
A Dimension-Independent Library for Building and

Manipulating Multiresolution Triangulations

Leila De Florianiy, Paola Magillo, Enrico Puppo

Dipartimento di Informatica e Scienze dell’Informazione – Università di Genova

Via Dodecaneso, 35, 16146 Genova, ITALY

Email: fdeflo,magillo,puppog@disi.unige.it

Abstract

A Multi-Triangulation (MT) is a general multiresolution model for representing k-dimensional geometric

objects through simplicial complexes. An MT integrates several alternative representations of an object, and

provides simple methods for handling representations at variable resolution efficiently , thus offering a basis

for the development of applications that need to manage the level-of-detail of complex objects. In this paper,

we present an object-oriented library that provides an open-ended tool for building and manipulating object

representations based on the MT.

1. Introduction

Geometric cell complexes (meshes) have a well-

established role as discrete models of continuous do-

mains and spatial objects in a variety of application

fields, including virtual reality, scientific visualization,

computer aided design, Geographic Information Systems

(GISs), etc. In particular, simplicial complexes (e.g., tri-

angle and tetrahedra meshes) offer advantageous features

in terms of adaptivity to the shape of the entity as well as

ease of manipulation.

The accuracy of the representation achieved by a dis-

crete geometric model is somehow related to its resolu-

tion, i.e., to the relative size and number of its cells. At

the state-of-the-art, while the availability of data sets of

larger and larger size allows building models at higher

and higher resolution, the computing power and the trans-

mission bandwidth of networks are still insufficient to

manage such models at their full resolution. The need to

trade-off between representation accuracy, and time and

space constraints imposed by applications has motivated

a burst of research on Level-of-Detail (LOD). The general

idea behind LOD can be summarized as: always use the

maximum resolution you need – or you can afford – and

never use more than that. In order to apply this principle,

a mechanism is necessary that can “administrate” resolu-

tion, by adapting a mesh to the needs of an application,

y On leave from the University of Genova at the University of

Maryland Institute for Advanced Computer Studies (UMIACS).

possibly varying its resolution over different zones of the

entity represented.

A number of different LOD models have been pro-

posed in the literature. Most of them have been developed

for applications to terrain modeling in GISs 4; 9; 14, and to

surface representation in computer graphics, and virtual

reality 15; 12; 18; 11. Such models are strongly characterized

by the data structures and optimization techniques they

adopt, as well as custom tailored to perform specific oper-

ations. In this scenario, developers who would like to in-

clude LOD features in their applications are forced to im-

plement their own models, and mechanisms. On the other

hand, a wide range of potential applications for LOD have

been devised, which require a common basis of opera-

tions 8. Therefore, it seems desirable that the LOD tech-

nology is brought to a more mature stage, which allows

developers to use it through a common interface, without

the need to care about too many details.

In our previous work, we have developed a general

model, called a Multi-Triangulation (MT), that can cap-

ture all LOD models based on simplicial complexes as

special cases 17; 10 (here, we use triangulation as a generic

term to denote a simplicial complex in any dimension).

Based on such model, we have built systems for manag-

ing the level of detail in terrains 6, and in free-form sur-

faces 8, and we are currently developing an application in

volume visualization.

Here, we present a library for building and manipulat-

ing MTs, which provides an open-ended tool for the de-

c
 The Eurographics Association and Blackwell Publishers 1999. Published by Blackwell

Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA

02148, USA.

velopment of applications that need advanced LOD fea-

tures. Although most models proposed in the literature

deal just with two-dimensional complexes (e.g., surface

meshes), our framework is dimension independent, hence

suitable to handle also volume, and higher dimensional

data. The definition of MT, its properties, and the tech-

niques to manipulate it, as well as the whole software

offered by the library, are defined in a unique way and

parametrically on the dimension of basic cells.

The reminder of this paper is organized as follows: in

Section 2 we briefly review the Multi-Triangulation; in

Section 3 we present the overall organization of the li-

brary; in Sections 4 and 5 we describe operations for con-

structing and querying an MT, respectively; in Section 6

we discuss some implementation details; finally, Section

7 contains some concluding remarks.

2. The Multi-Triangulation

In this section we briefly review main concepts about

the Multi-Triangulation 17; 10. For the sake of brevity, this

subject is treated informally here. For a complete and for-

mal treatment see 16.

A k-dimensional simplex � is the locus of points that

can be expressed as the convex combination of k + 1

affinely independent points in Rd , called the vertices of

�. Any simplex whose vertices are a subset of the ver-

tices of � is called a facet of �. A k-dimensional simpli-

cial complex in Rd is a finite set � of k-simplices such

that, for any pair of distinct simplices �
1

; �

2

2 �, either

�

1

and �

2

are disjoint, or their intersection is the set of

facets shared by �
1

and �
2

. In what follows, a k-simplex

will be always called a cell.

The intuitive idea behind a Multi-Triangulation (MT)

is the following: consider a process that starts with a

coarse simplicial complex and progressively refines it by

performing a sequence of local updates. Each local up-

date replaces a group of cells with another group of cells

at higher resolution. Figure 1 shows a sequence of up-

dates performed on a triangle mesh. An update C
2

in the

sequence directly depends on another update C
1

preced-

ing it if and only if C
2

removes some cells introduced

with C
1

. The dependency relation between updates is de-

fined as the transitive closure of the direct dependency re-

lation. Only updates that depend on each other need to be

performed in the given order; mutually independent up-

dates can be performed in an arbitary order. For instance,

in the example of Figure 1, updates 3 and 4 are mutually

independent, while update 5 depends on both; thus, we

can perform updates 3 and 4 in any order, but we must

perform them both before we can perform update 5.

An MT abstracts from the totally ordered sequence by

encoding a partial order describing the mutual depen-

dencies between pairs of updates. Updates forming any

subset closed with respect to the partial order, when per-

formed in a consistent sequence, generate a valid simpli-

cial complex. It is possible to perform more updates in

5

1

2

3

4

Figure 1: A sequence of five updates (numbered 1. . . 5)

progressively refining an initial coarse triangle mesh. The

area affected by each update is shaded.

some areas and fewer updates elsewhere, thus producing

a complex whose resolution is variable in space. Such an

operation is known as a selective refinement, and it is at

the basis of LOD management. Results on selective re-

finement from an MT representing a terrain are shown in

Figure 2.

An MT is described by a directed acyclic graph (DAG).

Each update is a node of the DAG, while the arcs corre-

spond to direct dependencies between updates. Each arc

is labeled with the collection of all cells of its source

node that are removed by its destination node. For con-

venience, we introduce two further nodes: a root, cor-

responding to the initial coarse complex, which is con-

nected with an arc to each update that removes some if its

cells; and a drain, corresponding to the complex obtained

by performing all updates, which is connected through

an arc outgoing from each update that creates some of its

cells. Such arcs are labeled by cells in a consistent way.

Figure 3 shows the MT corrsponding to the collection of

updates described in Figure 1.

A front of an MT is a set of arcs containing exactly one

arc on each directed path from the root, as shown in Fig-

ure 3. Nodes lying before a front form a consistent set of

updates; the corresponding simplicial complex is formed

by all cells labeling the arcs of the front 16. By sweep-

ing a front through the DAG, a wide range of complexes

is generated, each characterized by a different resolution,

possibly variable in space.

2

(a) (b) (c)

Figure 2: Three meshes extracted from a two-dimensional MT representing a terrain (top view). (a) The triangulation has

the highest possible resolution inside a rectangular window, and the lowest possible resolution outside it. (b) Resolution

inside a view frustum (wedge) is decreasing with the distance from its focus point, while it is arbitrarily low outside it. (c)

Resolution is high only in the proximity of a polyline.

1

2

3

5

4

0

6

Figure 3: The MT built over the partially ordered set of mesh updates of Figure 1. Each node represents a mesh update

and shows the two sets of cells removed and created in the update. Each arc represents the dependency between two

updates and is labelled with the cells created in the first update which are removed in the second update. A front on the

MT contains the arcs intersected by the dashed line; nodes lying before the front are highlighted. The mesh associated

with the front is shown on the right.

2.1. Building an MT

An MT can be built from of any sequence of local updates

produced by an algorithm for mesh refinement, or mesh

simplification.

A refinement algorithm starts from a mesh at low reso-

lution, and incrementally produces meshes at higher reso-

lution. Mesh refinement has been widely used in the con-

text of terrain approximation 13, and in multiresolution

volume visualization 2. Most of such algorithms are based

on the iterative application of local updates characterized

by a specific pattern. A common pattern is vertex inser-

tion, as depicted in Figure 4 for the two-dimensional case:

an initial coarse mesh is built on a small set of vertices,

while other vertices are inserted one at a time; each time a

new vertex is inserted, a polytope formed by a set of adja-

cent cells in the current mesh is retriangulated through a

new set of cells incident at the new vertex. An MT can be

built top-down by first setting its root at the initial mesh,

and then tracing the sequence of updates performed dur-

ing mesh refinement: each update defines a new node,

which is linked to the DAG according to its interferences

with the existing nodes.

An algorithm for mesh simplification starts from a

mesh at high resolution, and incrementally produces

meshes at lower resolution by decreasing the number of

3

VERTEX SPLITVERTEX INSERTION

VERTEX REMOVAL EDGE COLLAPSE

Figure 4: The two types of update patterns used on two-dimensional meshes in refinement (left-to-right), and in simpli-

fication (right-to-left). The shaded triangles are those involved in the update. Such patterns extend directly to a generic

k-dimensional case.

cells in the input mesh. A large number of simplification

algorithms have been developed for different applications
3. Also simplification can be performed by iteratively ap-

plying local updates: this process is similar to rolling

back a refinement sequence. Two common patterns for

simplification updates are vertex decimation, and edge

collapse, as shown in Figure 4 in the two dimensional

case. An MT can be built bottom-up by setting its drain

at the initial mesh, and making a new node at each lo-

cal update, as for refinement. The only difference is that

the two sets of cells involved in an update are swapped in

the MT node, which becomes an ancestor, rather than a

descendant of the nodes generated by previous updates.

Thus, a history file that traces local updates performed

through a generic iterative refinement or simplification

process contains sufficient information for building an

MT. The key operations consist of building a node from

a local update and of inserting it consistently in the DAG

representing the MT.

In our library, we provide general and dimension-

independent mechanisms for building an MT starting

from a history file, as well as some refinement and sim-

plification algorithms that we have implemented for the

two- and three-dimensional cases. Such issues will be

discussed in Section 2.1.

2.2. Querying an MT

Since an MT provides several descriptions of a spatial

object by tracing interferences among different local ap-

proximations, there are two general approaches in using

this model:

� As an efficient mechanism to obtain a representation of

the whole object according to some user-defined reso-

lution requirements, where resolution is possibly vari-

able over different parts of the object;

� As a spatial indexing scheme to query a region of in-

terest. Also in this case, the resolution of the portion of

object returned may depend on user-defined require-

ments.

In 8, we have proposed general techniques to traverse

an MT and to extract either a portion or the whole ob-

ject, at a user-defined resolution. Such techniques have

been included in our library. They will be summarized in

Section 2.2. A detailed description is given in 16.

Queries on an MT are defined through regions of in-

terest, and resolution filters. A region of interest (ROI) is

a generic, finitely describable subset of the space Rd in

which the complex is embedded. Common choices are

a point, a ray, a straight-line segment, a hyperplane, a

half-space, a (hyper)box, a (hyper)ball, etc., as well as

any finite union or intersection of such objects. A cell

of an MT is said active with respect to some ROI if and

only if their intersection is not empty. In our library, we

provide some methods to test cells with respect to some

frequently used ROIs as well as general mechanisms to

include user-defined ROIs.

A resolution filter is a user-defined function R that as-

signs to each cell � of the MT a real value R(�). In-

tuitively, a resolution filter measures the “signed differ-

ence” between the resolution of a cell, and that required

by the application: R(�) > 0 means that the resolution

of � is not sufficient; R(�) < 0 means that the resolution

of � is higher than necessary. A cell such that R(�) � 0

is said feasible.

The value of the resolution filter at a cell � may de-

pend on the position of � in space, on its attributes, on

its geometric properties (size, shape, ecc.), as well as on

other user-defined parameters. Regions of interest can be

combined with analytic functions in the definition of res-

olution filters, i.e., a filter may be defined by a function

for a cell that is active with respect to some ROI, by a

different function for another cell that is active for a dif-

ferent ROI, and so on.

For example, the meshes depicted in Figure 2 satisfy

the following resolution filters: in (a) R is negative for all

cells outside the window, zero for all cells inside it that

are at the highest resolution, and positive for all others;

in (b) R is negative for all cells outside the view frustum,

while for a cell � inside it,R is decreasing with resolution

of �, and with its distance from the focus point; in (c)R is

negative for all cells not intersecting the polyline, zero for

all cells intersecting it that are at the highest resolution,

and positive for all others.

We provide the following three traversal algorithms for

the MT:

4

� A static algorithm, which is specified by an MT and

a resolution filter. This algorithm returns the simplicial

complex of minimum size (i.e., composed of the small-

est number of cells) which satisfies the resolution filter.

It is suitable to single queries about a representation of

the whole object.

� A dynamic algorithm, which is specified by an MT, a

front on it, and a resolution filter. This algorithm re-

turns the complex that is as close as possible to the

given front and is minimally sufficient with respect to

the resolution filter (i.e., it cannot be simplified further

without violating it). It is suitable to repeated queries,

when the result of a new query differs just slightly from

the result of the previous one (e.g., in a virtual real-

ity environment where the resolution filter depends on

the position and on the viewing direction of a moving

point).

� A local algorithm, which is specified by an MT, a res-

olution filter, and a ROI. This algorithm returns a rep-

resentation of the portion of the object inside the ROI,

which satisfies the resolution filter, and cannot be sim-

plified without violating it. This is suitable to local

queries: depending on the ROI used, it implements spe-

cific geometric queries, like point location, window-

ing, and ray casting.

Variants of these algorithms are also described in 16,

in which the condition on the output complex of being

formed by valid cells is relaxed, while a given bound on

its size is imposed. In this case, each algorithm returns

the complex within the given bound that is as close as

possible to that satisfying the resolution filter.

Mesh extraction algorithms will be discussed in Sec-

tion 5.2.

3. Library Overview

Our major objective in designing and developing a library

for the manipulation of Multi-Triangulations is to provide

an open system which can be integrated with user mod-

ules. Such a system permits to build applications to per-

form analysis, processing, and visualization of geometric

models in any dimension, with the fundamental charac-

teristic of using resolution as a further parameter in the

computation.

3.1. Library Architecture

The system architecture consists of library modules and

user modules. Library modules are the “standard” part

of the system; they provide operations that allow a user

to build and query an MT. User modules are the exten-

sible part of the system; they include programs which

generate histories for building MTs and programs that in-

quiry an MT to perform specific operations at variable

resolution. In addition, special user modules manage the

application-dependent attributes of cells and vertices of a

Multi-Triangulation.

The library modules are:

1. The MT-manager: this is the only module having di-

rect access to the MT data structure; it provides a stan-

dard interface for the MT and contains:

� query operations described in Section 2.2 (static,

dynamic and local algorithms), which represent

the interface to user modules;

� construction operations used to build an MT from

a given history file, which represent the interface

to the MT-builder (see below);

� I/O operations used to read/write an MT from/to

disk.

2. The MT-builder: this module builds an MT starting

from a history file.

3. The MT-history-tracer: this module provides utilities

that allow a user program to write a history in the cor-

rect format to be read by the MT-builder. Its primitives

can be called within any user program incrementally

refining or simplifying a mesh in order to trace the

history of the iterative process on disk.

4. A generic module MT-query-params, which provides

the shallow interface of resolution filters and ROIs to

be used as parameters to query an MT through the MT-

manager operations; user-defined resolution filters and

ROIs reduce to specific implementations of such inter-

face.

5. A generic module MT-attribute-manager, providing

the shallow interface for handling the application- de-

pendent attributes of cells and vertices; the user de-

fines its attribute managers as specific implementa-

tions of such interface.

Library modules are parametric on the size d of the

space containing data and on the dimension k of the trian-

gulation. User-defined MT-attribute-managers can be as-

sociated with modules 1–4 in order to obtain specialized

MT-managers, MT-builders, MT-history-tracers and MT-

query-params which operate on MTs having some spe-

cific attributes associated with their cells and/or vertices.

This structure allows a user to adapt the library to her/his

specific needs while maintaining all general mechanisms

unchanged.

User modules can be subdivided into the following

types:

1. MT-history-generators, which implement methods for

the iterative refinement or simplification of a mesh,

and use the primitives the MT-history-tracer to write

the history of the process.

2. MT-clients, which use the query operation of the MT-

manager to perform operations at variable resolution

on geometric objects encoded through an MT.

3. Resolution filters and ROIs, implemented according

with the interface of MT-query-params.

4. Modules handling cells and vertex attributes, imple-

mented according to the interface of MT-attribute-

manager.

The system architecture is depicted in Figure 5. Refer-

ring to such Figure, we illustrate two typical scenarios:

5

MT-history-tracer

MT-history-generators MT-clients

MT-history-file MT-file

MT-managerMT-builder

[attrib] [attrib]

query params

meshes
read

query

write

update
[attrib]

eval

set up and ROIs

resolution filters

MT-query-params

[attrib]

attribute managers

MT-attribute-
managerLibrary

Disk

User

Figure 5: Components of the MT system and their relations. Dashed arrows represent data flow; solid arrows represent

control flow (arrows directed from the module invoking an operation to the module providing such operation).

the construction of an MT and the extraction of a mesh

from an MT.

In order to construct an MT, first we run an MT-

history-generator. Such program performs a sequence of

updates either refining or simplifying a mesh, and uses

the primitives of the MT-history-tracer to write the cor-

responding history to disk into an MT-history-file. Then,

the MT-builder reads the MT-history-file, builds an MT

from the history, and writes it on disk into an MT-file.

The MT-history-generators and the MT-builder run off-

line. This two-step is provided to allow a user to build an

MT through her/his own algorithms without any need to

know details about the MT.

An existing MT can be read from disk, and inquired to

perform operations on a mesh representing the target ob-

ject at a user-defined resolution. An MT-client first asks

the MT-manager to read an MT from an MT-file, then

it sets up the desired query parameters (resolution filters

and ROIs), and invokes a query. As a result, the MT-

manager returns a mesh.

3.2. Basic Data Types

A Multi-Triangulation is characterized by the following

elements:

� the vertices involved in the model, with their coordi-

nates in space;

� the cells involved in the model;

� the nodes, which represent updates;

� the arcs, which represent relations of direct depen-

dency between nodes.

Relevant relations connecting these four types of ele-

ments are: the Cell-Vertex (CV) relation, which provides

the k + 1 vertices of a cell; the Cell-Arc (CA) relation,

providing the arc that contains a given cell; the Arc-Cell

(AC) relation, that gives the set of cells labelling an arc;

Arc Node

CV

CA CNCell

Vertex

Vertex

Cell

Vertex-Info

Cell-Info

VI

CI

NA

AN

AC NC

(a) (b)

Figure 6: (a) The relations between the basic elements of

an MT; (b) the relations between cells and vertices and

their attributes.

the Cell-Node (CN) relation, that provides the two nodes

creating and removing a cell, respectively; and the Node-

Cell (NC) relation, that gives the two sets of cells re-

moved and created, respectively, by a node; the Arc-Node

(AN) relation, that provides the two nodes connected by

an arc; and the Node-Arc (NA) relation, that gives the two

sets of arcs entering and leaving a node, respectively. The

above relations are shown in Figure 6 (a).

The four basic types and their relations are handled by

the MT-Manager which provides the interface operations

to the other modules.

3.3. Attributes

Within an application, user-defined attributes (e.g., ap-

proximation errors, normals, colors, material properties,

textures, field equations, etc.) can be attached to each ver-

tex and to each cell.

Two generic types of elements are provided in the MT-

attribute-manager: vertex attributes and cell attributes.

6

Application programs

Kernel primitives

Basic primitives

History-oriented primitives

Figure 7: The three levels of construction operations.

The relevant relations are the Vertex-Information (VI),

and the Cell-Information (CI) relation, which provide the

attributes of a given vertex, and of a given cell, respec-

tively (see Figure 6 (b)).

The interface of the MT-attribute-manager contains

primitives for managing generic vertex and cell attributes,

and relations VI, CI. Depending on the attributes that are

of interest for the application, the user can define his/her

own instances of attribute managers by providing the spe-

cific data structures to contain them and by implementing

the interface primitives of the MT-Attribute-Managers.

4. Construction Operations

Operations needed to build an MT are divided into three

levels:

1. Kernel operations, i.e., basic primitive operations act-

ing on the structure of an MT. Such operations are in-

ternal operations of the MT manager and their purpose

is hiding the data structure used to represent the MT.

2. Basic construction operations, which allow initializ-

ing an MT and modifying it according to a new re-

finement or simplification update. Such operations are

internal operations of the MT-builder and allow incre-

mentally building an MT.

3. History-oriented construction operations, which di-

rectly build an MT starting from a given history. These

operations are the interface of the MT-Builder.

Figure 7 shows the relations between the three levels

of operations.

4.1. Kernel Operations

The kernel level for MT construction provides operations

that modify the internal structure of an MT at the lowest

level (i.e., a DAG encoding local updates and their depen-

dency relations). Construction can be performed with the

following primitives:

� AddNode: adds a new node to the DAG;

� ConnectCell: inserts a new cell into an MT, re-

ferring it to specified source and destination nodes,

1 2

0

1 2

0

d

(b)

3

d

(a)

(c)

3

Figure 8: One step of the top-down construction of an

MT: (a) the current MT, (b) the next refinement update to

be added to the DAG, and (c) the resulting MT.

and updates relations between such nodes as a conse-

quence (an arc connecting them is created if not al-

ready present);

� DisconnectCell: removes an existing cell from an

MT and updates relations between its source and desti-

nation nodes as a consequence (an arc connecting them

is deleted if dependency was caused only by the cell

deleted).

Such operations maintain the invariant property that

two nodes are connected by an arc if and only if the desti-

nation of the arc removes some cell created by the source.

The kernel provides also operations to evaluate rela-

tions described in Section 3.2. Such operations are self-

explanatory, and they are not listed here for brevity.

4.2. Basic Construction Operations

Operations in this layer permit to initialize and iteratively

add nodes to an MT. Basic construction operations are

implemented in the MT-Builder for internal use.

We start with an MT consisting just of the root plus

the drain and of one arc connecting them labelled with

all cells of the initial cell complex. Then, a new node for

each update of the history is created and connected to the

DAG based on its dependency relations with the existing

nodes.

In construction through refinement, every new update

refines an existing MT as follows: a new node corre-

sponding to the update is inserted, which becomes a par-

ent of the drain; some nodes that were parents of the drain

become parents of the new node, and they are possibly

detatched from the drain. See Figure 8.

In construction through simplification, each new up-

date coarsens the cell complex at the root of the current

MT. A new node is inserted, which corresponds to the

refinement update obtained by reversing the current up-

date; such node becomes a child of the root; some nodes

7

3

1 1

0

(b)

(a)

(c)

0

d

d

3

2

Figure 9: One step of the bottom-up construction of an

MT: (a) the current MT, (b) the next simplification update

to be added to the DAG, and (c) the resulting MT.

that were children of the root become children of the new

node and are possibly detatched from the root. See Figure

9.

Note that the two methods act on the MT symmetri-

cally, by adding a node immediately before the drain and

immediately after the root, respectively.

The basic operations of this level are:

� InitMC: given a complex �

0

, it returns a DAG con-

sisting of just the root node, the drain node, and an arc

connecting the root to the drain. The whole set of cells

of �
0

corresponds to the group inserted by the root and

labelling the arc.

� RefineMC: given an MT and a refinement update spec-

ified by a pair of groups of cells (�
old

;�

new

), it adds

a new node representing it and connects such node to

the drain and to the nodes that introduced cells of �
old

,

possibly detaching them from the drain. See Figure 10a

for a pseudo-code of this operation.

� CoarsenMC given a simplification update

(�

old

;�

new

), it updates the root mesh by apply-

ing the update, it add a new node representing its

reverse (�

new

;�

old

) and connects such node to the

root and to the nodes that introduced cells of �
old

,

possibly detaching some of them from the root. See

Figure 10b for a pseudo-code of this operation.

4.3. History-Oriented Construction Operations

Operations in this level accept a history and directly build

the corresponding MT. There are two operations, corre-

sponding to the construction of an MT top-down (from

a refinement history) and bottom-up (from a coarsening

history).

� TopDownMC: builds an MT from a refinement history.

Its implementation reduces to a call to InitMC fol-

lowed by a sequence of calls to RefineMC.

C :=M:AddNode();

for each cell 2 �

old

do

C

i

:=M:CellSource();

M:DisconnectCell();

M:ConnectCell(; C

i

; C);

for each cell 2 �

new

do

M:ConnectCell(; C;M:Drain());

(a)

C

0

:=M:AddNode();

for each cell 2 �

old

do

C

0

j

:=M:CellDest();

M:DisconnectCell();

M:ConnectCell(; C

0

; C

0

j

);

for each cell 2 �

new

do

M:ConnectCell(;M:Root(); C

0

);

(b)

Figure 10: Pseudo-codes of primitives for building an

MT through refinement (a), and through simplification

(b).

� TopDownMC: builds an MT from a coarsening history.

Its implementation reduces to a call to InitMC fol-

lowed by a sequence of calls to CoarsenMC.

5. Query Operations

Operations needed to query an MT are subdivided into

three levels (see Figure 11):

1. Kernel operations: basic primitive operations acting

on the structure of an MT, which hide the specific data

structure used to represent an MT, while providing a

standard interface to the upper levels.

2. DAG traversal operations: defined on top of the ker-

nel and used within the MT-Manager for implement-

ing query operations; they manage the internal state of

DAG traversal in the various query algorithms.

3. Query operations, which define the user interface of

an MT; they implement the three query algorithms

outlined in Section 2.2: the static query, the dynamic

query, and the local query.

All operations are implemented by the MT-Manager,

but only the topmost level (i.e., query operations), and

part of the kernel (i.e., operations involving cells, vertices

and their attributes) are available to MT-clients.

5.1. Kernel Primitives

This level contain primitives that permit to retrieve the ba-

sic relations CV, CA, CN, AC, AN, CN, NA, introduced

in Section 3.2. Generic primitives for retrieving relations

CI and VI are also provided; the implementation of such

primitives relies on some attribute manager that the user

must provide when the MT-manager is instantiated; if no

8

Query primitives

Application programs

Kernel primitives

DAG traversal primitives

Figure 11: The three levels of query operations.

0

1

3

2

b

a

c

Figure 12: The static algorithm. Dark triangles are un-

feasible. a is the initial front, the corresponding mesh has

a dark triangle; b is the current front after sweeping node

2, its mesh still has a dark triangle; c is the final front ob-

tained by sweeping node 3 and its unswept ancestor 1.

attribute manager is present, then CI and VI simply re-

turn null information. In addition, primitives to retrieve

the root and the drain of an MT are provided.

Primitives corresponding to relations CV, CI, and VI

are available to the user; the others are internal operations

of the MT-manager.

5.2. DAG Traversal Primitives

DAG traversal primitives are auxiliary operations acting

on the internal state of query algorithms.

The static algorithm (see Figure 12) traverses the DAG

representing the given MT by sweeping a front from the

root towards the drain. At each step, the current candi-

date solution is the cell complex associated with the cur-

rent front. As long as the current complex contains some

unfeasible cell �, the current front is advanced after the

node C that removes �; note that not all arcs entering C

may belong to the current front when C is selected: in

this case, the front is swept over all unswept ancestors of

C as well. When all cells are feasible, then the current

complex is returned as the solution.

0

1

3

2

a

c

b

Figure 13: The local algorithm. The ROI is the dark

square. a is the initial front, the corresponding mesh con-

tains one triangle, that we suppose to be not feasible; tri-

angle; b is the current front after sweeping node 2, we

suppose that the corresponding triangle is still unfeasi-

ble; c is the final front obtained by sweeping node 3; node

1 is not swept since arc (1,3) is not active.

3

4

a

c

0

1 2

b

Figure 14: The dynamicc algorithm. Dark triangles are

unfeasible. a is the input front, the corresponding mesh

has a dark triangle; b is the current front after sweeping

node 4, the mesh has no dark triangles, but it is over-

refined; c is the final front obtained by sweeping beyond

node 3 and then beyond node 1.

9

The local algorithm (see Figure 13) works in a similar

way, but it maintains a local front made of active arcs,

i.e., arcs that have some active cell associated with. Arcs

that are not active are ignored. The current candidate so-

lution is given by the collection of the active cells from

the arcs of such local front. As long as the current candi-

date solution contains some unfeasible active cell �, the

algorithm advances the local front after the node C re-

moving �. Unswept ancestors of C are also swept, if and

only if they are connected to C through active arcs.

The dynamic algorithm (see Figure 14) traverses the

DAG both upwards and downwards, starting from a given

front. First, it applies the same procedure as in the static

case to produce a current complex that satisfies the given

resolution filter is satisfied on each cell. Then, it coarsens

the current complex where its resolution is higher than

strictly necessary. by sweeping the current front back-

wards one node at a time as long as this can be done

without introducing unfeasible cells in the current mesh.

The DAG-traversal primitives necessary to implement

the static query algorithm are:

� Init: sets an initial state in which only the root has

been swept and the current front contains all the arcs

outgoing from the root.

� Expansion(): updates the state by iteratively sweep-

ing the current front forward until all active cells of its

arcs are feasible.

The local query algorithm is supported by similar

primitives, which have a slightly different behaviors since

only active triangles are considered:

� LocalInit: sets an initial state in which only the root

has been swept and the current local front contains

those arcs outgoing from the root which are active.

� LocalExpansion(): updates the state by iteratively

sweeping the current local front forward until all ac-

tive cells of its arcs are feasible.

The operations needed for supporting the dynamic al-

gorithm are the Expansion operation used in the static

case, plus the following:

� Contraction: updates the state by sweeping the front

before a node as long as this can be done without get-

ting some unfeasible cell in the corresponding mesh.

5.3. Query Operations

The interface of the MT-manager provides to the user op-

erations that correspond to the three query algorithms.

� StaticQuery: solves a global query related to a given

resolution filter by using the static algorithm; the input

parameter is a resolution filter.

� DynamicQuery: solves a global query related to a

given resolution filter by using the dynamic algorithm;

the input parameter is a resolution filter.

� LocalQuery: solves a local query related to the cur-

rent resolution filter and focus set; the input parameters

are a resolution filter and a ROI.

The implementation of StaticQuery reduces to a call

to Init followed by a call to Expansion; the mesh corre-

sponding to the solution of the query is found as the col-

lection of the cells labelling the arcs of the current front

after Expansion.

The implementation of DynamicQuery reduces to a

call to Contraction followed by a call to Expansion;

the internal state inherited from the last query is main-

tained by the MT-manager in a transparent way, and it

is updated in order to compute the answer to the current

query.

The implementation of LocalQuery is similar to

that of StaticQuery, but here LocalInit and

LocalExpansion are used; the output mesh is generated

by collecting just the active cells of the arcs of the final

local front.

6. Implementation Issues

We have been developing a prototype library in C++

under the object-oriented programming paradigm. The

dimension-independent library is at an advanced stage of

design, while simplified two- and three-dimensional ver-

sions are already implemented, which provide basic mod-

ules that will be extended to the generic case.

In this section, we first outline the main concepts re-

lated to the design of the library, and then we describe

software that we already implemented, which will be

used to implement the final prototype.

Note: We foresee that the library shall be completed, and

released in the public domain, by the time of the confer-

ence. The content of this section will be updated conse-

quently in the final paper.

6.1. Object-Oriented Design

The library is organized as a set of classes; such classes

and their mutual relationships are represented in Figure

15, and explained in the following.

The MT-manager module is formed by two classes: the

MT and the extractor. Class MT stores the vertices, cells,

nodes and arcs of an MT, and implements kernel primi-

tives (both for construction and for query), and primitives

for disk I/O. Class MT must be instantiated by providing

the dimension k of its cells, and the dimension d of the

embedding space.

The data structure used to represent an MT consists

of four arrays storing the vertices, cells, nodes and arcs

of the DAG, respectively. A minimal complete subset of

the relations between these entities is explicitly stored,

namely relations CV, CA, AC, AN, NA; all other rela-

tions are found on-the-fly by combining the stored ones

in optimal time. Optimized data structures for MTs where

all updates are based on a specific rule have also been

designed, which represent cells in an implicit way lead-

ing to consistent advantages in terms of storage require-

ments. An MT class can be implemented based on such

10

structures as well, but this involves some changes in its

interface. A detailed description and analysis of the data

structures is given in a companion paper 7.

Class extractor implements the data structures that

maintain the internal state of query algorithms, the DAG

traversal and the user-level query operations. Class ex-

tractor has three subclasses, which implement the static,

the dynamic and the local query algorithm, respectively.

An extractor must be instantiated on an object of class

MT. Several extractors, possibly of different types, may

share the same MT without interfering.

The primitives for handling vertex and cell attributes

are provided by class attribute manager. Attribute man-

ager is a base class that contains operations to read/write

a generic attribute and to set/get its value. Subclasses of

attribute manager are written by the user to deal with spe-

cific types of attributes of the application. The MT class

can be instantiated by providing one or more objects of

(user-defined subclasses of) class attribute manager; the

resulting MT will use the capabilities of the given at-

tribute managers to deal with cell and vertex attributes.

An attribute manager contains internally an array of

vertex attributes and an array of cell attributes; the size of

the elements of such arrays can be decided by the user.

When defining a subclass of attribute manager for han-

dling a certain type of attribute, the size will be set ac-

cordingly. One of the array may not be used, if attributes

are attached just to one of vertices and cells.

Module MT-tracer is implemented in class tracer. This

class contains primitives that the user has to call for

recording each vertex, cell, and update performed dur-

ing a refinement or coarsening process. As the MT, the

tracer can be instantiated by providing one or more ob-

jects of class attribute manager; in this case, the opera-

tions of the attribute managers permit to record a history

that contains application-dependent attributes in addition

to the standard basic information.

The MT-builder module is implemented in class

builder; such class implements the basic and the user-

level operations for constructing an MT either top-down

or bottom-up from a history. As the tracer, it relies on at-

tribute managers to build an MT containing user-defined

attributes.

Module MT-query-params consists of class query-

param, a base class whose subclasses are the user-defined

focus sets and resolution filters. Class query-param can

be instantiated on attribute managers in order to define fil-

ters which take application-dependent attributes of cells

into account (e.g., error-based filters).

6.2. Software already implemented

The dimension independent library has been designed

by extending structures and concepts that we have al-

ready developed and implemented in the two- and three-

dimensional cases. The libraries at fixed dimension have

extractor MT
manager

attribute

query paramsstatic dynamic local

= refers to

= subclass of

user-defined

attribute managers

user-defined params

tracerbuilder

Figure 15: The three levels of query operations.

the same architecture that we described in Section 3.1, but

they are not parametric, neither on dimensions of space

and complex nor on attributes of vertices and cells.

Both libraries have been implemented based on the

data structure briefly outlined in Subsection 6.1. We are

also developing alternative implementations that adopt

more compact data structures, which are suitable for spe-

cific cases, such as Delaunay simplicial complexes, and

two-dimensional MTs built through either vertex inser-

tion or vertex decimation. Such alternative data structures

are discussed and compared in 7.

Implementations have been made under the Unix op-

erating system, and by now they have been tested on SGI

(Irix) and on PC (Linux) platforms.

History generators. We have implemented different MT-

history-generators: for two-dimensional fields (terrains)

based on a Delaunay triangulation of a plane domain,

we have developed different refinement and simplifica-

tion methods based on iterative insertion and removal of

vertices, respectively 5; for free-form surfaces embedded

in space, we have implemented the simplification method

based on vertex removal proposed in 1, and we are com-

pleting the implementation of a simplification method

based on edge collapse; for three-dimensional fields (vol-

ume data) based on Delaunay tetrahedrizations, we have

implemented a refinement method based on vertex inser-

tion, proposed in 2.

ROIs and resolution filters. Different methods for test-

ing triangular and tetrahedra cells against regions of in-

terest and resolution filters have been implemented.

The following ROIs only apply to the case of MTs rep-

resenting fields, because they are defined on the domain

of the field: rectangular boxes, circles, straight-line seg-

ments, polylines, points, and radial sectors. For the spe-

cific case of terrains we have also implemented vertical

trapezoids hanging downward from a straight-line seg-

ment in the three-dimensional space used for visibility

computation.

More general ROIs in three-dimensional space are

used for fields, free-form surfaces, and volume data:

cuboidal boxes, spheres, points, straight lines, and view

frustums.

11

Resolution filters are available requiring a uniform er-

ror level, or based on an error threshold variable in space,

or requiring a uniform size of triangles. Variable-error

thresholds have been considered which increase with the

distance from a viewpoint based on a linear, quadratic,

or exponential law. Such thresholds are useful in surface

visualization for generating a representation that locally

adapts its level of detail to the distance from the view-

point. Other resolution filters can be obtained by restrict-

ing these basic ones to a ROI.

7. Concluding Remarks

Approaches based on Level-of-Detail can improve the

performance of many applications handling large ge-

ometric datasets, provided that developers can include

LOD technology easily and with a reasonable efficiency.

In order to achieve this goal, a flexible and general set of

tools and methods it necessary, which must be obtained

by undergoing a process of standardization.

We have presented an open library based on a fairly

general model, the MT, which encompasses all current

LOD models based on simplicial decompositions. The

library can be used for modeling objects of any dimen-

sion k embedded in a space of any dimension d. More-

over, the library is generic on the set of attributes that

can be attached to vertices and cells of objects mod-

eled, thus supporting different modeling contexts such

as free-form surfaces, scalar and vector fields, paramet-

ric surfaces, terrains, volumetric object representations,

surface-on-surface, etc.

In its current version, our library provides data struc-

tures and methods to store and access an MT in pri-

mary memory. General construction methods are pro-

vided, which build an MT starting from the history file

of a generic mesh simplification algorithm. Specific con-

struction methods for scalar fields, free-form surfaces,

and volume data are provided as well.

Important related issues, which are the subject of our

current and future work, include the need to trade-off

efficiency and space requirements, the management of

secondary storage, the use of LOD in the context of

client-server and network architectures, the management

of application-specific data.

Acknowledgments

The support of National Science Foundation (NSF) Grant

“The Grand Challenge” under contract BIR9318183 is

gratefully acnowledged.

This work has been also partially supported by the

BRITE European project BRPRCT96.0150 “VENICE -

Virtual ENvironment interface by sensory integration for

Inspection and manupulation Control in multifunctional

underwater vehicles”.

References

1. A. Ciampalini, P. Cignoni, C. Montani, and

R. Scopigno. Multiresolution decimation based on

global error. The Visual Computer, 13(5), 1997.

2. P. Cignoni, L. De Floriani, C. Montani, E. Puppo,

and R. Scopigno. Multiresolution modeling and

rendering of volume data based on simplicial com-

plexes. In Proceedings of 1994 Symposium on Vol-

ume Visualization, pages 19–26. ACM Press, Octo-

ber 17-18 1994.

3. P. Cignoni, C. Montani, and R. Scopigno. A compar-

ison of mesh simplification algorithms. Computers

And Graphics, 22(1):37–54, 1998.

4. M. de Berg and K. Dobrindt. On levels of detail

in terrains. In Proceedings 11th ACM Symposium

on Computational Geometry, pages C26–C27, Van-

couver (Canada), 1995. ACM Press.

5. L. De Floriani, P. Magillo, and E. Puppo. Building

and traversing a surface at variable resolution. In

Proceedings IEEE Visualization 97, pages 103–110,

Phoenix, AZ (USA), October 1997.

6. L. De Floriani, P. Magillo, and E. Puppo. VARIANT

- processing and visualizing terrains at variable res-

olution. In Proceedings 5th ACM Workshop on Ad-

vances in Geographic Information Systems, Las Ve-

gas, Nevada, 1997.

7. L. De Floriani, P. Magillo, and E. Puppo. Data struc-

tures for simplicial multi-complexes. Technical Re-

port DISI-TR-98-18, Department of Computer and

Information Science, University of Genova (Italy),

1998. (submitted for publication).

8. L. De Floriani, P. Magillo, and E. Puppo. Efficient

implementation of multi-triangulations. In Proceed-

ings IEEE Visualization 98, Research Triangle Park,

NC (USA), October 1998.

9. L. De Floriani and E. Puppo. Hierarchical triangu-

lation for multiresolution surface description. ACM

Transactions on Graphics, 14(4):363–411, October

1995.

10. L. De Floriani, E. Puppo, and P. Magillo. A formal

approach to multiresolution modeling. In R. Klein,

W. Straßer, and R. Rau, editors, Geometric Model-

ing: Theory and Practice. Springer-Velrag, 1997.

11. A. Guéziec, G. Taubin, F. Lazarus, and W. Horn.

Simplicial maps for progressive transmission of

polygonal surfaces. In Proceeding ACM VRML98,

pages 25–31, 1998.

12. H. Hoppe. View-dependent refinement of progres-

sive meshes. In ACM Computer Graphics Proc.,

Annual Conference Series, (SIGGRAPH ’97), pages

189–198, 1997.

13. J. Lee. Analysis of visibility sites on topographic

surfaces. International Journal of Geographic In-

formation Systems, 5(4):413–425, 1991.

12

14. P. Lindstrom, D. Koller, W. Ribarsky, L.F. Hodges,

N. Faust, and G.A. Turner. Real-time, continu-

ous level of detail rendering of height fields. In

Comp. Graph. Proc., Annual Conf. Series (SIG-

GRAPH ’96), ACM Press, pages 109–118, New Or-

leans, LA, USA, Aug. 6-8 1996.

15. D. Luebke and C. Erikson. View-dependent sim-

plification of arbitrary polygonal environments. In

ACM Computer Graphics Proc., Annual Conference

Series, (SIGGRAPH ’97), pages 199–207, 1997.

16. Paola Magillo. Spatial Operations on Multiresolu-

tion Cell Complexes. PhD thesis, Dept. of Computer

and Information Sciences, U. of Genova, 1999.

17. E. Puppo. Variable resolution terrain surfaces.

In Proceedings Eight Canadian Conference on

Computational Geometry, pages 202–210, Ottawa,

Canada, August 12-15 1996. Extended version to

appear under title “Variable resolution triangula-

tions” in Computational Geometry Theory and Ap-

plications.

18. J.C. Xia, J. El-Sana, and A. Varshney. Adaptive

real-time level-of-detail-based rendering for polyg-

onal models. IEEE Transactions on Visualization

and Computer Graphics, 3(2):171–183, 1997.

13

