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Abstract

In the �eld of spatial information systems, a primary need is to develop a sound theory

of topological relationships between spatial objects. A category of formal methods

for representing topological relationships is based on point-set theory. In this paper,

a high level calculus-based method is compared with such point-set methods. It is

shown that the calculus-based method is able to distinguish among �ner topological

con�gurations than most of the point-set methods. The advantages of the calculus-

based method are the direct use in a calculus-based spatial query language and the

capability of representing topological relationships among a signi�cant set of spatial

objects by means of only �ve relationship names and two boundary operators.



1 Introduction

Topological properties of spatial objects commonly used in Geographical Information

Systems (GIS) are the primary information which users of such systems need to deal

with (e.g. see [13]). Queries of the type \Are these two regions bordering on each

other?" and \Which are the rivers crossing this province?" are surely the most simple

and widely addressed to a GIS, while queries involving metric properties and ordering

properties represent a deeper step of spatial analysis. The importance of topological

properties in a spatial query language is related directly to the learning process adopted

by humans with regard to space. Transformations that do not preserve topology are

the most radical ones and are di�cult to be learned [2].

Early descriptions of topological relationships (e.g. [11]) did not have enough formal

basis to support a spatial query language, which needs formal de�nitions in order

to specify exact algorithms to assess relationships. The approach usually taken in a

broad family of spatial query languages for various applications (e.g. ATLAS [21],

MAPQUERY [10], KBGIS-II [19], PSQL [17], geo-relational algebra [12], spatial SQL

[7], PICQUERY+ [3]) is that the language includes some topological operators among a

given set of spatial operators, such as \touch", \adjacent", \within", etc. The problem

is that none of the above spatial query languages discusses such issues like the expressive

power of the topological operators being proposed or their completeness with respect

to a certain depth of topological description.

The importance of de�ning a sound and complete set of topological relationships is

recognized in [9, 18]. This allows an algebraic approach for spatial relationships, which

supports a correct query processing and the possibility of pointing out exactly which

is the category of topological con�gurations that can be recognized by posing spatial

queries. A formal approach allows also to extend easily the basic tools in order to

accomodate users that need to distinguish topological con�gurations among a greater

extent of granularity. The other important issue is which is the expressive power the

users expect in a topological query language and what are the topological relationship

names the users need to be available for a particular spatial application. The names

for relationships should suit the needs of users in a large variety of cases or at a higher

level of abstraction the system should allow to rename spatial operators to �t speci�c

requirements.

In the perspective presented in this paper, we regard the geographic space as a pure

topological space without the additional load of a metric. There are di�erent levels

of meaning at which spatial information may be organized. Some literature refers to

vector and raster models, other refers to geometric objects, conceptual entities, and so

on. Often the approaches are di�cult to understand because they do not state exactly

at which level they want to be. A recent clear categorization of levels of meaning

for geographic information can be found in [14], where �ve of them are identi�ed,

varying from the bottom one related to physical data structures to the upper one

related to real-world phenomena. Our work �ts in the so-called \conceptual spatial

object level", supporting descriptions of space in terms of the two-dimensional spatial

object primitives, the point, the line, and the area, and also in terms of the spatial
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2 The spatial model

features point-set

relationships between such primitives, and in particular topological relationships.

The methods taken into consideration herein are those based on point-set topology

[8, 9, 16] and the one based on a formal calculus [6]. Both approaches satisfy the

requirements that they provide formal de�nitions for topological relationships and that

such relationships are sound and complete. The comparison between the calculus-based

method (CBM) and the point-set methods leads to the consideration that the CBM is

equivalent to a combination of the other methods, in the sense that it is able to describe

topological facts at the same level of detail. The advantage of the CBM with respect to

the point-set methods is the small number of topological relationships with overloaded

semantics that are valid for all the three types of spatial object primitives. The CBM

uses just �ve topological relationships (plus two boundary operators), against a rather

higher number of relationships in the point-set methods.

The other advantage of the CBM is the ease of use also at a higher level of meaning.

Even if our level of description is related to geometry, the �ve relationships can be

used directly also at the entity object level [14], since their meaning is reasonably easy

to understand for end-users. The CBM spatial primitives can be directly integrated

in a formal spatial query language for an object-oriented geographic database, called

the object calculus [4]. We added the object calculus features to GEO++ [22], which

is an experimental GIS based on the Postgres extensible database system [20]. The

implementation is described in [5].

In Section 2, we give the model for geographic space used throughout the paper. In

Section 3, we recall the 4-intersection method (4IM), while in Section 4 we recall the

9-intersection method (9IM). In Section 5, we discuss briey the dimension extended

method (DEM). Section 6 gives the de�nitions for the CBM. In Section 7, we com-

pare the CBM method with the latter point-set methods, showing that they are less

expressive than the CBM. Then, we de�ne a new point-set method resulting from

a combination of the others and prove that such a combination is equivalent to the

CBM. In addition, the category of topological cases that the CBM is able to recognize

is explicitly identi�ed.

Geographic objects are usually represented on a geographic map as two-dimension-

al geometric features. In the present paper, we concentrate on the geometry of the

geographic objects, namely we see them either as points, lines, or areas, irrespective of

their meaning at the user level.

In our investigation, we use the concepts of continuity, closure, interior, and boundary,

that are de�ned in terms of the neighborhood relation. This approach to give formal

de�nitions of geometric objects ( ) and relationships is based on topol-

ogy, since features are sets and points are elements of these sets [15]. The study of

topological relationships between objects also depends on the embedding space, that

we assume is IR , since we are interested in relationships between features commonly

used in GIS.
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A topological space is generally described as a set of arbitrary elements (points) in which

a concept of continuity is speci�ed. Let and be topological spaces. A mapping :

is said to be if for each open subset of , the set ( ) is an open

subset of . If a mapping is a bijection and if both and the inverse :

are continuous, then is called a topological . Topological isomorphisms

preserve the neighborhood relations between mapped points and include translation,

rotation, and scaling. Topological relationships are those remaining invariant under a

topological isomorphism.

To de�ne topological relationships, the following set of operations is used: boundary

( ), interior ( ), exterior ( ), set intersection ( ), and dimension ( ). The latter one

is a function, which returns the dimension of a point-set or nil ( ) for the empty set.

In case the point-set consists of multiple parts, then the highest dimension is returned.

In our investigation, we avoid taking into account all kinds of complex geometric ob-

jects, since these objects may be later considered as extensions of simple ones. Speci�-

cally, we consider \simple" area, line, and point features of IR , de�ned as follows:

area features are the closure of simply connected two-dimensional open point-sets

of IR ;

line features are closed connected one-dimensional point-sets embedded in IR

with no self-intersections and with exactly two end-points;

point features are zero-dimensional sets consisting of only one element of IR .

We give an algebraic de�nition [1] for the boundary, interior, and exterior of each of

the three types of features. The letters , , and are used to indicate point, line,

and area features. If it is necessary to distinguish between two features of the same

type, then numbers are used; e.g. and . The symbol may represent anyone of

the three feature types. The boundary of a feature is de�ned as follows:

the boundary of an area feature is a closed curve homeomorphic to a 1-

sphere;

the boundary of a line feature is a set containing the two end-points of L;

the boundary of a point feature is empty ( = ).

Since every feature is a closed set, is equal to its closure, that is, = . The

interior of a generic feature may be de�ned as:

=

As a consequence, the interior of a point feature is equal to the feature itself: = .

The exterior of a feature is de�ned as:

= IR
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In [16], Pullar and Egenhofer originally described the 4IM for classifying topological

relationships between one-dimensional intervals of IR . In [8], Egenhofer and Franzosa

adopted the same method for classifying topological relationships between area features

in IR . By considering also point and line features, we can distinguish among 6 major

groups of binary relationships: area/area, line/area, point/area, line/line, point/line,

and point/point. In the 4IM, the classi�cation of relationships is based on the intersec-

tions of the boundaries and interiors of two features . Each intersection may be

empty ( ) or non-empty ( ), resulting in a total of 2 = 16 combinations. Each case

is represented by a matrix of values:

=

It is possible to apply some simple geometric considerations to assess that not all

combinations make sense for simple objects. We call these combinations the impossible

cases. Also, we point out the converse relationships, which correspond to pairs of

matrices such that = .

By not considering the impossible cases and considering just one case for each pair

of converse relationships, we arrive to the result shown in Table 1, where there are in

total 37 distinct and mutually exclusive relationships between features. In detail, in the

area/area group, as there are 8 impossible cases and 2 pairs of converse relationships,

the number of di�erent types of relationships is 6. Line/area cases are 11 because

there are 5 impossible cases; line/line cases are 12 because there are 4 pairs of converse

relationships. The possible cases are only 3 for the point/area and point/line groups

and 2 for the point/point group.

The 9IM is an extension of the 4IM based on considering also the exterior of features,

besides interior and boundary [9]. Therefore, it is necessary to consider the following

matrix of nine sets:

=

By considering the empty or non-empty content of such nine sets, the total is 2 = 512

theoretical combinations. Excluding the impossible cases, we have the 68 possible cases

shown in Table 2. Considering also the converse relationships, we can exclude other 2

cases for the area/area group and 10 cases for the line/line group, having a total of 56

real cases.
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In [6], we described the DEM, so called because we took into account the dimension

of the intersections. The DEM can be considered an extension of the 4IM, in which

the dimension of the four intersection sets assume the values: 0 1 2. Theoretically,

these 4 possibilities result into 4 = 256 di�erent cases. We can adopt geometric criteria

to reduce the number of cases by referring to speci�c groups of relationships. In the

line/area group, only the following results are possible:

( ) ( )

( ) ( )

=

0 0 1

0 1

This is due to the fact that the dimension of the intersection cannot be higher than the

lowest dimension of the two operands of the intersection: ( ) = 1, ( ) = 2,

( ) = 0, and ( ) = 1. Further, the de�nitions of line and area features

exclude the option that ( ) = 0 Following this discussion, the number of

cases decreases from 256 to 24. Other geometric considerations brings the number of

possible cases to 17.

In the area/area group of relationships, the following results for the intersections are

possible:

( ) ( )

( ) ( )

=

0 1 1

1 2

After a detailed analysis, we can identify 12 impossible cases and 3 pairs of converse

relationships, resulting in 9 real topological relationships.

In the line/line group, the four sets may be equal to the following results:

( ) ( )

( ) ( )

=

0 0

0 0 1

It is possible to �nd 24 di�erent cases and distinguish 6 pairs of converse relationships,

resulting in 18 real cases.

Finally, with regard to groups involving points features, since the result of the intersec-

tions may be empty or zero-dimensional, we don't have more cases than in the standard

4IM. Table 3 is a summary of the analysis for all the groups of topological relationships,

totaling 52 real cases.

In [6], we introduced a di�erent method for classifying topological relationships based

on an object calculus: the CBM. We gave formal de�nitions for �ve relationships and
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for boundary operators. We proved that the �ve relationships are mutually exclusive

and they constitute a full covering of all topological situations.

In the following, we recall the de�nitions of the CBM. An object calculus fact involving

a topological relationship is on the left side of the equivalence sign and its de�nition in

the form of a point-set expression is given on the right side.

The relationship (it applies to area/area, line/line, line/area,

point/area, point/line groups of relationships, but not to the point/point group):

( = ) ( = )

The relationship (it applies to every group):

( = ) ( = )

The relationship (it applies to line/line and line/area groups):

( ( ) = ( ( ) ( )) 1)

( = ) ( = )

The relationship (it applies to area/area and line/line groups):

( ( ) = ( ) = ( ))

( = ) ( = )

The relationship (it applies to every group):

=

In order to enhance the use of the above relationships, we de�ned operators able to

extract boundaries from areas and lines. The boundary of a line feature is a set

made up of two separate points. Since the 0-dimensional features that we consider are

limited to single points, we need operators able to access each end-point, called and

respectively.

The boundary operator for an area feature : The pair ( ) returns

the circular line

The boundary operators , for a line feature : The pairs ( ) and

( ) return the two point features corresponding to the set

It is worth to notice that only lines with two end-points are considered to be line

features. Circular lines appear only as derived entities resulting from the use of the
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The CBM is expressive enough to represent all the cases of the DEM.

f t

f t

f t
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I: L ; touch; L L ; f ; in;L L ; t ; disjoint; L

L ; t ; in; L L ; f ; disjoint;L

II: L ; touch; L L ; f ; in; L L ; t ; in;L :

M ;

operator. The �ve relationships can apply also to circular lines, while the , operators

do not apply to them.

We remark that line features are just point-sets and we do not consider an orientation

on the line. Therefore, the two operators , are used symmetrically, in order to avoid a

distinction on which of the two end-points is called and which is called . In this way,

the CBM is not sensitive to line orientation and a comparison with point-set methods

can be performed.

In this section, we perform a comparison among all the methods previously seen. We

will prove that the CBM is more expressive than point-set methods and that we need

to de�ne a combination of the DEM and the 9IM (called the DE+9IM) in order to �nd

an equivalent point-set method which has the same expressive power of the CBM.

In [6], authors proved the following theorem:

It was also proved that the CBM is more expressive than the DEM, that is, there are

some topological situations that are undistinguishable in the DEM, but that can be rep-

resented with the CBM (see the examples in Fig. 1). In Fig. 1.a, the two con�gurations

between lines fall in the same case of the DEM, that is:

=

0

while we can make a di�erence with the CBM:

(( ( ) ( ) )

( ( ) ( ) ));

( ) ( )

The same applies to the con�gurations of Fig. 1.b, which are expressed by the DEM

matrix:

=

0 0

0 1
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Proof.
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L; t ; in; A; b L; f ; in;A

II: L; in; A L; cross; A; b

L; f ; in; A; b L; t ; in; A

L; t ; in; A; b L; f ; in;A :

f t

f t

T @� @� T @� � T @� �

T � @� T � � T � �

T � @� T � � T � � :

T P

T

P

P ;

and by the CBM expressions:

( )

(( ( ) ( ) ( ) )

( ( ) ( ) ( ) ));

( )
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( ( ) ( ) ( ) ))

This additional expressive power comes with the relationship and the and op-

erators. In fact, the relationship allows to say that the result of the intersection of

the two entities is equal to one of them (not only the dimension of the result like in

the DEM); furthermore, the and operators allow to specify conditions on the single

end-point of a line (in the DEM, the boundary of a line is a unitary concept).

In a similar way, we will prove that the CBM is more expressive than the 9IM. Let us

consider the following theorem:

Each case of the 9IM can be speci�ed by a matrix M (see Section 4). This is

equivalent to the logical conjunction of 9 terms expressing whether the nine intersections

are empty or non-empty:

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

(1)

For every term above, we can �nd the equivalent logic expression of the CBM.

Each equivalence can be easily tested by applying the de�nitions given for the �ve

relationships and boundary operators. By substituting each with the corresponding

, we obtain an expression:

(2)

that is equivalent to (1). Once all the equivalences are found, the claim of the theorem

is proven. In the following, for each term of the 9IM, an equivalent term of the CBM

is given; the equivalences are organized by groups of relationships:
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\ ; , h i _ h i ^

h i _ h i

\ 6 ; , h i _ h i

\ ; , h i ^ h i _

h i ^ h i _

h i ^ h i _

h i ^ h i

\ 6 ; , h i _ h i

\ ; , h i _ h i ^

h i _ h i

\ 6 ; , h i _ h i

\ ; , h i _ h i

\ 6 ; , h i_

h i _ h i _ h i

\ ; , h i

\ 6 ; , h i ^ h i _ h i _

h i _ h i_

h i _ h i

\ ; , h i ^ h i _

h i ^ h i _

h i ^ h i _

h i ^ h i

\ 6 ; , h i _ h i

\ ; , h i

\ 6 ; , h i ^ h i _ h i _

h i _ h i_

h i _ h i

\ ;

\ 6 ;

@L @L L ; f ; disjoint; L ; f

L ; t ; disjoint; L ; f

L ; f ; disjoint; L ; t

L ; t ; disjoint; L ; t

@L @L L ; f ; touch; L L ; t ; touch; L

@L L L ; f ; disjoint; L L ; f ; touch; L

L ; t ; disjoint; L L ; t ; touch; L

@L L L ; f ; in; L L ; t ; in; L

@L L L ; f ; in;L L ; t ; in; L

L ; f ; in;L L ; t ; touch; L

L ; f ; touch; L L ; t ; in; L

L ; f ; touch; L L ; t ; touch; L

@L L L ; f ; disjoint; L L ; t ; disjoint; L

L @L L ; f ; disjoint; L L ; f ; touch; L

L ; t ; disjoint; L L ; t ; touch; L

L @L L ; f ; in; L L ; t ; in;L

L L L ; disjoint; L L ; touch; L

L L L ; cross; L

L ; overlap;L L ; in; L L ; in; L

L L L ; in; L

L L L ; in; L L ; f ; in; L L ; t ; in;L

L ; touch; L L ; overlap;L

L ; cross; L L ; disjoint; L

L @L L ; f ; in;L L ; t ; in; L

L ; f ; in;L L ; t ; touch; L

L ; f ; touch; L L ; t ; in;L

L ; f ; touch; L L ; t ; touch; L

L @L L ; f ; disjoint; L L ; t ; disjoint; L

L L L ; in; L

L L L ; in; L L ; f ; in; L L ; t ; in;L

L ; touch; L L ; overlap;L

L ; cross; L L ; disjoint; L

L L false

L L true



Line/area

Point/line

Point/area

�

�

�

�

�

�

� �

� �

� �

� �

�

�

� �

� �

� �

� �

�

�

�

�

�

�

�

�

= ( ) ( ) ( ) ( )

= ( ) ( ) ( ( ) ( )

= ( ) ( )

= ( )

( ) ( )

=

=

= ( ( ) ( ) )

( ( ) ( ) )

= ( ) ( )

=

=

=

=

= ( ( ) ( ) )

( ( ) ( ) )

( ( ) ( ) )

( ( ) ( ) )

= ( ) ( )

= ( )

= ( ( ( )

( ) ( ) ))

=

=

=

=

=

=

=

=

=

=

=

=

=

=
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\ ; , h i ^ h i

\ 6 ; , h i_ h i

\ ; , h i _ h i

\ 6 ; , h i_

h i _ h i

\ ;

\ 6 ;

\ ; , h i_ h i ^

h i _ h i

\ 6 ; , h i _ h i

\ ; , h i _ h i

\ 6 ; , h i _ h i

\ ;

\ 6 ;

\ ; , h i ^ h i _

h i ^ h i _

h i ^ h i _

h i ^ h i

\ 6 ; , h i _ h i

\ ; , h i_ h i

\ 6 ; , h i ^ h i_

h i _ h i _

h i _ h i

\ ;

\ 6 ;

\ ; , h i _ h i

\ 6 ; , h i

\ ; , h i _ h i

\ 6 ; , h i

\ ; , h i _ h i

\ 6 ; , h i

\ ; , h i_ h i

\ 6 ; , h i

\ ; , h i_ h i

\ 6 ; , h i

\ ; , h i _ h i

\ 6 ; , h i

@A @L L; f ; disjoint; A; b L; t ; disjoint; A; b

@A @L L; f ; in; A; b L; t ; in; A; b

@A L L; disjoint; A; b L; touch; A; b

@A L L; cross; A; b

L; overlap; A; b L; in; A; b

@A L false

@A L true

A @L L; f ; disjoint; A L; f ; touch; A

L; t ; disjoint; A L; t ; touch;A

A @L L; f ; in;A L; t ; in; A

A L L; touch; A L; disjoint; A

A L L; cross; A L; in; A

A L false

A L true

A @L L; f ; in; A L; t ; in;A

L; f ; in; A L; t ; touch; A

L; f ; touch;A L; t ; in; A

L; f ; touch;A L; t ; touch; A

A @L L; f ; disjoint; A L; t ; disjoint; A

A L L; in; A L; in; A; b

A L L; touch; A L; touch; A; b

L; cross; A; b L; overlap; A; b

L; cross; A L; disjoint; A

A L false

A L true

@L P P; disjoint; L P; in; L

@L P P; touch; L

L P P; disjoint; L P; touch; L

L P P; in; L

L P P; in; L P; touch; L

L P P; disjoint; L

@A P P; disjoint; A P; in; A

@A P P; touch; A

A P P; disjoint; A P; touch; A

A P P; in; A

A P P; in; A P; touch; A

A P P; disjoint; A



0

B

@

1

C

A

0

B

@

1

C

A

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

Point/point

cross overlap

7.3 The CBM vs the DEM plus the 9IM

\ ; , h i

\ 6 ; , h i

ut

:; ; :;

; ; :;

:; :; :;

h i ^ h i

h i ^ h i

:; :; :;

; ; :;

:; :; :;

h i ^ h i^

h i^ h i _

h i ^ h i

h i ^ h i^

h i^ h i _

h i ^ h i

�

P P P ; disjoint; P

P P P ; in; P

M :

I: A ; touch; A A ; b ; cross; A ; b

II: A ; touch; A A ; b ; overlap; A ; b :

M ;

I: L; touch; A L; cross; A; b

L; f ; in; A; b L; t ; disjoint; A; b

L; t ; in; A; b L; f ; disjoint; A; b

II: L; touch; A L; overlap; A; b

L; f ; in; A; b L; t ; disjoint; A; b

L; t ; in; A; b L; f ; disjoint; A; b :

f t

=

=

To prove that the CBM is more expressive than the 9IM, it is su�cient to provide the

examples of Fig. 2. The two con�gurations of Fig. 2.a between the two areas correspond

to the 9IM case:

=

On the other hand, the CBM is able to make the following distinction:

( ) ( ) ;

( ) ( )

The example of Fig. 2.b has the following representation in the 9IM:

=

and the following two in the CBM:

( )

(( ( ) ( ) ( ) ( ) )

( ( ) ( ) ( ) ( ) ));

( )

(( ( ) ( ) ( ) ( ) )

( ( ) ( ) ( ) ( ) ))

The additional expressive power of the CBM with respect to the 9IM comes with the

capability of expressing the dimension of the intersections ( and relation-

ships).

Considering the intersections involving the exterior of features (9IM) is somehow equiv-

alent to the union of the two following properties of the CBM:

consider separately the two end-points of a line feature (the and operators);

12



in

�

�

� � � �

�

� �

�

� �

� � �

0

B

@

1

C

A

0

B

@

1

C

A

0

B

@

1

C

A

1 2 1

2

1

2

1

2

1 2 1
2

1

2

1 2 1 2

2

9

�

\ \ \

\ \ \

\ \ \

f� g

f� g f� g

f� g f� g

f� g f� g

\ \

� �

f� g f� g f� g

f� g f� g f� g

f� g f� g

M

dim @� @� dim @� � dim @� �

dim � @� dim � � dim � �

dim � @� dim � � dim � �

:

; ; ;

M

; ; ;

; ;

; ;

:

A @L A L

M

; ; ;

; ; ; ;

; ;

:

consider whether the result of the intersection of two features is equal to one of

them (the relationship).

Starting from the qualitative assertion above, we compare the CBM with the union of

the DEM and the 9IM, in order to �nd a point-set method equivalent to the CBM and to

�nd exactly which is the universe of topological con�gurations that can be represented

with the CBM.

When putting together the DEM and the 9IM, we have to take into account the dimen-

sion of the intersections of boundaries, interiors, and exteriors of two features. We will

refer to this new method as the DE+9IM. A case of such a method will be indicated

by a matrix:

=

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

Since in IR the dimension of the 9 intersection sets can assume the values 0 1 2 ,

there are in general 4 = 262144 di�erent cases. Let us analyze in the following some

geometric criteria to reduce the number of cases. By referring to speci�c groups of

relationships, �rst of all we notice from the discussion done in Section 4 that the 9IM

method does not add other real cases to the 4IM with respect to some relationship

groups (i.e. area/area, point/area, point/line, and point/point), while it adds cases in

the line/area and line/line groups (compare Tables 1 and 2). Therefore, the union of

the DEM and the 9IM is more expressive than the DEM alone only with respect to the

line/area and line/line groups of relationships, which we discuss below.

In the line/area group, due to simple geometric considerations, only the following results

are possible:

=

0 0 1 1

0 1 2

0 1 2

In the above matrix, there are 96 possible cases. To further reduce this number, let us

consider the 17 real cases of the DEM (Table 3) and extend them with the intersections

involving the exterior of features. The only two intersections that can increase the

number of cases are and , since the others have a �xed value for the

dimension. Therefore, we can reduce the number of possible cases to 17 2 2 = 68.

In the line/line group, the nine sets may have the following dimensions:

=

0 0 0

0 0 1 1

0 1 2

The possible cases in the matrix are 384. Starting from the 18 real cases of the DEM,

and performing a discussion similar to the line/area group, we reduce the number to

13



� �

� �

� �

i

i

i

i

i i

i

i

i

Theorem3.

1 2 4 5

1

2

1

2

1 2

1 2

1 2

1

2 1

2 1 2

7.4 Equivalence of the CBM and the DE+9IM

� � � �

� 6 ;

;

�

�

�

�

\

6 ; ) \

h i ^

_

h i , \ ; ^

\ 6 ; _ \ 6 ; _ \ 6 ;

The CBM is equivalent to the DE+9IM.

Proof.

Part 1.

Part 2.

Touch relationship.

T

S

P

S

dim S ; ; S

dim S

T T T T

S

@L

L dim @L L

� ; r; �

r � A L P A; b

L; f L; t

� ; touch; � � �

@� � � @� @� @�

18 2 2 2 2 = 288 possible cases. A more detailed analysis of topological situations

can further reduce the number of possible cases for both groups above (see Section 7.5).

The comparison between the CBM and the DE+9IM leads us to assess their topological

equivalence:

The proof is made up of two parts, proving the equivalence in both directions.

The CBM is expressive enough to represent all the cases of the DE+9IM.

Each case of the DE+9IM can be speci�ed by the logical conjunction of 9 terms

expressing conditions on the 9 intersection sets , as in (1). In order to �nd the

equivalent logic terms of the CBM and to obtain an equivalent CBM expression, as

in (2), we observe the following:

with respect to the proof of Theorem 2, each non-empty set ( = ) splits in

terms of the kind ( ) = 0 1 2, while terms of the kind = are almost the

same (they become ( ) = );

with respect to the proof of Theorem 1, the terms , , , are the same,

since such terms do not involve exteriors of features;

the DE+9IM is more expressive than the DEM only with respect to the line/area

and line/line groups of relationships;

each intersection set of the DE+9IM involving exteriors of features, if it is non-

empty, can be necessarily of only one dimension (see Section 7.3); e.g.: (

= ) ( ( ) = 0).

Therefore, by using a combination of the equivalent CBM terms given in Theorems 1

and 2, we can a�rm that the CBM is able to express each case of the DE+9IM.

All the cases of the CBM can be represented in the DE+9IM.

An expression in the CBM is made up of several terms connected by and

, where may be one of the �ve relationships and may be either , , , ( ),

( ), or ( ). To prove the thesis, we �nd an equivalent term in the DE+9IM for

each basic term above. Since the DE+9IM is an extension of both the DEM and the

9IM, it is su�cient to give an equivalent expression in either the DEM or the 9IM.

( = )

(( = ) ( = ) ( = ))

14



1 2

1 2 1
2

1

2

1 2

1 2

1 2

1 2 1
2 1

2

1 2

1 2 1
2 1

2

1 2

1 2

1

2

1

2 1 2

� � �

� �

� � � �

� �

� � �

� �

�

� � �

� �

�

� � �

�

�

� � �

� � � � �

� �

h i , \ 6 ; ^ \ ; ^ \ ;

h i , \ 6 ; ^ \ 6 ;

h i , \

h i , \ 6 ; ^ \ 6 ; ^ \ 6 ;

h i , \ ^ \ 6 ; ^ \ 6 ;

h i , \ ; ^ \ ; ^

\ ; ^ \ ;

;

[

h i , \ 6 ; ^ \ ; ^ \ ;

, \ 6 ; ^ \ ;

h i h i

In relationship.

Cross relationship. cross

Line/area

Line/line

Overlap relationship. overlap

Area/area

Line/line

Disjoint relationship.

touch in disjoint

� ; in; � � � � � @� �

L; cross; A L A L A

L ; cross; L dim L L

A ; overlap;A A A A A A A

L ; overlap;L dim L L L L L L

� ; disjoint; � � � @� �

� @� @� @�

A; b

@A @ @A @A @A

@A A A

A; b ; in; � @A � @A � @ @A �

@A � @A �

L; f L; t

f t

L; f ; r; � L; t ; r; �

( = ) ( = ) ( = )

For the relationship we distinguish between the line/area and

line/line groups:

( = ) ( = )

( ) = 0

For the relationship we distinguish between the area/area

and line/line groups:

( = ) ( = ) ( = )

( ( ) = 1) ( = ) ( = )

( = ) ( = )

( = ) ( = )

Terms involving ( ) are particular cases of the terms considered above. In fact, for

such terms, the equivalent expressions in the DE+9IM can be found by evaluating

boundary, interior, and exterior of the closed line , that is, ( ) = , ( ) = ,

( ) = . For example:

( ) (( ) = ) (( ) = ) ( ( ) = )

( = ) ( = )

Terms involving ( ) and ( ) need special attention since it is not possible in the

DE+9IM to distinguish directly between the two end-points of a line, but it is possible

to give conditions on the whole boundary of a line. In the following, considering that

relationships involving points are , , and , we give the equivalences

in the 9IM. Note that on the left expressions often there are logical disjunction of

relationships: this allows to consider one of the two end-points ( or ), without telling

which one. In fact, from a topological point of view, there is no distinction between the

relationships ( ) and ( ) . A combination of the following equivalences

allow to describe all the possible con�gurations of the two end-points of a line feature:
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�

�

�

�

�

�

�

�

�

�

�

�

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1

2

1

2

1 2

1 2

1 2

1 2

1 2

1 2

1

2

1

2

�

h i _ h i , \ 6 ;

�

h i _ h i , \ 6 ;

�

h i _ h i , \ 6 ;

�

h i^

h i

,

\ 6 ; ^

\ ; ^

\ ;

�

h i^

h i

,

\ 6 ; ^

\ ; ^

\ ;

�

h i^

h i

,

\ 6 ; ^

\ ; ^

\ ;

�

h i_

h i_

h i_

h i

, \ 6 ;

�

h i^

h i _

h i^

h i

,

\ 6 ; _

\ 6 ;

�

h i^

h i _

h i^

h i

,

\ 6 ; ^

\ ; ^

\ ;

:

( ) ( ) =

:

( ) ( ) =

:

( ) ( ) =

:

( )

( )

( = )

( = )

( = )

:

( )

( )

( = )

( = )

( = )

:

( )

( )

( = )

( = )

( = )

:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

=

:

( ( ) ( )

( ) ( ) )

( ( ) ( )

( ) ( ) )

( = )

( = )

:

( ( ) ( )

( ) ( ) )

( ( ) ( )

( ) ( ) )

( = )

( = )

( = )
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at least one end-point touches

at least one end-point is in

at least one end-point is disjoint from

both end-points touch

both end-points are in

both end-points are disjoint from

at least one end-point of is in an end-point of

at least one end-point of is disjoint from an end-point of

both end-points of are in the end-points of

�

L; f ; touch; � L; t ; touch; � @L @�

�

L; f ; in; � L; t ; in; � @L �

�

L; f ; disjoint; � L; t ; disjoint; � @L �

�

L; f ; touch; �

L; t ; touch; �

@L @�

@L �

@L �

�

L; f ; in; �

L; t ; in; �

@L �

@L @�

@L �

�

L; f ; disjoint; �

L; t ; disjoint; �

@L �

@L @�

@L �

L L

L ; f ; in; L ; f

L ; t ; in; L ; f

L ; f ; in; L ; t

L ; t ; in; L ; t

@L @L

L L

L ; f ; disjoint; L ; f

L ; f ; disjoint; L ; t

L ; t ; disjoint; L ; f

L ; t ; disjoint; L ; t

@L L

@L L

L L

L ; f ; in; L ; f

L ; t ; in; L ; t

L ; f ; in; L ; t

L ; t ; in; L ; f

@L @L

@L L

@L L



1 2

1 2

1 2

1 2

1 2

1 2

7.5 Expressive power of the CBM

both end-points of are disjoint from the end-points of

Line/area.

�

h i^

h i^

h i^

h i

, \ ;

ut

� �

� �

)

� �

� �

� �

)

� �

� �
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� �
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� �
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�
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0
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C

A

0

B
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1

C
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 !

0

B

@

1

C
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 !

0

B
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1

C

A

L L

L ; f ; disjoint; L ; f

L ; t ; disjoint; L ; f

L ; f ; disjoint; L ; t

L ; t ; disjoint; L ; t

@L @L

:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

=

After the proof of the equivalence between the CBM and the DE+9IM, we are going

to �nd the number of real topological cases that can be expressed in the CBM, further

reducing the results of Section 7.3. We start by considering the real cases of the DEM

(see Table 3) and we add to them the extension of the exterior. In such a way, we can

�nd the real cases of the DE+9IM. We need to examine only the line/area and line/line

groups of relationships.

In this group, there are 17 real cases for the DEM. In the following, we will

see which are the corresponding real cases in the DE+9IM.

1.

1

2

0 1 2

2.

0 1

1

0 1 2

2

3.

0

0 1

2

0 1 2

4.

0

1

0 1

1 2

0 1 2

5.

0

0 1

0 1

0 1 2

2

0 1

0 1 2

0 1 2

0 1

0 1 2

1 2

6.

1

1 1

2

0 1 2

7.

1

1

1 1

1 2

0 1 2
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1
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0 1 2

2

1 1

0 1 2

1 2

1 1
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9.

0

0 1

2

1 2

0 1

2

0 1 2

10.

0

1

0 1

1 2

2

11.

0

0 1

0 1

0 1 2

2

12.

0 0

0 0 1

2

1 2

0 0 1

2

0 1 2

13.

0 0

1

0 0 1

1 2

2

0 0 1

1 2

1 2

0 0 1

1 2

0 1 2

14.

0 0

0 1

0 0 1

0 1 2

2

0 0 1

0 1 2

1 2

15.

0 1

0 1 1

2

2

0 1 1

2

1 2

0 1 1

2

0 1 2

16.

0 1

1

0 1 1

1 2

2

0 1 1

1 2

1 2

0 1 1

1 2

0 1 2

17.

0 1

0 1

0 1 1

0 1 2

2

0 1 1

0 1 2

1 2

Therefore, we found that the real cases of the DE+9IM are 31 (see also Fig. 3).

In this group, there are 18 real cases for the DEM. In the following, we will

see which are the corresponding real cases in the DE+9IM.

1.

0

1

0 1 2
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2.

0

0

0 1

0 1 2

3.

1

0

1 1

0 1 2

4.

0

0

0 1

0 1 2

0

0 1

1 2

5.

0 0

0

0 0 1

0 1 2

0

0 0 1

1 2

6.

0 1

0

0 1 1

0 1 2

0

0 1 1

1 2

0

0 1 1

2

7.

0

0

0

0 1

1 2

0 0

0 1

0 1 2

0

0 1

0 1 2

0 0

0 1

1 2

8.

0

0 0

0

0 0 1

1 2

0 0

0 0 1

0 1 2

0

0 0 1

0 1 2

0 0

0 0 1

1 2

9.

0

0 1

0

0 1 1

1 2

0 0

0 1 1

0 1 2

0

0 1 1

0 1 2

0 0

0 1 1
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10.

0

0

1

1 2

0 0

1

0 1 2

11.

0

0
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0 1
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0 0

0 1

0 1 2

19



8 Conclusions
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12.

0

1

0

1 1

1 2

0

1

2

0 0

1 1

0 1 2

13.

0

0

0 0

0 1

1 2

14.

0

0 0

0 0

0 0 1

1 2

15.

0

0 1

0 0

0 1 1

1 2

0 0

0 1 1

2

16.

0 0

0

0 0

0 1

1 2

17.

0 0

0 0

0 0

0 0 1

1 2

18.

0 0

0 1

0 0

0 1 1

1 2

Notice that in cases 7-8-9 above, the last two matrices represent pairs of converse

relationships. Therefore, we found that the possible cases of the DE+9IM are 36 and

that the real cases are 33 (see also Fig 4). Table 4 is a summary for the DE+9IM, and,

given the equivalence proved in Theorem 3, also for the CBM. Table 5 compares all

the methods considered in the paper with regard to the number of di�erent topological

cases they are able to express.

The advantages of the calculus-based method as a tool to be used in a spatial query

language have been emphasized in [6]. In this paper, we surveyed other three methods

for classifying topological relationships based on point-set topology, resulting to be

less expressive than the calculus-based method. We de�ned a new point-set method,

obtained from the combination of the others, that is equivalent to the calculus-based

method. Furthermore, we explored the entire panorama of topological con�gurations

between simple features that the calculus-based method is able to express.
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Table 1: A summary of the 4IM. The number of real cases is obtained from possible

cases by considering pairs of converse relationships as a single case

relationship groups no. of possible cases no. of real cases

area/area 8 6

line/area 11 11

point/area 3 3

line/line 16 12

point/line 3 3

point/point 2 2

total 37
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Table 2: A summary of the 9IM

relationship groups no. of possible cases no. of real cases

area/area 8 6

line/area 19 19

point/area 3 3

line/line 33 23

point/line 3 3

point/point 2 2

total 56
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Table 3: A summary of the DEM

relationship groups no. of possible cases no. of real cases

area/area 12 9

line/area 17 17

point/area 3 3

line/line 24 18

point/line 3 3

point/point 2 2

total 52
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Table 4: A summary of the DE+9IM

relationship groups no. of possible cases no. of real cases

area/area 12 9

line/area 31 31

point/area 3 3

line/line 36 33

point/line 3 3

point/point 2 2

total 81
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�

Table 5: A summary of topological cases for all methods

method A/A L/A P/A L/L P/L P/P total

4IM 6 11 3 12 3 2 37

9IM 6 19 3 23 3 2 56

DEM 9 17 3 18 3 2 52

DE+9IM CBM 9 31 3 33 3 2 81
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Figure 1: Comparison between the CBM and the DEM
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Figure 2: Comparison between the CBM and the 9IM
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Figure 3: The 31 di�erent line/area cases in the DE+9IM. In each box, the four values

represent the dimension of the four intersection sets
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Figure 4: The 33 di�erent line/line cases in the DE+9IM
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