Surface Approximation with Triangle Meshes

EG99 Tutorial

Outline

- Classification of surfaces
- Approximating surfaces with triangle meshes
- Encoding triangle meshes
- Compressed mesh representations

What is a surface?

 A surface S embedded in space is a subset of R³ that is intrinsically two-dimensional

- For any neighborhood u_P of a point **P** on **S**
 - u_P contains at least half of an open disk (i.e., no part of **S** is less than twodimensional)
 - u_P does not contain any open ball (i.e., no part of **S** is solid)

S

U

R

F A C E S

A N

D

Μ

E S H

E S

3

Surface Modeling

- Surfaces defined in the continuum:
 - O Sources: mathematics, CAD
 - Problem: a finite (digital) representation is necessary for surface analysis and rendering
- Surfaces known at a finite set of points:
 - Source: sampling (range scanners, photogrammetry, medical data), simulation (finite element methods)
 - Problem: a surface in the continuum must be defined through a reconstruction process

Topological Characterization of Surfaces

Manifold without boundary

a surface **S** in \mathbb{R}^3 such that any point on **S** has an open neighborhood homeomorphic to an open disk in \mathbb{R}^2

... Topological Characterization of Surfaces...

Manifold with boundary

a surface **S** in \mathbb{R}^3 such that any point on **S** has an open neighborhood homeomorphic to an open disk or to half an open disk in \mathbb{R}^2

... Topological Characterization of Surfaces...

An example of a non-manifold situation

Geometric Representation of Surfaces

• Implicit form:

an *implicit surface* is the locus of solutions of an equation

F(x,y,z) = 0

where *F* is a mathematical expression of three variables

Problems:

- O definition is too general: some expressions give objects that are not intrinsically two-dimensional
- we might not know expression *F(x,y,z)*
- even if we know F, we might not be able to solve the equation

Remark: surfaces which cannot be described in an analytic form are called *free-form* surfaces

...Geometric Representation of Surfaces...

• Parametric form:

a *parametric patch* is the image of a continuous function

- $\bigcirc \Omega$ is called *parametric space*
- **R**³ is called *physical space*
- boundaries of Ω and of $\psi(\Omega)$ are formed by *trimming curves*

...Geometric Representation of Surfaces...

- Parametric surface:
 - a collection of parametric patches properly abutting

...Geometric Representation of Surfaces...

- Explicit surfaces:
 - O Special case of a parametric surface
 - A surface can be represented as a bivariate function when it is the image of a scalar field

$$\phi: \Omega \subset R^2 _ R$$

Example: topographic surfaces

Hypersurfaces

٥	Generalization of explicit surfaces to higher dimensions		
٦	Image of a scalar field		
		φ: Ω	R
	where ${m arOmega}$ is a compact domain in ${m R}^k$		
			→
	Example: volume data (for k=3)		

S

Approximating surfaces with triangle meshes

Surface representation:

mesh of triangles (i.e., a set of triangles such that any two of them either do not intersect or share a common edge or vertex)

- Each triangle approximates a surface patch within a given accuracy
- Triangle meshes are easy to represent, manipulate, visualize
- Triangle meshes can be constructed from irregularly sampled data

Approximating a 2-dimensional scalar field with a triangle mesh

K=2:

- A 2-dimensional scalar field is described as a function $z = \phi(x, y)$
- A triangle meshes in 3D is obtained by triangulating the domain of ϕ and lifting it to three-dimensional space

Approximating a 3-dimensional scalar field with a tetrahedral mesh

k=3:

- A 3-dimensional scalar field is defined by a function $z = \phi(x_1, x_2, x_3)$
- An approximation is obtained by discretizing the domain of ϕ with a tetrahedral mesh
- A tetrahedral mesh is a set of tetrahedra such that any two of them either do not intersect or share a common face, edge or vertex

Approximating a k-dimensional scalar field with a simplicial mesh

Discretization of the domain of a k-dimensional field $z = \phi(x_1, x_2, ..., x_k)$ with a simplicial mesh

Defines a linear approximation of ϕ in (k+1)-dimensional Euclidean space

How to compute the approximation?

- How well does a mesh approximate a given surface?
 - We are not given surfaces but
 - mesh of triangles for free-form surfaces
 - set of points at which the field is known for scalar fields (hypersurfaces)

The Error Metric

 \subseteq

 $d(p,Q) = inf \{ d(p,q) \mid q \text{ in } Q \}$ where *d*(*p*,*q*) is the Euclidean distance between point *p* and *q* "Distance" from a set **P** to a set **Q** $d_{E}(P,Q) = \sup \{ d(p,Q) \mid p \text{ in } P \}$ However $d_{E}(P,Q) \iff d_{E}(Q,P)$ P Q $d_{E}(P,Q)$

R*:

 $d_E(Q,P)$

Euclidean distance between a point **p** and a set **Q**

S U

R F

A C

E S

A N D

M E S H

E S

18

Hausdorff distance defined as:

 $d_{H}(P,Q) = max \{ d_{E}(P,Q), d_{E}(Q,P) \}$

It follows that $d_{H}(P,Q) = 0$ iff P = Q

Thus, we can express the distance between a surface **S** and its approximating triangle mesh **T** as $d_{\mu}(S,T)$

Discrete case

- Free-form surfaces:
 - \bigcirc Surface **S** given as a fine mesh of triangles T_s
 - ==> we measure distance between two triangle meshes
- Hypersurfaces:
 - Scalar field ϕ is known at a finite set of points **Q**
 - \circ ==> we measure the distance of the points of **Q** from the triangle mesh **T** approximating the hypersurface

The Metro tool [Cignoni et al. 98]

Given two triangular meshes T_1 and T_2 , *Metro*:

- scan converts each triangle t of T₁ with a user-selected scan step,
 or, alternatively, chooses a set P of points distributed randomly on t
- for each point p in P, computes $d(p,T_2)$ (distances are computed efficiently using a bucketing data structure)
- and switches meshes to be symmetric.
 - precision of the evaluation depends on sampling resolution !
 - with a sufficiently fine sampling step, almost equal results in both directions (e.g., 0.01% of mesh bounding box diagonal)

Metro returns

- accurate numerical distance estimation
- O a visual representation of the approximation error

- tool runs on SGI ws (OpenInventor)
- available in public domain

Approximating the error on scalar fields

Error of a point *p* of set *Q* defined as

$$\mathbf{e}(\mathbf{p}) = | \phi (\mathbf{p}) - \phi_{\tau}(\mathbf{p}) |$$

where

- $\phi \phi$ (**p**) is the known value of the field at **p**
- $\phi_{\tau}(p)$ is the approximated value of the field at p computed on the basis of simplicial mesh T

Error function defined by a discrete norm:

•
$$E(T,Q) = || e(p) ||$$

• $E(T,Q) = max \{e(p), p\}$

Example: two-dimensional scalar field (terrain)

Remarks

- □ More accurate representation \Rightarrow more triangles
 - More triangles \Rightarrow higher storage and processing time
- Tradeoff between accuracy and space / time:
- adapting the accuracy to the needs of an application can improve efficiency
 - accuracy might be variable over different portions of the object

Encoding Triangle Meshes

S U R F Α С E S Α Ν D Μ Ε S н Е S

relations among triangles of the mesh

EG99 Tutorial

S U R F Α С E S Α Ν D Μ Е S Н Ε S List of Hangles: ¹ kercodes the let of Yangles of the mesh ¹ for each tangle, it mainties its three-writes by explicitly ercoding the general goodion in space of the writes, and, usually, unlice normalisat the version) ² convectivity exercised struggle anticico between a triangle and all its versions:

> t for all triangles incident in it in vertices, there are -dat triangles

associated with the vertices

s just its position in space

66 log abits 26 foats (cost of storing geometrical information)

- Indexed data structure: difficult to obtain triangle adjacency information
- Triangle adjacencies are useful for algorithms which "navigate" a triangle mesh
- Idea: store, for each triangle, the indexes to its three edge-adjacent triangles as well

 P_1 t_2 t_2 P_1 t_1 P_2

Indexed data structure with adjacencies:

- Iist of vertices (with their geometrical information) + list of triangles
- O for each triangle: references to its three vertices + references to its three adjacent triangles

Storage cost:

* (12n log n + 6n) bits + 3n floats (cost of storing geometrical information), since each triangle reference requires (log n + 1) bits

Indexed data structure with adjacencies: storage costs

○ 6 n log n bits triangle-vertex relation

• 6 *n* (*log n+1*) bits triangle-triangle relation

Total

• (12n log n + 6n) bits of connectivity

0		
Comparison of the	three cata	structures

e = number of vertices, let one float = 22 bits
Ist of triangles: file foats
* I a = 2* ==> 18'2* foats = \$78'2* tos
Indexed data structure: 6n log n bits + 3n foats
I a = 2" ==> \$6'2" bits - 3'2" foats = 150'2" bits
Indexed data structure with adjacencies: (f2n log n + 6n) bits + 2n fc
f a + 2" ++> 188'2" bits + 3'2" foats = 353'2" bits

Data Structures for Tetrahedral Meshes

S U R F Α С Е S Α Ν D Μ Ε S н Ε S

Direct extension to three dimensions of the data structures described for triangle meshes

Basic elements: vertices + tetrahedra Nat of tetrahedra

Indexed structure Indexed structure with adjacencies

EG99 Tutorial

... Data Structures for Tetrahedral Meshes...

List of tetrahedra with their geometry inside the list

Storage cost:

12t, where t is the number of tetrahedra

- Indexed structure (each tetrahedron has references to its four vertices)
 - Storage cost:

4t log n bits + cost for storing geometric information

where *n* is the number of vertices

S

... Data Structures for Tetrahedral Meshes...

Indexed structure with adjacencies:

for each tetrahedron, references to its four vertices + references to its four face-adjacent tetrahedra

Storage cost:

4t(log n + log t) bits + cost of storing
geometric information

S U R

F

Α

C E

S

Α

N D

MESHES