
An Algebraic Semantics of UML

Supporting its Multiview Approach

G. Reggio { M. Cerioli { E. Astesiano

DISI Universit�a di Genova - Italy

Abstract

We aim at using algebraic techniques, and

in particular an extension, Casl-Ltl of the

Casl basic language in order to produce a for-

mal semantics of the UML. Contrary to most

cases, this task is far from trivial. Indeed, the

UML notation is complex, including a lot of

heterogeneous notations for di�erent aspects

of a system, possibly described in di�erent

phases of the development process. Moreover,

its informal description is incomplete and am-

biguous, not only because it uses the natural

language, but also because the UML allows

the so called semantics variation points, that

are constructs having a list of possible seman-

tics, instead of just one.

Introduction

UML is the object-oriented notation for mod-

elling software systems recently proposed as a

standard by the OMG (Object Management

Group), see UML Revision Task Force (1999) and

Rumbaugh et al. (1999).

A UML model consists of a bunch of diagrams

of di�erent kinds, expressing properties on dif-

ferent aspects of a system. In the following we

will call UML-systems the \real world" systems

modeled by using the UML (some instances are

information systems, software systems, business

organizations). Thus a UML model plays the

role of a speci�cation, but in a more pragmatic

context.

Another analogy that we can establish between

UML models and speci�cations is the fact that

the meaning of each diagram (kind) can be given

in isolation, as well as the semantics of each ax-

iom, and its e�ect on the description of the over-

all UML-system is to rule out some elements

from the universe of all possible systems (seman-

tic models). Indeed, both in the case of a UML

model and of a collection of axioms, each individ-

ual part (one diagram or one axiom) describes a

point of view of the overall systems.

P(UML formal systems)

P(UML systems)modeller intuition

intuitive
correspondence

. . .

Mn

UML model

D1

Dn

D2 M2

|=1

|=2

|=n

M1

. . .

SEM -UML

SEM 1

SEM 2

SEM n

Figure 1:

Therefore, our understanding of the optimal

form of a semantics for the UML is illustrated

in Fig. 1, where the UML formal systems are the

formal counterparts of the UML-systems.

We have a box representing a UML model, col-

lecting some diagrams of di�erent kinds, and its

overall semantics, represented by the arrow la-

belled by SEM-UML, is a class of UML formal

systems. But, each diagram in the model has its

own semantics (denoted by the indexed SEM),

that is a class of appropriate structures, as well,

and these structures are imposing constraints on

the overall UML formal systems, represented by

lines labelled by the indexed j=. A sort of com-

mutativity on the diagram has to hold, that is the

overall semantics must be the class of the UML

formal systems satisfying all the constraints im-

posed by the individual semantics. Moreover, the

formal semantics must be a rigorous representa-

tion of the expected \intuitive semantics", de-

scribed by the UML standard, version 1.3 (UML

Revision Task Force (1999), shortly written from

now on UML 1.3).

Several attempts at formalizing the UML are

currently under development, but most of them

are taking into account only a part of the UML,

with no provision for an integration of the indi-

vidual diagram semantics toward a formal seman-

tics of the overall UML models; see the book

[France and Rumpe (1999)] and the report on

a recent workshop on the topic of the UML se-

mantics [S.Kent et al. (1999)] also for more ref-

erences). The only exception known to us is the

. . .

Mn

S
E

M
-C

A
SL

-L
T

L

UML model

D1

Dn

CASL-LTL
specification

spec1

spec2

D2 M2

|=1

|=2

|=n

M1
tr

ad
1

tr
ad

2

tr
ad

n
. . .

specn

SEM -UML

SEM 1

SEM 2

SEM n

. . .

S
E

M
-C

A
SL

-L
TL

SE
M

-C
ASL

-L
TL

SE
M

-C
ASL

-L
TL

P(UML formal systems)

Figure 2:

attempt at describing the semantics of the UML

within theUML itself (themeta-model approach)

as advocated by the pUML group (see the site

http://www.cs.york.ac.uk/puml/). But even

in this case it is di�cult to recognize the nature

of the semantics of the individual diagrams, as

the semantics is given as a sequence of trans-

lations into more and more restricted core lan-

guages, that are subsets of the UML, and only

the smallest is directly given a semantics.

Our approach, accordingly with the previous

discussion, is an attempt at formalizing UML

models as a whole, while simultaneously giving

also a formalization of each kind of diagram in an

integrated way. In Fig. 2, we graphically summa-

rize our proposal.

From a technical viewpoint, we proceed in two

steps: �rst, we determine the needed semantic

structures (the M

i

and the UML formal systems

in Fig. 2) through an analysis of the document

UML 1.3, and formally describe them as alge-

braic structures. Then, we translate the diagrams

into Casl-Ltl speci�cations (represented by the

downward arrows), whose formal semantics gives,

by composition, the semantics of each diagram in

the UML model (represented by the dotted hor-

izontal arrows). We will use Casl-Ltl as meta-

language to describe the semantics of UML mod-

els. Casl-Ltl is an extension of the algebraic

speci�cation language Casl developed as central

part of the CoFI initiative

1

In Sect. 2 and Sect. 3 we will sketch two par-

ticularly signi�cant cases, concerning the trans-

lation of class diagrams and state machines, il-

lustrating our techniques on a running example

which is a fragment of the invoice system (see

Allemand et al. (1998)).

1

See the site http://www.brics.dk/Projects/CoFI.

Moreover, in the lower part of the diagram, the

Casl-Ltl speci�cations representing the individ-

ual diagrams are combined (in a non-trivial way)

into an overall speci�cation, whose semantics is

(has to be) compatible with the constraints im-

posed by the individual diagrams and provides

a semantics for the overall UML model. This

combination is graphically represented by a bul-

let, and in Sect. 4 we will summarize the current

version.

We are currently working on �lling the above

schema, providing the semantic structures and

the translations of the various diagrams into

Casl-Ltl. This activity is performed as part of

the CoFI initiative, within the CoFI-reactive task

group.

1 UML Formal Systems

Roughly speaking, there are two aspects of a sys-

tem that we are able to describe using the UML:

the structure of the system, that is which are the

components and which are their capabilities, and

the activity of the system, that is the evolution

of its components along the time and the interac-

tions of the system with the external world (e.g.,

with the users). Since the handling of the time

in UML, also of the real time, does not require

to consider systems evolving in a continuous way,

we have to describe a discrete sequence of moves,

each one of them representing one step of the sys-

tem evolution.

Therefore, we will use generalized structured la-

belled transition systems (shortly glts) as UML

formal systems, representing the evolution steps

as transitions. Moreover, the labels of the tran-

sitions capture interactions with the external

world, and the structured states, as sources and

targets of the transitions, provide a formal coun-

terpart to the system structure.

Let us shortly describe, in the next subsec-

tion, generalized structured labelled transition

systems; in Sect. 4, we will formally present which

glts are used to model UML systems.

1.1 Generalized Labelled Transi-

tion Systems

A generalized labelled transition system (shortly

glts) is a 4-tuple (ST ;LAB ; INFO;!), where

ST , LAB , and INFO are sets, and

!� INFO � ST � LAB � ST

is the transition relation. A 4-tuple (i ; s; l ; s

0

) 2!

is said to be a transition and is usually written

i : s

l

��! s

0

. Classical labelled transition systems

are the glts where the set INFO has just one ele-

ment.

Given a glts we can associate with each s

0

2

ST the tree (transition tree):

{ whose root is s

0

,

{ where the order of the branches is not consid-

ered,

{ where two identically decorated subtrees with

the same root are considered as a unique sub-

tree,

{ and such that if it has a node n decorated with

s and i : s

l

��! s

0

holds, then it has a node n

0

decorated with s

0

and an arc decorated with

i and l from n to n

0

.

We model a process P with a transition tree de-

termined by a glts (ST ;LAB ; INFO;!) and an

initial state s

0

2 ST . The nodes in the tree rep-

resent the intermediate (interesting) situations of

the life of P, and the arcs of the tree the possibili-

ties of P of moving from one situation to another.

It is important to note that here an arc (a tran-

sition) i : s

l

��! s

0

has the following meaning: P

in the situation s has the capability of moving

into the situation s

0

by performing a transition,

where the label l represents the interaction with

the environment during such a move. Thus, l

contains information on the conditions on the en-

vironment for the capability to become e�ective,

and on the transformation of such environment

induced by the execution of the transition, while

i is some additional information on the move, not

concerning interactions.

Notice that here by process we do not mean

\sequential process". Indeed also concurrent pro-

cesses, which are processes having cooperating

components that are in turn other processes (con-

current or not), can be modelled through particu-

lar glts, named structured glts. A structured glts

is obtained by composing other glts describing

such components, say clts; its states are built by

the states of clts, and its transitions from some

state s are determined by composing those of clts

starting from the components of s.

So a concurrent process has components that

are in turn processes, said in the following active

components; but, in general, it has also passive

components (think for example of a bu�er and of

lil
1

i
-
1

l
m

i
-
m

p2p1 pn. . .

p2’p1 pn. . .

a2 ama1 . . .

a2 ama1 . . .

Figure 3: A generic transition of a structured glts

a shared memory). Here passive means that such

components may change their states only as result

of some transition of some active component.

In Fig. 3 we show graphically a generic tran-

sition of a structured glts. In such case the sys-

tem has m active components (represented by el-

lipses) and n passive components (represented by

boxes); and the active components are modelled

by a glts. In that transition two active compo-

nents move (a1 and am), and a passive component

(p2) is modi�ed as a consequence of that.

A glts may be formally speci�ed by using the

algebraic speci�cation language Casl-Ltl (see

Reggio et al. (1999a)), an extension of Casl (see

CoFI (1998)), for the speci�cation of processes

based on glts's. Recall that extension in this case

means that Casl is a subset of Casl-Ltl and

that any Casl speci�cation is also a Casl-Ltl

speci�cation. Indeed, Casl-Ltl extends Casl

under two aspects: the logic is enriched by con-

structs from a branching-time CTL-style tempo-

ral logic, and it is possible to declare dynamic

sorts as follow:

dsort State label Label info Info

This Casl-Ltl construct declares the sorts State,

Label , and Info for the states, the labels and the

information of the glts, and implicitly also a tran-

sition predicate

: ��! : Info � State � Label � State:

Usually a speci�cation of processes in Casl-

Ltl has the following form:

spec Glts =

. then

free f

dsort State label Label info Info

.

axioms

.

g end

Thus each element s of sort State in a

model M (an algebra or �rst-order structure)

of the above speci�cation Glts corresponds

to a process modelled by a transition tree

with initial state s determined by the glts

(Info

M

; State

M

;Label

M

; : ��!

M

)

2

.

The speci�cation Glts extends (Casl-Ltl

keyword then) some speci�cations of some ba-

sic data used to de�ne the states, the labels and

the information. The construct free requires, in-

stead, that the speci�cation has an initial seman-

tics. Moreover, the axioms of such speci�cation

must have the form

�

1

^ : : : ^ �

n

) �

n+1

;

where for i = 1 ; : : : ; n + 1 , �

i

is a positive atom

(i.e., either a predicate application or an equa-

tion), to guarantee the existence of the initial se-

mantics.

1.2 UML Formal Systems as glts

In the case of a structured glts corresponding to a

UML formal system the components correspond

to the class instances. Those of active classes are

the active ones, and thus are in turn modelled

by a (non-structured) labelled transition system,

whereas those of passive classes are the passive

components.

Passive components The passive objects are

passive components.

We simply model passive components by giv-

ing their states and the operations for acting

on them.

A state of a passive object should be charac-

terized not only by its identity and the (cur-

rent) values of its attributes, but also by the

current calls of the various operations, to han-

dle the c̀oncurrency' quali�er of operations.

The relevant operations are the creation of a

new object (returning the initial state given

some parameters), reading or updating the

value of an attribute, checking if a call of some

operation may start, and starting and ending

a call of an operation

Moreover, we have also other passive com-

ponents storing relevant information, for in-

stance about the current state of associations.

2

Given a � algebra A, and a sort s of � , s

A

denotes

the interpretation of s in A; similarly for the operation

and predicates of � .

Active components The active objects are ac-

tive components, which are modelled by gen-

eralized labelled transition systems. Let us

here brie
y sketch their relevant features.

Each state must at least contain the object

identity, the values of the object attributes

and the actual time. The labels are as those

determined in the state machine part, i.e.,

they are triples consisting of a set of inputs

(e.g., to receive signals or operation calls from

other objects), a set of outputs (e.g., to update

attributes of other objects, or to send signals

to other objects) and the received time (re-

ceived from some clock (see Rumbaugh et al.

(1999) p. 475)). We have no restriction on the

transitions.

States The states of the overall system will be

sets of states of the components. Indeed, we

do not need multisets, since we can always

distinguish the components corresponding to

objects, as their states include their identities,

and those that do not correspond to objects,

because there will be at most one component

for each kind of information.

Labels A label of aUML formal system will con-

tain a list of received/sent operation calls (also

received/sent signals) with external users.

The external users correspond, for instance,

to the small human like pictures in the execu-

tion diagrams, or to the external interactions

considered in the use cases.

Transitions A transition of a UML formal sys-

tem is a combination of groups of transitions

of the active components (recall that there is

always at least one active component corre-

sponding to the main) closed by \synchroniza-

tion", i.e., s.t. each \send" should be together

the corresponding \receive".

To accommodate an implicit semantic varia-

tion point, the system should in the end result

in a free-parallel system (i.e., a system where

at each step any group of active components

that are capable of performing some transi-

tions may move).

The matching pairs of sent-received informa-

tion correspond to the stimuli (messages) con-

sidered by UML 1.3, precisely: exchange of an

operation call; exchange of the return of an

operation call (not considered here, as well as

synchronous calls); exchange of a signal; cre-

ation/destruction of objects.

Information To be able to evaluate the satis-

faction of an execution diagram by an UML

formal system M we need to record for each

transition of M which are the exchanged stim-

uli during such transition. Thus, the \Infor-

mation" component of the generalized transi-

tions will be a set of stimuli.

2 UML Class Diagrams

The UML class diagrams carry information

about the static structure of the systems, that

is about the typing, i.e., which classes are used to

classify the components of the systems, the avail-

able attributes and operations of each class and

the relationships (associations) among classes.

Classes and data types denote sets of values.

In particular, those corresponding to classes are

sets of object states, that are, roughly speaking,

tuples of attribute current values and the iden-

tity of the object, so far as the class diagram is

considered in isolation.

Analogously, associations, or more precisely as-

sociation states, are represented by the sets of tu-

ples (pairs) of the objects related by them.

A notion of global state, recording the currently

living instances of classes, is needed, as well as

the information about static semantics, that are

accessible through the OCL.

Operations (but queries) describe how a

(global) state is modi�ed by their performances,

possibly resulting into a value as well. Since sev-

eral activities can take place concurrently, opera-

tions should be represented by non-deterministic

functions. However, as we prefer to use �rst-

order structures as models, we represent non-

deterministic functions by predicates. Indeed,

an operation relates its inputs (the explicit ar-

guments and the implicit parameters, like the

call recipient and the global state) to the pos-

sible outputs (the result, if any, and the modi�ed

state) and the actual result of an individual op-

eration call is chosen, among the possible ones,

that is among those related to that particular se-

quence of inputs, accordingly to the evolution of

the other components of the system.

Let us not linger on the models, but di-

rectly sketch the algebraic speci�cation describ-

ing them; its structure is represented in Fig. 4.

First of all, such speci�cation has four parts.

Two of them, the generic context part and the

state part, are generic, in the sense that they are

common to all class diagrams. The generic con-

CONTEXT
generic static

semantics features

STATE
generica and global

state features

C1-CONTEXT

static semantics features
specific of class C1

. . .
Cn-CONTEXT

C1

semantics features
 of class C1

Cn
. . .

CLASS-DIAGRAM

Figure 4:

text part, Context, includes, for instance, the

sorts, operations and predicates used to deal with

the class system and its typing. The state part,

State, concerns the form of global and (generic)

local states.

The other two parts, the class-context part and

the class-semantics part are speci�c of an indi-

vidual class diagram and each of them is the sum

of smaller speci�cations, one for each classi�er in

the class diagram. This structure is chosen in or-

der to re
ect as much as possible the structure

of the UML model. Analogously to the generic

parts, the class-context part for a classi�er C, C-

Context, introduces the information about the

static semantics, like, for instance, the names of

each class, of its attributes and operations, while

the class-semantics part, C, introduces, for in-

stance, the local states of each class or associa-

tion.

2.1 Generic Parts

In the following, we intersperse fragments of the

speci�cation with explanations. The overall spec-

i�cations include the lines proposed here and

other analogous parts, that we omit for brevity.

We will use, that is, include in our speci�ca-

tions, some basic data types, adapted from the

standard library forCasl, like Integer, with the

(main) sort Integer or Date, with the (main) sort

Date, and some parametric data type, adapted

from the standard library for Casl as well, like

List[] and Set[], where is the place holder for

the parameter.

Context part First of all, we introduce data

types for dealing with values and types. The

former collect the standard OCL values, like

booleans or numbers, and, in particular, the iden-

tites of objects, Ident. The latter are required in

order to translate some OCL constraints and in-

clude the names of the standard types as well as

the names of classes, Name. Types will be used

in the following to check the static semantics re-

quirement for the correctness of an operation call.

For this aim, in particular, we also need an oper-

ation verifying that a list of values matches the

list of expected types.

sorts Ident;Name

pred isSubType : Name �Name

hasType : Ident �Name

vars id : Ident; c; c

0

: Name;

axioms

isSubType(c; c

0

) ^ hasType(id ; c))

hasType(id ; c

0

)

type Value ::= sort Bool j sort Ident j

sort Integer j sort Date : : :

Type ::= bool j sort Name j integer j

date : : :

pred matches : List[Value]� List[Type]

vars lv : List[Value]; tv : List[Type];

v : Value; t : Type;

id : Ident; c : Name;

axioms

matches([]; [])

:matches(v lv ; [])

:matches([]; t tv)

v 2 Bool)

matches(v lv ; t tv),

matches(lv ; tv) ^ t = bool

v 2 Ident)

matches(v lv ; t tv),

id = v as Ident ^

c = t as Name ^

matches(lv ; tv) ^ hasType(id ; c)

v 2 Integer)

matches(v lv ; t tv),

matches(lv ; tv) ^ t = integer

v 2 Date)

matches(v lv ; t tv),

matches(lv ; tv) ^ t = date

Other static information have to be recorded

as well, for instance which names correspond to

attributes, operations, classes, (binary) associa-

tions, expected types of the operation input and

output, types of the attributes, etc. In the fol-

lowing, we will assume that the names used to

represent attributes, operations and classes are

all distinct.

pred isaClass : Name

isAttr : Name�Name

ops type : Name!? Type

pred isanOp : Name �Name

ops argType : Name!? List[Type]

resType : Name!? List[Type]

pred isAnAssociation : Name

isBinAssociation : Name

vars n : Name;

axioms isBinAssociation(n))

isAnAssociation(n)

ops assType : Name!? List[Type]

LType;RType : Name!? Type

axioms isBinAssociation(n))

assType(n) = LType(n) :: RType(n)

The treatment of other kind of classi�ers, e.g.,

signals, that is completely analogous, is omitted.

State part Extending the Context speci�ca-

tion, we introduce the constructs to deal with

states.

The local states of objects (sort Object) provide

information about the identity of the objects and

the current values of their attributes. We can

read and write attributes, with the usual prop-

erties about typing (e.g., we cannot assign to an

attribute a value of an incompatible type, or up-

dating an attribute is not a�ecting the others nor

the object identity).

sorts Object

ops getIdent : Object! Ident

getAttr : Object�Name!? Value

setAttr : Object� Name� Value!?

Object

vars o; o

0

: Object; v : Value;

a; a

0

: Name; c : Name;

axioms

setAttr(o; a; v) = o

0

)

getAttr(o

0

; a) = v

setAttr(o; a; v) = o

0

)

getIdent(o

0

) = getIdent(o)

setAttr(o; a; v) = o

0

^ :a

0

= a)

getAttr(o

0

; a

0

) = getAttr(o; a

0

)

def setAttr(o; a; v),

(matches(v ; type(a)) ^

isAttr(a; c) ^ hasType(getIdent(o); c))

def getAttr(o; a),

isAttr(a; c) ^ hasType(getIdent(o); c))

The system state gives information about the

living instances of the classes, that are needed,

in particular, in order to describe possible side

e�ects of operation calls.

sorts State

pred knownIn : Ident � State

ops localState : Ident� State!? Object

allInstancesOf : Name� State!?

Set[Ident]

vars id : Ident; gs : State; c : Name;

axioms

def localState(id ; gs), knownIn(id ; gs)

isin(id ; allInstancesOf(c; gs)),

hasType(id ; c)

Each operation of a class represents a non

deterministic (partial) function having as input

the operation owner (that is implicit in object-

oriented approaches), the global state (in order

to use information on the other objects that can

be reached by navigation) and the explicit pa-

rameter list; the output is the result (if any) and

the new global state, possibly modi�ed by some

side e�ect of the operation call. We formalize

operations by the predicate named call relating

the name of each operation and the inputs to the

possible outputs.

pred call : Ident � Name� State�

List[Value]� List[Value]� State

vars gs in; gs out : State;

lv in; lv out : List[Value];

id : Ident; op : Name; c : Name;

axioms

call(id ; op; gs in; lv in; lv out ; gs out))

matches(lv in; argType(op)) ^

matches(lv out ; resType(op)) ^

(9 c : isanOp(op; c) ^ hasType(id ; c))

The local states of the associations are repre-

sented by a sort; we will introduce a constant of

sort Name to represent the name of the associ-

ation in the speci�cation of each actual associa-

tion, so that we can retrieve its local state from

the global state.

sorts Association

ops AssocState : Name� State!? Association

vars a : Name; gs : State;

axioms def localState(a; gs) , knownIn(a; gs)

Since the case of binary associations is by far

the most common in the UML, we are also pro-

viding a specialization of the association type for

such case. In the following speci�cation we add,

for each association end, an operation yielding the

objects that are in relation with a given object

that will be used to represent the UML naviga-

tion.

sorts BinAssocState < Association

ops

LAssoc : Ident � BinAssocState!

Set[Ident]

RAssoc : Ident � BinAssocState!

Set[Ident]

pred

isInAssociation :

Ident � BinAssocState� Ident

vars id ; id

0

: Ident; as : BinAssocState;

Stock

quantity: (p: Product): Integer
add_product(p:Product, q: Integer)
get_product(p:Product, q: Integer)

date: Date
quantity: Quantity
status: enum{pending, invoiced, cancelled}

Order

Client

*

1
orders

Product

*

1

what

Stock_Handler

Invoice
Do
Stop

OS: sequence(Order)
O: Order
Mailer: "external"
Stk: Stock

Invoicer

Figure 5: Class Diagram for the Invoice system

axioms isin(id

0

;RAssoc(as; id)) ,

isInAssociation(id ; as; id

0

)

isin(id ;LAssoc(as; id

0

)),

isInAssociation(id ; as; id

0

)

isInAssociation(id ; as; id

0

))

hasType(id ;LType(id))

isInAssociation(id ; as; id

0

))

hasType(id

0

;RType(id))

The complete speci�cation of this part, which

we have just partly sketched here, is called State.

2.2 Class specific parts

Let us start by illustrating our running example:

a fragment of an invoice system, that we will use

to illustrate more concretely how the speci�cation

corresponding to a class diagram looks like.

The class diagram of the invoice system is re-

ported in Fig. 5.

We have some passive classes, recording infor-

mation about clients, products (we do not detail

these parts), current (and past) orders and stock

of an e-commerce �rm, and some active classes,

managing the above described data and repre-

senting two kinds of \software" clerks: the stock

handler, who put the newly arrived products in

the stock and remove the correct amount of prod-

ucts to settle an order, and the invoicer, who pro-

cesses orders and send invoices.

The parts of the speci�cation strictly depend-

ing on the individual class diagram are hierarchi-

cally built starting from smaller speci�cations re-

ecting the structure of the class diagram as much

as possible and in particular we aim at having a

speci�cation for each class and a speci�cation for

each association.

Class Speci�c Context Part Each class con-

tributes to the context by the names introduced

by the class. So, for instance, the speci�cation

corresponding to the class Client introduces only

its name, as follows.

spec Client-Context = Context

then

ops Client :! Name

axioms isaClass(Client)

If there are attributes, like in the case of the

class Order, then we add also the names of the

attributes and their typing. We also have to pro-

vide a name for the enumeration type and to add

it to the admissible values. Thus, we have to

provide some clauses for the speci�cation of op-

erations and predicates having Value as input, for

instance of the matches predicate.

spec Order-Context = Context

then

type StatusType ::= pending j invoiced j

cancelled

sorts StatusType < Value

ops StatusType :! Type

vars v : Value; t : Type;

lv : List[Value]; tv : List[Type];

axioms

v 2 StatusType)

matches(v lv ; t tv),

matches(lv ; tv) ^ t = StatusType

ops Order :! Name

date :! Name

quantity :! Name

status :! Name

axioms isaClass(Order)

isAttr(date;Order)

type(date) = date

isAttr(quantity;Order)

type(quantity) = Quantity

isAttr(status;Order)

type(status) = StatusType

Analogously we deal with the case of opera-

tions. Since the type of some operation of the

class Stock involves other classes, for instance

Product, we declare the constant with that name,

but we do not state that it is a class, as this in-

formation is not part of the class Stock. When

in the end we will add this speci�cation with that

corresponding to the static context of Product,

we will have the missing information.

spec Stock-Context = Context

then

ops Stock :! Name

Product :! Name

quantity :! Name

addProduct :! Name

getProduct :! Name

axioms isaClass(Stock)

isanOp(quantity; Stock)

argType(quantity) = Product

resType(quantity) = integer

isanOp(addProduct; Stock)

argType(addProduct) = Product integer

resType(addProduct) = []

isanOp(getProduct; Stock)

argType(getProduct) = Product integer

resType(getProduct) = []

Associations are dealt with in an analogous way

with respect to classes.

Let us, for instance, consider the speci�cation

corresponding to the association orders.

spec Orders-Context =

Context and Order-Context and

Client-Context

then

ops orders :! Name

axioms isAnAssociation(orders)

LType(orders) = Order

RType(orders) = Client

Class semantics part Each speci�cation cor-

responding to a class introduces (at least) the sort

of the local states of that class objects.

spec Client = State and Client-Context

then

sorts Client < Object

vars o : Object;

axioms

hasType(getIdent(o);Client), o 2 Client

Active classes are translated in a slightly di�er-

ent way. Indeed, their object sort is declared as

dynamic, in order to provide means to describe, in

the semantics of the overall system, their object

evolution.

spec StockHandler0 = State

then

dsort StockHandler

label StockHandler-Label

info StockHandler-Info

sorts StockHandler < Object

vars o : Object;

axioms

hasType(getIdent(o); StockHandler),

o 2 StockHandler

Also in this part associations are dealt with in

an analogous way with respect to classes. Let

us, for instance, consider the speci�cation corre-

sponding to the association orders.

spec Orders = State and Order and

Client

then

sorts Orders < BinAssocState

vars gs : State; o : Ident; ord : Orders;

axioms AssocState(orders; gs) 2 Orders

size(RAssoc(o; ord)) = 1

Two points worth to keep in mind are that in

Casl there is the principle \same-name same-

thing" imposing that the realizations of sorts

(functions) [predicates] with the same name in

di�erent parts of the same overall speci�cation

must coincide. Thus, for instance, the semantics

of the basic parts that are imported by the spec-

i�cations representing individual classes must be

unique, so that we will have just one global state.

The second point is that the models of the over-

all speci�cation are not required to be built from

models of the individual subspeci�cation, that is

the structure of the speci�cation is not re
ected

onto the architecture of the model. Therefore, the

choice about the structuring of the information,

for instance by layering the speci�cations repre-

senting individual classes, does not a�ect the se-

mantics we are proposing for a class diagram, but

only its presentation.

3 UML State Machines

In Reggio et al. (1999b) we present our com-

plete formalization of UML state machines us-

ing Casl-Ltl, and a short version has been pre-

sented in Reggio et al. (2000); here we brie
y re-

port the main ideas.

Assume to have a given active class ACL with a

given associated state machine SM. The instances

of ACL, called using a UML terminology active

objects, are just processes and we model them by

using a glts. We build such glts, named in the

following GLTS, and specify it algebraically with

the speci�cation Acl-Dynamic. In Fig. 6 we re-

port an example of a state machine, precisely the

one associated with the active class Invoicer of

the class diagram in Fig. 5.

To avoid confusion between the states and the

transitions of the state machine SM with those of

the lts GLTS, we will write from now on GLTS-

states and GLTS-transitions when referring to

those of GLTS.

We assume that all \static" information about

the class ACL (and the others), like for in-

stance which are the attributes/operations of

ACL, which are their types, which are found in

the class diagram, are given in the speci�cation

Context, de�ned before in Sect. 2.

Accordingly to the method described in Larosa

and Reggio (1997) we determine the speci�cation

Acl-Dynamic by analyzing the nature of GLTS

in several steps as follows.

Is GLTS simple or structured? To decide

whether GLTS is simple or structured, we need

to know whether an active object correspond to

a single thread of control (running concurrently

with the others), or to several ones?

Unfortunately, UML 1.3 is rather ambiguous

for what concerns this point. Indeed, somewhere

it suggests that there is exactly one thread, oth-

erwise, it assumes that there are many threads.

However, this seems to be what is called in UML

a \semantic variation point", thus we consider

the most general case, by assuming that an ac-

tive object may correspond to whatever number

of threads, and that such threads execute their

activities in an interleaving way. We have thus

two possibilities, consider GLTS to be

{ a structured glts, where each active compo-

nent correspond to a thread, but in this case

we should de�ne several GLTS, one for each

choice of the number of the existing threads;

{ a simple glts, where each of its transitions

corresponds to one of the possible existing

threads that executes part of its activity, in

this case a unique GLTS will be su�cient.

Here, we take the second choice.

Determining the granularity of the GLTS-

transitions We model an active object by

means of a glts, that means that we model

the behaviour of such object by splitting it into

\atomic" pieces (the GLTS-transitions). Thus, to

de�ne GLTS, we must �rst determine the granu-

larity of this splitting.

We assume that each GLTS-transition corre-

sponds to performing a part of a state machine

transition. Then the atomicity of the transitions

of SM (run-to-completion condition) required by

UML 1.3 will be guaranteed by the fact that,

while executing the various parts of a transition

triggered by an event, the involved threads cannot

dispatch other events. In this case, also the parts

of state machine transitions triggered by di�erent

events may be executed concurrently.

Determining the GLTS-Labels The GLTS-

labels (labels of the glts GLTS) describe the pos-

sible interactions/interchanges between the active

objects of class ACL and their external environ-

ment (the other objects comprised in the model).

A GLTS-label, which formalizes the interac-

tions with the external environment happening

during an GLTS-transition, will be a triple con-

sisting of a set of input interactions, the received

time, and a set of output interactions. This choice

is sound because the time is received at any step.

spec Acl-Label =

Time and FiniteSet[Acl-Input] and

FiniteSet[Output] then

free type Acl-Label ::=

h ; ; i(FinSet[Acl-Input];

Time;

FinSet[Output])

As a result of a careful scrutiny of UML 1.3 we

can deduce that the basic ways the active objects

interact with the other objects are the following,

classi�ed in \input" and \output":

input:

� to receive a (synchronous/asynchronous)

operation call from another object

� to receive a signal from another object

� to be destroyed by another object

� to read an attribute of another object

� to have an attribute updated by another

object

output:

� to call a (synchronous/asynchronous) op-

eration of another object

� to send a signal to another object

� to create/destroy another object

� to update an attribute of another object

� to have an attribute read by another ob-

ject

spec Acl-Input =

Ident and Name and

List[Value] and Context then

free f

type Acl-Input ::=

I scall(Ident;Name;List[Value])? j

I acall(Ident;Name;List[Value])? j

I return(Ident;Name;Value)? j

I send(Ident;Name;List[Value])? j

I destroy(Ident)? j

I read(Ident;Name;Value)? j

I update(Ident;Name;Value)?

axioms

isaClass(id ;ACL) ^ isanOp(ACL;op) ^

matches(argType(op);vl))

def (I scall(id ;op; vl))

: : : : : : :

g

spec Output =

Ident and Name and

List[Value] and Context then

free f

type Output ::=

O scall(Ident;Name;List[Value])? j

O acall(Ident;Name;List[Value])? j

O send(Ident;Name;List[Value])? j

O create(Ident;Name)? j

O destroy(Ident;)? j

O read(Ident;Name;Value)? j

O update(Ident;Name;Value)?

axioms

: : : : : : :

g

Determining the GLTS-States The GLTS-

states (states of the glts GLTS) describe the in-

termediate relevant situations in the life of the

objects of class ACL.

On the basis of UML 1.3 we found that to de-

cide what an object has to do in a given situation

we surely need to know:

{ the object identity;

{ the set of the (names of the) states (of the

state machine SM) that are active in such sit-

uation;

{ whether the threads of the object are in some

run-to-completion steps, and in such case

which are the states that will become active

at the end of such steps, each one accompa-

nied by the actions to be performed to reach

it;

{ the values of object attributes;

{ the status of the event queue.

Thus the GLTS-states must contain at least such

information; successively, when de�ning the tran-

sitions we discovered that, to detect event occur-

rences, we need also to know:

{ some information, named history in the fol-

lowing, on the past behaviour of the object,

precisely the times when the various states of

the state machine SM became active;

{ the previous values of the expressions appear-

ing in the change events of the state machine

SM.

The GLTS-states are thus speci�ed by the follow-

ing Casl-Ltl speci�cation.

spec Acl-State =

Ident and Configuration and

Attributes and Acl-Event Queue and

History and ChangeInfo then

free type Acl ::=

: h i(Ident;

Con�guration;

Attributes;

Acl-Event Queue;

History;

ChangeInfo) j

: terminated(Ident)

where id : terminated are special elements repre-

senting terminated objects.

A con�guration contains the set of the states

of the state machine that are active in a situa-

tion and of those states that will become active

at the end of the current run-to-completion step

(if any), the latter are accompanied by the ac-

tions to be performed to reach such states. Here

we do not report the speci�cations of the various

parts of the state (they can be found in Reggio

et al. (1999b)).

Determining the Information The informa-

tion on the transitions of GLTS describes which

stimuli have been generated in such transitions,

not detectable by looking at the transition labels,

precisely start and end of self calls, self-sent sig-

nals, and dispatched events. For brevity, we do

not report here Acl-Info, its speci�cation (see

Reggio et al. (1999b)).

Initial

Invoicing

Invoice / OS = Order.allInstances->
Select(status = pending)->
asSequence/ OS = Order.allInstances->
Select(status = pending)->asSequence;
Do;

Do [OS->noEmpty] /
O = OS -> first;
if Quantity(O) <= Quantity(O.what)
 {Stk.get_Product(Quantity(O);O.what);
 Mailer.SEND_INVOICE(......);};
OS = OS->excluding(O);
Do;

Do
[OS->Empty]

Stop

Stop

Figure 6: The State Machine Associated with In-

voicer

Determining the GLTS-Transitions A

GLTS-transition, i.e., a transition of the glts

GLTS, corresponds to one of the following

1. to dispatch an event,

2. to execute an action,

3. to be destroyed by dispatching a special event,

4. to receive some inputs, to have the attributes

read from other objects and to raise the time

and change events.

Moreover, (4) may be also performed simulta-

neously to (1), (2) and (3), because we cannot

delay the reception of inputs, the access of the

attributes from other objects, and the raising of

time and change events.

It is important to notice that the GLTS-

transitions and the transitions of the state ma-

chine SM are di�erent in nature and are not in

a bijective correspondence. To clarify such re-

lationship we partly report in Fig. 7 the tran-

sition tree associated with the state machine of

Fig. 6 (to simplify the picture we only report the

con�guration and the event queue of each GLTS-

state). There it is possible to see that one state

machine transition corresponds to a (unnecessar-

ily contiguous) sequence of GLTS-transitions.

The GLTS-transitions are formally de�ned by

the axioms of the following speci�cation (recall

that because Acl is a dynamic sort, we have

also the implicitly declared transition predicate

: ��! : Acl-Info �Acl � Acl-Label � Acl).

spec Acl-Dynamic =

Acl-Label and Acl-State and Acl-Info then

Initial, {}

Initial, {Invoice}Initial, {Stop}

Initial, {Invoice, Stop}

Invoicing , {Stop}

receiving Invoice
<{Invoice},t,{}>

receiving Stop
<{Stop},t1,{}>

executing OS= ...
<{},t4,{}>

dispatching Stop
<{},t"’,{}>

receiving Stop
<{Stop},t,{}>

dispatching Stop
<{},t’,{}>

Final, {}

dispatching Invoice
<{},t2,{}>

executing send(Do)
<{},t3,{Do}>

Invoicing , {Stop}

Invoicing , {Stop, Do}

receiving Invoice
<{Invoice},t,{}>

Figure 7: A fragment of a transition tree

free f

dsort Acl label Acl-Label info Acl-Info

axioms

: : : : : :

cond) i : s

l

��! s

0

: : : : : :

g end

To master complexity, to improve readability

and to o�er a modular set for easily handling dif-

ferent interpretations of the o�cial (but informal)

semantics of UML and of its various versions, we

use in such axioms several auxiliary operations,

whose name is written in sans serif font. Here,

we report only the axiom de�ning the transitions

corresponding to dispatch an event, for the other

see Reggio et al. (1999b). .

Dispatching an Event If the active object

is not fully frozen executing run-to-completion

steps (checked by not frozen), an event ev is

ready to be dispatched (checked by dispatchable),

and outs is a set of outputs correspond-

ing to have an attribute read (checked by

Read Attributes ACL), then GLTS has a transi-

tion, with the label made by the received in-

puts ins, the time t , and the sent outputs outs,

where the history has been extended with the

current states, the received inputs have modi-

�ed the attribute status, as described by Updates,

and the events generated by the inputs received

from outside (Events Of(ins)) plus the raised

time and change events (de�ned by TimeEvs and

ChangeEvs) have been added to the event queue.

Notice that Updates returns a description of

how to modify the attributes, called here e�ect,

and not directly the new attribute status; that is

needed to allow to compose the attribute trans-

formations.

Dispatch(ev ; conf ; e queue; ins; attrs; id) =

conf

0

; e queue

0

means that dispatching event ev in the con�gura-

tion conf changes it to conf

0

and changes e queue

to e queue

0

.

not frozen(conf) ^

dispatchable(ev ; e queue) ^

Read Attributes ACL(outs;attrs) ^

Dispatch(ev; conf ; e queue; ins; attrs; id) =

conf

0

; e queue

0

^

ChangeEvs(ins;attrs; id; chinf) =

ch-evs; chinf

0

)

Dispatched(ev) : ��!

id : hconf ;attrs; e queue;history; chinf i

hins;t;outsi

�������!

id : hattrs

0

; conf

0

; e queue

00

;history

0

; chinf

0

i

where

attrs

0

= apply(Updates(ins);attrs)

history

0

= hactive states(conf); ti & history

e queue

00

=

put(TimeEvs(attrs; id ;history; t) [ch-evs[

Events Of(ins); e queue

0

)

4 Semantics of UML models

The semantics of a whole UML model is �nally

given by the combination of the speci�cations giv-

ing the semantics of the single views determined

by the various diagrams that compose the model.

Summarizing we have

� the \static view", i.e., the class diagram (for

simplicity we have assumed to have a unique

class diagram), which de�ned a speci�cation

named Class Diagram (see Sect. 2) provid-

ing both context information and a model for

the objects and the associations among them.

� some local dynamic views, i.e., some state

machines associated with active classes, say

ACL

1

, . . . , ACL

p

, which de�ned some

speci�cations named Acl-Dynamic

1

, . . . ,

Acl-Dynamic

p

giving the glts's describing

the behaviour of the instances of such classes.

For each active class in the model without an

associated state machine, say ACL

1

, . . . , ACL

q

,

we de�ne the speci�cations of the glt's describing

the behaviour of their instances.

spec Acl-Dynamic =

Acl-Label and Acl-State and Acl-Info then

dsort Acl label Acl-Label info Acl-Info

where the speci�cations of the labels, of the

states, and of the information (Acl-Label, Acl-

State,Acl-Info) are de�ned as in Sect. 3. Here

we have no axioms, because in the UML model

there are no views describing the behaviour of the

instances of this class.

The speci�cation Stimulus of the stimuli is

the the trivial translation into Casl of the UML

stimuli (see UML 1.3 p. 2-86) and hence we do

not report it.

The speci�cation System-Label of the labels

of the system can only be given by analyzing

those diagrams where the interactions with the

external environment. Since we are not present-

ing here those kind of diagrams (e.g., sequence

and use case) we also omit this speci�cation.

In the following speci�cation System we in-

troduce the sort of the overall system state, that

is a set of objects and associations, extending

the speci�cations corresponding to class diagrams

and to active classes.

Class Diagram and

Acl-Dynamic

1

and . . . and Acl-Dynamic

p

and

Acl-Dynamic

1

and . . . and Acl-Dynamic

q

and

System-Label and FiniteSet[Stimulus] then

dsort State label System-Label

info FinSet[Stimulus]

type State ::=

� j jj (Object;State) j jj (Association;State)

Then we have to introduce some axioms in or-

der to put together the information given by the

di�erent parts. For instance, we give an axiom

stating that the initial and �nal states of a se-

quence of transitions corresponding to an oper-

ation call must be related by that operation al-

ready in the speci�cation corresponding to the

class diagram.

i : s

l

��! s

0

^ Start Call(i ; id ; op; vl) ^

in one case(s

0

;

fI ::End Call(I ; id ; op; vl)g until

(fX :End Call(I ; id ; op; vl)g ^ [X � X = s

F

]))

)

call(id ; op; s; s

F

)

The intuitive meaning of this axiom that re-

quires the respect of the constraints on the oper-

ations put in the class diagram is as follows.

If the system in state s performs a transition go-

ing into state s

0

corresponding to start an op-

eration call (checked on the associated informa-

tion by the predicate Start Call) and from state

s

0

the system may perform a sequence of transi-

tions such that the call is ended when reaching

state s

F

,

then the predicate characterizing the execution

of the called operation op (de�ned in the spec-

i�cation Class Diagram) must hold on s and

s

F

.

Though most of the identi�cations needed are

already given by the \same-name same-thing"

principle of Casl, we also need axioms stating

that an identity is known in a system state i� it

corresponds to a component of the system, that

can be easily inductively de�ned or axioms stat-

ing that for active classes, getting the identity

corresponds to selecting the identity component

of their state tuples. There are several of such

axioms, that, though quite trivial to be expressed

would produce a long boring list.

Much more interesting is the following axiom,

that describes how the transitions of the overall

system are built starting from the transitions of

the individual active components, using several

auxiliary functions, that we omit, as they are not

interesting.

^

n

i=1

inf

i

: a

i

l

i

��! a

0

i

^

Ok Labels(l

1

: : : l

n

l) ^

Read Attributes(l

1

: : : l

n

l ;o

1

: : : o

k

p ss) ^

Modi�ed(l

1

: : : l

n

l) = fid

1

; : : : ; id

k

g ^

^

k

j=1

getIdent(o

j

) = id

j

^

Changes(l

1

: : : l

n

l ; fo

1

; : : : ;o

k

g) = fo

0

1

; : : : ;o

0

k

g ^

Created(l

1

: : : l

n

l) = fo

1

; : : : ;o

m

g)

Stimuli Of(l

1

: : : l

n

l ; inf

1

; : : : ; inf

n

) :

a

1

jj : : : jja

n

jjo

1

jj : : : jjo

k

jjp ssjja ss

l

��!

a

0

1

jj : : : jja

0

n

jjo

0

1

jj : : : jjo

0

k

jjo

1

; : : : ;o

m

jjp ssjja ss

The intuitive meaning of the above axiom is as

follows. If the following conditions are satis�ed:

� a group of active objects (a

1

, . . . , a

n

) may

perform some transitions, accordingly to the

speci�cation of their active classes;

� the inputs and the outputs appearing on their

labels, and on the label l of the resulting

transition (that represents the interactions of

the overall system with he environment dur-

ing such move) are pairwise matched (i.e., any

thing sent is received by the addressee, includ-

ing the external environment and only sent

things are received); this is checked by the

predicate Ok Labels;

� the inputs corresponding to read the at-

tributes of passive objects are in accord with

their actual values; this is checked by the pred-

icate Read Attributes;

� the identities of the passive objects whose

state is modi�ed in this transitions are

id

1

, . . . , id

k

(determined by the operation

Modi�ed);

� o

1

, . . . , o

k

are their states;

� such states are changed in o

0

1

, . . . , o

0

k

by the

moving active objects (determined by the op-

eration Changes);

� some new objects o

1

, . . . , o

m

are created (de-

termined by the operation Created);

then the whole system consisting, besides the ac-

tive and passive components described so far, by

some other set a ss (p ss) of active (passive) com-

ponents, may perform a transition labelled by l ,

where the states of the active objects are changed

as described by their transitions, and whose infor-

mation is given by stimuli determined either by

the exchanged inputs or by the local information

of the moving active objects.

It is interesting to note that there is no guar-

antee that the speci�cation of the overall system

is consistent. Indeed, if, for instance, the con-

straints imposed by the class diagrams are not

met by the behaviour described by the state ma-

chines, then the UML model corresponds to no

systems and this is shown by the fact that the

overall speci�cation is inconsistent.

5 Future work and conclusion

The kinds of diagram considered so far are the

class diagrams, and the statechart diagrams.

We are currently working on the sequence di-

agrams. Each sequence diagram is modelled by

an event structure, where events are sets of UML

stimuli, that is, a partial order on sets of UML

stimuli. A UML formal system satis�es such an

event structure if there is a chain in the partial

order that is a path in the transition tree.

Some other kinds of diagrams that we have

partly analyzed, and that we conjecture can be

added to our schema without major problems, are

� the collaboration diagrams, as they are rather

similar to the sequence diagram;

� the activity diagrams, as they are a special-

ization of the statechart diagrams.

Moreover, we still have to take into account the

deployment diagrams, though we do not foresee

particular problems for their formalization within

our framework, while we are doubtful about the

possibility of giving a formal semantics to the use

case diagrams, because they are, roughly speak-

ing, too close to natural language descriptions.

We translate diagram annotations as well, cur-

rently using the OCL constraints, but we are in

some sense parametric w.r.t.such annotations, so

that we could easily substitute any other con-

straint language for OCL.

The mechanisms for self-extension provided by

the UML, like stereotypes, are still to be taken

into account.

We have presented a formalization of a few

kinds of UML diagrams. The main di�erence

with other approaches is that ours is supporting

the multiview philosophy, in the sense that each

part of a UML model has a proper formalization

which is integrated with those of the other parts.

The most interesting result, besides the obvious

advancement towards a complete precise UML,

is, from our point of view, the clari�cation of

UML achieved by translating it in algebraic spec-

i�cations.

For instance, even from this small part concern-

ing just two kinds of diagrams, it results clear that

the separation of concerns apparently achieved by

using class diagrams to describe the system struc-

ture and state machines to capture the system

dynamics only reaches so far. Indeed, the class

diagram imposes restrictions on the dynamic be-

haviour of the objects, through the constraints on

the operations and on the classes. Vice versa, a

state machine cannot be considered in isolation,

as we need to know if it is associated to an active

or to a passive class and which are the opera-

tions/signals/attributes of such class and of the

other classes.

Moreover, we have also found that we need to

know how a UML model interacts with its ex-

ternal environment, in order to describe the la-

bels of the overall system. For instance, in our

example the objects of class Invoicer call an op-

eration SEND INVOICE (see Fig. 6) of some en-

tity belonging to the external environment. We

had to introduce the stereotype <<external>>

in order to annotate that the object kept in the

Mailer attribute corresponds to something exter-

nal to the system and, for that reason, the calls

to SEND INVOICE have to appear on the label of

the system transition.

We expect that furthering our investigation to

other kinds of diagramsmore relationships among

the parts of a UML model will be exposed, deep-

ening our understanding of the UML.

References

Allemand, M., Attiogbe, C., and Habrias, H., ed-

itors (1998). Proc. of Int. Workshop \Compar-

ing Speci�cation Techniques: What Questions

Are Prompted by Ones Particular Method of

Speci�cation". March 1998, Nantes (France).

IRIN - Universite de Nantes.

France, R. and Rumpe, B., editors (1999).

UML'99 - The Uni�ed Modelling Language.

Number 1723 in Lecture Notes in Conputer Sci-

ence. Springer Verlag.

Larosa, M. and Reggio, G. (1997). A Graphic

Notation for Formal Speci�cations of Dynamic

Systems. Technical Report DISI{TR{97{3,

DISI { Universit�a di Genova, Italy. Full Ver-

sion.

The CoFI Task Group on Language De-

sign (1998). Casl Summary. Version

1.0. Technical report. Available on

http://www.brics.dk/Projects/CoFI/.

Reggio, G., Astesiano, E., and Choppy, C.

(1999a). Casl-Ltl : A Casl Exten-

sion for Dynamic Reactive Systems {

Summary. Technical Report DISI-TR-99-

34, DISI { Universit�a di Genova, Italy.

ftp://ftp.disi.unige.it/person/ReggioG/

as ReggioEtAll99a.ps.

Reggio, G., Astesiano, E., Choppy, C., and

Hussmann, H. (1999b). A Casl Formal

De�nition of UML Active Classes and As-

sociated State Machines. Technical Report

DISI-TR-99-16, DISI { Universit�a di Gen-

ova, Italy. Revised March 2000. Available at

ftp://ftp.disi.unige.it/person/ReggioG/

as Reggio99b.ps.

Reggio, G., Astesiano, E., Choppy, C., and Huss-

mann, H. (2000). Analysing UML Active

Classes and Associated State Machines { A

Lightweight Formal Approach. In Proc. FASE

2000 - Fundamental Approaches to Software

Engineering, Lecture Notes in Computer Sci-

ence. Springer Verlag, Berlin.

Rumbaugh, J., Jacobson, I., and Booch, G.

(1999). The Uni�ed Modeling Language Ref-

erence Manual. Object Technology Series.

Addison-Wesley.

S.Kent, A.Evans, and Rumpe, B. (1999). UML

Semantics FAQ . In Moreira, A. and Demeyer,

S., editors, ECOOP'99 Workshop Reader, Lec-

ture Notes in Conputer Science. Springer Ver-

lag, Berlin.

UML Revision Task Force (1999). OMG

UML Speci�cation. Available at

http://uml.shl.com.

