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Abstract

A new hierarchical triangle-based model for representing surfaces over sampled data is

proposed, which is based on the subdivision of the surface domain into nested triangulations,

called a Hierarchical Triangulation (HT). The model allows compression of spatial data and

representation of a surface at successively �ner degrees of resolution. An HT is a collection

of triangulations organized in a tree, where each node, except for the root, is a triangulation

re�ning a face belonging to its parent in the hierarchy. We present a topological model for

representing an HT, and algorithms for its construction and for the extraction of a triangu-

lation at a given degree of resolution. The surface model, called a Hierarchical Triangulated

Surface (HTS), is obtained by associating data values with the vertices of triangles, and

de�ning suitable functions that describe the surface over each triangular patch. We consider

an application of a piecewise-linear version of the HTS to interpolate topographic data, and

we describe a specialized version of the construction algorithm that builds an HTS for a

terrain starting from a high resolution rectangular grid of sampled data. Finally, we present

an algorithm for extracting representations of terrain at variable resolution over the domain.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geom-

etry and Object Modeling - Curve, surface, solid, and object representations; Object hierarchies.

General Terms: Algorithms, Design.

Additional Key Words and Phrases: Triangulation, Hierarchical subdivision, Multiresolu-

tion surface model, Terrain model.
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1 Introduction

The representation of surfaces de�ned by bivariate functions plays an important role in di�erent

application �elds, like computer aided geometric design, geographical information systems, �nite

element analysis, robotics, computer vision, and computer graphics. Surfaces can be represented

by means of a digital model: a digital surface model is characterized by a domain partition, and

by a space of functions used on such partition. Digital surface models have been studied by

many researchers, and much attention has been paid to spaces of functions de�ned over either

regular or irregular subdivisions made of triangles or quadrilaterals. In this paper, we focus

on issues related with the domain partition, while remaining as general as possible about the

functions used to represent the surface within each region of the subdivision.

Subdivisions based on quadrilaterals have been preferred in the past, and are commonly used

in commercial surface modelers, mostly because polynomial surfaces of any order can be easily

de�ned through tensor products over rectangular patches, and the continuity across di�erent

patches can thus be easily controlled. Lately, triangulated surface models have become more

and more popular, because of their adaptivity: recent studies have shown the e�ectiveness of

smooth triangle-based representations of surfaces with intricate geometries (see, e.g., [Fon92]).

Digital models are often intended as approximations of surfaces describing natural objects or

phenomena, which are either simulated or measured through some sampling process. A better

precision in the approximation is generally achieved by a �ner partition of the domain, yielding

higher storage cost and computation time. On the other hand, not all tasks in the framework of a

given application necessarily require the same accuracy, and even a single task may need di�erent

degrees of resolution in di�erent areas of the domain. For instance, in landscape visualization

and in 
ight simulation, the terrain surface and the objects on the terrain must be rendered at

di�erent degrees of resolution, depending on their distance from the viewpoint.

Multiresolution surface models o�er the possibility of representing and analyzing a surface

at di�erent degrees of resolution: thus, for a given application, a coarse representation can

be used over certain areas, while high resolution can be focused on speci�c areas of interest.

A multiresolution surface model is e�ective if its storage cost does not introduce a serious

overhead with respect to a simple surface model at the maximum precision, and if its access and

manipulation algorithms are maintained e�cient.

A straightforward approach to multiresolution is to build a layered model consisting of a

collection of independent surface models at di�erent �xed degrees of resolutions. The proper

resolution is selected among the available ones depending on the needs of each speci�c task

or application. Such an approach yields serious limitations in supporting complex operations

for manipulating and visualizing the surface, like e�cient geometric query processing, browsing

over the surface and across di�erent resolutions, distributed storage of large datasets, variable

resolution rendering, etc. The addition of interference links between layers, as in the pyramidal

model proposed in [DeF89], can provide means to overcome some such limitations but, on the

other hand, it involves a non-negligible storage overhead.

The above limitations are not the only drawback of layered models. In principle, one might

desire a model that spans a continuous range of resolutions, rather than just a few �xed degrees

of resolution. A discrete approximation of such an ideal model could be obtained by a layered

model in which a high number of di�erent resolutions, very close to one another, are maintained.
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Unfortunately, this approach can involve a tremendous amount of storage. The main reason

behind this ine�ciency is that each degree of resolution yields a representation of the whole

surface, though only some parts of it might have changed from the representation at a resolution

immediately coarser or �ner. This fact is especially clear when the degrees of resolution are very

close to one another. For example, let us consider a topographic surface model, and let us

assume the resolution of the model is measured, as it often happens, by the maximum error in

approximating the elevation at each point on terrain. Given a representation based on a domain

subdivision �, whose resolution corresponds to an error ", let "

0

< " be the error of the next

�ner resolution. A representation at error "

0

will be based on a subdivision di�erent from �.

However, if � = " � "

0

is relatively small, such subdivision might coincide with � over some

regions, since the precision obtained with the old representation over such regions was already

below error "

0

. The smaller � the higher the number of regions that \survive" across consecutive

levels. Taking into account this fact, we can argue that e�ciency can be gained over layered

models by building a model that keeps track only of changes between di�erent resolutions, while

avoiding duplications of regions that remain unchanged across di�erent levels.

In this paper, we introduce a formal model, called the Hierarchical Triangulation (HT), that

consists of a subdivision of a plane domain into nested triangulations, and whose hierarchical

structure is described by a tree. We discuss some properties of hierarchical triangulations, and

we describe a data structure for its encoding, and some basic algorithms for its construction

and analysis. Moreover, we propose a multiresolution surface model based on a hierarchical

triangulation, and we show its application in representing topographic surfaces in the context

of a geographic application, and in visualizing landscapes at variable resolution.

Hierarchical triangulations allow representing a virtually continuous range of resolutions,

while still achieving a good compression ratio; moreover, their tree-like structure makes them

suitable for local processing and distributed storage. Endowed with their access and manipu-

lation algorithms, such structures provide e�cient means to support complex operations: ge-

ometric queries such as point location, and segment and region intersecion; navigation of the

structure (browsing) both through a representation at �xed resolution (pan) and across di�erent

resolutions (zoom); variable resolution rendering.

The remainder of the paper is organized as follows. In Section 2, we brie
y review some

existing hierarchical models for multiresolution surface representation. In Sections 3.1, the

hierarchical triangulation is introduced and its properties are discussed, while in Section 3.2, a

data structure for encoding an HT is described. In Section 3.3, techniques for navigating an

HT are described. In Section 3.4, a general algorithm for building an HT is proposed, which is

parametric on conditions and criteria that might be typical of any speci�c application. In Section

3.5, an algorithm for expanding a subhierarchy of an HT is described and analyzed. In Section 4,

we discuss, through some examples, important characteristics of hierarchical triangulations. In

Section 5, we formally introduce a general multiresolution surface model based on a hierarchical

triangulation, while in Section 6, a speci�c multiresolution model that we have developed for

terrain representation is described, together with a construction algorithm that is based on the

general technique described in Section 3.4. In Section 7, we show techniques for extracting

terrain representations at variable resolution over the domain. Finally, in Section 8, we present

some results on the multiresolution representation of a natural terrain by using our model, while

in Section 9, we present some concluding remarks, and we outline brie
y our current and future

research on this subject.

3



2 Previous Work

Hierarchical surface models proposed in the literature have been developed mainly for repre-

senting terrains in the context of geographical information systems. In our brief review, we will

focus on domain subdivisions, by assuming that the elevation of the surface is known at all

vertices of a subdivision, and for all triangular and quadrilateral subdivisions linear and bilinear

interpolation are used, respectively. Higher order approximating functions could be used in the

context of any hierarchical model, without changing the main principles that characterize its

hierarchical structure.

Quadtree-based models require regularly spaced data and provide a subdivision of the domain

into rectangles of di�erent sizes. Such models are based on the recursive partition of a rectangle

enclosing the projections of all data points into a set of nested rectangles, called quadrants,

having vertices at such projections. Whenever the approximation of surface within a quadrant

is not su�ciently precise, such quadrant is recursively split into four subrectangles by joining its

center to the midpoints of its edges. Subquadrants are linked to their parent quadrant, giving

rise to a quadtree. In [Che86], di�erent interpolation techniques for approximating a surface

de�ned by a quadtree are evaluated in terms of precision, computational speed and storage cost.

The problem with such interpolants is the di�culty in preserving the continuity of the surface

approximation along the sides of the subdivision. Von Herzen and Barr propose a method

for avoiding discontinuities [Von87], called the restricted quadtree. Such model is based on a

quadtree where all adjacent leaves cannot di�er by more than one level in the hierarchy; each

quadrant in the quadtree is then subdivided into triangles to achieve continuity at the borders

of adjacent regions and to allow linear interpolation within each patch.

Quaternary triangulations are conceptually similar to quadtree-based models: the surface is

approximated �rst by a plane interpolating data at the vertices of an initial triangle covering the

whole domain; then, the domain is recursively partitioned into four subtriangles, by joining the

midpoints of its edges. Like in quadtree-based models, the splitting rule is geometrically-�xed,

regularly spaced data are needed, and the hierarchy can be represented by a quaternary tree.

Quaternary triangulations su�er from the same discontinuity problems at the boundaries of

adjacent triangles as quadtree-based models. Quaternary triangulations of plane domains have

been widely used as domain partitions for surface representation [Gom79, Bar84], and for the

�nite element method [Ban86]; generalizations of such a partition scheme to spherical domains

have been used for various applications [Fek84, Dyn90, Pot90, Goo92].

The ternary triangulation was proposed in [DeF84] as a hierarchical model for terrain descrip-

tion. In such a model, an initial triangle is recursively split into three subtriangles by joining

its vertices with the internal data point at which the surface it approximated worst. Thus, a

hierarchy described by a ternary tree is built. The ternary triangulation does not require reg-

ularly spaced data, and it provides a continuous representation of the surface by using linear

interpolation, but it has a main disadvantage in producing a subdivision made of triangles with

elongated shape that leads to inaccuracies in numerical interpolation. This undesirable feature

was partially overcome by a heuristic hierarchical triangulation proposed in [Sca92], where the

splitting rule permits introducing new points either inside and/or on the border of a triangle.

The Delaunay pyramid described in [DeF89] is a multiresolution triangle-based model whose

structure is completely di�erent from all models described above. The Delaunay pyramid is

composed of an ordered sequence of Delaunay triangulations of the whole domain, each of which
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contains an increasing number of vertices. The Delaunay pyramid introduced for the �rst time

the idea of explicit multiresolution through a decreasing sequence of tolerance thresholds given

a priori: each level in the pyramid corresponds to a decreasing threshold, bounding the error in

approximating the surface. Any two consecutive levels in the pyramid are connected by a set of

links, joining the triangles modi�ed between the two levels. The use of a Delaunay triangulation

over the whole domain permits to control the shape of triangles, without requiring regularly

distributed data. On the other hand, the hierarchical structure of a Delaunay pyramid cannot be

described by a tree, since a triangle belonging to the triangulation at a given level can intersect

a portion of the domain covered by several triangles in the next level. This fact introduces

an important drawback in terms of storage cost, due do the high number of links between

consecutive levels. Moreover, since such a model is not based on a strict spatial hierarchy,

operations such as independent storage and processing of di�erent areas, focusing on areas of

interest, and extraction of representations at di�erent resolutions over di�erent areas, are either

di�cult or prevented a priori.

The quaternary, the ternary, and the heuristic hierarchical triangulations will be discussed

more extensively in Section 4 in the framework of the general model presented in the next

Section.

3 Hierarchical Triangulation

In this Section, we introduce the concept of hierarchical triangulation of a set of points in the

plane, we describe a data structure for encoding it, and we give algorithms for its construction,

traversal, and expansion at a given degree of resolution.

3.1 Basic de�nitions

Let V = fv

1

; : : : ; v

n

g be a �nite set of points in the Euclidean plane IE

2

. A triangulation of set V

is a maximal plane straight-line graph G = (V;E), where E is a set of non-crossing line segments

with endpoints in V [Pre85]. A triangulation of V can be expressed as a triple � = (V;E; T ),

where T is the set of triangular faces induced by G on the plane. The faces of T cover the

interior of the convex hull of V ; such region will be called the domain of triangulation � , and

denoted D(�). We will also call any edge e of � , which lies on the boundary of D(T ), a boundary

edge of � .

A hierarchical triangulation is de�ned by applying the concept of recursive re�nement to a

triangulation. Intuitively, given a triangulation � , any of its triangles can be seen as an individual

entity. A triangle t of � can be re�ned at a higher degree of resolution into a triangulation �

0

,

whose domain covers t, by adding new vertices either inside t or on its sides. Each triangle of

a given triangulation is re�ned independently of the others. The recursive application of the

re�nement process results in a hierarchy of triangulationsH that satis�es the following hierarchy

rule:

each triangulation in H is formed of more than one triangle, and, with the exception

of the root, it is the re�nement of a triangle belonging to some other triangulation

in H.
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Formally, let T = f�

0

; : : : ; �

h

g be a collection of triangulations such that 8j = 0; : : : ; h,

�

j

= (V

j

; E

j

; T

j

), with #T

j

> 1, and 8j > 0 there exists a unique triangle t

j

2 T

i

for some i < j,

such that t

j

� D(�

j

). A hierarchical triangulation (HT) is a triple H = (T ; E ; `), where

E = f(�

i

; �

j

) j �

i

; �

j

2 T ; 9t

j

2 T

i

; t

j

� D(�

j

)g, and

` : E �! [

h

i=0

T

i

is de�ned `(�

i

; �

j

) = t

j

if t

j

2 T

i

and t

j

� D(�

j

).

If the elements of T are considered as atomic entities, then the triple (T ; E ; `) can be regarded

as a tree having T as its set of nodes, and labeled arcs in E , which will be called the tree describing

H. For each (�

i

; �

j

) 2 E , `(�

i

; �

j

) is called the label of (�

i

; �

j

), and any triangle in `(E) is called

a macrotriangle, to denote that its internal structure is speci�ed further in the hierarchical

triangulation; conversely, a triangle not in `(E) is called a simple triangle. We introduce the

following notation on H:

� 8j > 0:

{ Par(�

j

) = �

i

2 T j (�

i

; �

j

) 2 E is called the parent of �

j

;

{ DAbs(�

j

) = `(Par(�

j

); �

j

) is called the direct abstraction of �

j

;

{ Anc(�

j

) = f�

i

2 T j there exists a simple path in H from �

i

to �

j

g is called the set of

ancestors of �

j

;

� 8�

i

internal node of H:

{ Chi(�

i

) = f�

j

2 T j (�

i

; �

j

) 2 Eg is called the set of children of �

i

;

{ Des(�

i

) = f�

j

2 T j there exists a simple path in H from �

i

to �

j

g is called the set of

descendants of �

i

;

� 8t

j

2 `(E):

{ DRef(t

j

) = (�

j

2 T j t

j

= DAbs(�

j

)) is called the direct re�nement of t

j

.

Note that the re�nement of a macrotriangle can cause splitting its edges into chains of edges

through insertion of new vertices. Since any non-boundary edge e is shared by two adjacent

triangles, we investigate next what is the e�ect on H of re�ning e. To this aim, we introduce the

following de�nitions: two triangulations �

i

; �

j

2 T are said to be adjacent along a straight-line

segment l if their domains intersect only along l; �

i

and �

j

are said to be matching along l if

they are adjacent along l and l \ V

i

� l \ V

j

, i.e., their boundary edges along l are pairwise

coincident; �

i

and �

j

are said to be weakly matching along l if they are adjacent along l and

either l \ V

i

� l \ V

j

, or l \ V

j

� l \ V

i

, i.e., the boundary edges along l of one of them form a

subdivision of the boundary edges along l of the other one.

Let us consider two macrotriangles t

j

and t

k

of a triangulation �

i

2 T , such that t

j

and t

k

are

adjacent along an edge e. In DRef(t

j

) and DRef(t

k

), some new vertices might be inserted on

e; however, the rules mentioned above do not guarantee that the same vertices are inserted on

e in both re�nements. The two direct re�nements of t

j

and t

k

are triangulations adjacent along

e. If e is split di�erently in the two cases, such triangulations are not matching, and their union

is not a triangulation, though it is still a plane subdivision composed of triangles (see Figure 1

a-b). Even when e is split consistently in re�ning t

j

and t

k

, the matching could be lost in the
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Figure 1: Two adjacent triangles and three possible re�nements: not matching (a), weakly

matching (b), matching (c).

Figure 2: A tree describing a hierarchical matching triangulation.

next levels of the hierarchy, when re�ning triangles in descendants of �

i

that are adjacent along

e. This fact is undesirable, because the continuity of adjacent patches could not be guaranteed

when a hierarchical triangulation is used for surface description (see Section 5).

Our aim is to have a model in which two adjacent triangles are always re�ned by inserting the

same vertices on their common edge, and which maintains this property throughout the whole

hierarchy (see Figure 1c). Thus, we impose the following matching rule:

1. for each pair of triangulations �

i

; �

j

2 T adjacent along a straight-line segment l, one of

the following conditions must hold:

(a) �

i

and �

j

are matching along l;

(b) l \ V

i

� l \ V

j

and there exists �

h

2 Des(�

i

) that is matching with �

j

along l;

(c) l \ V

i

� l \ V

j

and there exists �

h

2 Des(�

j

) that is matching with �

i

along l;

2. for every simple triangle t

j

of some �

i

2 T , the edges of t

j

are never re�ned further in H.

A hierarchical triangulation satisfying the matching rule is called a hierarchical matching

triangulation (HMT) (see Figure 2). Throughout the paper, we will consider especially matching
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Figure 3: Consistent substructures of an HMT and their expanded triangulations.

hierarchies. However, when dealing with non-matching ones, we will always assume that a

hierarchical triangulation is at least weakly matching, i.e., that situations like the one depicted

in Figure 1a never occur. In Section 4.2, we will show a widely used class of hierarchical

triangulations that are not necessarily matching, but are weakly matching.

A hierarchical triangulation H can be seen as a compact representation of a whole family of

triangulations, namely all triangulations that are composed from triangles of H.

Let us consider the tree describing a hierarchical triangulationH, and let H

0

be a hierarchical

triangulation described by a connected subgraph of such a tree, rooted at a triangulation �

i

2 T .

We can apply a recursive expansion process that replaces each macrotriangle in H

0

with the

triangulation re�ning it. It is easy to see that if H

0

is an HMT, then the result of the recursive

expansion will be a triangulation H

0

E

covering D(�

i

), and composed of all triangles that are

simple in H

0

. In this case, H

0

will be called a consistent substructure of H (see Figure 3).

However, not all substructures of an HMT are consistent. In general, the expansion of a

substructure H

0

will be a tessellation of D(�

i

), such that each of its faces is a generalized triangle

whose domain corresponds to a simple triangle of H

0

, according to the following de�nition:

A generalized triangle t is a simple polygon de�ned by a sequence of vertices V

t

=

(v

0

; : : : ; v

i

) such that there exist v

j

1

; v

j

2

; v

j

3

2 V

t

whose convex hull coincides with

the region covered by t.

In other words, a generalized triangle is a triangle in which some vertices are added to subdivide

its edges into chains. A plane tessellation whose faces are all generalized triangles is called a

generalized triangulation (see Figure 4).

We will always callH

0

E

the expanded triangulation associated withH

0

, although in some cases

it can be a generalized triangulation. In Section 3.5 we present an algorithm for computing the

expanded triangulation associated with a substructure of a hierarchical triangulation.

We show next that the structure of a hierarchical triangulation H does not introduce a
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Figure 4: A generalized triangulation.

serious overhead with respect to its expanded triangulation H

E

. Let us call size of a hierarchical

triangulationH the total number N

t

of triangles in the triangulations of T (also the total number

of vertices and edges in H is linear in N

t

). In the following, we prove that N

t

is smaller than

twice the number N

s

of simple triangles in H (i.e., the number of triangles in the expanded

triangulation H

E

).

The result is proven by induction on the height of the tree describing H, and it is based on

the fact that each macrotriangle is re�ned into a non-trivial triangulation, i.e., a triangulation

composed of at least two triangles. For each k smaller than the height of the tree describing H,

let H

(k)

be the substructure corresponding to the �rst k levels of such tree, and let N

(k)

t

and N

(k)

s

be the total number of triangles and the number of simple triangles in H

(k)

, respectively. We

have trivially N

(0)

t

= N

(0)

s

. Let us assume that N

(k)

t

< 2N

(k)

s

. H

(k+1)

is obtained from H

(k)

by

re�ning m

(k+1)

< N

(k)

s

simple triangles of H

(k)

into m

(k+1)

new triangulations, yielding a total

number n

(k+1)

of new triangles. Notice that the re�ned triangles will not be simple triangles in

H

(k+1)

. Thus, we have the following:

(1) N

(k+1)

t

= N

(k)

t

+ n

(k+1)

;

(2) N

(k+1)

s

= N

(k)

s

+ n

(k+1)

�m

(k+1)

;

(3) n

(k+1)

� 2m

(k+1)

.

By substituting (3) into (2) we obtain: 2N

(k+1)

s

� 2N

(k)

s

+n

(k+1)

> N

(k)

t

+n

(k+1)

, and the thesis

follows from (1).

It is easy to see that the overhead factor depends of the minimum number of triangles present

in a triangulation of T . The de�nition given in Section 3.1 imposes that this number must be

at least two. In general, if a hierarchical triangulation H is such that 8i = 0 : : : h #T

i

� m, for

some m � 2, then we have N

t

�

m

m�1

N

s

.

3.2 Encoding a hierarchical triangulation

A hierarchical triangulation H = (T ; E ; `) is a combination of topological structures - the tri-

angulations of T = f�

0

; : : : ; �

h

g - that are organized in a tree, whose edges are speci�ed by E

and labeled by `. Here, we propose a relational representation of an HT, called the hierarchical

incidence graph. Such data structure encodes both local and hierarchical relations, and permits

navigation of the structure by supporting e�cient retrieval of adjacencies between triangulations

sharing common boundaries.
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We �rst describe a graph structure that represents each single component �

i

of T by directly

encoding its entities and the incidence relations among them. Then, we extend such represen-

tation with boundary information that relate �

i

with the exterior of its domain. Finally, we

organize all local structures into a global structure that represents the hierarchical triangulation

H.

In [Ede87] a directed graph, called the incidence graph, is introduced to represent planar

subdivisions: an incidence graph is a graph having one node per vertex, edge, and face of

the subdivision; arcs emanating from vertices connect them to edges incident upon them; arcs

emanating from edges connect them to their endpoints, and to faces incident upon them; arcs

emanating from faces connect them to their bounding edges. An incidence graph describes the

symmetric data structure proposed in [Woo85] for representing the subdivision of the boundary

of a solid object. Such structure has been proven to be optimal, i.e., all topological relations

that are not explicitly encoded can be retrieved in a time that is linear in their output size.

In the special case of a triangulation, the number of edges of each internal face in the subdi-

vision is bounded by a constant (namely, three). This fact can be exploited to design a simpler,

yet optimal, relational structure, that we call the partial incidence graph. In the following, we

formally de�ne the partial incidence graph for the representation of a triangulation of T .

Let �

i

= (V

i

; E

i

; T

i

) be a triangulation in T , and let N

V

i

, N

E

i

, and N

T

i

be three sets of nodes

corresponding, through bijections �

V

, �

E

, and �

T

, to the elements of V

i

, E

i

, and T

i

, respectively.

Let us de�ne the following sets of directed incidences:

� ET

i

= f(n

e

; n

t

) 2 N

E

i

�N

T

i

j �

E

(n

e

) is an edge of �

T

(n

t

)g;

� TE

i

= f(n

t

; n

e

) 2 N

T

i

�N

E

i

j �

E

(n

e

) is an edge of �

T

(n

t

)g;

� EV

i

= f(n

e

; n

v

) 2 N

E

i

�N

V

i

j �

V

(n

v

) is a vertex of �

E

(n

e

)g;

� V E

i

= f(n

v

; n

e

) 2 N

V

i

�N

E

i

j �

V

(n

v

) is a vertex of �

E

(n

e

)g.

Finally, let us consider a subset V E

�

i

� V E

i

obtained by taking only two incidences

1

per node

of N

V

i

. The partial incidence graph of �

i

is a tripartite directed graph IG

i

= (N

i

; I

i

), where

� N

i

= (N

V

i

; N

E

i

; N

T

i

)

� I

i

= (ET

i

; TE

i

; EV

i

; V E

�

i

).

Unlike the general incidence graph (where the complete V E

i

relation is encoded), the number

of arcs emanating from any node of a partial incidence graph IG is bounded by a constant,

while the number of incident arcs can be arbitrarily numerous for nodes in N

V

i

(in generalized

triangulations, also for nodes in N

T

i

). More precisely, if we consider the partition of N

E

i

into

two disjoint subsets N

BE

i

and N

IE

i

, corresponding to the edges on the boundary and in the

interior of �

i

, respectively, we have: for any node of N

V

i

, two outgoing arcs in V E

�

i

; for any node

1

In fact, a single incidence would be su�cient in order to store a triangulation. We use two incidences to allow

the same structure to encode also generalized triangulations, and to maintain boundary sequences described in

the following.
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Figure 5: A generalized triangle (a) and its corresponding partial incidence graph (b): dangling

arcs outgoing from nodes N

E

i

are pointing to nodes N

T

i

corresponding to adjacent triangles;

dangling arcs outgoing from nodes N

V

i

are pointing to nodes N

E

i

corresponding to other incident

edges.

of N

E

i

, two outgoing arcs in EV

i

; for any node of N

IE

i

, two outgoing arcs in ET

i

; for any node

of N

BE

i

, one outgoing arc in ET

i

; for any node of N

T

i

, three outgoing arcs in TE

i

.

This structure can be also used to encode a generalized triangulation (see Figure 5). The

following observations are taken into account:

1. since a generalized triangle can have more than three edges, relation TE

i

encode as above

is not total: for each node n

t

2 N

T

i

, its three outgoing arcs are connected with nodes

corresponding to the �rst edges that are met when moving in clockwise order around

�

T

(n

t

) from the its three corners, respectively;

2. for each vertex v, at most one generalized triangle t may exist such that v is a vertex,

but not a corner, of t: for each node n

v

2 N

V

i

corresponding to one such vertex its two

outgoing edges are connected with the nodes corresponding to edges of t incident at v.

Therefore, for each generalized triangle, three ordered and doubly connected sequences of inter-

laced vertices and edges are maintained, which specify the boundary of the generalized triangle.

Each such sequence can be accessed from the generalized triangle itself, and all relations that

are not explicitly encoded can be retrieved e�ciently.

In order to relate a (generalized) triangulation �

i

to the exterior of its domain, it is also

useful to maintain an \interface" by encoding information about the boundary of �

i

. To this

aim, consider the boundary edges around the border of D(�

i

): such edges form a circular list of

edges B

i

. More precisely, since all triangulations of T have a triangular domain

2

, we partition

B

i

into three sublists as follows. Let e

i

0

, e

i

1

, and e

i

2

denote the three sides of D(�

i

) respectively

(for i > 0, e

i

0

, e

i

1

, and e

i

2

are the edges of DAbs(�

i

) in H): we de�ne B

i

= (s

i

0

; s

i

1

; s

i

2

), where

for j = 0; 1; 2; s

i

j

= (e

i

j

0

; e

i

j

1

; : : :) is the ordered sequence of boundary edges of �

i

along side e

i

j

,

2

For simplicity, we assume that also �

0

has a triangular domain. The de�nition can be easily extended to any

polygonal domain.
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Figure 6: A triangulation (a) and its boundary sequences (b).

in counterclockwise order around D(�

i

) (see Figure 6). The three boundary sequences forming

B

i

are encoded easily in the partial incidence graph: for each node of N

V

i

corresponding to a

boundary vertex of �

i

, its two outgoing arcs are connected to nodes corresponding to the two

boundary edges incident at the vertex, so as to form sequences of interlaced vertices and edges

analogous to the ones maintained for generalized triangles.

We complete our structure by encoding hierarchy relations according to the arcs of E labeled

by `. Let G = (IGB

0

; : : : ;IGB

h

) be the collection of incidence graphs corresponding to the

triangulations (�

0

; : : : ; �

h

) of T . The hierarchical incidence graph representing H is a labeled

tree HIG = (G; E

g

; `

g

), where

E

g

= f(IGB

j

;IGB

i

) j (�

i

; �

j

) 2 Eg;

`

g

: E

g

�! [

h

i=0

N

T

i

is de�ned as `

g

(IGB

j

;IGB

i

) = �

�1

T

(`(�

i

; �

j

)).

Hence, HIG is a labeled hierarchy of graphs, where each label associates a node corresponding

to a macrotriangle with the graph describing its internal structure. Note that the arcs of E

g

are

directed upwards in the hierarchy, thus encoding a child-parent relation, in order to have only

one outgoing arc per node of G.

Encoding a hierarchical incidence graph is straightforward: one record per node of HIG is

stored, which contains one pointer corresponding to its outgoing arc; each pointer is set to the

address of the other end node of the arc. The label function `

g

is encoded by setting a pointer

from each graph IGB

j

(j > 0) to the node corresponding to the direct abstraction of �

j

, and a

reverse pointer from such a node to IGB

j

.

3.3 Neighbor �nding

The data structure just described supports e�cient implementation of many access operations

on a hierarchical triangulation. In particular, information encoded in each partial incidence

graph permits to navigate through a single node of the hierarchy, while hierarchy links permit

to move across di�erent levels of the tree.

A less immediate operation is navigation through triangles that are adjacent in space, but

belong to di�erent triangulations of the hierarchy. Such an operation is called neighbor �nding,

and it is formalized as follows.
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Figure 7: The three possible situations in neighbor �nding.

Let t be a boundary triangle of a triangulation �

i

2 T , and let e be a boundary edge

of t: �nd a triangle t

0

of H that is adjacent to t on the other side of e.

Triangle t

0

will belong to some other triangulation �

j

in the hierarchy. Three situations may

occur:

(a) in case the hierarchy is not an HMT, there might exist no triangle that is matching with

t along e, i.e., all triangles on the other side of e might be \coarser" than t: in this case,

t

0

will be selected as the �nest triangle in the hierarchy that is adjacent to t along e and

covers e with one of its edges (see Figure 7a);

(b) there might exist exactly one triangle t

0

that is matching with t along e (see �gure 7b);

(c) in case edge e \survives" across di�erent levels of the hierarchy without being re�ned,

there might exist more than one triangle that is matching with t along e: in this case, t

0

is selected as the one among all possible candidates, which lies at the hieghest level in the

hierarchy: it is straightforward to trace all other candidates through the data structure

(see �gure 7c).

Neighbor �nding can be implemented on the basis of the data structure just described,

through suitable algorithms, similar to the well known algorithms for neighbor �nding on

quadtrees [Sam90]. The main principle adopted by such techniques is the following. The hierar-

chy is traversed bottom-up starting at t, until an ancestor of t is found, having the corresponding

ancestor of e as an internal edge. Then, such an edge is crossed, and the hierarchy is traversed

top-down on the other side of it until t

0

is found. In order to do that, a stack containing ancestors

of e is maintained, with respect to the boundary lists of triangulations traversed when moving

bottom-up. Such a stack permits to trace back the path in the corresponding sequences when

moving top-down.

However, we prefer here a more direct and faster implementation, which is based on an

extension of the data structure described in Section 3.2 that can be obtained at virtually no cost.
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Figure 8: Ropes between neighbors along edge e in the HMT of Figure 7c (hierarchy links are

omitted).

Let us consider the partial incidence graph just described. We can observe a lack of symmetry

between nodes corresponding to internal edges, and nodes corresponding to boundary edges:

indeed, while nodes of type N

IE

i

have two outgoing arcs in ET

i

, nodes of type N

BE

i

have only

one such outgoing arc. We can use the \free" entry on a node of type N

BE

i

, corresponding to a

boundary edge e of a triangle t of �

i

, to set an arc from it to a node of type N

T

j

corresponding to

the neighbor t

0

of t along e. Such links are called ropes, for analogy with similar data structures

proposed for quadtrees [Sam90]. According to the above discussion, in case there exist more than

one admissible neighbor for triangle t, the rope will connect e to the triangle t

0

among candidate

neighbors, which lies at the highest level in the hierarchy. All other admissible neighbors of t

belong to direct descendants of t

0

, and the boundary sequence corresponding to e in each such

descendant is formed by only one edge (coinciding with e). All such admissible neighbors can

be accessed easily through hierarchy links. Note that the rope from the edge of t

0

coinciding

with e will not necessarily be connected to t (see Figure 8).

3.4 Building a hierarchical triangulation

Let 
 � IE

2

be a convex polygonal region in the plane, and let S � 
 a set of points of 
, not

necessarily �nite or discrete, called the data set. For simplicity, we assume that S contains at

least all vertices of the convex hull of 
. We are interested in building a hierarchical triangulation

H with vertices in S that covers 
. As we require D(�

0

) � 
, at least all vertices of the convex

hull of 
 will be vertices of �

0

. We avoid making here further assumptions on which points of S

will be used as vertices of the triangulations of H, since such choice is strictly dependent of the

speci�c application.

On the other hand, in order to be not too abstract, we will keep in mind the following concept.

We assume that some information is \attached" to the points of 
 and that such information is

known (or can be computed/retrieved) for all points of S. Given a triangulation � = (V;E; T ),

whose domain is contained in 
, we assume that for every t 2 T , information about all points
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covered by t will be approximated in a more synthetic form by some other information attached

to t (e.g., a function). We can expect that the amount of information stored in the model will

increase as the domain subdivision is re�ned (i.e., as more and more triangles are used to cover

the domain), and that the quality of the approximation will improve as a consequence.

As we want to focus on the construction of the domain subdivision, while remaining generic

about the information represented, we assume that a set of Boolean conditions is given: C

A

=

fc

�

j � 2 Ag, where A is a totally ordered set, not necessarily �nite or countable, and C

A

is

such that 8� > �; c

�

) c

�

. We denote by c

�

(�) the Boolean value of condition c

�

evaluated

in triangulation � , and we say that � is at degree of resolution � if and only if c

�

(�) is true.

We naturally extend conditions to triangles as follows: for any triangle t, c

�

(t) has the value of

c

�

evaluated in a triangulation containing only t. We assume the following consistency rule to

hold: let � be a triangulation formed by triangles ft

0

; : : : ; t

k

g, then ^

k

i=0

c

�

(t

i

) ) c

�

(�), i.e., a

triangulation is at least at the same degree of resolution of the highest degree satis�ed by all

its triangles. Some examples presented in Section 4 show that the reverse is not always true.

We also assume that the conditions in C are all feasible for data set S, i.e., given a condition

c

�

2 C and a triangle t with vertices in S, there always exists a �nite triangulation re�ning t

with vertices in S and satisfying c

�

.

In the following we give �rst a generic algorithm for building a hierarchical triangulation

which is based on successive re�nements controlled by a sequence of conditions of the type C

I

,

where I = f0; 1; : : : ; d

max

g is a �nite set of natural numbers. Next, we discuss a generalization

of such an algorithm to a virtual sequence of the type C

A

, where A is a continuous interval.

We de�ne a hierarchical triangulation H based on C

I

by induction: let H

0

be a hierarchical

triangulation formed by a single triangulation �

0

satisfying c

0

. For i < d

max

, given hierarchical

triangulation H

i

, the hierarchical triangulation H

i+1

is obtained by re�ning all simple triangles

ofH

i

that do not satisfy c

i+1

into triangulations that do satisfy it. Finally, we de�neH � H

d

max

.

Note the di�erence between the de�nition above and the de�nition of H

(i)

given in Section

3.1: while H

(i)

is the subgraph corresponding to the �rst i levels of the tree describing H,

the hierarchical triangulation H

i

is de�ned here only on the basis of its degree of resolution.

Indeed, there is only a very weak relation between H

i

and the �rst i levels of H: H

i

will have

no more than i levels, but it does not necessarily contain components of H at level i. Indeed,

any component of H at a level l can have a degree of resolution higher than l. This is due to

the fact that a simple triangle can pass several conditions before being re�ned: if a triangle t

belongs to a triangulation satisfying condition c

i

, and t satis�es itself condition c

i

0

, for some

i

0

> i, then t can be a simple triangle also in all hierarchies H

j

, for i � j � i

0

. This is the main

reason why an HT performs much better in terms of data compression than a layered model. In

Section 4 we will see some special HTs for which the level of a triangulation and its degree of

resolution will necessarily coincide. Conversely, in Section 8 we will see that, in the model we

propose for surface modeling, a very large number of degrees of resolution can be obtained with

a tree having only few levels.

The construction algorithm sketched in the following is parametrized over the strategy for

re�ning a single triangulation. A specialized algorithm for any given application can be derived

from such a framework by instancing the suitable conditions and by deciding a re�nement

procedure to satisfy them (see Sections 4 and 6).

H is built according to a top-down approach that directly implements the inductive de�nition:
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�

0

is built �rst; then, for all triangles of �

0

that do not satisfy condition c

1

, their direct re�nements

are computed in such a way that they satisfy c

1

, and so on, until the maximum degree d

max

is

reached. Let REFINE(S

t

; t; c) be a function that, given a triangle t, a data set S

t

(a restriction

of data set S to triangle t), and a condition c, returns a triangulation with vertices in S

t

, whose

domain coincides with t, and that satis�es c. The following general algorithm builds H based

on such function:

Algorithm BUILD HT(S; C,out H)

begin

build an initial triangulation �

0

satisfying c

0

;

T  f�

0

g;

E  ;;

for d = 1 to d

max

do

for every � 2 T containing simple triangles do

for every simple triangle t of � such that c

d

(t) == false do

�

0

 REFINE(S \D(t); t; c

d

);

T  T [ f�

0

g;

E  E [ f(�; �

0

)g;

`(�; �

0

) t;

end for

end for

end for

end

Procedure REFINE is the core of the algorithm that must select a �nite subset of data

V

t

� S

t

= S \ D(t), such that the triangulation �

0

of V

t

satis�es c

d

. The technique adopted

for selecting vertices is application dependent. Di�erent selection and re�nement techniques

can yield di�erent complexities for the algorithm BUILD HT. In Sections 4 and 6, we will

outline conditions and techniques applied for building some meaningful examples of hierarchical

triangulations we have considered.

Let us consider now a set of conditions C

A

, where A is an interval in IR, and let us assume

to have a hierarchy H

�

whose simple triangles satisfy condition c

�

, for some � 2 A. The

algorithm above can be adapted to re�ne H

�

further. In this case, procedure REFINE will be

asked to re�ne each simple triangle that does not satisfy any condition c

�

0

, for �

0

> �, into a

triangulation satisfying a condition c

�+d�

, for some d� arbitrarily small. In fact, each re�nement

will not cause an in�nitesimal improvement, but a �nite one. Let � > � be the maximum value

of A such that all simple triangles of the new hierarchy all satisfy c

�

. Such number always exists

since there are �nitely many simple triangles re�ned at each step, and �nitely many triangles

in their direct re�nements. Then, � is the next degree of resolution achieved. In practice, this

mechanism allows us to approximate a continuous range of resolutions through a discrete, but

arbitrarily numerous, set of degrees of resolution, which is not given a priori, but is determined

while re�nement occurs.

Note that, while all triangles are re�ned independently, some vertices introduced when re�ning

a triangle t could lie on its edges. If we want to obtain a hierarchical matching triangulation,

we must impose conditions and use a strategy that allows us to satisfy the matching rule during

re�nement. In other words, we must guarantee that, for any pair of triangles t

i

and t

j

adjacent

along an edge e at degree (d � 1), which are re�ned at degree d, their corresponding direct

re�nements at degree d will be matching triangulations along e; also, if only one of the two
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triangles is re�ned at degree d, its direct re�nement will not have any new vertex on e. This

means that REFINE must select points on e independently of t

i

and t

j

.

3.5 Expanding a hierarchical triangulation

Let H be a hierarchical triangulation and let H

0

be a substructure of H. As mentioned in Section

3.1, the expansion of H

0

is a generalized triangulation H

0

E

composed of all simple triangles in

H

0

. In the following, we present an algorithm for expanding H

0

into H

0

E

. The algorithm, besides

extracting the set of geometric entities forming H

0

E

, constructs the topological structure of the

subdivision, i.e., the incidence and adjacency relations among its entities and its boundary.

Note that if H

0

is a consistent substructure of H, then H

0

E

is a triangulation. The resulting

triangulation (either generalized or not) is encoded through the partial incidence graph described

in Section 3.2.

The general structure of the algorithm is a top-down traversal of H

0

, based on recursive

procedure EXPAND SUBTREE, which takes as input a subtree rooted at a triangulation �

and returns a generalized triangulation �

exp

that expands such a subtree. Procedure EX-

PAND SUBTREE performs the following three steps:

1. the set of triangles forming �

exp

is extracted, which is composed of all simple triangles of

� plus all triangulations expanding its macrotriangles;

2. the topological structure of �

exp

is constructed, based on the topological structure of � and

on the boundary sequences of the triangulations recursively extracted at step 1: triangles

that do not match with their neighbors are replaced with generalized triangles by adding

vertices on their boundary edges;

3. the three sequences of edges forming the boundary of �

exp

are extracted.

The expanded triangulation H

0

E

is then computed by applying EXPAND SUBTREE to the

root �

r

of H

0

. We prefer not to specify H

0

explicitly as a procedure parameter. We will rather

use the whole H as parameter, while identifying H

0

implicitly as follows:

� the root triangulation �

r

of H

0

is given;

� a Boolean function MACRO

H

0

(t) is given that, for each triangle t of H, returns true if

and only if t is a macrotriangle in H

0

.

This is not merely a peculiar de�nition to make things more complicated; it is rather a way

of allowing the algorithm to dynamically select a substructure H

0

, unknown a priori, while the

expansion occurs: in practice, the structure of H

0

is not necessarily speci�ed by the user, but it

is decided on the basis of a rule incorporated in MACRO

H

0

.

An example of major importance is the following. Let us consider a hierarchical matching

triangulation H built on a sequence of conditions C

I

= fc

0

; : : : ; c

d

max

g as in the previous Sec-

tion. Given i � d

max

, we want to expand H

i

de�ned as in the previous Section. In this case,

MACRO

H

i

is de�ned as follows:
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MACRO

H

i

(t) :== not c

i

(t).

In the following, we give a pseudo-code description of procedure EXPAND SUBTREE that

makes use of procedures EDGE LINKING and BOUNDARY RECONSTRUCTION implement-

ing steps 2 and 3 described above. Within the pseudo-code, a list L

�

is used to store the expan-

sions of macrotriangles; we assume that direct access to such list is possible through the triangles

indexing its elements. List L

�

is used afterwards as a parameter for procedure EDGE LINKING,

which produces in turn a second list L

e

of edge sequences, corresponding to the expansions of

the boundary edges of the current triangulation. List L

e

is passed as a parameter to procedure

BOUNDARY RECONSTRUCTION. Simple procedures acting on lists are used in the pseudo-

code: procedure ADD LIST adds one element to a list, and function EMPTY tells whether a

list is empty or not.

procedure EXPAND SUBTREE(H,MACRO

H

0

,� ,out �

exp

)

begin

for every triangle t of � do

if MACRO

H

0

(t) then

EXPAND SUBTREE(H,MACRO

H

0

; DRef(t); �

t

);

ADD LIST(L

�

; �

t

);

end if

end for ;

if EMPTY(L

�

) then

�

exp

 �

else

EDGE LINKING(�; L

�

; �

exp

; L

e

);

BOUNDARY RECONSTRUCTION(�; L

e

; �

exp

);

end if ;

end

The pseudo-codes of procedures EDGE LINKING and BOUNDARY RECONSTRUCTION

are omitted here for brevity, while their structure is detailed in the following. Procedure

EDGE LINKING, besides inserting all expanded triangles into �

exp

, replaces each non-matching

triangle with a suitable generalized triangle, and it reconstructs the topological structure of �

exp

by identifying shared edges extracted while expanding adjacent triangles of � . A list L

e

of edge

sequences is also produced as a side e�ect: each sequence in L

e

is indexed by a boundary edge of

� , and corresponds to its expansion in �

exp

. In procedure EDGE LINKING, edges of the current

triangulation � are considered in sequence; let e be one of such edges, and let (t

0

; t

1

) be its two

adjacent triangles in � . The following situations can occur:

1. Neither t

0

nor t

1

were expanded (see Figure 9a). Thus, e is maintained in �

exp

; relations

involving only e, t

0

, and t

1

are already present in � , and they can be copied into �

exp

.

2. Only t

0

was expanded into a triangulation that matches with t

1

along e (see Figure 9b). In

this case, the boundary sequence corresponding to e in �

t

0

will be formed by a single edge

e

�

, coincident with e. Thus, e and e

�

are identi�ed, and relations involving t

1

, e, and the

triangle of �

t

0

that is bounded by e

�

are set accordingly. The situation is fully symmetric

if only t

1

was expanded.

3. Only t

0

was expanded into a triangulation that does not match with t

1

along e (see Figure

9c). In this case, t

1

is transformed into a generalized triangle by substituting to e the
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Figure 9: The six cases of edge linking.

boundary sequence corresponding to e in �

t

0

. The situation is fully symmetric if only t

1

was expanded.

4. Both t

0

and t

1

were expanded into matching triangulations (see Figure 9d). Thus, there

exists two ordered sequences of boundary edges, s

t

0

in �

t

0

, and s

t

1

in �

t

1

, that correspond

to e, and such that the elements of s

t

0

and s

t

1

are pairwise coincident. In this case, the

two sequences are scanned in parallel, their edges are pairwise identi�ed, and relations are

set accordingly between such edges and their adjacent triangles in �

t

0

and �

t

1

.

5. Both t

0

and t

1

were expanded into triangulations that do not match (see Figure 9e),

but triangulations �

t

0

and �

t

1

are always weakly matching, by de�nition. Without loss

of generality, let us assume that �

t

0

is the one that re�nes e into more pieces. The two

ordered sequences of boundary edges, s

t

0

and s

t

1

are scanned in parallel as in the previous

case. For each element of s

t

1

, if there exists a corresponding matching element in s

t

1

,

then identi�cation occurs as in the previous case, otherwise there exists a subsequence

of elements of s

t

0

that correspond to the current element of s

t

1

, and the corresponding

triangle in �

t

1

is transformed into a generalized triangle as in case 3.

6. e is a boundary edge of � (see Figure 9f). In this case only t

0

is de�ned. If t

0

has been

expanded, then there is a boundary sequence of edges of �

t

0

corresponding to e: such a

sequence is appended to L

e

.

Note that if H

0

is a consistent substructure, then cases 3 and 5 never occur. The boundary of

the expanded triangulation �

exp

is �nally computed by procedure BOUNDARY RECONSTRUC-

TION, on the basis of the boundary of the current triangulation � , and of the list of expanded

edges L

e

computed by EDGE LINKING. The sequences of edges (s

0

; s

1

; s

2

) forming the bound-

ary of � are scanned sequentially, and the three corresponding lists forming the boundary of �

exp

are generated respectively. For each list s

i

(i = 0; 1; 2), edges of s

i

are considered in sequence.

For every edge e 2 s

i

, if e was expanded, then list l

e

expanding e is taken from L

e

and it is

appended to s

exp

i

, else e itself is appended to s

exp

i

.

Procedure EXPAND SUBTREE has a linear time complexity in the size of H

0

E

, provided

that function MACRO

H

0

(t) can be evaluated in constant time. We �rst observe that procedures

EMPTY and ADD LIST can both be implemented with constant time complexity (linked lists

with pointers to both ends are used). We can evaluate the time complexity by globally counting
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the operations executed during the three steps of the algorithm: triangle extraction, edge linking,

and boundary reconstruction. Recall that the number of elements composing H

0

is of the same

order of the size of H

0

.

1. During triangle extraction and edge linking, a triangle of H

0

is visited only twice, and the

operations for each triangle are executed in constant time.

2. During edge linking, an edge e is visited at most twice: once in the main loop, when the

appropriated sequences of edges must be identi�ed and substituted for e in the expanded

triangulation, and once as a part of one such sequence. It is important to note that, during

a single call to procedure EDGE LINKING, a sequence of edges expanding an edge e of

the current triangulation is scanned only if e is an internal edge; otherwise the sequence is

appended to L

e

without visiting its elements. Also, each triangle of H

0

is visited at most

three times during edge linking, one for each of its edges. Thus, a constant number of

operations are executed for each visit of an edge or a triangle.

3. During boundary reconstruction, each edge of H

0

is visited only once, and a constant

number of operations is executed each time: indeed, when substituting an edge e with the

sequence s

e

expanding it, s

e

need not be scanned (linked lists with pointers to both ends

are used to encode edge sequences).

As proven in Section 3.1, the size of H

0

is linear in the size of the expanded triangulation H

0

E

.

Thus, H

0

E

can be extracted from H

0

in time linear in the size of H

0

E

.

4 Examples of Hierarchical Triangulations

As outlined in the introduction, the main purpose of a hierarchical triangulation is to serve

as a multiresolution domain discretization for applications like, e.g., Geographical Information

Systems (GISs), and Computer Aided Geometric Design (CAGD).

Several triangle-based structures proposed in the literature that we have reviewed in Section 2

can be formalized as hierarchical triangulations. In this Section, we give the formalization of such

structures in the framework described in Section 3, through the conditions that de�ne them, and

the re�nement strategies to build them. We also discuss, through such examples, some critical

issues about alternative approaches that can be followed, and the need for tradeo�s between

di�erent requirements that are often hardly compatible. We consider the following main issues:

� matching: as we outlined in Section 3.1, hierarchical triangulations that ful�ll the matching

rule are desirable in order to preserve continuity;

� adaptivity: in several applications, especially when the data points are not very uniformly

distributed, it is desirable to focus the re�nement in areas of interest, while maintaining a

coarse discretization in other areas;

� shape: it is widely recognized that a triangular domain discretization should be composed

of triangles whose shapes are maintained as much regular as possible. In other words, long

and thin (slivery) triangles should be avoided;
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� precision vs size: the most natural way to conceive the degrees of resolution in a hierarchical

triangulation is to associate a higher degree with a higher precision in representing data

(explicit multiresolution). On the other hand, it is sometimes desirable to set conditions

where a constant bound is imposed on the number of data introduced at each degree

of resolution. In this case, the multiresolution of the model is only implicit, since an

intermediate precision does not necessarily correspond to a given degree of resolution. As

the total number of data used to achieve a certain precision cannot be bounded by a

constant, implicit models, which set a constant bound on the size of components, might

require an arbitrary number of degrees of resolution to achieve a given precision.

� geometry-driven vs error-driven re�nement: the strategy used to re�ne triangles can be

based on the use of a given geometric or topological pattern, or can be based on the attempt

of achieving a better precision in approximating data. In general, the two approaches

cannot coexist.

In Section 6, we will describe a model for multiresolution surface description based on a

hierarchical Delaunay triangulation [DeF92]. The model we propose is matching, adaptive,

and error-driven, it supports explicit multiresolution, and admits sparse data, while the shape

of triangles is controlled by imposing the Delaunay criterion within each component of the

hierarchical structure.

In the following Subsections, we use the following notations: given a triangulation � , the

number of triangles of � is denoted #� ; given a triangle t, the portion of data set covered by t

is denoted S

t

; whenever applicable, we assume that the error of a model in approximating the

information attached to data can be measured by a real-valued function E, and we denote by

E(t) the error made in approximating the data points of S

t

with triangle t, and by E(t; p) the

error made in approximating p 2 S

t

with t.

4.1 The ternary triangulation

A simple approach to hierarchical triangulation, called the ternary triangulation, was proposed

in [DeF84] for the multiresolution representation of terrain in a GIS. In a ternary triangulation,

a triangle t is re�ned by inserting a point inside it, and subdividing t into three new triangles (see

Figure 10). Triangles that do not achieve a given precision, corresponding to an error tolerance

", are re�ned recursively, until all simple triangles in the hierarchical structure satisfy E(t) � ".

A ternary triangulation is de�ned by a sequence C

I

of Boolean conditions that are all coin-

cident:

8i, c

i

(�) :== (#� = 3) _ (8t 2 �; E(t) � ").

In a ternary triangulation, the degree of resolution of a triangulation � coincides with the level

of � in the tree describing the hierarchical structure, but it is not necessarily related with the

approximation error of � . Possible alternatives to the de�nition above are to stop re�nement

after the tree has reached a prede�ned number of levels, or when all data have been inserted as

vertices.
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Figure 10: A ternary triangulation.

The re�nement strategy for a triangle t consists in picking a point p inside t with maximum

approximation error (i.e., the argmax of E(t; p)). A possible alternative is to pick the datum p

that lies closest to the centroid of t.

The ternary triangulation is a matching hierarchical triangulation, since edges are never split

during re�nement. Note that this fact makes any subhierarchy of a triangulation consistent:

therefore, any expanded subhierarchy of a ternary triangulation is a triangulation. The ternary

triangulation is adaptive, since it does not impose a geometrically �xed rule for splitting. On

the other hand, the re�nement strategy is topology-driven, the precision is not guaranteed to

improve at each re�nement step, and multiresolution supported is only implicit. The main

disadvantage of a ternary triangulation is that many slivery triangles are generated: after l

levels of re�nement, the smallest angle in the hierarchical triangulation will be not larger than

�2

�l

3

. This fact is essentially due to the impossibility of splitting edges of existing triangles.

4.2 The k

2

triangulations

The quaternary triangulation, opposite to the ternary triangulation described above, is a hi-

erarchical structure based on a geometrically �xed splitting rule, whose primary purpose is to

preserve the regular shape of triangles. In a quaternary triangulation, a triangle t is re�ned into

four new triangles by connecting the midpoints of the edges of t (see Figure 11). A generalization

of this concept consists in re�ning t into k

2

new triangles (for k � 2), obtained by splitting each

edge into k equal parts, then connecting pairs of splitting points through straight-line segments

parallel to the edges of t, and adding all intersections of such lines as new vertices. The re�ne-

ment of t is a triangulation made of k

2

new triangles. In one such hierarchical structure, all

descendants of a triangle t have the same shape of t; thus, in order to ensure the quality of the

resulting hierarchical triangulation, it is su�cient to build a good triangulation at the root.

As in the case of a ternary triangulation, the re�nement can stop when a given precision is

met. In this case, a similar sequence of conditions is obtained:
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Figure 11: A quaternary triangulation.

8i, c

i

(�) :== (#� = k

2

) _ (8t 2 �; E(t) � ").

Possible alternatives are stopping re�nement after a prede�ned number of levels, or when all

data have been inserted. Again, the degree of resolution of a triangulation coincides with its level

in the tree, but it is not related with its precision. In analogy with the case of quadtrees, the

resolution is more directly related with the area of triangles: mode precisely, a triangle at level

l of the hierarchy will have an area of

1

4

l

times the area of its ancestor in the root triangulation.

Note that, in this case, an algorithm for expanding the hierarchy at a given resolution is ruled

by a procedure

MACRO

H

0

(t) :== �(t) > �,

where � denotes the area of a triangle, while � is a selected threshold area.

A k

2

triangulation is adaptive, and it is formed by nearly equilateral triangles, provided

that triangles in the root are nearly equilateral. The k

2

triangulations follow a geometry-driven

decomposition requiring uniformly distribuited data, and they support only implicit multireso-

lution. The main drawback of such structures is matching: as all edges of a triangle t are split

when re�ning it, in order to ful�ll the matching rule, a triangle can be re�ned if and only if

all triangles of all triangulations at the same level of the tree are re�ned. Thus, either local

re�nement is not permitted, and the tree describing a hierarchical triangulation is full with k

2

children per internal node, or the resulting structure will not be matching. Similarly, only an

expanded hierarchy in which all triangles are expanded at the same level of resolution will be a

triangulation.

4.3 Heuristic hierarchical triangulation

The ternary and quaternary triangulations are two extreme examples of opposite approaches

in driving the re�nement, which can be summarized as follows: if new vertices are inserted
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Figure 12: Splitting rules for the heuristic triangulation.

on all edges while re�ning a triangle t, even all neighbors of t must be re�ned to satisfy the

matching rule, and local re�nement is thus prevented; conversely, if t is re�ned by inserting only

internal points, slivery triangles will be generated. In order to preserve the possibility for local

re�nements, heuristic techniques have been proposed that permit the re�nement of some edges

while leaving some other edges unchanged.

In [Sca92] an error-driven splitting rule has been proposed, which implements a hybrid strat-

egy: a triangle t is re�ned by inserting points corresponding to the maximum approximation

errors along its edges and/or in its interior. Five (out of seven) possible topological combinations

are considered for splitting, yielding a subdivision of the triangle into two to four new triangles

(see Figure 12). Splitting of triangles is performed iteratively within a given triangulation �

until the precision required for the given degree of resolution is met.

The heuristic hierarchical triangulation proposed in [Sca92] is built based on a decreasing

sequence of tolerance values "

0

> "

1

> : : : > "

d

max

, like the Delaunay pyramid described

in Section 2. The heuristic hierarchical triangulation is thus characterized by the following

conditions:

8i = 0; : : : ; d

max

, c

i

(�) :== (8t 2 �; E(t) � "

i

).

The procedure for re�ning a triangle t at a given degree of resolution i starts from a triangulation

�

t

containing only t, and iteratively splits its triangles until c

i

(�

t

) is satis�ed. The heuristic

hierarchical triangulation is matching, since the precision along the edges is tested independently

of the precision inside triangles, and edges are split according to a �xed deterministic rule. This

structure is also adaptive, hence permitting local re�nement and sparse data, it is error-driven,

and it supports explicit multiresolution. Being based on heuristics, there is no guarantee that

the shape of triangles is well maintained.

Note that the set of conditions given above for the heuristic hierarchical triangulation is valid

in general for any hierarchical triangulation supporting explicit multiresolution. Of course, the

error function E is application dependent, and even for a given application, di�erent approxi-

mation estimates can be obtained by using di�erent functions (see Section 5). For a given error

function E, the structure of the HT is thus completely dependent on the re�nement procedure.

A \good" re�nement procedure should re�ne a triangle into a triangulation that contains as

few new vertices as possible, and is composed of triangles with a good shape. Also, new ver-

tices should be admitted both inside the triangle and on its edges, but vertices on edges should

be not too numerous, in order to maintain the possibility of local re�nement, while preserving

matching.
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5 Surface Representation Based on a Hierarchical Triangula-

tion

A nonparametric surface in 3D (also called a 2

1

2

D surface) is a compact and connected 2-manifold

with boundary, described by the graph of a real-valued function of two variables de�ned over

a compact and connected domain in the real plane. Formally, given a domain 
 � IR

2

, and

a function f : 
 ! IR of class C

k

(
), the surface (of class C

k

) corresponding to f over 
 is

 (
; f) = f(x; y; f(x; y)) j (x; y) 2 
g. We call the pair M = (
; f) a mathematical surface

model.

In practical applications, it is hardly possible that a surface can be described through a single

analytic function f over the whole domain 
. A �nite description can be given by tessellating


 into regions, such that surface  can be described by a function over each region. Let � be

a partition of the domain 
 into connected regions f


1

; : : : ; 


m

g, and let F = ff

1

; : : : ; f

m

g be a

family of functions such that

� 8i = 1; : : : ;m; f

i

: 


i

! IR is a function of class C

k

(


i

);

� the function

^

f =

m

X

i=1

f

i

�

i

(where �

i

is the characteristic function of region 


i

) is of class C

k

(
), i.e., all f

i

's match

on the borders between adjacent regions up to the k-th order of derivatives.

The pair D = (�; F ) is called a digital surface model. Partition � is usually formed either by

quadrilaterals or by triangles. If the partition is a triangulation � , the pair D = (�; F ) is called

a triangulated surface model.

A piecewise-linear triangulated surface model (PLTS) is a digital surface model D = (�; F )

of class C

0

(i.e., continuous), where � is a triangulation and F is a family of linear functions.

For a PLTS, the family F is characterized completely by the set of values

^

f(V ) corresponding

to the set of vertices V of � : a function f

i

2 F corresponding to a triangle t

i

of � is the linear

function interpolating

^

f at the vertices of t

i

.

Though smooth surface models are desirable for many applications in CAGD and computer

graphics, piecewise-linear triangulated surface models are widely used both in �nite element

methods to represent scalar �elds [Sil90], and in GIS to represent terrains [Lee91]. Moreover,

piecewise-linear models can be used as control nets to de�ne surfaces of higher class [Far86,

Sei92].

In case a digital model is used to approximate a surface, its e�ectiveness depends on the

precision of the approximation. The approximation error is application dependent, and it is

often measured through norms. Let k � k




be a norm on real functions de�ned over a domain 
,

and let f;

^

f : 
! IR be two such functions. We de�ne the error made in approximating f with

^

f over 
 as follows:

E(f;

^

f) =

kf �

^

fk




k1k




;
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where k1k




is the norm of the unit function used as a normalization factor. Thus, given a

mathematical surface model M, a digital surface model D, de�ned as above, and a tolerance

value " � 0, we say that D is an approximation ofM with precision " if and only if E(f;

^

f) � ".

Examples of norms used in the literature to measure the approximation error are the L

n

norm (for n positive integer) de�ned

kfk


;n

=

n

s

Z




j f(x; y) j

n

dxdy;

the L

1

norm de�ned

kfk


;1

= sup




j f j;

and the Sobolev norm de�ned

kfk


;S

=

q

kf(x; y)k

2

+ krf(x; y)k

2

:

The L

1

norm is normally adopted in GIS applications, while in �nite element analysis the L

2

and the Sobolev norms are used more often.

It is often useful to measure the precision of an approximation only over a subset of the

domain. Note that all the norms de�ned above can be rede�ned for any subdomain S � 


(provided that the area of S is not zero). Note also that E can be regarded as an average

error over the domain (because of the normalization factor): thus, measures of approximation

over di�erent subdomains can be considered somehow consistent among them. We denote the

measure of precision over S by

E

S

(f;

^

f) =

kf �

^

fk

S

k1k

S

:

Whenever models M and D (and thus functions f and

^

f) are implicitly �xed, we will simply

write E(S); also, if � is the underlying partition of D, we will denote by E(�) the error of

approximation over the whole domain 
.

When the function f describing a natural surface  over a domain 
 is known only at a �nite

set of data points P = fp

1

; : : : ; p

n

g � 
,  (P; f(P)) is called a sampled surface. In this case, the

precision of a digital model D approximating  over 
 can be only estimated. Since the area of

P is zero, the estimate E can be expressed in a discrete form, by rede�ning the norms through

sums instead of integrals. An alternative is to build a continuous model M that interpolates  

at all points of P, then takingM as reference model, and measuring the error in approximating

M with D.

A hierarchical triangulated surface is de�ned by combining the concepts of hierarchical trian-

gulation and of triangulated surface model. Let M = (
; f) be a mathematical surface model,

and let H = (T ; E ; `) be a hierarchical triangulation on 
 (where T = f�

i

; i = 0; : : : ; hg). For

i = 0; : : : ; h, let D

i

= (�

i

; F

i

) be a triangulated surface model approximatingM over D(�

i

), and

let F = fF

i

; i = 0 : : : ; hg. Then, the 4-tuple HD = (T ; E ; `;F) is a Hierarchical Triangulated

Surface (HTS) approximatingM over 
. We say that HD is based on hierarchical triangulation

H.

Let T = [

�

i

2T

T

i

be the set of all triangles of H (where T

i

is the set of triangles of �

i

), let

F = [

F

i

2F

F

i

be the set of all functions of F , and for each t

i

2 T, let f

i

2 F be its corresponding

26



function. Given any triangulation � formed of triangles of T, let Fj

�

be the subset of F formed

by all functions corresponding to the triangles of � . We call HD a consistent HTS of class k if

and only if

� H is a matching triangulation;

� 8H

0

consistent substructure of H, if H

0

E

is the expansion of H

0

, then the pair (H

0

E

;Fj

H

0

E

)

is a triangulated surface model of class k.

Notice that each component of a consistent HTS of class k must necessarily be a digital surface

model of class k, but this condition is not su�cient, since also the continuity across di�erent

components must be guaranteed (up to the k-th order of derivatives). However, this subject

is not developed in general in this paper: in the following Sections, we consider the case of a

piecewise-linear HTS of class C

0

, that we have developed for the representation of topographic

surfaces in the context of a geographical application [DeF92].

A piecewise-linear hierarchical triangulated surface HD is an HTS whose components are

PLTSs. In this case, given the set V of all vertices in HD, and the corresponding set of values

f(V), the families of functions of F are uniquely de�ned through (V; f(V)). It is easy to see

that HT is a consistent HTS of class 0 if and only if HT is based on a matching triangulation.

6 Multiresolution Representation of a Terrain

In this Section, we consider the surface of a terrain whose elevation values are sampled at the

nodes of a �ne rectangular grid. Such a sampling scheme is widely used in practice: large areas

of territory have been sampled and encoded through rectangular grids, and are made available

by the geographic agencies in many countries. A reference surface model of one such sampled

surface could be easily obtained by using piecewise-bilinear interpolation within each mesh of

the �ne grid. On the other hand, the amount of data in one such model is usually very large,

and the need has been pointed out for models that are able to compress information using a

smaller data set [Lee91].

Here, we are interested in building a multiresolution approximation of such a sampled surface

through a piecewise-linear HTS, having its vertices either at the nodes or on edges of the grid.

For the sake of simplicity, we use an m � m square grid, scaled on the domain 
 = [0;m �

1] � [0;m � 1]. Thus, our sampled surface  (P; f(P)) is de�ned from a set of samples P =

f(i; j) j i; j = 0; : : : ;m� 1g, and an associated set of elevation values f(P). Let S be the lattice

obtained by joining each node (i; j) 2 P with its four neighbors through straight-line edges:

S = f(i; y); (x; j) j i; j = 0; : : : ;m� 1; x; y 2 [0;m � 1]g. Function f is extended to S through

linear interpolation along each edge joining adjacent nodes of P, thus obtaining a wire-frame

surface representation (see Figure 13).

We use S as a data set to build a hierarchical triangulationH = (T ; E ; `), and we approximate

the terrain surface over 
 by a piecewise-linear hierarchical triangulated surface model HD =

(T ; E ; `;F), interpolating f at its vertices through a function

^

f , de�ned as in Section 5. The

resulting model HD has the following characteristics:
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Figure 13: The wire-frame surface de�ned by lattice S.

Figure 14: An example of hierarchical Delaunay triangulation and its expansion.

� each triangulation �

i

2 T is a Delaunay triangulation

3

, having its internal vertices in P,

and its boundary vertices in S (an example of hierarchical Delaunay triangulation is shown

in Figure 14);

� the precision of the approximation is measured with respect to  (P; f(P)) by an error

function based on the L

1

norm, de�ned as follows: for A � 
, E(A) = max

A\P

j f �

^

f j;

� the re�nement is error-driven, on the basis of a given sequence of tolerance values

"

0

> "

1

> : : : > "

d

max

;

yielding the conditions:

8i = 0; : : : ; d

max

; c

i

(�) :== (8t 2 �; E(t) � "

i

):

Considering the de�nitions given in Section 3.4, and the fact that each triangulation �

i

2 T

is a Delaunay triangulation, HD is speci�ed completely by de�ning the re�nement strategy

adopted to select its vertices.

3

The Delaunay triangulation of a set of points V is a triangulation � = (V; E; T ) such that for each triangle

t 2 T , the open circumcircle of t does not contain any point of V in its interior [Pre85].
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The problem of approximating a sampled surface at a given precision " > 0 through a

PLTS has been studied by several authors in the literature (see [Lee91] for a survey). Di�erent

heuristics have been proposed to extract a \small" number of vertices (and triangles) that are

su�cient to achieve precision ". A recent breakthrough on this subject is a negative result

given in [Aga94]: it is NP-hard to decide if n sampled points can be approximated by a PLTS

of k triangles within the L

1

error tolerance of a speci�ed " > 0. In [Aga94] an algorithm is

also given for constructing one such PLTS with O(k

0

log k

0

) triangles, where k

0

is the optimal

number. Unfortunately, such an algorithm has a worst case time complexity of O(n

7

), and it

appears very hard to implement, hence having small practical impact.

Here, we adopt a simple algorithm proposed in [Fow79], which re�nes an existing Delaunay-

based PLTS by inserting one vertex at a time, and updating the Delaunay triangulation until

the required precision is met. The vertex inserted at each cycle is the point that causes the

maximum error in the approximation. Given a sampled surface  (P; f(P)), a Delaunay-based

PLTS (�(V ); f(V )), where V is a �nite subset of P, and a condition c

"

(�) :== (E(�) � "), for

some " � 0, the Delaunay selector is described by the following pseudo-code:

procedure DELAUNAY SELECTOR(P ; �; c

"

);

while not c

"

(�) do

let v be the point of P that maximizes E;

�  ADD VERTEX(�; v);

end while ;

return (�)

end ;

where ADD VERTEX(�; v) is a procedure that updates a given Delaunay triangulation � by

inserting one new vertex v in the set of vertices of � . The convergence of the Delaunay selector

is guaranteed for every value of ", since the number of points in P is �nite.

Let N = m

2

be the number of points in P, and let n be the total number of vertices of the

resulting triangulation � . The time complexity of the Delaunay selector is computed in terms of

such numbers, by counting the cost of selecting a point v at each iteration, plus the global cost

of procedure ADD VERTEX. We maintain a data structure that associates with each triangle t

in the current triangulation the list of data points contained inside t: the datum corresponding

to the maximum error within t is placed at the head of such a list. Moreover, triangles of

the current triangulation are maintained in a balanced search tree, organized according to the

approximation error corresponding to each triangle. By using such data structure, point v can

be selected in time O(log n) at each iteration, and thus the total contribution of point selection

is O(n log n). Procedure ADD VERTEX must take care of two tasks:

1. update the triangulation;

2. update the links between triangles and data, and the tree storing triangles.

We implemented the triangulation update through an algorithm based on local edge 
ipping

4

proposed in [Gui85], and we added the operations for updating links after each 
ip operation.

The algorithm �rst inserts point v by joining it with the vertices of the triangle t containing

4

This is a well-known technique that considers a pair of adjacent triangles forming a convex quadrilateral, and

swaps the common edge with the opposite diagonal if the two triangles do not satisfy the Delaunay criterion.
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Figure 15: Steps of the re�nement algorithm.

v (t is known from point selection), then performs a sequence of edge 
ips, until the resulting

triangulation is a Delaunay triangulation. It is known from [Gui85] that the number of 
ips

at a generic re�nement step i is at most O(n

i

), where n

i

is the current number of vertices

in the triangulation, yielding a total cost of O(n

2

) in the worst case for computing the whole

triangulation. Moreover, new triangles generated at each step are radially arranged around the

new point v, and a sequence of such triangles sorted radially can be obtained from the updating

procedure at no extra cost. Since the area covered by the new triangles could contain at most

O(N) data points, the links between points and triangles can be updated in O(N log n

i

) at step

i, through binary search on the sorted sequence, hence yielding a total cost of O(Nn log n) for

this task. Finally, the tree of triangles can be updated in time O(n

i

logn

i

) at step i, yielding a

total cost of O(n

2

log n). Since we always have n � N , we can conclude that the total complexity

of the algorithm in the worst case is O(Nn logn). We wish to point out that such worst-case

complexity can possibly be achieved only through ad hoc ill-conditioned data, while the practical

performance of the Delaunay selector on real world data shows a slightly superlinear behaviour.

The root triangulation �

0

of a hierarchical triangulated surface HD is built by applying the

Delaunay selector algorithm with condition c

0

over the set of samples P. The basic idea to build

the rest of the structure is to use the same approach for generic procedure REFINE de�ned in

Section 3.4. However, some attention must be paid to the re�nement of edges, both to ensure

matching, and to obtain triangles with a good shape. Note that, given a triangular region

D

t

� 
, there is small probability that some point of P lie exactly on the border of D

t

. Thus, if

only points of P are used as data, edges would be seldom re�ned, and the resulting triangulations

would contain slivery triangles along their boundary. In order to avoid this problem, we adopted

the following internal structure for procedure REFINE (see Figure 15):

(i) edge re�nement: for each edge e of triangle t that must be re�ned, we consider a pro�le

of the terrain along e as follows:

{ if e lies on an edge of S (either horizontal or vertical), we take the chain formed by

the endpoints u; v of e plus all points of P covered by e, P

e

= fug [ (P \ e) [ fvg,

ordered along e (see Figure 16a);

{ otherwise, we consider the chain formed by the endpoints u

0

; v

0

of e plus the points

where e intersects the lattice S, P

e

= fu

0

g [ (S \ e) [ fv

0

g, ordered along e; for each

w 2 P

e

nP, the value of f(w) is estimated by linear interpolation between two points

of P (see Figure 16b).

We take as a reference function the piecewise linear function f

e

that interpolates f at the

vertices of P

e

, and we solve the one-dimensional problem of approximating f

e

with another

piecewise linear function de�ned by a chain C

e

whose vertices are a subset of vertices of P

e

.

Initially, C

e

is coincident with e (i.e., the linear function interpolating f at the endpoints

of e is taken). Then, C

e

is re�ned by inserting other points of P

e

on-line, until the required
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Figure 16: Terrain pro�le along a vertical edge (a) and a slanted edge (b).

precision " is achieved. This approach can be regarded as the one-dimensional version

of the Delaunay selector, and is known in the literature as line simpli�cation algorithm

[Dou73]. The procedure is detailed by the following pseudo-code, where we denote with

E(C

e

) the error of approximating f

e

with the piecewise-linear function interpolating f

e

at

the vertices of chain C

e

, while procedure SPLIT CHAIN is self-explanatory:

procedure LINE SIMPLIFICATION(P

e

; C

e

; ");

while not E(C

e

) � " do

let v the point of P

e

that maximizes E;

C

e

 SPLIT CHAIN(C

e

; v);

end while

end ;

The above procedure can be implemented with a worst-case time complexity equal to

O(N

e

logN

e

), where N

e

is the number of points in P

e

[Her92]. Since P

e

is obtained by

intersecting e with a grid of 2

p

N lines, where N denotes the total number of points in P,

the time complexity of the procedure is maximized by O(

p

N logN). After applying this

procedure to all edges of t, the edges whose error exceeded " have been split into chains.

(ii) triangulation re�nement: the set V

t

composed by the vertices of triangle t, plus all

vertices inserted onto its edges at the previous step is considered, and the Delaunay trian-

gulation �(V

t

) is computed (through the on-line algorithm proposed in [Gui85]). Finally,

procedure DELAUNAY SELECTOR(P; �(V

t

); c

"

) is called, to complete the re�nement.

The time complexity of this procedure is O(N

t

n

t

logn

t

), where n

t

is the number of points

inserted at that step of re�nement, and N

t

is the number of points of P that lie within t.

The time complexity of the re�nement of a triangle t is thus given by the sum of the time

complexities of the two steps described above, i.e., O(N

t

n

t

logn

t

+

p

N logN). If we consider all

re�nement steps performed to obtain the hierarchical structure HD, and we denote with n the

total number of vertices inserted, it is easily seen that the total time complexity is maximized

by O(Nn logn), i.e., it is not higher than the time complexity for obtaining an approximating

surface at the maximum degree of resolution "

d

max

using the Delaunay selector.

Similarly to the general case described in Section 3.4, it is easy to adapt the algorithm just

described in order to build a hierarchy that approximates a multiresolution model spanning all
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resolutions in error range ["

min

"

MAX

]. The sequence of degrees of resolution of such model is

unknown a priori: at each iteration, the algorithm stops re�nement as soon as the error gets

smaller than the current one, and the next degree of resolution is set as the maximum error

among all simple triangles after re�nement. Therefore, at each iteration, only triangles whose

error is exactly the same as the current error are re�ned: in this way, many degrees of resolution

are built, each of which involves the re�nement of few triangles.

7 Extracting a surface at variable resolution

As we already outlined, an important application of multiresolution terrain representations is

landscape visualization, in the framework of systems such as 
ight simulators. In this context,

it is important to warrant high resolution over areas close to the observer, while resolution can

progressively decrease with distance from the viewpoint. Such an approach allows the rendering

system to visualize a reduced number of primitives, while maintaining a high grade of visual

realism.

The most di�cult issue in this respect is to produce a representation of the terrain surface

that adapts to a variable resolution over the domain while remaining continuous. For instance, a

straightforward multiresolution approach based on raster models can be obtained by subsampling

over far areas. A similar result is obtained from quadtree models through a more structured

procedure that selects quadrants from appropriate levels of the tree depending on their distance

from the viewpoint. All such approaches su�er from discontinuities of the rendered surface at

the edges where di�erent resolutions meet.

Here, we describe two di�erent approaches to the extraction of a continuous model at variable

resolution from a hierarchical triangulated surface. The �rst algorithm that we present is a

straightforward extension of the algorithm for expanding an HT, while the second algorithm

is based on a more sophisticated technique that uses navigation of the hierarchy. The two

algorithms are currently under implementation.

Let f

"

: 
 ! IR

+

be a positive-valued function called the resolution function. Given a

hierarchical triangulated surface H, we wish to extract from it a continuous surface such that

for every point p 2 
, the elevation of terrain at p is represented within an error f

"

(p). With

abuse of notation, for any triangle t of H, f

"

(t) will denote the minimum of f

"

over the area

spanned by t. Therefore, the desired triangulation � must be such that E(t) � f

"

(t), for every

t triangle of � .

Let us consider any HTS in which the representation error E(t) at each triangle t is known.

We can apply the expansion procedure described in Section 3.5, based on the following macro

function:

MACRO

H

(t) :== E(t) > f

"

(t).

Such an algorithm will produce a generalized triangulation H

E

that satis�es the precision re-

quirement at each point over the domain, but cannot warrant matching, hence continuity. A

continuous model can be obtained by considering each generalized triangle in H

E

, and trian-

gulating it. Since a generalized triangle is a convex polygon, a Delaunay triangulation can be
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Figure 17: A generalized trianglulation (a) and the easy triangulation of a generalized triangle

during edge linking (b).

computed in linear time through an algorithm described in [Agg89].

If an arbitrary triangulation of each generalized triangle is su�cient, the �nal triangulation

can be easily obtained in a single step as follows. Consider step 3 of procedure EDGE LINKING

described in Section 3.5. Instead of changing triangle t

1

into a corresponding generalized triangle

obtained by replacing edge e with the re�nement of e in �

t

0

, we can change t

1

directly into a

triangulation obtained by connecting each vertex of the re�nement of e to the vertex of t

1

opposite to e (see Figure 17). The corresponding modi�cation of step 5 of the same procedure is

completely similar. The result of such modi�ed algorithm is always a triangulation, thus yielding

a continuous surface model. Note that, for any generalized triangle that had more than one edge

re�ned because of the expansions of its neighbors, its triangulation is not uniquely de�ned: it

depends on the order in which its edges are considered during edge linking.

In any case, the �nal triangulation can be obtained in a time linear in the number of its

vertices, i.e., in a time linear in the number of output primitives. Moreover, note that the

hierarchical nature of the model allows the algorithm to discard from the early levels of the

hierarchy all areas that are beyond the �eld of view, hence speeding up the search through large

areas.

The above approach can be applied successfully in practice, but it has a theoretical drawback:

the resolution requirements might be violated in triangulating generalized triangles. Indeed, let

us consider a generalized triangle t obtained through procedure EXPAND SUBTREE described

in Section 3.5. A triangulation � of t does not necessarily satisfy the same precision of t: we could

have E(�) > f

"

(t) while E(t) � f

"

(t). In principle, it is possible to re�ne � further to obtain

the desired precision, but this would involve a time complexity that might be prohibitive for

real time rendering. Note that the problem does not arise if the resolution desired is dependent

on the area of triangles (i.e., the farther the triangle, the larger its area), rather than on their

precision: such an alternative is often suitable in landscape visualization with models like the

k

2

triangulations.

The second approach that we present overcomes the problem discussed above, since it ex-

tracts only triangles that were already in the hierarchy H. This method modi�es a technique

developed recently for variable resolution rendering of surfaces represented through pyramidal

models [Cig95]. The method requires a matching hierarchy, and it is limited to the case of

resolution functions of the type

f

"

(p) = g(d(p; v

p

));
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where g : IR

+

! IR

+

is a monotonically non-decreasing function, d is the standard Euclidean

distance over IR

2

, and v

p

is a �xed point, called the viewpoint. Most meaningful applications

are in this class. This is indeed the case of 
ight simulators, in which the error is directly

proportional to distance from the viewpoint. however, one might have di�erent situations in

which multiple focus areas are de�ned over the domain, where high resolution is required, while

resolution progressively decreases when moving far from focus areas.

The key idea here is the possibility to weld representations at di�erent resolutions through

edges that \survive" across di�erent levels of the hierarchy. Consider, for example, triangle t

0

in Figure 18a: both triangles t

1

and t

2

are admissible neighbors of t

0

, since they both match

with t

0

at e. This means that, in principle, it might be possible to extract either a triangulation

containing t

0

and t

1

, or a triangulation containing t

0

and t

2

. We will call e a bypass edge.

Intuitively, we can exploit bypass edges to move across di�erent resolutions while saving the

continuity of the surface. Note that this approach will be e�ective only if the hierarchy contains

plenty of bypass edges, like in the model approximating a continuous range of errors outlined in

Section 6.

The algorithm follows an incremental technique that starts from the triangle closest to the

viewpoint, at the proper resolution, and builds the triangulation by traversing the hierarchy

through the domain, while iteratively pasting new triangles that are compatible to the current

triangulation. While doing this, the algorithm coarsens the resolution of the surface according

to function f

"

. At each step, a boundary edge e of the current triangulation is considered, and a

triangle t is selected from the hierarchy, such that E(t) � f

"

(t). Then, t is pasted to the current

triangulation at e. The algorithm stops when all the domain has been covered, i.e., when all

boundary edges of the current triangulation are on the boundary of the domain of H.

In practice, each time edge e currently considered is a bypass edge, the algorithm tries to

select t as the coarsest triangle that satis�es the precision requirement, among all condidates

that match at e. Note that, in order to guarantee the correctness of the algorithm, we must

ensure that one such triangle t always exists, and that the current triangulation can always be

completed to a triangulation that covers the whole domain. This is the most delicate point of

the algorithm. Indeed, such requirements cannot be satis�ed on a local basis, i.e., by considering

only a portion of triangulation close to e: we must take into account global information.

In order to understand problems that might arise if t were extracted only on the basis of

its error, let us consider the HT in Figure 18a, and let us assume the triangulation depicted

in solid lines in Figure 18b is the current triangulation. Let us assume also the algorithm

is currently extending such a triangulation across edge e

0

: although triangle t might satisfy

relation E(t) � f

"

(t), it cannot be selected, otherwise the shaded area could not be covered

by any triangle while maintaining matching. Indeed, triangle t

00

would match with t, but not

with the rest of the triagulation, while its direct re�nement would not match with t. Hence, the

triangulation must be necessarily extended at e

0

with triangle t

0

.

The proper selection of a triangle at each step is made possible by maintaining global infor-

mation about the boundary of the current triangulation. Let us assume that H has been built

through the algorithm described in Section 6. We tag each edge e of H with two numbers: the

birth error e:"

b

, which corresponds to the current error when e appeared �rst during construc-

tion, and the death error e:"

d

, which corresponds to the error just before e was re�ned into a

sequence of edges. In other words, we know that e belongs to all expanded models at �xed
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Figure 18: A hierarchical triangulation (a), and (in solid lines) the current triangulation at an

intermediate step of extraction (b): if the current triangulation is extended at e

0

with t, neither

t

00

, nor its direct re�nement can be used to �ll the shaded area while preserving matching:

triangle t

0

is the correct choice at e

0

.

precision "

i

for all "

i

such that e:"

d

� "

i

� e:"

b

. Hence, we call interval [e:"

d

; e:"

b

] the life of

e, and for each "

i

such that "

i

2 [e:"

d

; e:"

b

] we will say that e is "

i

-alive. We de�ne the life of

each triangle in a completely similar way. Note that the life of each edge contains the lives of

all triangles incident at it.

The three edges of the initial triangle have lives that intersect in a non-empty interval. Let us

assume inductively that at an intermediate step all boundary edges of the current triangulation

have lives that intersect in a non-empty interval. This means that there exists at least one

degree of resolution "

j

such that all such edges belong to the expanded triangulation at that

level of resolution. Hence, in the worst case, it will be always possible to complete the current

triangulation consistently by using all triangles that are "

j

-alive and lie outside the domain of

the current triangulation. Note that all such triangles will also satisfy f

"

, since its values out of

the current domain cannot be smaller than "

j

.

In particular, let "

Bmin

be the minimum of all birth errors of boundary edges of the current

triangulation: then, each such edge will be "

Bmin

-alive. Let e be exactly the boundary edge

with birth error "

Bmin

. If we paste to e a new triangle whose life contains "

Bmin

, we will ensure

that the lives of the boundary edges of the updated triangulation will intersect in a non-empty

interval. Since e will not be a boundary edge any more, it is possible that the minimum birth

error in the updated triangulation will be larger than "

Bmin

. Therefore, the selection of the new

triangle will depend both on the resolution function and on the current value of "

Bmin

. Both

such values will become larger and larger as the boundary of the current triangulation moves

farther and farther from the viewpoint.

In order to implement the algorithm we need to maintain the boundary edges of the current

triangulation ordered according to their birth errors. In fact, we will maintain a dictionary Q

b

,

implemented with a binary balanced tree, such that the following operations can be performed

in optimal logarithmic time: INSERT, adds an element to the dictionary; DELETE, removes a

element from the dictionary; MIN, returns the minimum element of the dictionary; MEMBER,

tells whether an element belongs to the dictionary or not; EMPTY, tells whether the dictionary is
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empty or not. Each element of the dictionary will be a pair formed by a boundary edge together

with its incident triangle in the current triangulation. The sorting key in the dictionary is the

birth error of each edge.

The algorithm uses of a procedure FIND FIRST TRIANGLE(H; v

p

; f

"

) which �nds the tri-

angle t of H that lies closest to the viewpoint and such that E(t) � f

"

(t). Such a procedure is

implemented e�ciently as a hierarchical point location [DeF94]: a candidate triangle is located

by searching the root triangulation and, if its error is not su�ciently small, the procedure is acti-

vated recursively on its direct re�nement. Moreover, we use two procedures for neighbor �nding,

which are easily implemented with constant time complexity through the roped data structure

described in Section 3.3. Given a triangle t and one of its edges e, procedure NEIGHBOR(t; e)

returns the triangle t

0

matching with t on the other side of e, which lies at the highest possible

level in the hierarchy. Given t

0

and e de�ned as above, procedure REFINED TRIANGLE(t

0

; e)

returns the triangle of DRef(t

0

) having e as edge (this makes sense provided that e survives in

DRef(t

0

)). Function IS BOUNDARY returns a boolean value indicating whether an edge lies

on the boundary of the domain of H; function LIFE returns the interval corresponding to the

life of either an edge or a triangle. The pseudo-code of the algorithm follows:

Algorithm EXTRACT SURFACE(H; v

p

; f

"

;out �);

begin

Q

b

 ;;

t FIND FIRST TRIANGLE(H; v

p

; f

"

);

�  ftg;

for every e edge of t do

INSERT(Q

b

; (e; t));

end for ;

while not EMPTY(Q

b

) do

(e; t) MIN(Q

b

);

t

0

 NEIGHBOR(t; e);

while E(t

0

) > f

"

or e:"

b

62 LIFE(t

0

) do

t

0

 REFINED TRIANGLE(t

0

; e);

end while ;

for every e edge of t

0

do

if MEMBER(Q

b

; (e; �)) then

DELETE(Q

b

; (e; �))

else if not IS BOUNDARY(H; e) then

INSERT(Q

b

; (e; t

0

))

end if

end for ;

�  � [ ft

0

g

end while

end

Let n

�

be the number of triangles of the triangulation � produced by the algorithm. Note

that all triangles visited belong to a subhierarchy of H having triangles of � as simple triangles.

Thus, it follows from the result proven in Section 3.1 that the total number of visited triangles

is linear in n

�

. The number of edges in Q

b

at any time is also at most linear in n

�

; hence,

the cost of each primitive operation on Q

b

is O(log n

�

). Based on such remarks, it is easy to

conclude that the total time complexity of the above procedure is O(n

�

log n

�

) plus the cost

of locating the �rst triangle. Such an operation could add a cost of O(n), where n is the size

of H, in the worst case. In practice, the hierarchical approach to search makes the actual cost

almost negligible. Note also that in a dynamic context such as 
ight simulation, in which the
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Figure 19: Perspective plot of the original dataset (32,258 triangles)

algorithm above is applied iteratively as the viewpoint moves through space, the location of the

�rst triangle becomes even simpler: once the system is initialized, the �rst triangle for the next

iteration can be located e�ciently by navigating the hierarchy through adjacencies, starting

from the current initial triangle.

8 Experimental Results

In this Section, we present some experimental results about piecewise-linear HTSs for terrain

representation, which are built upon real data from the United States Geological Survey. Input

data are originally encoded in a regular grid of 128

2

= 16; 384 points: the grid contains elevation

data sampled over an area of roughly

1

10

�

1

10

degrees of the Earth's surface, and representing

a varying topographic surface. Elevations are encoded by integer values, and range within 599

and 1,591 meters. A perspective plot of the original data is shown in Figure 19.

From such a dataset, we have built three di�erent surface models. Model 1 is simply a

(non-hierarchical) piecewise-linear triangulated surface obtained by applying algorithm DELAU-

NAY SELECTOR described in Section 6 with a tolerance error of 10 meters, corresponding to

approximately 1% of elevation range. The triangulation is formed by 4,522 triangles, having

their vertices at 2,309 points, approximately corresponding 14% of data size.

Model 2 has been obtained through algorithm BUILD HT described in Section 3.4, and

implemented according to the description given in Section 6. This model contains three degrees

of resolution a priori de�ned, namely at tolerances of 200, 40, and 10 meters, corresponding

to approximately 20%, 4%, and 1% of elevation range, respectively. The hierarchical model

contains a total of N

t

= 6; 293 triangles, having their vertices at 2,775 points, corresponding

to approximately 15% of data size. The number of triangles in the expanded triangulation at

maximum resolution (error 1%) is N

s

= 5; 442. The storage overhead of the hierarchical model

is measured by the ratio N

t

=N

s

= 1:16, which is signi�cantly smaller than the theoretical bound

N

t

=N

s

� 2 that we computed in Section 3.1.

Perspective and wire-frame plots (top view) of expanded surfaces extracted from model 2 at
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Model "

Max

"

min

degrees levels points % N

t

N

s

N

t

=N

s

1 1% 1% 1 1 2,309 14 4,522 4,522 1.00

2 20% 1% 3 3 2,775 15 6,293 5,442 1.16

3 20% 1% 1,969 11 3,659 22 12,774 7,213 1.77

Table 1: Comparisons of models 1, 2, and 3 (data size: 16,384 points).

resolutions 200, 40, and 10 are depicted in Figure 20.

Model 3 has been obtained through the same algorithm, modi�ed to approximate a continuous

range of resolutions, as described in Section 3.4. This models spans all resolutions between 200

meters and 10 meters, as above, through 1,969 intermediate degrees of resolutions obtained

automatically by the algorithm. The hierarchical model contains a total of 12,774 triangles,

having their vertices at 3,659 points, corresponding to approximately 22% of data size. The

number of triangles in the expanded triangulation at maximum resolution (error 1%) is 7,213.

In this case, the overhead ratio is 1.77. In spite of the high number of degrees of resolution, the

actual height of the tree encoding the hierarchy is of only 11 levels.

In Table 1, we compare the results obtained in the three cases. It is not surprising that the

number of data points needed to achieve the same resolution is increasing with the number of

intermediate degrees of resolution considered. Indeed, in the hierarchical case, points inserted at

each degree of resolution must obey to spatial constraints imposed by the edges of the previous

degree, while in the non-hierarchical model points are selected freely over the domain. The ratio

between the number of points used in model 3 and in model 1 is 1.58: corresponding ratios for

all possible models spanning the same range of tolerances with a number of degrees of resolution

between two and 1,969 are progressively larger, ranging between 1.05 and 1.58 (ratio for model

2 is 1.2).

In terms of storage cost, our model can be compared to a multi-layered model obtained as a

collection of independent layers, each built through algorithm DELAUNAY SELECTOR. The

storage costs of both our model and a multi-layered one can be easily measured by counting

the total number of triangles encoded, since the size of the data structures is proportional to

such number (hierarchy links in our model give a minor contribution to storage cost). When

the number of layers is small, and either few or no triangles survive across di�erent levels, the

multi-layered model can be slightly cheaper. For instance, model 2 contains a total of 6,293

triangles, while a model with three layers at the same resolutions of model 2 contains a total of

5,379 triangles, thus yielding a ratio 1.17 between the storage costs. The reason for the higher

cost is that, in this case, our model needs more points than the multi-layered model to achieve

the same resolutions. On the contrary, when the number of degrees of resolution gets larger, our

model becomes tremendously cheaper than a multi-layer one: a multi-layered model comparable

to model 3 would contain millions of triangles. This gain in storage cost is actually proportional

to the number of triangles that survive across di�erent resolutions, hence it is due to the fact

that consecutive resolutions are very close to one another, as in the extremal case of model 3.
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(a)

(b)

(c)

Figure 20: Perspective and wire-frame plots extracted from model 2: error 200, triangles 130

(a); error 40, triangles 774 (b); error 10, triangles 5,442 (c).
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9 Concluding Remarks

We have introduced a formal model for hierarchical decomposition of planar domains into trian-

gles, and we have described its application to the multiresolution description of surfaces de�ned

by bivariate functions. The model can be encoded and manipulated e�ciently: it does not

introduce a serious overhead with respect to triangulated models that do not support multireso-

lution, while o�ering a support to important complex geometric operations like browsing, point

location, interference queries, and variable resolution rendering.

We are currently developing a prototype system for the multiresolution representation, anal-

ysis, and visualization of topographic surfaces in the framework of a geographical information

system, by using the piecewise-linear model described in Section 6. Our prototype system al-

ready integrates the following modules:

� A kernel module containing the data structure, its access primitives, the construction

algorithm described in Section 6, and the expansion algorithm described in Section 3.5.

� A visualization module that permits to visualize the surfaces through di�erent rendering

modalities: perspective views, wire frame triangulations, and contour plots. The algorithm

for extracting contour plots from the HTS is based on a technique similar to the expansion

algorithm presented in Section 3.5, and has been described in [DeF93].

� An analysis module incorporating the following functionalities:

{ interference queries, such as point location, segment and region intersection, as de-

scribed in [DeF94];

{ visibility algorithms, such as point-to-point visibility and computation of the horizon

from a given viewpoint, as described in [DeF95a].

We are currently implementing in such a framework the algorithms for extracting a surface at

variable resolution described in Section 7. We are also developing algorithms for multiresolution

map overlay [Ber95b], and algorithms for computing the viewshed from any viewpoint at di�erent

degrees of resolution. All functionalities mentioned above are of interest in the context of GISs.

Moreover, we plan to develop algorithms that exploit the hierarchical model for giving e�cient

solutions to path planning of autonomous vehicles that navigate a terrain surface by orienting

themselves on the basis of horizon matching. This is a topic of interest in robotics.

Hierarchical triangulations, the data structures for encoding them, and the algorithms for

their construction and analysis are very general, and can be applied to build di�erent hierar-

chical models for speci�c applications. The Delaunay triangulation, which we adopted in our

model, has some desirable properties (e.g., minimal roughness [Rip90]) that make it suitable

for many applications. However, some researchers recommend using data dependent triangula-

tions for surface representation, since they are more adaptive to sampled data [Rip92]: a model

based on such triangulations can be obtained by simply modifying the update procedure in the

construction algorithm described in Section 6, according to the methods proposed in [Rip92] or

[Sch93].

It has been observed in the experiments that, with the current re�nement strategy, the shape

of triangles in the model tend to become more and more elongated as the number of degrees
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of resolution become larger and larger. Although the shape of triangles is overall better than

in other hierarchical matching models (e.g., ternary triangulations and adaptive hierarchical

triangulations), it might be important for some applications to avoid slivery triangles at all. To

this purpose, we are investigating the possibility of applying re�nement techniques based on

the conforming Delaunay triangulation [Ede92]: such an approach would permit to maintain

constraint edges necessary to the hierarchical structure, while satisfying the Delaunay rule for

the expanded triangulation at each degree of resolution.

Smooth surfaces over triangulations can be obtained by using one among the numerous

methods developed in the literature (see, e.g., [Ren84, Far86, Sei92]). Since adjacent portions

of the domain are re�ned independently in the hierarchical triangulation, it is our intent to

investigate further the relation between the matching property of hierarchical triangulations and

the smoothness of the surface across adjacent patches. Our model of surface is not necessarily

interpolant, as in the example we described: other approximating surfaces, whose precision can

be measured through a suitable norm, can be de�ned by using the hierarchical triangulation as

a hierarchical control grid.

Other issues involving two-dimensional hierarchical triangulations, which we plan to tackle in

the future, are: the application of hierarchical triangulations to the representation of parametric

surfaces, via hierarchical triangulation in parameter space; the multiresolution reconstruction

of solid objects through hierarchical triangulations of points sampled on their boundary. These

are topics of interest in Computer Aided Geometric Design, and in machine vision.

Hierarchical triangulations have been extended to arbitrary higher dimensions into a model

called hierarchical simplicial complex. In particular, we have implemented a system for the mul-

tiresolution representation, visualization, and analysis of volume data through three-dimensional

hierarchical Delaunay tetrahedralizations [Ber94].

10 Later work

Recently, after this paper had been submitted for publication, other work on related subjects

appeared, mainly in the framework of multi-layered models. In [Cig94], a three-dimensional

extension of the Delaunay pyramid was used for the multiresolution modeling and visualization

of volume data. In [Ber95a], pyramidal models were extended to multidimensional models,

called pyramidal simplicial complexes; a simple yet e�cient data structure was also proposed,

which avoids duplications of simplices across di�erent layers, thus making pyramidal models

competitive with hierarchical models in terms of storage cost. Another competitive and more

sophisticated data structure for encoding pyramidal triangulations was also proposed in [Cig95],

together with an e�cient algorithm for extracting surfaces at resolution variable over the domain.

The concept of model approximating a continuous range of resolutions, as well as the ideas

underying the second algorithm for variable resolution described in Section 7 of this paper

(which were added during revision) were inspired by the work in [Cig95].

Independently of the above work, other algorithms and data structures for the Delaunay pyra-

mid were proposed in [deB95]. In such work, emphasis was put on the possibility of performing

point location in logarithmic time, and of extracting a Delaunay triangulation that represents

a surface at variable resolution in linear time. The pyramid is built bottom-up through a sim-
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pli�cation technique essentially based on the method proposed in [Kir83]. Better e�ciency is

paid in terms of accuracy: the model does not support explicit multiresolution. The structure

of the di�erent layers is constrained by the construction process, and it cannot be built to ful�ll

a prede�ned sequence of tolerances; also, surfaces extracted at variable resolution follow only

approximatively an error function de�ned on the domain, while the result is not guaranteed to

ful�ll exactly the required accuracy over all points of the domain.

Recently, an e�ort has been undertaken towards the formalization of a broader class of mul-

tiresolution models that can incorporate both multi-layered and hierarchical simplicial complexes

as special cases [Ber95c]. More work on this subject is being carried out. The objective is to

compare pyramidal versus hierarchical complexes, in terms of storage cost and of performances

on the basic operations a multidimensional surface model should support (e.g., extraction of

hypersurface at variable resolution, answering geometric queries at di�erent resolution). Such a

comparative analysis is intended to highlight common aspects and structural di�erences, as well

as advantages and drawbacks of di�erent models, in order to understand which models are best

for various application requirements.
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