
Plugging Data Constructs into

Paradigm-Speci�c Languages: towards an

Application to UML

?

Egidio Astesiano, Maura Cerioli and Gianna Reggio

DISI{Dipartimento di Informatica e Scienze dell'Informazione,

Universit�a di Genova, Via Dodecaneso, 35, 16146 Genova, Italy,

e-mail: fastes,cerioli,reggiog@disi.unige.it

Abstract. We are interested in the composition of languages, in par-

ticular a data description language and a paradigm-speci�c language,

from a pragmatic point of view. Roughly speaking our goal is the de-

scription of languages in a component-based style, focussing on the data

de�nition component. The proposed approach is to substitute the con-

structs dealing with data from the \data" language for the constructs

describing data that are not speci�c to the particular paradigm of the

\paradigm-speci�c" language in a way that syntax, semantics as well as

methodologies of the two components are preserved.

We illustrate our proposal on a toy example: using the algebraic spec-

i�cation language Casl, as data language, and a \pre-post" condition

logic �a la Hoare, as the paradigm speci�c one.

A more interesting application of our technique is fully worked out in [16]

and the �rst step towards an application to UML, that is an analysis

of UML from the data viewpoint, following the guidelines given here, is

sketched at the end.

Introduction

Languages, including speci�cation languages, oriented to particular paradigms,

like for instance object-oriented, (higher-order) functional, concurrent languages,

frequently have poor, or insu�ciently investigated constructs to specify the used

data, sometimes even no constructs at all.

This is somehow reasonable, because the main e�orts of the language design-

ers are spent, especially if the language is part of an open research proposal,

on the most interesting constructs, those qualifying the language itself and the

attention of the users should focus on the paradigm-speci�c part. Moreover,

in many cases it is possible to realize the interesting data structures using the

paradigm-speci�c constructs (for instance, static data by object-oriented classes,

?

Partially supported by CoFI, ESPRIT Working Group 29432, and Murst - Saladin

(Software Architecture and Languages to coordinate Distributed Mobile Compo-

nents).

queues and stacks by CCS processes, see, e.g., [15]), though this solution is not

very e�cient and leads to unnaturally complicated speci�cations (programs).

Though many designers (mainly in the \formal method community") regard

the data part as not relevant, this opinion cannot be shared from the pragmatic

point of view of an end user, because any realistic application requires some

nontrivial data. Indeed, for instance, the �rst attempt to use CCS [15] for some

realistic applications, precisely protocol speci�cation, led to design LOTOS [12],

where powerful constructs for data were provided by an algebraic speci�cation

language ACTONE [7]. Moreover, in the literature of the last decades many

attemtps to combine paradigm-speci�c languages with data languages have been

presented. For example, combinations of an algebraic speci�cation language with

{ a process calculus: other than LOTOS, we have PSF, [13,14], a combination

of a process calculus similar to ACP with ASF (Algebraic Speci�cation

Formalism) [4];

{ Petri nets [17]: many proposals see, e.g., [18, 2, 6, 23];

{ statecharts [9]: see in [16] a combination obtained following the method pro-

posed here.

But, there are also combinations using Z for the data part, for example with

statecharts [5, 24], and with an object-oriented language as Object-Z [19].

On the other hand, �xing some (even powerful) data constructs in a paradigm-

speci�c language can restrict the community of potential users, if some of them

are already familiar with di�erent style(s) of data description or if some com-

munity has very speci�c needs in terms of datatypes.

Thus, the best solution, in our opinion, is to divorce the choice of the language

for the data de�nition (from now on DL) from that of the language for paradigm-

speci�c constructs (from now on PSL) as much as possible, aiming at a sort of

modular language design, or component based language design, where the data

part can be plugged in.

Since the existing languages have not been introduced in this style, we �rst

have to cope with the problem of extracting from their descriptions the com-

ponents we want to combine. Therefore, we have to analyze the constructs of

a paradigm-speci�c language in order to identify the \just-data" part, that we

will replace by our DL. Section 1 will be devoted to the description of a layering

method.

Once we have �xed the components we want to combine, the next step is the

de�nition of (the semantics of) the resulting composition.

Several examples of compositions in literature are the origin of new theories

and techniques, to get a more powerful framework, where the constructs of both

languages can be given a semantics (e.g., algebras as states, concurrent ML).

Another approach quite widespread to solve this problem is using the fea-

tures of one language/formalism to express concepts of both the data and the

paradigm-speci�c levels, in particular, for instance, coding one of the languages

into the other (e.g., the use of Z to specify processes seen as sets of traces;

the use of a higher-order logic language to specify axiomatically processes seen

as in�nite traces modelled as functions; LTL [1], where the algebraic speci�ca-

tion techniques and related constructs are extended to handle processes seen as

labelled transition systems).

Neither solution is palatable to us, for pragmatic reasons. Indeed, in either

case one or both the starting languages (or at least their semantics) is rede�ned,

so that tools, results, theorems and \pieces of code" cannot be simply inherited

but have to be somehow adjusted (validated). In the most drastic cases, even

the \programming" techniques cannot be lifted from the original framework(s)

to the combination and this is clearly unacceptable from the user point of view.

We want to keep the original semantics of each construct, building a mechanism

to pass the results of computations from one framework to the other.

Therefore, in Section 2, we will sketch a method to integrate the semantics

of the two parts that does not require new theory. Of course there is no guar-

antee that such a method works in general; indeed, we need (very few and most

reasonable) assumptions on the way the syntax and the semantics of the two

starting languages are given. We will use as a running example the integration

of the Casl algebraic speci�cation language and of HLL a simple logic �a la

Hoare.

1 A Data-Driven Language Taxonomy

The problem we are tackling is the composition of two languages: ideally, one of

them, say PSL, having constructs for some speci�c paradigm, that we will call

paradigm-speci�c language, but with questionable or even missing constructs for

datatypes; the other, say DL, providing a rich language for describing datatypes,

that we will call data language. It is interesting to note that from any paradigm-

speci�c language having a reasonable set of constructs for data de�nition, like

for instance ML, the data sublanguage can be extracted and used as DL in our

construction.

In Table 1 and Table 2 we present examples of both categories of languages.

Casl [21]
algebraic speci�cation language

Z [20] mathematical oriented notation

ML (the purely functional sublan-

guage of) [11]

functional programming language

PASCAL data sublanguage

the PASCAL sublanguage consisting of the type

declarations and of the expressions

Table 1. Data Languages

1.1 Data (Part of a) Language

In order to illustrate the concepts on our running example, let us start with a

short introduction on the data language we are going to use, that is Casl.

Statechart [9, 10] visual notation for reactive systems

CCS with value passing [15]

speci�cation language for processes communicating

by handshaking along channels

CCS with value passing and para-

metric channels

speci�cation language for processes communicating

by handshaking along channels, where also channel

names may be communicated

Petri nets [17]
visual notation for concurrent parallel systems

PASCAL imperative programming language

Linear time temporal logic
a logic for processes

ML [11] functional programming language

UML plus OCL [22]

visual object oriented notation (a subset/pro�le hav-

ing a formal semantics)

Table 2. Paradigm Speci�c Languages

Casl (Common Algebraic Speci�cation Language) The speci�cation lan-

guage Casl has been designed within the CoFI

1

initiative, an open group with

representatives from almost all the European groups working in this area, started

by ESPRIT BRA COMPASS in cooperation with IFIP WG 1.3 (Foundations of

Systems Speci�cation) and recently evolved in an ESPRIT Working Group.

Though Casl is reasonably concise and expressive, restrictions (e.g., for in-

terfacing with existing tools) and extensions (e.g., for dealing with speci�c appli-

cations, like reactive systems) are expected to be de�ned. Indeed, Casl has been

planned from the beginning as a family of languages coherent on the common

parts and what we call Casl should be more precisely called basic Casl.

We have no pretension to describe the syntax nor the semantics of Casl, for

which we refer to [21, 3] or to the web site:

http://www.brics.dk/Projects/CoFI/Documents/CASL/Summary/index.html.

We shortly list the main features of Casl, as a reminder for readers already

familiar with the language.

Basic speci�cations allow the declaration (de�nition) of sorts, subsorts, func-

tions (both partial and total) and predicates. Terms are built, starting from

typed variables, by applying functions to terms of any subsort of the expected

argument sort (that is, cohercion to the supersort is implicit) or projecting a

term t of some sort onto a subsort s (t as s). Terms are used to state axioms,

that are �rst-order formulae built from equations, predicate applications (with

the same rules as for function application), de�nedness assertions, and subtyping

membership predicates. Finally, datatype declarations are provided for concise

speci�cation of sorts together with some constructors and (optional) selectors.

The semantics of a basic speci�cation consists of a signature of the form

(S; TF; PF; P;�

S

) (where S is the set of sorts, TF and PF are respectively

total and partial functions, P are predicates and �

S

is the subsorting relation)

and a class of many-sorted partial �rst-order structures, i.e., algebras where the

functions are partial or total, and where also predicates are allowed.

1

See http://www.brics.dk/Projects/CoFI/.

Structured speci�cations provide constructs for translation, reduction, union,

(free) extension

2

of speci�cations. Generic speci�cations may also be de�ned.

The semantics of structured speci�cations belongs to the same domain as that

of basic speci�cations.

Other important features of Casl are the architectural speci�cations and the

speci�cations libraries, that are not relevant here.

Data Language Taxonomy The parts of a language concerning data are ba-

sically those used to describe types (if the language is typed, of course), their

elements (the data used in the computations) and to express conditions on the

data. Therefore, we are working in a context where we have the following ingre-

dients.

Types The types are sets, and are denoted by type expressions (in Casl, sorts),

that are built using type constructors, whose semantics is a function resulting

in a set (of values in a suitable universe). Such type constructors are sometimes

user de�ned and introduced by de�nitional constructs. Moreover, we have a set

of rules describing how the type constructors are used to build correct type

expressions.

In Casl there are no type constructors, but only a de�nitional mechanism

for speci�cations, giving the semantics of sorts together with that of functions

and predicates.

Elements The elements are the individual elements of types, called data. Anal-

ogously to the type case, data are denoted by expressions, that are built us-

ing operations, interpreted as functions on data (so having types as source and

target) and such operations may be user de�ned and introduced by de�nitional

constructs. For instance, in Casl operations correspond to functions, introduced

by function declarations and function de�nitions or as constructors/selectors of

data types. Again we have rules expressing how operations are used to build

correct expressions. In most cases, we are interested not only in closed (con-

stant) expressions, but in open expressions as well, used for instance as bodies

of functions (the variables play the role of parameters) or in conditions (the

variables are somehow quanti�ed). The evaluation of such expressions is based

on concepts like environments (or evaluations) and the mechanism is always the

same: variables are added as possible basic expressions and the evaluation of

expressions is based on an extra parameter (the environment) used to give the

value of this new basic case, while the semantics of other constructs remains the

same, with this silent extra parameter.

In Casl expressions are called terms and are built by function application,

starting from constants and (logical) variables. The functions that can be used

are those declared in speci�cations, embedding into supersorts and projections

onto subsorts.

Conditions The conditions are logical formulae used to express properties on

data, and are built using predicates (i.e., functions yielding values in a set of

2

Initiality is a special case of this construction.

special truth values), logical connectives and quanti�ers. In particular, such pred-

icates are quite commonly user de�ned and introduced by de�nitional constructs;

this is the case of Casl, where predicates can be user de�ned. Again we have

rules expressing how conditions are built using these ingredients.

In Casl conditions correspond to the non-terminal FORMULA, whose elements

are partial �rst-order formulae.

In the following we will use data language to denote languages having only

the above constructs. In the literature there are several examples where data

languages are actually the declarative part of larger languages and we �rst have

to evict that part.

1.2 Paradigm-Speci�c Language

Let us now sketch a rather simple variant of Hoare's logic to be used as our

running example of paradigm-speci�c language, apt to express requirements on

elementary imperative programs, consisting of sequences of statements using

only global variables (programs here for short).

HLL (Hoare's Logic Language) A HLL speci�cation consists of a collection

of imperative variable declarations, together with a logical constraint on state

transformation.

Syntax

HSPEC ::= use DEC

�

; constr COND

DEC ::= VAR : TYPE;

TYPE ::= B TYPE j Pointer B TYPE

B TYPE ::= Int j Real

COND ::= ATOM j (COND) j COND^ COND j COND_ COND j :COND j COND) COND

ATOM ::= EXP = EXP j IEXP < IEXP j REXP< REXP

EXP ::= IEXP j REXP j nil j VAR

IEXP ::= NUM j IEXP+ IEXP j IEXP� IEXP j IEXP � IEXP j LEXP

REXP ::= R-NUM j REXP+ REXP j REXP� REXP j REXP � REXP j REXP=REXP j LEXP

LEXP ::= VAR j VAR" j @VAR j @VAR"

The actual form choosen to represent variables and numbers is immaterial; hence

we do not list the corresponding productions.

" denotes pointer dereferencing and @ the initial value of variables.

The rules for building correct expressions are the standard ones, about the

correct typing (and existence) of variables, and are based on static environments

SENV = [VAR !

p

TYPE], associating types with variables. In the following, we

use !

p

to denote partial functions and, for each f : A !

p

B, D(f) � A to

denote the de�nition domain of f .

Static environment are created by declarations accordingly to the following

rules.

` � . ;

` decs . se

` decs x : t; .se[t=x]

x =2 D(se)

Let us now simply sketch some judgments using static environments. Notice

that the judgments on expressions are explicitly giving the type, using the form

se ` exp : t, while those on conditions, for instance, are simply stating their

correctness, using the form se ` cond .

se ` x : se(x)

x 2 D(se)

se ` x : t

se ` @x : t

se ` x : Pointer t

se ` x" : t

se ` x : Pointer t

se ` @x" : t

se ` nil : Pointer t

se ` exp

1

: t se ` exp

2

: t

se ` exp

1

= exp

2

Semantics HLL is used to express properties on programs, written in any given

imperative language. Programs are classi�ed accordingly to the typed variables

they use, i.e., a static environment, and their semantics describes a state trans-

formation.

In the following, let } denote the power set function and B the domain of

standard �rst-order logic; we will denote truth by T and falsity by F , and use

the standard connectives of such logic with standard notation as well. Moreover,

let LOC be a denumerable set (of locations) and n =2 LOC a distinct value

corresponding to the nil pointer.

VALUE = R[Z[LOC [fng

ENV = [VAR!

p

LOC]

STATE = [LOC !

p

VALUE]

P : HSPEC! [[(ENV � STATE)!

p

STATE]! B]

T : TYPE! }(VALUE)

D : DEC

�

! SENV

C : COND! [(ENV � STATE � STATE)! B]

E : EXP! [(ENV � STATE � STATE)!

p

VALUE]

Since locations are not typed and there are elements (like n) having more than

one type, we have to introduce a mechanism to match the static information to

environments and states.

For each static environment se let (ENV�STATE)

se

consist of all pairs (�; �)

s.t.D(se) = D(�) and for all x s.t. se(x) = t if �(x) 2 D(�) then �(�(x)) 2 T (t).

Moreover, let Prog

se

be the set of programs correctly using the typed variables

provided by se, that is Prog

se

� [(ENV � STATE)

se

!

p

STATE], and for all

p 2 Prog

se

if p(�; �) = �

0

then (�; �

0

) 2 (ENV � STATE)

se

.

We de�ne the semantic functions by induction, here we just quote some rules,

omitting for instance the meaning of operations and predicates that we assume

obvious.

{ P(use decs; constr cond)(p) = T i�

p 2 Prog

D(decs)

and C(cond)

�;�;p(�;�)

= T for all (�; �) 2 D(p).

{ D(decs) = se i� ` decs . se

{ T (Int) =Z; T (Real) = R; T (Pointer t) = LOC [fng

{ the semantics of logical connectives is standard.Let us see, for instance, the

rule for the equality atoms:

C(exp

1

= exp

2

)

�;�;�

0

=

n

T if E(exp

1

)

�;�;�

0

= v = E(exp

2

)

�;�;�

0

F otherwise

{ the rules for the integer and real operations are the obvious ones, relying

on the de�nition of the corresponding mathematical functions; moreover we

have

E(x)

�;�;�

0

= �

0

(�(x)) E(x")

�;�;�

0

= �

0

(�

0

(�(x))))

E(@x)

�;�;�

0

= �(�(x)) E(@x")

�;�;�

0

= �(�(�(x))))

Paradigm Speci�c Language Taxonomy Consider now a paradigm-speci�c

language PSL. A �rst distinction we make on its constructs is given by the

context needed in order to give them a semantics. Indeed, we have a data part,

whose semantics is based on set(s) of values, functions and predicates, and a

paradigm-speci�c part, whose semantics requires information about the context

they are used in. For instance, if we consider HLL, we have that the constructs

for B TYPE, those for REXP and IEXP giving the real and integer operations, and

COND are the data part, while pointer dereferencing and imperative variables are

the paradigm-speci�c part, as they need an environment and a state in order to

be evaluated.

Let us make a more re�ned analysis within each category of constructs. The

results of this analysis for the paradigm-speci�c languages in Table 2 will be

sketched in Table 3.

Data Constructs

paradigm-speci�c datatypes PSL

par�spec

are the datatypes that are speci�c

to the language paradigm (i.e., such that some construct of the language

cannot be properly used/de�ned if we drop one of them).

Some examples are time for statecharts, boolean for CCS with value passing

and ML, sets of object identities for UML, and pointers, with the constant

nil, for HLL.

basic data language PSL

basic

is the sublanguage of PSL used to handle the

data that are not paradigm-speci�c, that is those that are not crucial for the

language and can be safely substituted; it is a data language.

This part is empty for several paradigm-speci�c languages (e.g., classical

Petri nets), or it is very poor, consisting just of a few prede�ned datatypes.

Some examples are integers and reals for HLL, the part of ML concerning

the \datatypes" and the \abstract datatypes", and the generic values for

CCS with value passing.

The combination of PSL

basic

� PSL

par�spec

is the sublanguage of PSL that is a

data language.

Paradigm-Speci�c Constructs

pseudo-data constructs PSL

pseudo

are those language constructs (constitu-

ents) used to build correct expressions (type expressions, conditions) that

are not directly denoting a data or an operation but need some extra input

to yield one.

Some examples are updatable variables in imperative languages (yielding a

value for given environment and state), function parameters in functional

languages (yielding a value for given environment built by the call), the

system function returning the current time (yielding a value given the state),

the \happened" construct of statecharts (checking whether an event has

happened and yielding a boolean value for given history of the system). In

particular, in HLL, we have imperative variables and pointer dereferencing.

kernel constructs PSL

ker

are those language constructs (constituents) that

are not involved in data description, though they can use data.

Some examples are statements and subroutines in imperative languages,

methods, classes and objects in object-oriented languages, the diagrams of

visual languages, as UML and Statechart. In HLL this part is the main

construct of HSPEC.

2 A Method for the Combination

Let us now shortly sketch how we can safely realize the combination of the two

languages, that will be made at the level of the abstract syntax, as it is where

their structure is more evident. We cannot, of course, give a method for the

combination of any pair of languages; thus let us start with some assumptions.

2.1 Assumption on DL and PSL

First, we assume that both in the data and in the paradigm-speci�c languages,

there are just one syntactic category corresponding to type expressions, one cor-

responding to expressions and one corresponding to conditions. This requirement

makes clear the correspondence among the syntactic categories of DL with the

corresponding categories of PSL.

For each of these categories, the possible productions are in the following

forms:

TYPE ::= TYPE-CONST(TYPE

�

) j TYPE-ITER(DEC

�

; fTYPE j EXP j CONDg

�

)

EXP ::= OP(EXP

�

) j EXP-ITER(DEC

�

; fTYPE j EXP j CONDg

�

) j VAR

COND ::= PRED(EXP

�

) j CON(COND

�

) j COND-ITER(DEC

�

; fTYPE j EXP j CONDg

�

)

DEC ::= VAR : TYPE;

where TYPE-CONST are the type constructors, OP are operations, PRED are predi-

cates and CON are logical connectives. That is, we have two kinds of constructs for

each non-terminal, that are the application of some constructor to its arguments

and iterators, binding typed variables (representing elements) in open terms.

d

a

t

a

p

a

r

t

p

a

r

a

d

i

g

m

-

s

p

e

c

i

�

c

p

a

r

t

P

S

L

P

S

L

b

a

s

i

c

P

S

L

p

a

r

�

s

p

e

c

P

S

L

p

s

e

u

d

o

P

S

L

k

e

r

S

t

a

t

e

c

h

a

r

t

i

n

t

e

g

e

r

s

,

c

h

a

r

s

,

.

.

.

t

i

m

e

,

s

t

a

t

e

s

(

o

f

t

h

e

c

h

a

r

t

)

,

e

v

e

n

t

s

v

a

r

i

a

b

l

e

s

,

h

a

p

p

e

n

e

d

,

i

s

i

n

s

t

a

t

e

,

s

i

n

c

e

,

b

e

f

o

r

e

,

a

t

v

i

s

u

a

l

p

a

r

t

,

a

c

t

i

o

n

s

C

C

S

w

i

t

h

v

a

l

u

e

p

a

s

s

i

n

g

g

e

n

e

r

i

c

v

a

l

u

e

s

b

o

o

l

e

a

n

s

v

a

r

i

a

b

l

e

s

u

s

e

d

i

n

i

n

p

u

t

p

r

e

�

x

e

s

c

o

m

b

i

n

a

t

o

r

s

(

j

j

,

+

,

.

.

.

)

C

C

S

w

i

t

h

p

a

r

a

m

e

t

-

r

i

c

c

h

a

n

n

e

l

s

g

e

n

e

r

i

c

v

a

l

u

e

s

b

o

o

l

e

a

n

s

,

c

h

a

n

n

e

l

s

v

a

r

i

a

b

l

e

s

u

s

e

d

i

n

i

n

p

u

t

p

r

e

�

x

e

s

c

o

m

b

i

n

a

t

o

r

s

(

j

j

,

+

,

.

.

.

)

P

e

t

r

i

n

e

t

s

s

e

t

s

o

f

t

o

k

e

n

s

w

i

t

h

o

p

e

r

a

t

i

o

n

s

�

,

[

,

�

a

n

d

f

g

v

i

s

u

a

l

p

a

r

t

P

A

S

C

A

L

i

n

t

e

g

e

r

s

,

r

e

a

l

s

,

a

r

r

a

y

,

r

e

c

o

r

d

.

.

.

b

o

o

l

e

a

n

,

p

o

i

n

t

e

r

t

y

p

e

s

,

o

r

d

e

r

e

d

t

y

p

e

s

,

e

n

u

m

e

r

a

t

i

o

n

t

y

p

e

s

c

o

n

s

t

a

n

t

s

,

v

a

r

i

a

b

l

e

s

,

p

a

r

a

m

e

t

e

r

s

o

f

f

u

n

c

t

i

o

n

s

a

n

d

p

r

o

c

e

d

u

r

e

s

,

f

u

n

c

t

i

o

n

c

a

l

l

s

,

p

o

i

n

t

e

r

d

e

r

e

f

e

r

e

n

c

i

n

g

d

e

c

l

a

r

a

t

i

o

n

s

e

x

c

e

p

t

t

h

o

s

e

f

o

r

t

y

p

e

s

,

s

t

a

t

e

m

e

n

t

s

U

M

L

w

i

t

h

O

C

L

O

C

L

b

a

s

i

c

t

y

p

e

s

c

l

a

s

s

e

s

(

e

v

a

l

u

a

t

e

d

a

s

s

e

t

s

o

f

o

b

j

e

c

t

i

d

e

n

-

t

i

t

i

e

s

)

,

a

s

s

o

c

i

a

t

i

o

n

s

,

s

t

a

t

e

s

o

f

s

t

a

t

e

c

h

a

r

t

s

,

t

y

p

e

o

f

a

l

l

t

y

p

e

s

,

c

o

l

l

e

c

t

i

o

n

s

(

s

e

q

u

e

n

c

e

s

,

s

e

t

s

,

b

a

g

s

)

,

b

o

o

l

e

a

n

,

i

t

e

r

a

t

o

r

s

,

h

a

s

t

y

p

e

,

.

.

.

m

a

n

y

o

t

h

e

r

s

a

t

t

r

i

b

u

t

e

s

e

l

e

c

t

i

o

n

,

r

i

g

h

t

/

l

e

f

t

a

p

-

p

l

i

c

a

t

i

o

n

o

f

a

s

s

o

c

i

a

t

i

o

n

,

a

l

l

i

n

-

s

t

a

n

c

e

s

o

f

a

c

l

a

s

s

,

o

p

e

r

a

t

i

o

n

p

a

-

r

a

m

e

t

e

r

s

.

.

.

m

a

n

y

o

t

h

e

r

s

U

M

L

L

i

n

e

a

r

t

i

m

e

(

h

o

m

o

-

g

e

n

e

o

u

s

)

t

e

m

p

o

r

a

l

l

o

g

i

c

a

u

n

i

q

u

e

t

y

p

e

,

w

i

t

h

f

u

n

c

t

i

o

n

s

a

n

d

p

r

e

d

i

c

a

t

e

s

d

e

�

n

i

n

g

t

h

e

l

o

g

i

c

a

l

l

a

n

-

g

u

a

g

e

,

l

o

g

i

c

a

l

c

o

n

n

e

c

t

i

v

e

s

a

n

d

r

i

g

i

d

q

u

a

n

t

i

�

c

a

t

i

o

n

s

e

x

i

b

l

e

v

a

r

i

a

b

l

e

s

,

t

e

m

p

o

r

a

l

c

o

n

-

n

e

c

t

i

v

e

s

M

L

b

a

s

i

c

t

y

p

e

s

,

d

a

t

a

t

y

p

e

s

,

a

b

-

s

t

r

a

c

t

d

a

t

a

t

y

p

e

s

b

o

o

l

e

a

n

,

f

u

n

c

t

i

o

n

a

l

a

n

d

p

r

o

d

u

c

t

t

y

p

e

s

f

u

n

c

t

i

o

n

p

a

r

a

m

e

t

e

r

s

f

u

n

c

t

i

o

n

d

e

c

-

l

a

r

a

t

i

o

n

w

h

e

r

e

t

h

e

s

p

u

r

i

o

u

s

t

y

p

e

a

r

e

e

m

p

h

a

s

i

z

e

d

.

T

a

b

l

e

3

.

T

a

x

o

n

o

m

y

o

f

P

a

r

a

d

i

g

m

-

S

p

e

c

i

�

c

L

a

n

g

u

a

g

e

s

Some examples of iterators are � (returning functional values), the logical

quanti�ers, the subsort de�nition by means of a condition in Casl, and the

set-comprehension notation. As usual, the language will consist only of elements

without free occurrences of variables.

The static semantics has to provide correctness judgments, using static en-

vironment memorizing context information (as the types of the introduced vari-

ables).

In general, languages are given by grammars that do not comply to the

proposed schema. Therefore, we may have to massage somehow the abstract

syntax in order to put it in the correct form, moving some information into the

static semantics part.

This is, for instance, the case of HLL; so we rephrase its grammar accordingly

to the wanted pattern

3

.

HSPEC ::= use DEC

�

; constr COND

DEC ::= VAR : TYPE;

TYPE ::= Int j Real j Pointer TYPE

COND ::= PRED(EXP

�

) j CON(COND

�

)

PRED ::= =j<

CON ::= ^ j _ j : j)

EXP ::= OP(EXP

�

) j VAR j @EXP j EXP"

OP ::= + j � j � j = j nil j : : :

Extra judgements have to be added to the static semantics, like for instance

those restricting the application of the pointer type constructor to basic types

only.

` Int : BType ` Real : BType

` t : BType

` Pointer t : PType

Moreover, some rules have to be restricted, because some veri�cations origi-

nally managed by the context-free grammar have to be incorporated.

This is the case, for instance, of the rule for variable declaration, where the

correctness of the type expression has to be checked as well

` decs . se

` decs x : t; .se[t=x]

x =2 D(se) and (̀ t : BType or ` t : PType)

or pointer dereferencing, where the expression has to be a pointer variable.

se ` x : Pointer t

se ` x" : t

x 2 VAR and ` Pointer t : PType or ` t : PType

There is no need for changing the semantics, as the language generated is

still the same. The only di�erence between this version and the original one is in

the way the language is de�ned, because several \errors" that were intercepted

by a �ner context free grammar are now captured by the static semantics rules.

Having the static checks of either language given in this way allows us to

immediatly apply them to the terms produced by constructs of the other lan-

guage as well, while if the same requirements are captured using more terminals

3

This is the case for Casl as well, but we are not going into the details of the

rephrasing that is straightforward but long to be described.

we should somehow distribute the new cases (productions) among the auxiliary

non-terminals, possibly introducing other categories as well.

In several examples the construction schema for TYPE (EXP, COND) requires

some extra ingredients (other syntactic categories). In such cases the standard

solution is to introduce spurious types, with very restricted uses, whose semantics

(that is a set) has to be provided as well. For instance, the condition is in(st),

that appear in the data language of statecharts, uses st that is a state of the

statechart and, thus, not a data of the language. Technically, we can deal with

this, by introducing a spurious type STATE, denoting the set of the states of the

statechart itself. This technique is also followed in the constraint language of

UML (OCL), where classes, associations etc. are introduced as extra types.

The (dynamic) semantics has to be given compositionally following the struc-

ture of the abstract syntax, only for correct elements, of course.

2.2 Adding Paradigm-Speci�c Data

To combine a language PSL with a data language (a data component) DL means

essentially to replace PSL

basic

with DL. This substitution is done in two steps,

accordingly to the strati�cation among the constructs of PSL induced by our

analisys on the use of data in PSL.

The �rst step is the combination of the \new" data from DL with the

paradigm-speci�c data of PSL, DL

ext

= DL� PSL

par�spec

, while the second one

will be discussed in the next session.

There are (at least) two cases, general enough to jointly cover most pragmatic

examples, that guarantee a safe combination of DL and PSL

par�spec

:

� the datatypes in PSL

par�spec

can be implemented or realized in DL; in par-

ticular this is the case when they already are included in DL (e.g., a boolean

type or a time type realized by a Casl speci�cation or a Z type).

This is indeed the technique we adopt for the combination of HLL and Casl,

using the following speci�cations:

{ the �rst is the axiomatization of the domain of locations; as we only

know only that it is a denumerable set, we inductively build it starting

from the \�rst location" and a \successor" operation.

spec LOC = freetype Loc ::= loc

0

j new(Loc)

{ using the above speci�cation of locations, we build the data type of point-

ers for any given type (sort) s, that is (up to isomorphism) the disjoint

union of locations and the extra value to represent the nil operation.

spec POINTER[sort s] given LOC =

freetype Pointer[s] ::= nil j sort Loc

These \standard" declarations should be considered implicitly added to any

program of DL used in the combination language. If this approach is possible,

it is de�nitely the most convenient, as the combination DL

ext

is the same as

DL, in the sense that each data description in it is also a data description in

DL, and hence tools, theorems and methodologies can be directly reused.

� the types in DL are de�ned by means of type constructors, that expect as

input only other types and hence their semantics is a function over sets of

data. In this case we simply have to add to DL some new type constructors,

with the related operations and predicates, corresponding to the datatypes

in PSL

par�spec

and their integration is given by the fact that the DL type

constructors can deal with any set

4

given in input, so in particular with the

semantic interpretation of the paradigm-speci�c datatypes.

This setting is general enough; it is satis�ed for instance by most program-

ming languages, but not by standard algebraic speci�cation languages (where

the semantics of type expressions is given together with, and mutually de-

pendent on, the semantics of operations and predicates).

At the end of this phase, we have built a new data language describing a class

of structures. Each structure in the class provides the semantics for type ex-

pressions, operations and predicates; hence it is some kind of algebra (�rst-order

structure). Now, this \algebra" has to be used as basis for the semantics of the

rest of the combination language.

2.3 Adding the Paradigm-Speci�c Part

We have to adjust the pseudo-data of PSL, as well as the kernel constructs, to

work on the data language DL

ext

.

In general this is possible, because their semantics is described in a sort of

generic or polymorphic compositional style, working on any structure (collec-

tion of sets, functions and predicates, so basically an algebra) satisfying some

requirements. In most cases, the kind of algebras built by DL

ext

(from now on

DL-algebras) is not the same as the kind of algebras expected by the paradigm-

speci�c constructs of PSL (from now on PSL-algebras). Therefore, we have to pro-

vide a conversion function from DL-algebras into PSL-algebras. This is usually

possible if all concepts expressible in DL-algebras are expressible in PSL-algebras

as well. For instance, if we use as DL the algebraic speci�cation language Casl,

then the DL-algebras are partial algebras. Now, if we want to combine Casl

with an imperative language, whose semantics is given in terms of domains,

then we have to transform the representation of unde�nedness of partial alge-

bras into the representation of unde�nedness of domains, that is the bottom

element. Since it is straightforward to make such conversion (by standard strict

totalization techniques), we are able to combine such languages. But if we try

to combine Casl with a paradigm-speci�c language that has no notion of par-

tiality, then this cannot be done preserving the semantics and the methodology

of the paradigm-speci�c language. In such case, hence, our method cannot be

applied.

If we are able to make the conversion from DL-algebras into PSL-algebras,

then the compositionality of the semantics allows to delegate the evaluation

4

Of course some compatibility among the universes �xed for the semantics of the two

languages has to be assumed.

of subcomponents to the (known) semantics of either DL

ext

or PSL, and the

genericity guarantees that the semantic description of the leading operation is

able to cope with the results of the subcomputations.

The key points are the adaptation of the extra domains present in the se-

mantics for interpreting the pseudo-data to include the \new" values and the

uniform addition of such domains as (silent) arguments to the evaluation rules

of data operations from DL

ext

.

For instance, in our toy example, we have to modify the de�nition of the

set VALUE to include the universe of Casl values (hence indirectly modifying

STATE as well). The evaluation rules for variables and pointers, both before

and after execution, are formulated disregarding the actual de�nition of VALUES,

so they are su�ciently generic to be able to deal with the new values as well.

2.4 The Resulting Combination

If we have successfully �nished our process, we have now a language DL � PSL

where a \program" consists of a declarative part, that is an acceptable declar-

ative part in DL

ext

, and a \program" in PSL without the declarative part (if

any).

The semantics is given in three steps:

{ the declarative part is used to �nd a (class of) DL-algebra(s)

{ DL-algebras are transformed into PSL-algebras

{ the result of the previous step is used as context to de�ne the semantics of

the \PSL-program", using the rules of the semantics of PSL.

Casl � HLL Let us see the �nal result of our technique on the toy example

we are using to illustrate the methodology.

Syntax The overall grammar consists of all productions of the Casl grammar

(in the version rephrased accordingly to the assumptions in Sect. 2.1) plus the

following.

HSPEC ::= CASL-SPEC use DEC

�

; constr COND

DEC ::= I-VAR : TYPE;

TYPE ::= SORT (a nonterminal of the Casl grammar)

COND ::= all Casl productions for FORMULA, with TERM replaced by EXP and

FORMULA by COND

EXP ::= all Casl productions for TERM, with TERM replaced by EXP

j I-VAR j @EXP j EXP"

Notice that in the above grammar there are two kinds of variables: VAR is the

nonterminal for logical variables of the Casl grammar while I-VAR is the non-

terminal for imperative (updatable) variables. The new cases of the production

for EXP concern the pseudo-data constructs.

Static Semantics Let us consider a speci�cation spec use decs; constr cond .

In order to verify its static correctness, we �rst use the Casl judgments on a

speci�cation spec+pointers, where locations and pointers for each sort declared

in spec are routinely added.

spec spec+pointers =

LOC and

POINTER[sort s

1

] and

.

.

.

POINTER[sort s

n

] and

9

>

=

>

;

s

1

: : : s

n

are the sorts declared in spec

then spec

Assuming that spec+pointers is statically correct, this �rst step produces a

signature � = (S; TF; PF; P;�

S

), giving the sorts, (total and partial) functions

and predicates that can be used in the following parts.

Then, we use the rules for creating static environments from HLL static

semantics, replacing

` Int : BType ` Real : BType

by

` s : BType

s declared in spec.

Again assuming that decs is statically correct, this second step produces a

static environment se recording which typed imperative variables can be used in

the last part.

Finally, we use the Casl judgements replacing TERM and FORMULA by EXP and

COND, respectively, adding a silent extra parameter, the static environment, to

each judgement and adding also the judgements for the pseudo-data constructs:

x 2 D(se) se(x) = s s 2 S

(S; TF; PF; P); se ` x� x

s

x 2 D(se) se(x) = s s 2 S

(S; TF; PF; P); se ` @x� (@x)

s

x 2 D(se) se(x) = Pointer s

(S; TF; PF; P); se ` x"� (x")

s

` Pointer s : PType

It is interesting to note that these judgments are the obvious adaptation of

those given for HLL to Casl style, where the correctness of expressions (terms)

is described translating them into unambiguous forms, with typing captured by

decoration, and requiring that all the forms for one term are equivalent (accord-

ingly to the rules given for subsorting).

Semantics

Let us consider a statically correct speci�cation spec use decs; constr cond .

Analogously to the procedure adopted for the static semantics, and using the

same notation, we give the semantics of the combination language in three steps.

First the semantics of the Casl speci�cation spec determines a class of al-

gebras M on a signature �, that is de�ned by the standard semantics of Casl

for the speci�cation spec+pointers. Then, decs is evaluated, as in the static se-

mantics, producing a static environment se. Finally for each algebra in M we

determine the semantics of the remaining part of the program.

Let us �x a model of spec+pointers, that is a �-algebra D 2 M. In the

following let us denote the set of valuations of the logical variables (used by

the quanti�ers) by VAL, with V

O

as empty valuation, i.e., the totally unde�ned

function.

The semantics functions evaluating expressions and conditions now need as

input both logical variables evaluations (as in Casl) and environment and state

(as in HLL).

VALUE

D

= [

s2Sorts(�)

D

s

VAL

D

= [VAR!

p

VALUE

D

]

LOC

D

= D

Loc

ENV

D

= [I-VAR!

p

LOC

D

]

STATE

D

= [LOC

D

!

p

VALUE

D

]

P : HSPEC! [[(ENV

D

� STATE

D

)!

p

STATE

D

]! B]

D : DEC

�

! SENV

C : COND! [(ENV

D

� VAL

D

� STATE

D

� STATE

D

)! B]

E : EXP! [(ENV

D

� VAL

D

� STATE

D

� STATE

D

)!

p

VALUE

D

]

T : TYPE! }(VALUE

D

)

The semantic functions are de�ned by induction, using the same rules given,

respectively, in Casl and HLL semantics. For instance T (t) = D

t

for each type

(sort) t as in Casl.

If necessary, the rules of each language are extended with the extra silent

parameters needed by the other language. Like for instance in the de�nition of

the semantics of the main production, where the empty logical variable valuation

has to be added to be able to evaluate the constraint:

P(spec use decs; constr cond)(p) =

n

T if p 2 Prog

D(decs)

and C(cond)

�;V

O

;�;p(�;�)

= T for all (�; �) 2 D(p)

F otherwise

Let us see a few examples of rules for expressions, that are those where

the interaction between Casl and HLL is more signi�cant. The last two are

the modi�cation of standard evaluation in algebraic languages (and Casl in

particular) for, respectively, function application and logical variable, while the

others are the same given for HLL, with a logical variable evaluation as extra

(silent) parameter.

E(x)

�;V;�;�

0

= �

0

(�(x)) E(x")

�;V;�;�

0

= �

0

(�

0

(�(x)))

E(@x)

�;V;�;�

0

= �(�(x)) E(@x")

�;V;�;�

0

= �(�(�))

E(f(exp

1

; : : :exp

n

))

�;V;�;�

0

= f

D

(E(exp

1

)

�;V;�;�

0

; : : : ; E(exp

n

)

�;V;�;�

0

)

E(y)

�;V;�;�

0

= V (y)

3 Analysing UML

Though the time is not yet ripe for presenting a full application of the method

outlined in this paper to UML, the OMG standard object-oriented notation for

specifying, visualizing, constructing, and documenting software systems ([22, 8]),

it is interesting to look at UML for the following reasons:

{ what is called UML is an outstanding example of a \language design" based

on a factorization principle, very much along the lines we have discussed;

{ thus, our analysis applied to UML may help understand more deeply its

nature and provide a basis for variations and improvements (for example a

lot of work for a better standard is underway);

{ UML is a family of languages, where the members may di�er not only be-

cause the semantics of some constructs is not �xed (the so-called semantic

variation points), but also as part of the constructs, e.g., those for the expres-

sions and the actions (the UML teminology for statements), are not de�ned

by the standard but may be imported from other languages, and UML has

mechanisms to extend the language itself by de�ning new constructs (e.g.,

stereotypes). This encourages the de�nition of variants using di�erent data

languages. Thus, our method of combination, where most work is restricted

to the taxonomy of the paradigm-speci�c language (UML in this case), is

especially convenient, because the taxonomy itself could be reused many

times.

Unfortunately, an immediate application of our technique to UML is ruled out

not only by the lack of a formal semantics for UML, that has not been yet

provided, though several attempts are under way, at least for some parts, but

also by the visual nature of UML. Indeed, UML \programs" are not strings

but instead bunches of diagrams (variants of graphs) possibly annotated with

some text. For this reason, its syntax is not given, as usual, by a BNF grammar;

instead it is given by the so called metamodel, which is essentially an object-

oriented description of the UML models

5

. Consequently the \static semantics"

of UML is given by means of constraints on such metamodel.

However, we belief that the adaptations required to apply our techniques to

UML may be, though non-trivially, worked-out. Therefore, let us sketch brie
y

how our taxonomy technique apply to UML.

For what concerns the data constructs, following our terminology, we have

that UML is, essentially

6

, a kernel language without data constructs, whereas

all data related constructs can be plugged in to obtain a complete language. The

OMG has, however, provided a language for the data constructs called OCL

(for Object Constraint Language) [22], so that what is usually known under the

name \UML" is instead the combination UML-OCL = OCL � UML. With

respect to this combination the UML part is, in our terminology, the kernel

UML-OCL

ker

.

Thus, the analysis of UML-OCL from a data-constructs viewpoint is in

some sense simpli�ed, because the data constructs are already grouped within

the OCL component. The only OCL constructs that are not data related are

those allowing to attach a constraint (a condition) to an element of an UML

model.

5

Using the UML terminology the UML speci�cations/programs are called models.

6

We cannot say exactly, because UML allows to de�ne special classes of objects

without changeable state and without identity that may be considered a kind of

datatypes.

According to our setting, we can thus decompose OCL in the three canonical

parts: OCL = OCL

basic

�OCL

par�spec

�OCL

pseudo

Let us give an idea of what is in each part.

Basic data language OCL

basic

consists of some standard basic prede�ned types

(Integer, Real), and of a \type declaration mechanism", precisely the possibility

of de�ning simple enumeration types by listing their elements.

Paradigm-speci�c datatypes OCL

par�spec

is rather rich; indeed it includes two

standard types (String and Boolean); a declaration mechanism for types (the

fact that any classi�er appearing in the UML model de�nes a type with the

same name of the class), and many spurious datatypes, see 2.1, (e.g., OclState

that is the type whose elements are the states of the state machines appearing

in the model).

The most interesting paradigm speci�c types are however the \collection

types", precisley the three collection-like parametric types, Set, Bag, and Se-

quence, plus the common abstract supertype Collection. All such collections

types have the usual operations (union, add an element, size, . . .) but also some

more peculiar ones, as an operation transforming a set/bag into a sequence,

which may be nondeterministic.

OCL o�ers also a rather general iterator construct for acting over the values

of the collection types, which has several useful particular instantiations (as

set-comprehension and a form of universal and existential quanti�cation over

collections). Its general form is

collection -> iteratef x: type; acc: type' = exp | exp' g

where x and acc are variables that may appear in exp', and exp is a ground

expression. The value denoted by this construct is computed as follows:

x iterates over collection and exp' is evaluated for each elem. After each

evaluation of exp', its value is assigned to acc. exp gives the initial value of acc.

In this way, the value of acc is built up during the iteration over collection; when

collection is a set or a bag the iterator may be nondeterministic too.

Pseudo-data constructs OCL

pseudo

Among these constructs we have the one

allowing \navigation": given an object O and an association AS, it returns all

objects (a collection) associated wth O by AS. Another one is @pre used only

in post-conditions: it is post�xed to attributes, operations, methods, and asso-

ciations, and it denotes that such construct should have been computed before

the execution of the operation/method call.

Our analysis supports how to approach a variation of UML-OCL, for exam-

ple modifying the basic data part accordingly to the technique proposed here.

However, since UML standard does not include OCL, that is just an example

of a data-component among several possibilities, the problem of plugging data

into the UML is di�erent from the general case considered before in this pa-

per. Indeed, we could propose di�erent paradigm speci�c and/or pseudo-data

constructs w.r.t. those present in OCL using an analogous technique to that

illustrated here for the basic data and still have an acceptable language of the

UML family. We think that it is interesting, however, to �rst analyse the par-

adigm speci�c and pseudo-data components, understand the needs that they

cover, and then perhaps to propose new constructs, or just a revised version,

covering these aspects.

4 Conclusions

In the course of a two decades experience in the �eld of formal speci�cations,

we have witnessed the existence of a variety of languages, where the data part

not only play di�erent roles, but sometime is partly unde�ned or inadequated

for the applications.

Last, but not least, we are facing the emergence of UML, a de facto standard

in system development, where the data are treated separately and even in a non-

standardized form. There are, and there will be, attempts to improve the data

part of UML, both for sake of clarity and of further expressiveness; here we

only mention the CoFI

7

initiative, within which some activity is going on in

that direction.

We have been naturally led to propose, �rst for our personal understanding,

a non standard analysis of the way the data part is embodied into a language,

to be able to modify a language structure in a modular way. Our proposal may

serve as a methodological guideline in the design and the upgrade phase of a

language.

References

1. E. Astesiano and G. Reggio. Labelled Transition Logic: An Outline. Technical

Report DISI{TR{96{20, DISI { Universit�a di Genova, Italy, 1996.

2. E. Battiston, F. De Cindio, and G. Mauri. OBJSA Nets: a Class of High-Level

Nets Having Objects as Domains. In G. Rozemberg, editor, Advances in Petri

Nets, number 340 in Lecture Notes in Computer Science, pages 20{43. Springer

Verlag, Berlin, 1988.

3. H. Baumeister, M. Cerioli, A. Haxthausen, T. Mossakowski, P. Mosses, D. Sannella,

and A. Tarlecki. Formal Methods '99 - CASL, The Common Algebraic Speci�cation

Language - Semantics. Available on compact disc published by Springer-Verlag,

1999.

4. J.A. Bergstra, J. Heering, and P. Klint. The Algebraic Speci�cation Formalism

ASF. In J.A. Bergstra, J. Heering, and P. Klint, editors, Algebraic Speci�cation,

ACM Press Frontier Series, pages 1{66. Addison-Wesley, 1989.

5. R. Bussow, R. Geisler, and M. Klar. Specifying Safety-Critical Embedded Systems

with Statecharts and Z: A Case Study. In E. Astesiano, editor, Proc. FASE'98,

number 1382 in Lecture Notes in Computer Science. Springer Verlag, Berlin, 1998.

6. C. Dimitrovici and U. Hummert. Composition of Algebraic High-Level Nets. In

H. Ehrig, K.P. Jantke, F. Orejas, and H. Reichel, editors, Recent Trends in Data

Type Speci�cation, number 534 in Lecture Notes in Computer Science, pages 52{73.

Springer Verlag, Berlin, 1991.

7

For more information see http://www.brics.dk/Projects/CoFI/.

7. H. Ehrig, W. Fey, and H. Hansen. ACT ONE: An Algebraic Speci�cation Language

with two Levels of Semantics. Technical Report 83-01, TUB, Berlin, 1983.

8. M. Fowler and K. Scott. UML Distilled. Object Technology Series. Addison-Wesley,

1997.

9. D. Harel and A. Naamad. The Statemate Semantics of Statecharts. ACM Trans-

actions on Software Engineering and Methodology, 5(4):293{333, 1996.

10. D. Harel and M. Politi. Modeling Reactive Systems With Statecharts : The State-

mate Approach. McGraw Hill, 1998.

11. R. Harper, D. MacQueen, and R. Milner. Standard ML. Technical Report ECS-

LFCS-86-2, LFCS-University of Edinburgh, 1986.

12. I.S.O. ISO 8807 Information Processing Systems { Open Systems Interconnection

{ LOTOS { A Formal Description Technique Based on the Temporal Ordering

of Observational Behaviour. IS, International Organization for Standardization,

1989.

13. S. Mauw and G.J. Veltink. An Introduction to PSF

d

. In J. Diaz and F. Orejas,

editors, Proc. TAPSOFT'89, Vol. 2, number 352 in Lecture Notes in Computer

Science, pages 272 { 285. Springer Verlag, Berlin, 1989.

14. S. Mauw and G.J. Veltink. A Process Speci�cation Formalism. Fundamenta In-

formaticae, (XIII):85{139, 1990.

15. R. Milner. A Calculus of Communicating Systems. Number 92 in Lecture Notes

in Computer Science. Springer Verlag, Berlin, 1980.

16. G. Reggio and L. Repetto. Casl-Chart: A Combination of Statecharts

and of the Algebraic Speci�cation Language Casl. 2000. In this volume.

ftp://ftp.disi.unige.it/person/ReggioG/ReggioRepetto00b.ps.

17. W. Reisig. Petri Nets: an Introduction. Number 4 in EATCS Monographs on

Theoretical Computer Science. Springer Verlag, Berlin, 1985.

18. W. Reisig. Petri Nets and Algebraic Speci�cations. T.C.S., 80:1{34, 1991.

19. G. Smith. The Object-Z Speci�cation Language. Kluwer Academic Publishers,

2000.

20. M. Spivey. The Z Notation. Prentice-Hall, 1992.

21. The CoFI Task Group on Language Design. Formal Methods '99 - CASL, The

Common Algebraic Speci�cation Language - Summary. Available on compact disc

published by Springer-Verlag, 1999.

22. UML Revision Task Force. OMG UML Speci�cation, 1999. Available at

http://uml.shl.com.

23. J. Vautherin. Parallel System Speci�cations with Coloured Petri Nets and Alge-

braic Data Types. In G. Rozemberg, editor, Advances in Petri Nets, number 266

in Lecture Notes in Computer Science. Springer Verlag, Berlin, 1987.

24. M. Weber. Combining Statecharts and Z for the Desgin of Safety-Critical Control

Systems. In M.-C. Gaudel and J. Woodcock, editors, FME'96: Industrial Bene�t

and Advances in Formal Methods, number 1051 in Lecture Notes in Computer

Science, pages 307{326. Springer Verlag, Berlin, 1996.

