Surface Approximation with Triangle Meshes

1

EG99 Tutorial

Outline

- **Classification of surfaces**
- **Approximating surfaces with triangle meshes**
- **Encoding triangle meshes**
- **Compressed mesh representations**

What is a surface?

S U R F A C E S A N D M E S H E S A surface *S* embedded in space is a subset of R^3 that is intrinsically two-dimensional

- **P** For any neighborhood u_p of a point P on S
	- *u^P* contains at least half of an open disk (i.e., no part of *S* is less than twodimensional)
	- *u^P* does not contain any open ball (i.e., no part of *S* is solid)

Surface Modeling

- **E** Surfaces defined in the continuum:
	- Sources: mathematics, CAD
	- Problem: a finite (digital) representation is necessary for surface analysis and rendering
- □ Surfaces known at a finite set of points:
	- Source: sampling (range scanners, photogrammetry, medical data), simulation (finite element methods)
	- \overline{O} Problem: a surface in the continuum must be defined through a reconstruction process

Topological Characterization of Surfaces

■ Manifold without boundary

a surface S in \mathbb{R}^3 such that any point on S has an open neighborhood homeomorphic to an open disk in *R2*

...Topological Characterization of Surfaces...

u Manifold with boundary

a surface S in \mathbb{R}^3 such that any point on S has an open neighborhood homeomorphic to an open disk or to half an open disk in *R2*

...Topological Characterization of Surfaces...

An example of a non-manifold situation

Geometric Representation of Surfaces

□ Implicit form:

an *implicit surface* is the locus of solutions of an equation

F(x,y,z) = 0

where *F* is a mathematical expression of three variables

Problems:

- \overline{O} definition is too general: some expressions give objects that are not intrinsically two-dimensional
- we might not know expression *F(x,y,z)*
- \bullet even if we know ϵ , we might not be able to solve the equation

Remark: surfaces which cannot be described in an analytic form are called *free-form* surfaces

...Geometric Representation of Surfaces...

Parametric form:

S U R F A C E S

A N D

M E S H E S a *parametric patch* is the image of a continuous function

- \overline{O} Ω is called *parametric space*
- *R³* is called *physical space*
- \bigcirc boundaries of Ω and of $\psi(\Omega)$ are formed by *trimming curves*

...Geometric Representation of Surfaces...

- **Parametric surface:**
	- a collection of parametric patches properly abutting

...Geometric Representation of Surfaces...

- **Explicit surfaces:**
	- \overline{O} Special case of a parametric surface
	- \overline{O} A surface can be represented as a bivariate function when it is the image of a scalar field

$$
\phi: \Omega \; \subset \; R^2 \longrightarrow \; R
$$

Example: topographic surfaces

Hypersurfaces

Approximating surfaces with triangle meshes

u Surface representation:

mesh of triangles (i.e., a set of triangles such that any two of them either do not intersect or share a common edge or vertex)

- \Box Each triangle approximates a surface patch within a given accuracy
- \Box Triangle meshes are easy to represent, manipulate, visualize
- \Box Triangle meshes can be constructed from irregularly sampled data

Approximating a 2-dimensional scalar field with a triangle mesh

K=2:

- A 2-dimensional scalar field is described as a function $z = \phi(x, y)$
- \blacksquare A triangle meshes in 3D is obtained by triangulating the domain of ϕ and lifting it to three-dimensional space

Approximating a 3-dimensional scalar field with a tetrahedral mesh

k=3:

- A 3-dimensional scalar field is defined by a function $z = \phi(x_1, x_2, x_3)$
- An approximation is obtained by discretizing the domain of ϕ with a tetrahedral mesh
- A *tetrahedral mesh* is a set of tetrahedra such that any two of them either do not intersect or share a common face, edge or vertex

Approximating a k-dimensional scalar field with a simplicial mesh

Discretization of the domain of a k-dimensional field $z = \phi(x_1, x_2, ..., x_k)$ with a simplicial mesh

Defines a linear approximation of ϕ **in (k+1)-dimensional Euclidean** space

How to compute the approximation?

- \Box How well does a mesh approximate a given surface?
	- We are not given surfaces but
		- *mesh of triangles* for free-form surfaces
		- *set of points* at which the field is known for scalar fields (hypersurfaces)

The Error Metric

 \subseteq

 R^k :

Q

d(p,Q) = inf { d(p,q) | q in Q } where *d(p,q)* is the Euclidean distance between point *p* and *q "Distance"* from a set *P* to a set *Q dE (P,Q) = sup { d(p,Q) | p in P }* However *d^E (P,Q) <> d^E (Q,P) dE (P,Q) dE (Q,P) P*

Euclidean distance between a point p and a set Q

S U R F A C E S

A N D

M E S H E S

Hausdorff distance defined as:

 d_{H} (*P*, *Q*) = max { d_{E} (*P*, *Q*), d_{E} (*Q*, *P*) }

It follows that $d_H(P,Q) = 0$ iff $P = Q$

Thus, we can express the distance between a surface *S* and its approximating triangle mesh T as $d_H(S, T)$

Discrete case

- **Free-form surfaces:**
	- **O** Surface S given as a fine mesh of triangles T_s
	- \circ ==> we measure distance between two triangle meshes
- **Hypersurfaces:**
	- \overline{O} Scalar field ϕ is known at a finite set of points **Q**
	- ==> we measure the distance of the points of *Q* from the triangle mesh *T* approximating the hypersurface

The *Metro* **tool** [Cignoni et al. 98]

Given two triangular meshes T_1 and T_2 , Metro:

- **O** scan converts each triangle *t* of T_1 with a user-selected scan step, *or*, alternatively, chooses a set *P* of **points** distributed **randomly** on *t*
- \bigcirc for each point p in P , computes $d(p, T_2)$ (distances are computed efficiently using a bucketing data structure)
- and switches meshes to be symmetric.
	- precision of the evaluation depends on *sampling resolution !*
	- \Box with a sufficiently fine sampling step, almost equal results in both directions (e.g., 0.01% of mesh bounding box diagonal)

Metro returns

- accurate **numerical** distance estimation
- a **visual** representation of the approximation error

- O tool runs on SGI ws (OpenInventor)
- \overline{O} available in public domain

Approximating the error on scalar fields

Error of a point *p* of set *Q* defined as

$$
e(p) = | \phi (p) - \phi_T(p) |
$$

where

- ϕ *(p)* is the known value of the field at *p*
- *I* $\phi_{\tau}(p)$ is the approximated value of the field at *p* computed on the basis of simplicial mesh *T*

Example 2 Error function defined by a discrete norm:

$$
C E(T,Q) = || e(p) ||
$$

$$
D E(T,Q) = max \{e(p), p \qquad Q\} \subseteq
$$

Example: two-dimensional scalar field (terrain)

Remarks

- More accurate representation \Rightarrow more triangles
	- More triangles \Rightarrow higher storage and processing time
- Tradeoff between accuracy and space / time:
- \Box adapting the accuracy to the needs of an application can improve efficiency
- \Box accuracy might be variable over different portions of the object

Encoding Triangle Meshes

S U R F A C E S A N D M E S H E S

EG99 Tutorial

 Two types of information encoded: *Geometrical*

Topological

 position in space of the vertices surface normals at the vertices

 mesh connectivity information relations among triangles of the mesh

S U R F A C E S A N D M E S H E S List of triangles: Ω for each triangle, it maintains its three vertices by explicitly encoding the geometrical information associated with the vertices **Connectivity described through a relation between a triangle and all its vertices.** Drawback: each vertex is repeated for all triangles incident in it Storage cost: in a triangle mesh with *n* vertices, there are *~2n* triangles cost: *18n* floats, if geometric information associated with a vertex is just its position in space

it encodes the list of triangles of the mesh

S U R F A C E S A N D M E S H E S $\frac{1}{\sqrt{2}}$ list of vertices + list of triangles + relation between triangles and vertices
 $\frac{1}{\sqrt{2}}$ each visiteix: its geometrical information
 $\frac{1}{\sqrt{2}}$ for each triangle: three references to the list of vertices Storage cost: *6n log n* bits + *3n* floats (cost of storing geometrical information) since a vertex reference for a triangle requires *log n* bits

Indexed data structure:

- **Indexed data structure: difficult to obtain triangle adjacency information**
- **Triangle adjacencies are useful for algorithms which "navigate" a triangle mesh**
- **Idea: store, for each triangle, the indexes to its three edge-adjacent triangles as well**

t $t₁$ $t₂$ $t₃$ $P₁$ $P₂$ P_3

Indexed data structure with adjacencies:

- \bigcirc list of vertices (with their geometrical information) + list of triangles
- \overline{O} for each triangle: references to its three vertices + references to its three adjacent triangles

G Storage cost:

(12n log n + 6n) bits + *3n* floats (cost of storing geometrical information), since each triangle reference requires *(log n + 1)* bits

Indexed data structure with adjacencies: storage costs

- *6 n log n* bits triangle-vertex relation
- *6 n (log n+1)* bits triangle-triangle relation

D Total

(12n log n + 6n) bits of connectivity

Comparison of the three data structures

n = number of vertices, let one float = *32* bits Ω and chianging: Sile Scale
 \sim 16 a state vector Silane – 2012 – 100
 Ω colored disk situation: En log a bits – 2n Scale
 \sim 16 a state vector (2014 – 27" form – 100")² bits
 Ω reduced disk situation with majo

Data Structures for Tetrahedral Meshes

S U R F A C E S A N D M E S H E S

Direct extension to three dimensions of the data structures described for triangle meshes

 Basic elements: vertices + tetrahedra *list of tetrahedra indexed structure indexed structure with adjacencies*

S U R F A C E S A N D M E S H E S

...Data Structures for Tetrahedral Meshes...

 List of tetrahedra with their geometry inside the list

Storage cost:

12t, where *t* is the number of tetrahedra

- *Indexed structure* (each tetrahedron has references to its four vertices)
	- Storage cost:

4t log n bits *+* cost for storing geometric information

where *n* is the number of vertices

...Data Structures for Tetrahedral Meshes...

Indexed structure with adjacencies:

for each tetrahedron, references to its four vertices + references to its four face-adjacent tetrahedra

Storage cost:

4t(log n + log t) bits *+* cost of storing geometric information

S U R F A C E S

A N D

M E S H E S