mandatory, OCL, the Object Constraint

Language, which is a variant of �rst order logic for expressing properties on parts

of the models. Altogether, the UML, used in a sensible way, is far better than

the majority of notations and techniques used in the current industry practice.

Still, strictly measured as support to rigorous development, it is a nightmare.

Not only it lacks a comprehensive formal semantic foundation (that could apply

to Java too), but the semantics is at its best based on common understanding.

Di�erently from Java, even the informal semantics has still to be de�ned for some

aspects and the one provided is a source of many ambiguities. Being the UML

built following a typical notation-aggregation approach, even the attempts in

the literature to provide a semantics by many researchers are limited to isolated

subsets, usually with restrictive constraints w.r.t. their usage. Furthermore, there

is another problem, how to assembly the di�erent formal semantics of the various

sub-notations to get a consistent semantics of the complete UML.

4

And of course

it has the usual limitation of a purely object-oriented approach, namely the lack

of direct support for concurrency, cooperation, distribution, mobility, and the

like. Moreover, according to some studies by well-known software architecture

4

This task is far from trivial and needs skills that our community developed and

proved, for instance, in the de�nition of the CASL. Indeed, the Common Algebraic

Speci�cation Language includes features and aspects developed and studied in iso-

lation in several other speci�cation languages having non-obvious intersection.

experts, its support to de�ne software architectures is de�nitely non-explicit

and somewhat controversial. There are di�erent possible ways for representing

software architectures and none without some mismatch, at least as they are

seen in that community.

Thus, why do we speak, ideally, of lost opportunity? Because we are convinced

that at the same time of the birth of the UML, it was the mid-nineties, there was

in our research community all the knowledge and the ability for coming out with

a much better proposal encompassing by far the current UML. Our conviction

is grounded on the studies we have performed both on many semantic issues of

the UML (see [26, 27]) and on possible reformulation of some of its aspects in a

cleaner way (see part of the following section). Admittedly, that ideal proposal

could have happened in a di�erent world, both because the market is following

di�erent routes than research, and because our research community is neither

cooperative nor much sensible to the real needs of software development. Still

we notice that it was not the case of a good substitute for the UML swept away

by a market move; simply there was not such a substitute.

2.4 A Virtuous Cycle for the Research in Formal Techniques

There has been a clear lesson for us from the above and has been a di�erent at-

titude in the way we devise, use and advocate formal techniques. We summarize

our position in what may be called a Virtuous Cycle:

{ Inspect and learn from software engineering practices and problems

{ Look for/provide formal foundations when needed

{ Experiment near-to practice but well-founded methods, hiding formalities

{ Anticipate needs providing sound engineering concepts and methods

Clearly the above four directions are in a somewhat increasing order of di�culty

and ingenuity. We have already done some work along the �rst three (the fourth

being quite ambitious and to be judged by history and success). To be concrete,

in the following section we will outline two experiments in what we call Well-

Founded Software Development Methods; by that we roughly mean a revisitation

or possibly a proactive proposal of engineering best practice methods, but with

the guarantee that the notation is amenable to a rigorous formal foundation,

though such formalization is not apparent to the user.

3 Some Strategies and Experiments in the Search for

Well-Founded Software Development Methods

3.1 An Experimental Java Targeted Notation

Our oldest line of research in Well-Founded Software Development Methods (see

[10]) stemmed directly from our work in the speci�cation of concurrent systems

with algebraic techniques and is aimed at providing a notation for the speci�ca-

tions, at design level, of concurrent/distributed/reactive systems. That notation

is Java targeted, in the sense that the speci�ed systems should be ideally imple-

mented in Java, and has three special features: it is

{ graphical, i.e., given by diagrams,

{ completely formal, i.e., amenable to a formal description with algebraic tech-

niques (but hidden from the user),

{ endowed with an easily automatized (correct) translation into Java.

Abstract Design Java Code

Java Targeted Design

correct coding

transformation
with guidelines automatizatable

translation with
correctness check

* specified with JTN
* cope with/take advantage of
 › Java O.O. feaures
 › Java limitations

Fig. 2. The JTN approach

In Fig. 2 we provide a graphical view of the approach supported by JTN.

By Abstract Design we mean a speci�cation given in the graphical notation

of [28]. Essentially, it consists of a visual representation of an algebraic speci�ca-

tion of a concurrent system at design level, following the LTL approach [6]. The

syntactic form of such speci�cations guarantees that it corresponds to a posi-

tive conditional algebraic speci�cation, which admits the existence of a unique

(modulo isomorphism)well-de�ned labelled transition systemmatching the spec-

i�cation. Notably, a similar approach has been recently adopted within the MDA

(Model Driven Architecture) OMG Proposal [18]. Using the MDA terminology,

the abstract design speci�cation is a platform independent model (PIM), in the

sense that it does not depend on a particular implementation platform (Java),

whereas the Java Targeted Design speci�cation is a (Java) Platform Speci�c

Model (PSM), and the transformation from the Abstract to the Java Targeted

design corresponds to the mapping into the Java implementation platform.

A speci�cation (model) consists of

Class diagram

{ datatype/passive/active class interfaces

{ dependency - specialization relationships among them

Body diagrams for all classes in the class diagram, di�erent for each kind of

class

Architecture diagram (system structure) a graph where

{ nodes: system constituents (passive/active objects)

{ arcs: connectors (synchronous/asynchronous one-way channels, method

calls)

Sequence diagrams (auxiliary, showing sample system executions)

Fig. 3. JTN: Speci�cation/Model Structure

The JTN aims to mimic some nice diagrammatic features of UML, but,

together with possessing a completely formal basis, that is totally absent in

UML, it favours some technical distinctions that we consider methodologically

useful.

For example, the elements building the systems are typed by means of classes,

but classes are of three kinds: datatype, whose instances are just values, passive,

whose instances are standard imperative objects, and active, whose instances are

processes. Indeed, in the underlying formal semantics the three kinds of classes

have completely di�erent formal models. Moreover, classes, of any kind, are

strictly encapsulated, that is they have an interface, describing in a precise way

how their instances can interact with the outside entities, and a fully private body

describing their behaviour. More details about the di�erent kinds of classes are

in Fig. 4. Moreover, each speci�cation (model) has a precise structure, described

in Fig. 3.

Notice, that JTN provides an architecture diagram for depicting the over-

all structure of the system. The lack of this kind of diagram in the UML has

been criticized by many authors who have then provided various alternatives;

on the other hand, that kind of diagram reminds of diagrams found so useful in

the so-called Modern (and Postmodern) Structured Analysis (see[31]). Another

distinction w.r.t. UMLis that in JTN the use of sequence diagrams is only com-

plementary to the one of behaviour diagrams, to provide an insight of possible

scenarios. It is instead well-known that the use of sequence diagrams in UML

as a basic tool is the source of ambiguities for users (see in this respect the

illuminating paper on a nice substitute, the live sequence charts of [13]).

Another novelty is the way the body of an active class, and then the be-

haviour of its instances is described. To this aim we have introduced what we

call a behaviour diagram, just a diagrammatic form for representing some labelled

transition system also expressible algebraically in LTL, but that, di�erently from

UML statecharts, allow to visually depict also non-reactive behaviour (see [25]

for a proposal of an integration within the UML). Finally, it is almost obvious

that, because of its formal basis in JTN, there is a precise framework for de�ning

and dealing with static semantics consistency problems, what is instead a prob-

lem in the UML, as witnessed by the many papers and di�erent tools addressing

that issue [8].

3.2 Reformulating Current Practice Development Methods

Another line of our research consists in looking at current development practices,

noticing problems and attempting at a reformulation based upon, and inspired

by, related work in formal techniques.

As we have already discussed, one of the foremost contributions coming from

the software engineering side is the concept and use of development process mod-

els to guide the software development. We can take as a paradigmatic example,

among the best well-known process models, the Rational Uni�ed Process (RUP),

proposed by the same authors of the UML (see [24]) and incorporating many

insights coming from the software engineering best practices. The problems that

DATATYPE CLASS

instances values

characterized by

{ Constructors

{ Operations

interface visible constructors and operations

body private constructors and operations + de�nitions of all the operations by

(ordered) lists of conditional rules of the form (pt

i

patterns built with the

constructors)

Cond -> exp

Cond -> exp

Op(pt ,...,pt)
1 n

1 1

m m

PASSIVE CLASS

instances standard objects

characterized by

{ Attributes

{ Methods

interface visible methods

body attributes + private methods + de�nitions of all the methods by (ordered)

lists of conditional statements of the form (pt

i

patterns built with the con-

structors, stat

i

imperative statements acting on the object local state)

Cond -> stat

Cond -> stat

M(pt ,...,pt)
1 n

1 1

m m

ACTIVE CLASS

instances processes

characterized by

{ Attributes

{ Interactions (with the external world)

� Write/Read on one way typed synchronous channels

� Write/Read on one way typed asynchronous channels

� Call of methods of passive objects

interface

{ Used synchronous channels

{ Used asynchronous channels

body attributes + behaviour de�nition by a BEHAVIOUR DIAGRAM, i.e., a

graph s.t.

{ nodes are characterized by a name (just usual control states)

{ arcs have the form

Cond(attrs,par) Inter(par)/stat(par)
S1 S2

statement updating
the attribute values

parametric
interaction

Fig. 4. JTN: CLASSES

we have encountered with RUP are twofold. On one side it relies on the UML

as a supporting notation, which admittedly does not have a rigorous (neither

static nor dynamic) semantics. On the other, to be liberal and accommodate, at

least nominally, a number of variants, subcases and personal tastes, RUP gives

so much freedom that a non-experienced user is often disconcerted among the

possible modelling choices. These two kinds of problems have as a consequence

that the resulting artifacts are much more prone to ambiguities, inconsistencies

and the like. We have undertaken some work attempting at proposing a more

stringent method, which we are in part experimenting in course projects. For

example, in [7,9] we have presented a new way of structuring the Requirement

Speci�cation, within an overall RUP-compatible approach, with the aim of guid-

ing the developer to

{ use only semantically sound constructs,

{ have better means for making the modelling decisions,

{ produce as a result a set of artifacts under tighter constraints and as an

overall result, to make the process faster, cutting sometimes endless discus-

sions, and to better support consistency both in the construction and in the

checking phase.

Though we have expressed our approach in a rigorous multiview, use-case driven

and UML-based way, its essence is UML-independent and it could be even given

a formal algebraic dress.

Before giving some technical highlights, let us mention the inspiring sources

and the technical basis. First, the choice of a restricted subset of the UML con-

structs has been guided by a formal semantic analysis of those constructs. The

general approach to address the semantic problems of UML, together with ref-

erences to our work on more speci�c aspects, can be found in [27]. Essentially,

it shows how the (generalized) labelled transition systems of our LTL approach

[6] can be taken as a basis for de�ning what we call UML-systems as formal

semantic models for all UML. Notably, that work has been pursued within the

CoFI initiative

5

[22]. Second, we have incorporated some ideas from well-known

methods, such as Structured Analysis [32] and the work of some pioneer method-

ologists such as M. Jackson [15, 16]. From the latter in particular we have taken

the total separation of the domain from the system, a distinction somewhat

blurred in many object-oriented approaches; while the distinction between the

system and the environment especially comes from the Structured Analysis. Fi-

nally, from the overall formal (algebraic) approach, together with the strong

typing as a must, we have also borrowed the idea of the black box abstraction

of a system and of its minimal white box structure to express the requirements

about its interaction with the environment. To that end we have introduced the

notion of \abstract state" for the system, without providing an object-oriented

structuring at a stage when such a structure is not required.

We now give a short technical outline to get the
avour of the approach.

5

http://www.brics.dk/Projects/CoFI/

Requirement Specification
1..*

Problem Domain Model (PDM)
1

Model-Driven Design
1..*

1

Technology-Driven Design
1..*

1

operates on

realizes

realizes using

Fig. 5. Artifacts

The context of our work is sketchily represented in Fig. 5, where we present

some essential steps (artifacts to be produced) in a modern software develop-

ment process. We intend the Requirement Speci�cation activity built over the

Problem Domain Modelling and preliminary to Model-Driven Design, followed

by Technology-Driven design. As currently widely advocated, by Model-Driven

Design we intend the activity of providing a solution of the problem in terms of

Model-Driven Architecture (see, e.g., [18]), namely an architecture based on the

abstract modelling and independent of the implementation platform, to which is

targeted the Technology-Driven Design. Notice, that a PDM artifact may be used

as a starting point for many di�erent systems, as well as a Requirement Spec-

i�cation may be used for many di�erent Model-Driven Designs, which in turn

may be used to get many di�erent Technology-Driven Designs. We cannot deal

here with all those activities; however, we intend to stress that in our approach

Requirement Speci�cation is the �rst activity in which the (Software) System is

taken into consideration.

The Requirement Speci�cation activity we propose assumes that the Prob-

lem Domain Modelling produces as an artifact, PDM, a UML object-oriented

description of the part of the real world that concerns the System, but with-

out any reference to the System itself nor to the problem to which the System

provides a solution.

PDM

1

Conceptual View

definition: Package

1..*

Work Case View
Work Case Description

summary: Collaboration
textualDescription: String
visualDescriprtion: ActivityDiagram

0..1

Fig. 6. PDM Structure

The structure of a PDM in our proposal is shown in Fig. 6. We propose to

model the various entities present in the domain by the Conceptual View, a UML

package including a class diagram, where the classes may be also active, thus

with a dynamic behaviour, also autonomous, and not just purely reactive. Then,

the most relevant cooperation among such entities may be modelled in the Work

Case View part, which consists of a special kind of work
ows named work cases.

Our proposal, centered on two views, the Conceptual View and the Work Case

View, in a structural sense encompasses the two most popular current approaches

to domain modelling, namely conceptual modelling and business modelling, and

can be reduced as a specialization to each of those.

Then we propose a \system placement" activity, to relate the System to the

domain and, by that, to locate the System boundary.

Requirement Specification

11

1..*

Context View

definition: Package

1

Internal View

definition: Package

1

Data View

definition: Package

UseCase Description

textualDescription: String

0..11 *

Behaviour View

definition: Statechart

Causal View

definition: ActivityDiagram

Interaction View

definition: Collaboration

UseCase View

summary: UseCase Diagram

Fig. 7. Requirement Speci�cation Structure

In our approach, the Requirement Speci�cation artifacts consist of di�erent

views of the System, plus a part, Data View, which lists and makes precise all data

appearing in the various views of the System to help guarantee the consistency

of the concepts used in such views. Its structure is shown in Fig. 7 by a UML

class diagram.

Context View describes the context of the System, that is which entities (con-

text entities) and of which kinds may interact with the System, and in which

way they can do that. Such entities may appear int he PDM or to be external

entities needed by the particular problem/solution under consideration. That

explicit splitting between the System and the context entities should help avoid

confusions between what exists and needs just to be precisely described (context

entities) and what instead has to be developed (System) and on which we have

to �nd (capture) the requirements The context entities are further classi�ed into

those taking advantage of the System (service users), and into those cooperating

to accomplish the System aims (service providers). This further splitting be-

tween users and providers should help distinguish which context entities cannot

be modi�ed by the developer (providers), and those which may be partly tuned

by the developer (users), e.g., by �xing their interface towards the System, since

it is sensible to require that they adapt themselves to use the System.

Internal View describes abstractly the internal structure of the System, which

is essentially its Abstract State. It will help precisely describe the behaviour of

the use cases, by allowing to express how they read and update it. UML allows

a single use case to have a proper state, but we prefer to have a unique state for

all the use cases, to help model their mutual relationships.

Use Case View, as it is now standard, shows the main ways to use the System

(use cases), making clear which actors take parts in them.

The Use Case View consists of a UML \Use Case Diagram" and of a Use Case

Description for each use case appearing in it. The actors appearing in the Use

Case diagram are possible roles (generic instances) for the entities outside the

System interacting with it (context entities) de�ned in the Context View. Thus,

each actor will be denoted by a name, expressing the played role, and by a class,

appearing in the Context View, showing which kind of context entities may play

such role.

A Use Case Description consists of a textual presentation and of one or more

views, of di�erent kinds, of the use case.

Any Use Case Description must include a Behaviour View, which is a statechart

describing the complete behaviour of the System with respect to such use case.

Such statechart has particular features. Its events may be only call of the oper-

ations of the interfaces of the class corresponding to System, its conditions may

test only the System Abstract State and the event parameters, and its actions

may only be calls of the operations of the actors, as de�ned by their interfaces,

or actions updating the System Abstract State.

A Use Case Description may include any number of Interaction View, which

are sequence (or collaboration) diagrams representing the interactions happening

in a scenario of the use case among the context entities and the System. Any

Interaction View must be coherent with the Behaviour View (that is, it must

represent a particular execution of the complete behaviour of System described

by such view). We think that the Interaction View are really important, showing

visually who does what, but they are complementary to the Behaviour View

because they cannot show under which conditions the various messages may be

exchanged and their e�ects on the System Abstract State.

A Use Case Description may include also a Causal View, which is an activity

diagram describing all the relevant facts happening during the use case and their

causal relationships. The relevant facts (technically represented by action-states

of the activity diagram) can be only calls of the interface operations of System

by the actors, calls of the operations of the actors by System, UML actions

producing side e�ects on the System Abstract State. Also the Causal View must

be coherent with the Behaviour View, in the sense that the causal relationships

among \facts" that it depicts may happen in the behaviour depicted by the state

chart.

Some of the above views (e.g., Internal View and Context View) are new w.r.t.

the current methods for the OO UML-based speci�cation of requirements. In our

approach, they play a fundamental role to help ensure the consistency among

the various use cases and of the whole speci�cation.

4 Conclusions

Re
ecting on our own experience, we have advocated a shift of the research in

formal techniques toward a stronger engagement in issues immediately relevant

for the software development practice. That is not in opposition to providing the

necessary formal foundations when needed, nor to proposing new fundamental

ideas, as long as they have a clear potential applicative target. Our emphasis

was especially in the direction of the care for the methodological aspects. We

have singled out the case of UML as paradigmatic, in our view, of what could

have been achieved by our community and was not.

The illustration here of some of our current research had no ambition of

showing \The way", but only the meaning of a sincere e�ort in trying to lighten

some su�ered isolation; moreover, it is an e�ort to exploit a signi�cant and

mature background in formal techniques, whose value we never underestimate.

In that sense, we are convinced that the strategy of Well-Founded Software

Development Methods has a lot of potential value.

We summarize the (meta)guidelines constituting the essence of that strategy

and what we can gain by that.

There is a not so obvious preliminary assumption that the issues addressed

are potentially relevant to software engineering practice and that, addressing

them, we look at, and borrow as much as we can, from the best practices in the

�eld and from the methodology side, avoiding what we have called the formalism

(not so) splendid isolation; this is a kind of �rst imperative.

A second imperative is the rigorous discipline coming from the area of formal

techniques, that imposes both the use of semantically well-de�ned structures and

of rigorously justi�ed methods.

A third and last imperative is that the formal aspects should be not forced

on the end-users, who in principle are not experts, but used in the background

to achieve the second imperative.

To clarify by an example the three points and their bene�ts, in our sample

activity presented in the previous sections

{ we have only used those UML constructs and in such restricted way that

their semantics is clear, in the sense that a formal semantics exists (that

is the case of statecharts) or need only to be worked out in detail (that is

the case of active classes); from that we can precisely answer in the natural

language any relevant question for clarifying ambiguities, without exposing

the formal de�nitions;

{ the method for structuring, e.g., the requirements leads to a collection of

artifacts that have passed a number of consistency constraints, and, thus,

they are much less prone to faults and moreover de�ne an unambiguous body

of requirements.

There is another aspect that can be seen as an aside bene�t. It may happen that

the disciplined rigour that we borrow from the formal techniques habit, shows

the inadequacy of some proposed construct or techniques and stimulates the

introduction of new ones. That has been the case of the inadequacy of sequence

diagrams and the proposal by D. Harel and W. Damm of Live Sequence Charts

(see [11]) and by us of behaviour diagrams [25] and of Context diagrams, as we

have seen in the paper.

On the sociological side, it is a constant �nding that formal techniques

are liked and accepted only by people extremely well-trained in formal tech-

niques, that is not the case of the vast majority of software engineers. Moreover,

there is a reported tension, if not a contrast, between formalism and produc-

tivity/e�ciency. Hiding formalities, but keeping their disciplined rigour in the

methods they use, is a strategy that can overcome both disadvantages. In sup-

port of this belief, we have made some experiments in the last two years with

undergraduate students without any formal background, with the exception of

an elementary short course in mathematical logic. The results have been very

encouraging, especially comparing with previous experiments, some using ex-

plicitly formal techniques with students better skilled in formalities and, on the

opposite side, some using visual techniques (UML) and related methods as they

usually are, namely without any underpinning rigour. In conclusion we believe

that Well-Founded Software Development Methods should be explored seriously

and improved, of course, with the help of appropriate tools exploiting their hid-

den formal basis, as much as it happens with other engineering professions and

practices (for this point see the interesting remarks in [23]).

Because of the fast and somewhat wild evolution in information technology

in general and in software applications in particular, it is di�cult to assess the

situation and look at the right new directions of research. Still, we see some

fundamental challenges ahead. We mention two.

The �rst comes from our research interests and can be summarized in the

slogan Beyond UML. Though the UML (and the OMG initiatives) has tried to

touch many important issues and satisfy some real needs, from abstract mod-

elling (MDA) to multiview and to support for tools, we need to go beyond UML

in a number of directions. The object oriented technology underpinning the UML

is inadequate, as it is now recognized by many, for a real quality leap; the nota-

tion is shaking and not cleanly de�ned, endangering consistency; the semantic

foundations are missing; also due to the lack in semantic foundations, the devel-

opment of powerful semantic tool is di�cult (look at a comprehensive view of

the problem by D. Harel in [13]); the support for evolution is left to the user.

The second challenge we see is in the lack of foundations and principles for

some current trends in software development and applications characterized by

components, open systems, web services, middleware strati�cations and variety,

mobile and heterogeneous access, comprehensive proprietary platforms (.Net,

Java/SUN,...). Though some of those issues are nominally addressed by some

current formal research, it seems to us that, as most often in the past, the way

those issues are addressed, more with the obsession of mathematical elegance and

sophistication than with applicability in mind, shows a little chance of making

an impact on software development practices.

References

1. E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Br�uckner, P. D. Mosses, D. Sannella,

and A. Tarlecki. CASL: the Common Algebraic Speci�cation Language. T.C.S.,

286(2):153{196, 2002.

2. E. Astesiano, B. Krieg-Br�uckner, and H.-J. Kreowski, editors. IFIP WG 1.3 Book

on Algebraic Foundations of System Speci�cation. Springer Verlag, 1999.

3. E. Astesiano and G. Reggio. Direct Semantics of Concurrent Languages in the

SMoLCS Approach. IBM Journal of Research and Development, 31(5):512{534,

1987.

4. E. Astesiano and G. Reggio. SMoLCS-Driven Concurrent Calculi. In H. Ehrig,

R. Kowalski, G. Levi, and U. Montanari, editors, Proc. TAPSOFT'87, Vol. 1,

number 249 in Lecture Notes in Computer Science, pages 169{201. Springer Verlag,

Berlin, 1987.

5. E. Astesiano and G. Reggio. Formalism and Method. T.C.S., 236(1,2):3{34, 2000.

6. E. Astesiano and G. Reggio. Labelled Transition Logic: An Outline. Acta Infor-

matica, 37(11-12):831{879, 2001.

7. E. Astesiano and G. Reggio. Knowledge Structuring and Representation in Re-

quirement Speci�cation. In Proc. SEKE 2002. ACM Press, 2002. Available at

ftp://ftp.disi.unige.it/person/ReggioG/AstesianoReggio02a.pdf.

8. E. Astesiano and G. Reggio. Consistency Issues in Multiview Modelling Tech-

niques. Technical Report DISI{TR{03{05, DISI, Universit�a di Genova, Italy, 2003.

To appear in Proc. WADT 2002.

9. E. Astesiano and G. Reggio. Tight Structuring for Precise UML-

based Requirement Speci�cations: Complete Version. Technical Report

DISI{TR{03{06, DISI, Universit�a di Genova, Italy, 2003. Available at

ftp://ftp.disi.unige.it/person/ReggioG/ReggioEtAll03c.pdf.

10. E. Coscia and G. Reggio. JTN: A Java-targeted Graphic Formal Notation for

Reactive and Concurrent Systems. In Finance J.-P., editor, Proc. FASE 99, number

1577 in Lecture Notes in Computer Science. Springer Verlag, Berlin, 1999.

11. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts.

Formal Methods in System Design, 19(1):45{80, 2001.

12. H. Ehrig and B. Mahr. A Decade of TAPSOFT: Aspects of Progress and Prospects

in Theory and Practice of Software Development. In P.D. Mosses, M. Nielsen, and

M.I. Schwartzbach, editors, Proc. of TAPSOFT '95, number 915 in Lecture Notes

in Computer Science, pages 3{24. Springer Verlag, Berlin, 1995.

13. D. Harel. From Play-In Scenarios to Code: An Achievable Dream. IEEE Computer,

34(1):53{60, 2001.

14. C.A.R. Hoare. How did Software Get so Reliable Without Proof? In M.-C. Gaudel

and J. Woodcock, editors, FME'96: Industrial Bene�t and Advances in Formal

Methods, number 1051 in Lecture Notes in Computer Science, pages 1{17. Springer

Verlag, Berlin, 1996.

15. M. Jackson. Software Requirements & Speci�cations: a Lexicon of Practice, Prin-

ciples and Prejudices. Addison-Wesley, 1995.

16. M. Jackson. Problem Frames: Analyzing and Structuring Software Development

Problems. Addison-Wesley, 2001.

17. C. Jones. Some Mistakes I Have Made and What I Have Learned FromThem. In

E. Astesiano, editor, Proc. FASE'98, number 1382 in Lecture Notes in Computer

Science. Springer Verlag, Berlin, 1998.

18. OMG Architecture Board MDA Drafting Team. Model Driven Architecture

(MDA). Available at http://cgi.omg.org/docs/ormsc/01-07-01.pdf, 2001.

19. B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 1997.

20. B. Meyer. Software Engineering in the Academy. Computer, 34(5):28{35, 2001.

21. M. Minasi. The Software Conspiracy. Mc Graw Hill, 2000.

22. P.D. Mosses. CoFI: The Common Framework Initiative for Algebraic Speci�ca-

tion and Development. In M. Bidoit and M. Dauchet, editors, Proc. TAPSOFT

'97, number 1214 in Lecture Notes in Computer Science, pages 115{137. Springer

Verlag, Berlin, 1997.

23. D.L. Parnas. \Formal Methods" Technology Transfer Will Fail. J. Systems Soft-

ware, 40(3):195 { 198, 1998.

24. Rational. Rational Uni�ed Process
c

 for System Engineering SE 1.0. 2001.

25. G. Reggio and E. Astesiano. An Extension of UML for Modelling

the non Purely-Reactive Behaviour of Active Objects. Technical Report

DISI{TR{00{28, DISI, Universit�a di Genova, Italy, 2000. Available at

ftp://ftp.disi.unige.it/person/ReggioG/ReggioAstesiano00b.pdf.

26. G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. Analysing UML Active

Classes and Associated State Machines { A Lightweight Formal Approach. In

T. Maibaum, editor, Proc. FASE 2000, number 1783 in Lecture Notes in Computer

Science. Springer Verlag, Berlin, 2000.

27. G. Reggio, M. Cerioli, and E. Astesiano. Towards a Rigorous Semantics of UML

Supporting its Multiview Approach. In H. Hussmann, editor, Proc. FASE 2001,

number 2029 in Lecture Notes in Computer Science. Springer Verlag, Berlin, 2001.

28. G. Reggio and M. Larosa. A Graphic Notation for Formal Speci�cations of Dy-

namic Systems. In J. Fitzgerald and C.B. Jones, editors, Proc. FME 97 - Indus-

trial Applications and Strengthened Foundations of Formal Methods, number 1313

in Lecture Notes in Computer Science. Springer Verlag, Berlin, 1997.

29. UML Revision Task Force. OMG UML Speci�cation 1.3, 1999. Available at

http://www.rational.com/media/uml/post.pdf.

30. A.I. Wasserman. Toward a Discipline of Software Engineering. IEEE Software,

13(6):23{31, 1996.

31. R.J. Wieringa. Requirements Engineering: Frameworks for Understanding. John

Wiley, 1996.

32. E. Yourdon. Modern Structured Analysis. Prentice-Hall, 1989.

