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1. Introduction

Mesh simplification is a popular approach to the lossy compression of polygonal
surfaces, which is based on the reduction of the number of elements (vertices and faces) used
to represent a mesh. Mesh simplification induces some reduction of accuracy in representing
the surface. The amount of loss of accuracy is generally referred to as Level-of-Detail (LOD).
Many algorithms for mesh simplification have been proposed in the literature. See
[Hec97,Pup97] for surveys.

Mesh simplification is a slow operation that cannot be performed in real time in general.
Hence, either simplified models are produced and stored off-line (e.g., in VRML LOD
nodes), or data are pre-processed, and organized in a framework able to do simplification on-
line. The latter solution is especially suitable to optimize performance when the LOD required
by an application may be variable over different parts of the surface (e.g., flight simulation,
virtual worlds).

The Multi-Triangulation (MT) is a general framework for representing and managing
triangular surface meshes at variable level of detail. Concepts and theoretical properties about
the MT have been introduced in [Pup96]; algorithms for building an MT from a generic
surface mesh are described in [DeF97]; applications of the MT to the management of LOD
has been demonstrated in [DeF97,DeF98a]. This document summarizes briefly the
characteristics of this model, by emphasizing its  application as a mesh compression tool.

A Multi-Triangulation is obtained by organizing surface patches produced by a mesh
simplification algorithm in the context of a DAG, which provides a hierarchy of local Levels-
of-Detail. A mesh can be extracted in real time from the MT, possibly restricted to a region of
interest, and having an arbitrary LOD, which may be smoothly variable through space. Mesh
extraction is performed by simple algorithms that essentially manipulate cuts in the DAG.



2. LOD management

We assume the architecture depicted in Figure 1. A server manages a database of
objects (possibly a scene in a virtual world). The server provides methods for accessing
surface meshes upon request. A client is connected to the server through a communication
channel. The client sends requests, and receives meshes through the channel. In this scenario,
a primary goal is to maximize performance by tansmitting, and loading into the client as less
information as possible, while satisfying the requirements of the running application.

Manager Client

Requests

Meshes

DB

Figure 1: A client-server architecture

We face this problem by exploiting features of the MT framework, which allow us not
only to reduce the size of data stored and transmitted, but also to maximize the quality of
transmitted meshes. This latter goal is achieved by tuning the loss of accuracy introduced by
compression (simplification) according to the needs of the running application.

Therefore, a server stores a surface encoded by an MT, and provides on-line a mesh
representing such a surface according to the requests of the client. In particular, the server can
offer the following features:

• Selective refinement. A mesh can be obtained in real time, whose LOD is variable through
space. The client must provide a threshold function, i.e., a mathematical law specifying
how the loss of accuracy/resolution of the mesh should be distributed through space. For
instance, if the running application is a flight simulator, the LOD of the observed objects
will be decreasing with distance from the viewpoint; other applications might need to
enhance accuracy in the proximity of regions of interest. The mesh obtained in this way is
minimal, i.e., it is formed by the smallest number of triangles in the MT that can satisfy the
threshold.

• Locality. The mesh can be bounded to a local Region of Interest (ROI), specified by the
client. For instance, in a flight simulator, the client just needs the portion of landscape
inside the view frustum. This not only permits to reduce the amount of information
transmitted through the channel, and loaded by the client, but it also speeds up operations
performed by the server to retrieve the mesh.

• Progressive transmission. The simplified mesh, possibly clipped to a ROI, can be
transmitted by increasingly finer levels of detail. This allows the client to interrupt transfer
before completion - e.g. because of space/time constraints - while getting a meaningful
result, though at a lower LOD than desired. This also allows the server to put extraction
and transmission of the mesh in a pipeline (i.e., some data are transmitted through the
channel while further data are retrieved from the MT).

• Dynamic update. The mesh can be changed dynamically as the client changes its threshold
and ROI. To this aim, only information necessary to update the mesh currently loaded by
the client must be transmitted. In practice, only a very small amount of information is



needed for slight changes in the client threshold and ROI (e.g., frame-to-frame transition in
the navigation of virtual worlds).

• Geometry compression. Depending on the simplification algorithm used to build the MT,
different techniques can be adopted to compress meshes further, both in storing the MT on
the server, and in trasmitting a simplified mesh to the client. It is possible to trade off
storage and performance to different degrees, in order to obtain an optimal balance
between the computing power of the server, and the rest of the architecture.

 
 

 3. Related work
 
 Selective refinement of meshes has been addressed by several authors using hierarchical

structures based on either Progressive Meshes [Tau98,Hop97,Xia97], or Delaunay
triangulations [Bro96,Cig97,deB95]. The MT is indeed a unifying framework for all such
models, which is independent on the construction technique, and offers simple and efficient
accessing methods based on the manipulation of cuts in a DAG. For a thorough discussion of
MTs, and their relations with other models see [Pup97].

 
 Static compression, and progressive transmission of a whole mesh at a constant LOD

are addressed by simpler and more compact structures, like Progressive Meshes with linear
encoding [Hop96]. Such structures, however, do not support directly selective refinement,
locality, and dynamic update, hence they do not permit to drive progressive transmission from
the client/application.

 
 

 4. The Multi-Triangulation
 
 The Multi-Triangulation (MT) is based on the intuitive idea to arrange a collection of

local updates, aimed at progressively refining an initial coarse mesh, into a DAG that
describes their interdependency.

 
 A local update is an operation that replaces a sub-mesh Ti* of a mesh T with another

mesh Ti having the same boundary of Ti*, such that the result T' = T - Ti* + Ti is still a
consistent triangle mesh.  We always consider refinement updates, i.e., updates where Ti has
more triangles, and gives a more accurate representation of the surface than Ti*. In general,
we implicitly assume that both Ti*, and Ti are formed by a small number of triangles. Local
updates are the basis of many popular algorithms for mesh simplification. Vertex split
(obtained by reversing edge collapse), and vertex insertion (obtained by reversing vertex
decimation) are common examples. See Figure 2.
 

 A Multi-Triangulation is a DAG whose nodes represent local updates. Its arcs are
labeled by triangle sets, containing exactly one node with no incoming arcs - called the root,
and one node with no outgoing arcs - called the drain. The root represents the whole surface,
at a low level of detail, with a highly simplified mesh. The drain represents the surface, at the
highest level of detail, with the most refined mesh available. Each internal node of the DAG
represents a local modification of a mesh that replaces triangles labeling its incoming arcs
with triangles labeling its outgoing arcs, or vice-versa. Figure 3a depicts a sequence of local
updates that generates the MT shown in Figure 3b.
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 Figure 2: Some typical examples of local modifications: refinements from left to right,
simplifications from right to left.
 
 

 A cut of an MT is a set of arcs containing exactly one arc on each root-to-drain path.
The collection of triangles labeling a cut gives a mesh representing the surface at some level
of detail, possibly variable through space. High LOD is achieved where the cut lies closer to
the drain, while low LOD (and low complexity) is obtained where the cut lies closer to the
root. Since any cut gives a meaningful mesh, the LOD can be adjusted upon request to meet
different requirements in different parts of the surface. Moving a cut beyond a node
corresponds to a local refinement of the mesh (i.e. more vertices and triangles, better LOD);
moving a cut before a node corresponds to a local simplification (i.e., less vertices and
triangles, worse LOD). Therefore, the accuracy and size of a mesh increases/decreases while
sweeping a cut forward/backward through the DAG. The mesh corresponding to the cut of
Figure 3b is depicted in Figure 3c.
 

 It has been shown in [DeF96,Pup97] that the MT framework encompasses all
multiresolution models based on polygonal decompositions that have appeared in the
literature so far. An MT may have additional properties, which depend on the mesh
simplification technique used to build it:

 

• Normal form: every refinement operation is minimal (it cannot be split in two refinement
operations that can be performed independently), and non-redundant  (it does not recreate
triangles and edges eliminated by updates preceding it).

• Bounded degree: the total cost of arcs incident at a node is bounded by a constant.

• Logarithmic depth: the depth of the DAG (i.e., the length of the longest path from root to
drain), is logarithmic in the size of the MT (i.e., the total number of its triangles).

If an MT is in normal form, then every possible mesh formed by triangles of an MT can
be obtained from a cut, and traversal algorithms are able to detect in optimal time the smallest
possible mesh whose triangles satisfy a given LOD [Pup96]. Bounded degree and logarithmic
depth are also highly desirable because they affect the efficiency of traversal algorithms (see
next two sections).
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Figure 3: (a) A triangle mesh, and a sequence of local refinements; (b) the DAG describing
the corresponding MT, with a cut denoted by a dashed curve; (c) the mesh corresponding to
the cut.



5. Building an MT

An MT can be built through any mesh simplification technique based on the concept of
local modification. Methods of interest must warrant normal form, bounded width, and
logarithmic height. Moreover, they must be based on fixed rules for local modifications. Such
a characteristic permits to encode local modifications through a minimal amount of
information.

In [DeF97], construction algorithms based on vertex decimation, and Delaunay
triangulations have been discussed, and compared. Best results are obtained with an algorithm
that iteratively eliminates independent sets of vertices with bounded degree, while trying to
delete less relevant details first. The Delaunay rule permits to obtain a compact data structure
that encodes each local modification only through its central vertex.

Similar results may be achieved by methods based on either edge collapse
[Hop96,Xia97], or triangle collapse [Ham94]. Such methods should be modified to achieve
bounded degree and logarithmic height, by performing collapses of independent sets of
entities with bounded degree, while trying to collapse edges corresponding to less relevant
details first. Also in this case, the rules that define a local modification (vertex
split/expansion) permit to obtain a compact data structure, as for Progressive Meshes.

6. Traversing an MT

A mesh is extracted from an MT by sweeping a cut through the DAG, based on
conditions imposed by the client application, namely a threshold for the LOD, and a Region
Of Interest, plus possibly space and time constraints. A triangle in the ROI is called active,
while a triangle satisfying the LOD threshold is called valid. The server must provide the
smallest sub-mesh representing the portion of surface in the ROI, and such that all its
triangles are valid. If space/time requirements are violated before such a task is completed, the
server must return a mesh representing the portion of surface in the ROI, and having the best
possible LOD that can be achieved within such constraints.

Algorithms for selective refinement are described in detail in [DeF98a]. In the
following, we briefly outline the main concepts about such algorithms. A mesh is extracted
from an MT by traversing the DAG top down, i.e., starting at the cut just below its root. A
local modification is performed (i.e., the cut is advanced beyond a node) each time an active
triangle is not valid. Local modifications are iteratively performed until all active triangles in
the cut are valid. A dynamic variant of the algorithm starts instead from an existing cut, and
updates the mesh by adjusting such a cut according to new client conditions. In this case,
parts of the cut might be moved forward, while other parts are moved backward through the
DAG.

Active triangles in the output mesh may be piped through the channel, and received by
the client for further processing. In this way, the client only receives the portion of surface
lying in its ROI, represented with a mesh that optimizes the quality/space ratio. The key idea
here is that only the cut corresponding to the current mesh, or, better, only the portion of such
a cut lying inside the ROI needs to be transmitted to the client. Since the size of such a cut
can be much smaller than the whole mesh at full resolution, the compression factor obtained



by combining selective refinement and locality can be very high, while often the loss of
quality of the mesh received by the client can be hardly perceived.

7. Progressive transmission

Since the algorithm for selective refinement obtains the output mesh by performing
local modifications, it is possible to transmit the mesh progressively. Instead of sending a cut
once it has been detected, the server sends initially the mesh corresponding to the root,
possibly clipped to the ROI. Then, each time a cut is moved either forward beyond a node, or
backward before a node, the server sends the corresponding local modification, which
depends on the information stored at that node.

If the MT has been built on the basis of either vertex decimation, or edge collapse, each
modification can be encoded in a compact way, thus achieving further compression of the
extracted mesh. In other words, the implicit rules to obtain a local modification may help
compressing connectivity information, hence the bitstream in the progressive transmission
might result even smaller than a bitstream encoding just the final cut. For instance, in the case
of an MT based on Delaunay triangulations, it is sufficient to send either a new vertex to
insert (for refinement), or a reference to an existing vertex to remove (for decimation, only in
the dynamic case). Therefore, no connectivity information is needed. In the case of an MT
based on vertex split, information at each node is slightly higher (this case is analogous to that
of Progressive Meshes [Hop96]).

8. Dynamic update

In a dynamic scenario, the client stores a portion of a current cut, namely that contained
in its ROI. The server keeps track of the whole cut, and also knows which portion of it has
been loaded by the client. If the server adopts the dynamic version of the traversal algorithm,
then the current cut is updated on the basis of conditions given by the client. Each time a local
update affects a part of the cut already loaded by the client, such an update can be transmitted
directly. Otherwise, the portion of the current cut that is affected must be provided to the
client before performing the update. The portion of the old cut that move outside the ROI can
be eliminated directly by the client, in order to save space.

In this way, only information strictly necessary to update the mesh are sent through the
channel each time client conditions change. This is especially convenient for small changes,
like frame-to-frame transition in visualizing a scene while either the viewpoint moves, or
zoom-in/zoom-out occur. Note that the size of the current cut may remain nearly constant, in
order to fit space/time constraints of the application, while the accuracy of the mesh can be
highly variable depending on requests of the client (this situation occurs, e.g., in all zooming
operations).

9. Geometry Compression

Mesh simplification obtained through selective refinement and clipping operate directly
by reducing the size of the mesh. This may results in a drastic compression of information



transmitted through the channel, and loaded by the client. However, it is possible to obtain
further compression at the server, through the channel, and at the client, by adopting suitable
encoding techniques.

A mesh must be encoded by providing vertex information (i.e., position, surface
normal, photometry, etc., at each vertex), and connectivity information (i.e., which triplets of
vertices form triangles). Vertex information usually takes the largest space, because a single
vertex may need many bits. Such information can be compressed through lossy techniques
based on quantization, or lossless techniques like Huffman codes, or both [Dee95].
Connectivity information is also important, not only because it intrinsically requires some
space, but also because, depending on the technique adopted to encode it, it may be necessary
to store/transmit each vertex more than once (this is called vertex redundancy). In this section,
we address compression of connectivity information, and redundancy, for the MT framework.

We wish to remark here that mesh simplification is a form of compression that does not
require any decompression. On the contrary, the further compression of connectivity
information does require decompression that may affect time performance. For this reason,
we have explored different possibilities to trade off space and time requirements. In the
following, we briefly describe compression methods that we are developing for an MT based
on Delaunay triangulation, and built through vertex decimation. Similar methods can be also
developed for an MT built through edge collapse (which can be regarded equivalently as the
MT encoding of Progressive Meshes).

9.1  Compression at the server

The server works with an extremely compressed disk structure, and a larger run-time
structure. In the case of a functional surface, such as a terrain, the disk structure only requires
the sequence of vertices of the MT, plus a single integer number r that specifies the number of
vertices in the root mesh. The Delaunay triangulation of the first r vertices is the root mesh,
while the remaining vertices are listed in inverse order of decimation. Each such vertex
defines a local modification. The MT DAG is reconstructed from such a structure by an
incremental algorithm for Delaunay triangulation that inserts one vertex at a time. Therefore,
the disk structure in this case does not need to encode either connectivity, or the structure of
the DAG.

The case of a sculptured surface is more complicated, since the Delaunay rules do not
hold in space, and need to be used on a local basis. The root mesh must be encoded explicitly.
To this purpose, we have developed a compression method that avoids vertex redundancy,
and needs at most two extra bits per edge of the mesh to encode connectivity [DeF98b]. Each
local update can be encoded by its central vertex, plus a pointer to a triangle of the existing
mesh, which is used to localize the Delaunay criterion bt projecting the surface on the plane
containing such a triangle. Also in this case, the MT DAG is obtained by an incremental
algorithm for Delaunay triangulation, and the disk structure needs small information for
connectivity.

The run-time structure needs to encode the DAG explicitly, in order to achieve
efficiency of traversal algorithms. Therefore, some overhead due to storage of arcs in the
DAG is necessary. We have developed two versions of this data structure, with different



complexities and performances. In the implicit version, the root node contains the initial
mesh, encoded in the compressed format; each internal node contains compressed information
on the corresponding update, as in the disk structure (i.e., either just a vertex, or a vertex plus
a reference to an existing triangle), plus a number to indicate the LOD of the corresponding
portion of mesh after the update; no additional information is stored on arcs. The traversal
algorithm needs also to encode explicitly the mesh corresponding to the current cut during
traversal, with an uncompressed data structure (e.g., by storing its triangles, and adjacencies
explicitly). However, the current mesh usually needs much less space than the MT DAG.

In the explicit data structure, the initial mesh, as well as all updates are encoded by
listing their triangles (a triple of pointers to vertices, plus a LOD number for each triangle).
Triangles are clustered to label arcs, while no additional information must be stored at nodes.
In this case, the current mesh is encoded simply by listing the arcs of the current cut. The
explicit data structure is about three times larger than the implicit one, but traversal
algorithms run about ten times faster. See [DeF98a] for a comparison of the two structures.

9.2  Compression through the channel

Depending on the application, we can adopt either a static transmission (a mesh is
transmitted after it has been retrieved by the traversal algorithm), or a progressive
transmission (mesh updates are transmitted while the mesh is retrieved).

In the static case, it is easy to obtain and transmit a compressed bitstream, as described
in [DeF98b], from the current mesh encoded by the implicit structure on the server. In the
progressive case, the initial mesh can be transmitted through the same compressed bitstream,
while each update is transmitted by sending its corresponding vertex, plus possibly a pointer
to a triangle, and a few bits of control codes to drive the update. Depending on the amount of
extra information transmitted, we could need to perform more or less computation at the
client. Since our construction algorithm [DeF97] guarantees that each update can be obtained
with only a small number of edge swaps, we are currently developing a compressed code to
specify such swaps in order to avoid any numerical computation at the client. In both the
static, and the progressive case vertex information is transmitted without redundancy.

In a dynamic scenario, we must take into account that the mesh changes through time.
In this case, some information about a mesh may become useless for the client at a given
time, because of an update, and be reused later because of another update. In principle, each
vertex can be transmitted only once through the channel. Once it has been loaded by the
client, it can be referred to by using a hash code, whenever necessary. In practice, if the
memory size of the client is low, it may be necessary to discard vertices once they move
outside the current cut, and to send them again if they become active again later.

9.3  Compression at the client

The client only needs to store the current mesh. In the static case, this can be
compressed in the same structure used for transmission [DeF98b], which can be
decompressed quickly for rendering purposes. In the progressive case, it is necessary to
maintain an explicit data structure by encoding a list of vertices, plus a list of triangles, where



for each triangle indexes to its vertices and its neighbors are maintained. Such a structure can
be updated efficiently by dynamic Delaunay procedures to insert/delete vertices. The client
either may or may not need performing numerical computation during the update, depending
on the amount of information transmitted with any update (see above). More information
through the channel may help the client saving time in computation. Thus, this is again a
matter of balancing speed and memory load.

The client data structure used in the progressive case does not implement any
mechanism for compressing connectivity, in order to achieve efficiency in mesh updates. On
the other hand, the current mesh should be usually small enough to fit the client's memory,
because of simplification performed by the selective refinement algorithm.

10. Implementation and experiments

A prototype version of the MT server has been implemented by using the explicit
encoding for the run-time structure, which provides primitives for selective refinement, and
clipping to a ROI. Such a server includes both the static, and the dynamic version of the
traversal algorithm. A simple viewer has been implemented as a client, which provides
interactive functionalities like flythrough, and draggers to define focus areas (ROIs). In the
current implementation, both the client and the server are running on the same computer, and
communication occurs through a segment of shared memory. This implementation is made at
an academic level, without any optimization in data conversion and rendering. Therefore, its
performances are expectedly far below the possibilities of a properly engineered system.
Nevertheless, such a system already supports real-time flythrough, and interaction with
draggers in handling MTs built on meshes of reasonably large size (64K triangles).

Figures 4 and 5 show two pictures taken from interactive sessions. For more details on
these experiments see [DeF98a]. In Figure 4, a dragger box is swept interactively through
space containing a bunny model. The selective refinement algorithm extracts the mesh at the
highest possible LOD inside the box, while LOD can be arbitrarily low outside it. In this case,
the whole mesh at high resolution contains about 70,000 triangles, while the mesh visualized
in the figure contains only about 2,500 triangles, with only about 500 triangles inside the box.
On average, such a mesh is produced by the server in about 40 milliseconds, and the time
decreases to about 20 milliseconds if the mesh is clipped to the box (ROI). A frame-to-frame
transition needs making on average a few hundred local modifications to the current mesh
(this is indeed highly dependent on the speed in moving the dragger).

Figure 5 shows the top view of a terrain, with a wedge region representing the
projection of a view frustum. The viewpoint, at the vertex of the region, is moved
interactively to simulate flythrough. In this case, the required LOD is decreasing linearly with
distance from the viewpoint inside the frustum, and it is arbitrarily low outside it. The mesh at
the highest LOD contains 32K triangles, while the mesh in the figure contains about 2,700
triangles, with only about 1,700 triangles in the view frustum. Extraction times are about 30
milliseconds both with and without clipping. Also in this case, a few hundred local
modifications are sufficient to update the mesh at each frame.



Figure 4: Full resolution is used inside the box, while low resolution  is used outside it.

Figure 5: Top view of a terrain: resolution of the mesh inside the wedge is decreasing
linearly with distance from the corner (viewpoint); resolution outside the wedge can be
arbitrarily low.
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