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Abstract

We present a new approach for managing the multiresolution representation of discrete

topographic surfaces. A Triangulated Irregular Network (TIN) representing the surface is

built from sampled data by iteratively re�ning an initial triangulation that covers the whole

domain. The re�nement process generates triangulations of the domain corresponding to

increasingly �ner approximations of the surface. Such triangulations are embedded into

a structure in a three dimensional space. The resulting representation scheme encodes

all intermediate representations that were generated during re�nement. We propose a

data structure and traversal algorithms that are oriented to the e�cient extraction of

approximated terrain models with an arbitrary precision, either constant or variable over

the domain.

1 Introduction

The search for multiresolution representation schemes has recently become very popular. Major

applications involve generic surfaces embedded in 3D space [16, 8, 27], terrains in the context

of Geographical Information Systems [10, 23, 12], 3D objects for classical CAD and recognition

[9, 20, 21], and volume data [5, 31, 30]. All such models are based on the idea that a detailed
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digital model taken as input can be simpli�ed into an approximate representation: appropriate

measures of �delity to the original model are taken as a quantitative mean to de�ne multiple

resolution levels.

There are two major challenges underlying the construction of multiresolution models [15]:

1. to �nd e�ective and e�cient algorithms for automatically building an approximate model

at a prede�ned level of resolution;

2. to structure models at di�erent resolutions into a comprehensive framework that allows

data to be manipulated at di�erent resolutions according to the needs of a given applica-

tion or task.

The main idea underlying all the works proposed in the literature to pursue the �rst goal is

that a simpli�ed model can be built based on a reduced set of data. The main approaches to

the construction of approximate models are iterative, and can be classi�ed into simpli�cation

methods [25, 28, 21, 17, 27] - i.e., methods that start from the full resolution and progressively

reduce the dataset on which the model is based, in order to coarsen resolution; and re�nement

methods [13, 16, 8, 23, 12, 5] - i.e., methods that start from a very coarse approximation based

on a very small dataset, and progressively re�ne it by inserting new data, in order to improve

resolution.

Most methods for the approximate representation of surfaces use piecewise linear represen-

tations based on triangulations, because of their adaptivity. All methods to build approximate

triangulated surfaces follow heuristics in trying to minimize the amount of data needed to

achieve a given resolution. The most common approach is to base point selection on the im-

pact, in terms of error reduction/increase, which is caused by the insertion/deletion of a point

into/from the dataset. Many authors have also tried to preprocess data to extract meaningful

features, in the form of points and lines [19, 29, 22, 26]. Other authors have attempted to

improve results by shifting the vertices so that curvature within the triangles is nearly equal,

or by removing unnecessary triangles [24].

Finding the best method to select from a set of sites the vertices or edges on which the trian-

gulation has to be built is still an open issue. However, a recent theoretical result [1] suggests

that the search for an optimal solution is hopeless in many cases; moreover, approximated al-

gorithms that can guarantee a certain bound with respect to the optimal solution are far too

slow to be of practical interest.

The models proposed in the literature to pursue the second goal can be broadly classi�ed
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into multi-layer models [10, 5] - i.e., frameworks that relate a sequence of independent models

of the whole object represented at di�erent levels of resolution - and tree models [9, 20, 16,

8, 23, 12, 21, 27] - i.e., models in which a hierarchy of descriptions is represented by a tree,

where each node corresponds to the description of (a portion of) an object at a given level of

resolution, while each of its children represents a more detailed description of a piece of such

an object. A comprehensive discussion of multiresolution models for terrain representation is

presented in [11]. More recent advances in the formalization of multiresolution models for scalar

�elds in any dimension also outline the possibility of overcoming the above classi�cation into

multi-layer and tree, in order to obtain more compact models that incorporate di�erent levels

of resolution within a uni�ed representation [2].

An interesting yet not much explored application of multiresolution models is rendering at

variable resolutions over various zones of the surface/object/volume. A typical example is in

landscape visualization for either 
ight simulators, or environmental assessment [18]: the detail

of the terrain model presented to the user may be variable, depending on the distance from

the point of view. Multiresolution allows a larger number of polygons to be rendered only in

the areas where the visual impact is at its most signi�cant. A similar approach has also been

outlined in scienti�c visualization to sharpen resolution only in user-selected focus areas [5, 6].

The main problem in providing a representation with variable resolutions is to maintain the

continuity of the surface where pieces of surface with di�erent precisions meet. Most methods

resolve this problem through rendering artifacts [6], or merely choose to ignore it.

In this paper, we present a multiresolution model for triangulated topographic surfaces,

called a HyperTriangulation (HT), which is more compact and 
exible than previous models.

Our model is based on a structure that can maintain all signi�cant re�nement/simpli�cation

steps in passing from either a coarse representation to a re�ned one, or vice versa. Intermediate

representations are maintained implicitly in the model: an e�cient data structure allow \on the


y" representations to be retrieved at arbitrary resolutions between the minimum and maximum

available. Moreover, representations can be e�cently extracted at resolution variable over the

domain, while still guaranteeing the continuity of the resulting surface.

The de�nition of the model is independent of its construction, provided that representa-

tions whose resolutions are close to each other can be related through local changes over the

domain. Although we have based our construction algorithm on a re�nement technique, it is

straightforward to build it through a simpli�cation technique.

The rest of the paper is organized as follows. Section 2 reviews the basic concepts about
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Triangulated Irregular Networks, and the construction of approximate models. A general de-

scription of the ideas behind HyperTriangulations is given in Section 3. Section 4 describes a

data structure to manage HT. The algorithms for the extraction of approximated models from

HT are presented in Section 5. Our conclusions are drawn in Section 7.

2 Approximated Digital Terrain Representation

A natural terrain is mathematically described by an elevation function � : D � IR

2

! IR,

de�ned over a connected domain D on the XY plane. The surface described by the image of

� is often called a topographic or 2

1

2

D surface. In practical applications, function � is sampled

at a �nite set of points P = fp

1

; :::; p

n

g � D, known as the set of representative points in the

digital terrain. In this case the function � can be de�ned piecewise over a subdivision � of D

with vertices in P .

When a triangular subdivision is adopted to partition D, piecewise linear functions are a com-

mon choice to compute the elevation of points that are not in P . One such model is called

a Triangulated Irregular Network (TIN): TIN models of 2

1

2

D surfaces can be adapted to the

characteristics of the surface, they can be built on scattered data, and they are widely used

in many di�erent �elds, such as Geographical Information Systems, Finite Element Analysis,

robotics, and computer graphics in general.

Since a TIN is fully characterized by the plane triangulation underlying it, plus the elevation

value at each of its vertices, hereafter we will always work on the plane triangulation, by con-

sidering the triangles that form the actual surface only for the purpose of rendering or error

testing.

2.1 Approximation error

As we pointed out in the introduction, the construction of an approximated representation is

based on the possibility of selecting a signi�cant subset of data from either a regular or scattered

dataset. The selection is almost always based on some measure of the error in representing a

given surface through a simpli�ed model. In the case of TINs, di�erent norms can be adopted

to measure the distance between a surface represented by a TIN built over the whole dataset,

and the surface corresponding to a reduced model based on a subset of data. A simple and

common choice is to measure such errors by the maximum distance between the elevation at a

datum and its approximate elevation in the reduced representation. The relevance of a given
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data point p in the current representation is related to the increase/decrease in the error as a

consequence of the deletion/insertion of p from/into the model.

Another critical issue is the preservation of point and lineal features, such as ridges, valleys,

peaks, and pits. Features can be identi�ed by sharp discontinuities in the gradients of adjacent

facets. Such features may be largely preserved if, while constructing the multiresolution repre-

sentation, a measure of likelihood is adopted, which tends either to maintain or to insert points

belonging to features. For instance, the selection heuristic can take care of the discontinuity on

the gradient that is introduced/lost with the insertion/deletion of a point.

Below we describe a re�nement technique on which we have based the construction of our

model. In order to remain generic, we assume that at each step a score can be computed for

each datum that is not a vertex of the model. This score may be dependent on the norm used

to measure the approximation error, and on any other parameter involved in point selection,

as discussed above. In order to preserve the e�ciency of the method, it must be possible to

compute such a score whenever the TIN is updated only at the points involved in changes.

Moreover, for each such point p, it must be possible to compute its score in constant time,

based only on local information (e.g., on the triangle of the current model covering p). We also

assume that the approximation error of the TIN is updated while the score for each point is

computed, at no extra cost.

In the simplest case, the score is the absolute value of the di�erence between the approxi-

mated and the actual elevation at p, while the current approximation error coincides with the

maximum score over the triangulation. In a more sophisticated selection scheme, the score of

p may be evaluated by weighting the surface error at p with the di�erence of the gradients of

the three facets obtained by inserting p as a new vertex into the triangle containing it.

2.2 The Delaunay Selector

The method we adopted in this work builds an approximated TIN through a re�nement tech-

nique based on the on-line Delaunay triangulation of points on the XY domain. This approach

is called the Delaunay Selector, and it derived from an early method proposed in [13]. A

3D generalization of this method has also been used for multiresolution volume modeling and

visualization [5]. Here, we give a brief description of the algorithm, based on an e�cient imple-

mentation proposed in [11].

Let " � 0 be a tolerance value, let P be a �nite set of points in IR

2

, and let � be the elevation

function known at the points of P . An initial triangulation � is built �rst, whose vertex set is
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DelaunaySelector(SetofPoint P, var Triangulation �, var ")

begin

� := BuildInitialTriangulation(P);

while not Err (�) � "

p := SelectMaxScorePoint(P,�);

� := UpdateTriangulation(�, p);

end

Figure 1: The Delaunay Selector Algorithm.

composed of all extreme points of the convex hull of P : such a triangulation covers the whole

domain of the sampled data

1

.

The triangulation is re�ned through the iterative insertion of new vertices, one at a time:

at each iteration, the point of P with the highest score is inserted as a new vertex, and �

is updated accordingly. The re�nement process continues until E(�) � ". A pseudo code

description of the Delaunay Selector algorithm is shown in Figure 1.

Note that, as with most re�nement techniques, the insertion of a single point during the De-

launay selector does not necessarily cause a decrease in the approximation error (simpli�cation

techniques have a symmetric behavior). In any case, the convergence of the method guarantees

that the approximation will improve after some other vertices have been inserted. Hereafter we

will call a re�nement step a minimal sequence of consecutive point insertions such that the error

of the resulting approximation is smaller than the error in the previous step. The area of the

domain involved in a re�nement step is always a polygonal region (which may be unconnected

and/or multiply connected), which we will call the re�nement region. The re�nement region

at a given re�nement step is always bounded by edges that belong to both the triangulation

before re�nement, and the triangulation after re�nement.

3 HyperTriangulation

Let us suppose that a Delaunay Selector is being run with an error tolerance " = 0: the �nal

structure generated by the algorithm will be a model at full resolution. If we consider all models

1

An alternative is to start with a single triangle containing all data, whose vertices are ideally at in�nity; the

value of f at such dummy vertices is set to +1. Dummy vertices and triangles incident on them can easily be

removed during a postprocessing phase.
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Figure 2: Two steps in the re�nement process and the corresponding update on the current

hypertriangulation.

built at intermediate re�nement steps, we have a whole sequence of triangulations f�

0

; : : : ;�

n

g,

where �

0

is the initial triangulation, � = �

n

is the full resolution model, and 8i = 0; : : : ; n, the

TIN associated with triangulation �

i

approximates the full resolution with an error "

i

. The

sequence of error tolerances monotonically decreases: "

0

> "

1

> : : : > "

n

= 0.

The sequence of triangulations could be piled up into a layered model, such as the Delaunay

Pyramid proposed in [10]

2

. As pointed out in [2], the Delaunay pyramid has the disadvantage

of replicating at each new layer all the portions of the triangulation that remain unchanged

from the previous layer as well. This redundancy would involve an explosion in the complexity

of the resulting structure when small re�nements are performed from step to step, and resulting

levels are a high number, as described above.

Our alternative approach is to store a sort of history of the incremental re�nement process.

Structures that store the full history of the incremental construction of Delaunay triangulations

were proposed in [3, 14], which depend on the construction algorithm, and whose main purpose

is to improve point location either during construction or spatial query. Our model maintains

2

Actually, in the Delaunay pyramid re�nement steps are imposed a priori, on the basis of a decreasing

sequence of tolerances, in order to reduce the number of layers. The pyramid also stores vertical interference

links that are not discussed here.
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a history that is independent of the construction algorithm (indeed, the same model can be

built through a simpli�cation technique that iteratively demolishes a triangulation), and is

simpli�ed with respect to the previous ones. Only triangles that are part of some intermediate

triangulation �

i

are maintained, while all triangles that only appear in the context of a single

re�nement step are discarded.

Let us consider the re�nement region that is retriangulated in passing from �

i�1

to �

i

.

Triangles of �

i�1

and �

i

can be classi�ed as follows:

� living triangles: the triangles that are not changed during re�nement (i.e., triangles outside

the re�nement region, that belong both to �

i�1

and �

i

);

� dead triangles: old triangles destroyed while updating the triangulation (i.e., the triangles

of �

i�1

that belong to the re�nement region);

� newborn triangles: new triangles created while updating the triangulation (i.e., triangles

of �

i

inserted into the re�nement region).

Note that usually most triangles are living, because the incremental insertion process acts

only locally. By de�nition, the set of dead triangles and the set of newborn triangles respectively

form two triangulations of the re�nement region. Such triangulations share the edges that bound

this region. Hence, instead of simply replacing the triangulation inside the re�nement region,

as in the standard Delaunay selector, we can \paste" a patch formed by the newborn triangles

over the triangulation formed by the dead triangles, while saving the dead triangles below the

newborn ones. The re�nement proceeds by iteratively pasting a patch at each re�nement step.

In order to make the whole structure understandable, we embed it in 3D space: the triangu-

lation �

0

lies on the XY plane, while at re�nement step i the new vertices inserted are raised

up along the Z axis at elevation i, and the new patch is welded onto the old triangulation at

the boundary of the in
uence region: this can be visualized as a \bubble" popping up from the

triangulation (see Figure 2). The resulting structure is a 2D simplicial complex embedded in 3D

space, such that at each step the current triangulation is formed by the triangles of the upper

surface of the complex

3

. This structure is called a HyperTriangulation (HT): it maintains both

the geo-topological information collected during the re�nement process, and information on the

error of each triangle, which is useful for extracting representations at arbitrary resolutions.

3

Note that the surface corresponding to the current triangulation on the HyperTriangulation has no relation

to the terrain surface de�ned by its corresponding TIN.
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Note that now di�erent triangulations of the sequence �

0

; : : :�

n

are not stored explicitly

and independently, but they are interconnected in order to store only once any portion that is

common to di�erent triangulations. This fact makes the model quite compact. Each intermedi-

ate triangulation is encoded implicitly in HT . In order to show this, let us de�ne the following

two attributes for each triangle t in HT :

� "

b

: birth error the global error reached by the triangulation just before triangle t was

created;

� "

d

: death error the global error of the triangulation just before t was destroyed (zero if

the triangle is part of the complete triangulation).

The birth and death errors allow to detect those triangles in HT that were contained in the

triangulation �

i

, produced as an intermediate result of the re�nement process of the Delaunay

Selector, which satis�ed approximation error "

i

. Consider a triangle t in HT , which satis�es

the following inequality:

t:"

d

� "

i

< t:"

b

; (1)

where t:"

b

and t:"

d

are the birth and death errors of t, respectively: t is called a "

i

-alive triangle.

From the de�nition above and from (1) it follows that all "

i

-alive triangles must belong to �

i

.

We show that �

i

is in fact formed only by such triangles.

Let p be a point in the domain D of the HyperTriangulation HT . For the sake of simplicity,

let us assume that p does not lie on the projection of any edge of HT on the XY plane. Points

that lie on projected edges can be treated exactly the same way, but the procedure is a little

more technical. We de�ne the set of triangles that cover p as:

T

p

= f t 2 HT : p 2

^

t g (2)

where

^

t is the projection of t on the XY plane. For each T

p

there exists an ordering t

1

; t

2

; :::; t

n

on the set of its elements such that:

8i : t

i

:"

b

> t

i

:"

d

= t

i+1

:"

b

> t

i+1

:"

d

where 1 � i < n; (3)

Indeed, whenever a newborn triangle containing p is generated during construction, the

triangle containing p in the current triangulation must die, and the birth error and death error

of the newborn and dead triangle, respectively, must coincide. More informally, for each point

p of D there must exist only one triangle in HT whose projections in the XY plane contain
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Figure 3: A FacetEdge belongs to two rings.

p and which is "

i

-alive. Hence, the set of "

i

-alive triangles cover the whole domain, and thus

there cannot be other triangles in �

i

.

Since the birth and death error of each triangle in HT will be used to e�ciently extract

terrain representations from HT (see Section 5), they will be encoded explicitly in the model.

4 A data structure for HyperTriangulation

In this section we describe a data structure for managing HyperTriangulations, which is based

on the facet-edge structure described in [7] for representing cell complexes in three dimensions

4

.

In the facet-edge data structure, an atomic entity is associated with each pair that is iden-

ti�ed by a face and one of its edges: the so-called facet-edge. This structure is equipped with

traversal functions that permit the complex to be traversed. Such traversal functions are enext

and fnext. These functions are used to move from a facet-edge to an adjacent one, either by

changing edge on the same face, or by changing face around the same edge (note that in 3D

space more than two faces (triangles) may be incident at each edge).

Let t be a face (triangle) of a cell complex C, and let e be one of the edges of t. The

facet-edge te denotes two rings in C: the edge-ring is formed by all the edges of the boundary

of t; the facet-ring is formed by all the faces incident at e (see Figure 3). The traversal function

4

Actually, we are only interested in the 2-skeleton of a three dimensional complex, i.e., the 2-simplicial

complex formed by all triangles pasted into the HT during re�nement.
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Figure 4: Facet-edge ordering respects the error ordering (arrows represent the fnext chain).

enext and fnext permit one to move from one facet-edge to the next along the edge-ring and

the facet-ring, respectively.

We have attached two �elds to each facet-edge to store the birth and death error of the

triangle to which it belongs. Moreover, we have made some structural changes to make the

data structure more suitable to our needs. Note that in the HT, the triangles incident at the

same edge e can be subdivided into two groups, namely, those formed by faces whose projection

on the XY plane lie either to the left or to the right of the projection of e, respectively. When

traversing the HT, we may need to move through two di�erent domains: the spatial domain

D and the error domain. In other words, in the former case, we may need to cross an edge e

from one triangle to another, which belongs to the group on the other side of e, and which has

a compatible precision

5

. In the latter case, we may need to adjust the precision by moving to

the facet that either preceeds or follows the current one in the facet-ring, while remaining on

the same side of the edge.

We thus maintain the facet-ring split into two separate bidirectional chains, according to

the side of the domain that the corresponding triangles cover. Moreover, we maintain one more

link from each facet-edge to a facet-edge on the other side of the edge. Link fother connects

a facet-edge te with the facet-edge on the opposite side of e that was either created together

with te, or had a minimum error when te was created. Hence, for each facet-edge we encode

the facet-ring with the following �elds:

� fnext: next facet-edge in the facet-ring (with lower error);

� fprev: previous facet-edge in the facet-ring (with higher error);

5

By compatible precision we mean that the error ranges spanned by the birth and death errors of the two

triangles overlap.
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Figure 5: A facet-edge is directly connected with a facet-edge on the other side.

� fother: facet-edge on the other side.

Figure 4 shows a side view of the facet-edges in Figure 3. The two arrows represent the two

parts of the edge-ring. Figure 5 shows the fother links; the numbers represent the value of

birth error for the facet-edge. Note that the fother links are not necessarily symmetric.

5 Extracting triangulations from HT

Given a HyperTriangulation encoded with the structure described in the previous Section, it is

possible to e�ciently extract triangulations de�ning TINs such that:

� the approximation error is either constant or variable over the domain D according to a

function de�ned on D, and indicating the error tolerance accepted at each point in the

domain, and

� the continuity of the surface extracted is guaranteed everywhere.

Extraction at constant approximation The simplest case in this context is the extraction

of a triangulation at a constant approximation which corresponds to an error " in the range of

available resolutions (i.e., between error zero and the error corresponding to the bottom level

of HT). One such triangulation can be extracted from HT through a topological visit, starting

from a triangle t that satis�es t:"

d

� " < t:"

b

, and moving to adjacent triangles that satisfy

the same relation. A pseudo-code of the algorithm is presented in Figure 6. The algorithm

traverses the HT, moving from triangle to triangle through primitive fother, and it keeps the

set of facet-edges which still have to be visited in two stacks: BubbleStack, which holds the

12



facet-edges on the same bubble, and ActiveStack, which holds the other facet-edges. The next

triangle to visit is selected according to the �xed error eps.

The time complexity of this algorithm depends on the number of triangles of the extracted

triangulation and the number of facet-edges visited to �nd the one that satis�es the error and

is adjacent to the current facet-edge.

The triangulation at a constant error " is formed by all triangles that were contained in

the top surface of the HT when the re�nement process reached the �rst (and largest) among

all errors "

i

such that "

i

< ". We extract all such triangles by navigating such a top surface

through adjacencies. Suppose we start from a "-alive triangle, if we move on the top of the

HT we only need to follow the fnext and fother links. Indeed, when we reach the border of a

bubble, the fother �eld links the current facet-edge e with the facet-edge e

0

adjacent to e that

was on the top of the HT when e was created. Since e

0

was created before e, it must have a

birth error that is larger than that of e. Hence, if e

0

is not "-alive, this is certainly because

it has a death error lower than "; so, we must follow the fnext link from e

0

to climb another

bubble.

A fair strategy to �nd the �rst "-alive triangle is to pick an edge of the boundary of HT. By

construction, an "-alive triangle exists on this edge and we can retrieve its facet-edge through

a simple scan of the fnext chain. A more e�cient alternative is to keep all the errors "

0

; : : : ; "

n

sorted in a balanced tree (or in an array with direct access), and to maintain one pointer from

each such error "

i

to a triangle in the HT that is "

i

-alive: for any ", the proper value of "

i

and,

hence, the corresponding initial triangle can thus be found in a time logarithmic in the total

number of errors spanned by the HT.

Moreover, we visit the top surface of the HT by climbing each bubble only once. This simply

entails visiting all the facet-edges of each bubble before moving to another bubble. This can be

done by following with higher priority the facet-edges that satisfy the error without the needs

of following the fnext link. Since each bubble will be climbed at most once during the visit, the

number of times that the algorithm follows the fnext link is bounded by the number of bubbles.

Let n

t

be the total number of triangles in the extracted triangulation, and let n

s

be the number

of steps in the re�nement process. If we note that the number of bubbles is n

s

, we can state

that the worst case time complexity of this algorithm is O(n

t

+ n

s

).

Extraction at variable approximation The extraction of a surface with a variable approxi-

mation error over the domain requires a di�erent HT traversing strategy. Here, we describe an
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ExtractFixedErr(HyperTriang HT, float eps, var Triangulation T

eps

)

begin

fe=FindFirstFE(HT, eps);

InsertFace(fe,T

eps

);

for i=1 to 3

Mark(fe);

Push(fe, ActiveStack);

fe=fe.enext;

while(ActiveStack is not empty)

fe = Pop(ActiveStack);

Push(fe,BubbleStack);

while(BubbleStack is not empty)

fe = Pop(BubbleStack);

fe=fe.fother;

while (fe.deatherr > eps) fe=fe.fnext;

if not Marked(fe)

InsertFace(fe,T

eps

);

for i = 1 to 2

fe = fe.enext;

if not Marked(fe)

Mark(fe);

if fe.fother.deatherr <= eps < fe.fother.birtherr

then Push(fe,BubbleStack);

else Push(fe,ActiveStack);

end;

Figure 6: The algorithm for extracting a terrain model with error Eps from a HyperTriangula-

tion.
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algorithm that is suitable whenever the approximation error follows a function E : D ! IR of

the class:

E(p) = f

e

(d(v

p

; p)) (4)

where f

e

: IR ! IR is a monotonically increasing function, d() is the standard Euclidean

distance in IR

2

, and v

p

is a �xed point called the viewpoint. This error function is adequate

for applications such as 
ight simulators: the farther we are from the viewpoint, the larger the

tolerance error that can be accepted for terrain representations.

Let us consider the algorithm in Figure 6 and let us suppose that we are in an intermediate

step in the extraction of the triangulation with constant approximation error eps. Consider

the facet-edges currently contained in the ActiveStack: all of them are certainly eps-alive, i.e.

for each facet-edge e in ActiveStack, the following holds:

e:"

d

� eps < e:"

b

(5)

Let B

Min

be the minimum birth error of these active facet-edges, then:

e:"

d

� B

Min

< e:"

b

(6)

Hence, active facet-edges are the right choice also for extracting a triangulation with constant

error B

Min

. Following this criterion we can progressively increase the error during the extrac-

tion. Therefore, this technique can be used to extract a triangulation whose precision adapts

to error function E().

The algorithm visits the HT starting from the triangle that is closest to (or, possibly,

contains) the viewpoint v

p

, and satis�es the error function E(). Then, it proceeds by visiting

HT and increasing the error of extraction at each step of the visit. Active facet-egdes are

maintained in a priority queue MBH (Minimum Birth Heap) which is ordered with respect

to their minimum birth error. At each step, the next facet-edge to be visited is selected by

extracting the minimum element from the heap. Moreover, the algorithm tries to adjust the

tolerance eps that controls the extraction of triangles according to the error function on the

extracted facet-edge and to the minimum birth error of facet-egdes.

Hence, the main steps of the algorithm are:

� extract facet-edge with minimum birth error e;

� check how much the tolerance can be raised, according to the current minimum birth

error and to the value of E();
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� �nd the correct facet-edge e

0

on the other side of e and put the other facet-edges on the

edge ring of e

0

into the heap.

To start the extraction we must detect the triangle in HT having error 0 and which cointains

(or, is nearest) to viewpoint v

p

. A classical point location query can be e�ciently solved on

the HT structure by exploiting the HT hierachical structure (which represent the history of the

on-line construction of the triangulation). If we look to a particular class of applications, e.g.


ight simulators, the knowledge of the problem allow us to avoid to cope with a generic point

location query. In this case, at time t

i

the viewpoint location is generally near to the location

of the viewpoint at time t

i�1

. The triangle containing the current viewpoint can be therefore

simply detected by a topologic visit of HT starting from the triangle containing the previous

viewpoint.

Figure 7 shows a pseudo-code of the algorithm: heap BMH maintains the active facet-edges

ordered according to minimum birth error.

The time complexity of this algorithm depends on the number of triangles of the extracted

triangulation. We can assume that the number of facet-edges we visit is proportional to the

number n

t

of facets in the extracted triangulation. For each visiting step we make an access

to an heap with a cost that is logarithmic in terms of the number of object stored in the heap.

Therefore, the overall complexity of the extraction of a surface with variable approximation

error is O(n

t

log n

t

).

6 Conclusions and future works

We have presented a new model for the multiresolution representation of triangulated terrain

surfaces. The model is more compact than other models described in the literature, and it allows

continuous surface representations to be extracted either at an arbitrary �xed resolution, or at

variable resolution over the domain.

Although we have given a description of the model based on a re�nement construction

technique, the same structure can be obtained through any technique that either re�nes or

simpli�es a surface de�ned on the basis of a discrete dataset.

We are currently implementing the algorithms described in the paper, and we plan to test

them on real world data. The e�cient manipulation of surface information achieved by the

model should allow us to obtain a dynamic visualization of landscapes with high quality images

in real time.
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ExtractVarError(HyperTriang HT, function Err(float d), Point vp, var Triangulation T)

begin

fe=FindFirstFace(HT, vp);

InsertFace(fe,T);

for i=1 to 3

Mark(fe);

InsertHeap(fe, MBH);

fe=fe->enext;

while(MBH is not empty)

fe=Min(MBH);

Bmin=fe.birtherr;

d=dist(fe, vp);

eps=min(Err(d), Bmin);

fe=fe.other;

while (fe.birtherr <= eps) fe=fe.fprev;

while (fe.deatherr > eps) fe=fe.fnext;

InsertFace(ef,T);

for i = 1 to 2

fe = fe.enext;

if not Marked(fe);

Mark(fe);

InsertHeap(fe, MBH);

end;

Figure 7: The algorithm for extracting a model with variable error.
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A straightforward extension of the model to handle volume data can be de�ned through

an analogous structure built on tetrahedra embedded in 4D space. The same structure can

generally be de�ned for multidimensional data through a d-simplicial complex embedded in

IR

d+1

. The generalization of the fact-edge data structure proposed in [4] extends the same

e�cient data structure for HyperTriangulations in any dimension. We plan to develop the

details of this multidimensional model in the near future, and to develop and test a system

based on a three-dimensional version for applications to volume visualization.
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