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Abstract

We present a uni�ed framework for classifying and answering spatial

queries relevant to a Geographic Information System. We classify spa-

tial queries into topological, set-theoretic, and metric queries, on the basis

of the kind of relationships between the query object and entities in the

search space involved. For answering such queries, we propose an approach

that combines an object-based description of spatial entities, provided by

a topological model, with a partition of the space embedding such entities,

given by a spatial index. In particular, we propose a new uni�ed topo-

logical model, called the Plane Euclidean Graph (PEG), that is capable

of describing point, line, and region data, and that incorporates relational

operators on such entities. We briey describe major techniques, rooted in

computational geometry, for solving interference queries and overlays on

such a data model. Finally, we describe the use of a superimposed spatial

index for speeding up searches and answering queries involving distances.

1 Introduction

One main concern for a spatial database supporting a Geographical Informa-

tion System is the ability of handling spatial data and of integrating them with

other kinds of information (e.g., tabular data). This requirement involves some

fundamental topics, like the de�nition and classi�cation of spatial relationships

�
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and queries, the development of e�cient data models and structures for repre-

senting spatial data, and the design of e�cient algorithms for solving geometric

problems involved in answering spatial queries.

The above topics correspond to complementary research streams, that often

evolved independently. The classi�cation of spatial relations starts from classical

topology [30], and has been object of research in the context of GIS during the

last years [7, 8, 18, 9, 33]. The development of spatial models has been deeply

studied both in geometric modeling (e.g., [25, 21, 28, 27]), in computational

geometry (e.g., [13, 24, 14, 5]), and, speci�cally, in GIS (e.g., [10, 15, 6, 32, 22, 33,

23]). Finally, the e�cient solution of geometric problems is mainly investigated

in computational geometry (e.g., [24]).

At the state-of-the-art, several geographic information systems have been

developed that are able to answer \some" spatial queries on geographic data.

Anyway, though some work has been done towards an integration of spatial

relationships, data models, and geometric algorithms (e.g., [7, 22, 16, 29, 33]),

the concordance between a complete and integrated formalization and an e�cient

implementation is still an open issue.

The basic aim of this paper is to investigate the formalization of spatial

queries, and to propose a combined object-based and space-based repre

sentation of spatial entities, that is able to support suitable algorithmic

techniques for the solution of geometric problems involved in answering spatial

queries.

Informally, spatial queries can be de�ned as queries about spatial relations

(e.g.: intersection, containment, boundary, adjacency, proximity, etc.) of enti-

ties geometrically de�ned and located in space. Thus, a �rst problem arising

when analyzing queries and operations relevant to a given application, is to de-

�ne the spatial entities and their possible relationships in the context of the

application considered. In Geographic Information Systems, we essentially deal

with plane maps composed of three basic spatial entities (points, lines, and re-

gions), which have a well-de�ned geometric characterization. Here, we propose

a formal framework for characterizing spatial entities and relations, and we give

a classi�cation of spatial relations within such a framework. The classi�cation

we adopt is similar, though not coincident, to classi�cations proposed by other

authors [7, 33], and it is aimed to the identi�cation of three classes that, besides

being characterized by the di�erent underlying geometric concepts, reect the

di�erent computational problems met in answering the corresponding queries.

Topological relations encode the connecting structure of a map and can be

further classi�ed into adjacency, boundary, and co-boundary relations among

the basic spatial entities. Set-theoretic relations are based on concepts like in-

clusion, intersection, coincidence, element-of, and encode spatial interferences

between entities, even from di�erent maps. Metric relations involve the concept



of distance and encode spatial proximity.

Once spatial relations have been de�ned, the de�nition of queries induced by

them is straightforward: a spatial query is based on a spatial entity q, called the

query object, a set of entities S of a map, called the query space, and a spatial

relation <. The answer to such a query must report all entities in S that are

in relation < with q. The algorithmic technique adopted for answering a spatial

query is highly dependent of the relation inducing the query and of the data

model used to encode spatial entities.

Under an object-based approach, the representation of spatial entities is in-

dependent of their position in space. Map data can be represented in a model

where each entity is described explicitly and exactly (a point by its location,

a line segment by its equation and endpoints, a region by its border). When

topological relations between entities are stored as well, we obtain a topological

model that provides a complete structural representation of a map.

In this paper, we propose a uni�ed data model able to describe point, line

and region data, either isolated or topologically related, called a Plane Euclidean

Graph (PEG). A PEG provides a combined geometric and topological represen-

tation of a map, which is invariant under a�ne transformations, and it incorpo-

rates relational operators on such entities.

We show how topological queries and set-theoretic queries about objects

within a single map can be e�ciently answered through the relational operators

of the PEG. Other interference queries, involving objects from di�erent maps,

can be solved through e�cient and e�ective algorithmic techniques rooted in

computational geometry. We give a brief description of such techniques, and we

also show how they can be used for answering multiple queries and computing

map overlays.

The use of a topological model, however, is not su�cient for answering queries

involving proximity constraints. Moreover, interference queries and overlays can

be sped up by localizing interference computations. This is possible if data are

represented in the context of a space-based structure. In order to complete our

model with one such structure, we superimpose a spatial index on the PEG,

which acts as a pruning device in spatial searches.

Spatial indexing structures have been developed by several authors and they

are extensively used in GISs [11, 28]. Spatial indices are often superimposed

on unstructured sets of spatial entities, without an explicit encoding of their

mutual relations [11, 17]. Our proposal is the use of a hybrid model, i.e., a

model combining the topological representation provided by the PEG, with a

superimposed spatial index, which provides a partition of the space embedding

the PEG. A hybrid model supports both an object-based and a space-based

approach in representing objects and in answering queries in the context of a

GIS.



2 Spatial entities and relations

In this work, we deal with plane maps. Entities composing a map are embedded

in the plane. Thus, each entity must belong to one of three distinct classes,

depending of its dimension:

� 0-dimensional entities form the class P of points;

� 1-dimensional entities form the class L of lines;

� 2-dimensional entities form the class R of regions.

Given a generic class C, we denote with dim(C) the dimension of entities of

C (dim(P)=0, dim(L)=1, and dim(R)=2). Elements of each class have a well-

de�ned structural and geometric characterization, that allows a complete and

concise description of each entity:

� A point is characterized by its coordinates.

� A line is characterized by its endpoints, that de�ne its boundary, and by

its geometry. We have three di�erent types of lines:

{ straight-line segment: there is no need for geometry, since endpoints

provide a complete description;

{ polygonal chain: the geometry is represented by a sequence of points

in the plane;

{ curve: the geometry is represented by an equation.

In the following, we will restrict our consideration to the �rst two types,

assuming that curves can be approximated by polygonal chains.

� A region is completely characterized by its boundary. The boundary is

composed of a set of closed and simple polygonal chains:

{ a chain de�nes the outer boundary of a region;

{ other chains may de�ne inner boundaries, separating a region from

other regions completely contained into it.

Notice that a closed chain may either consist of a single line, or be com-

posed of a (closed) sequence of lines; in this latter case, the boundary

of a region will contain both such lines and their endpoints. By Jordan

theorem, a region can be de�ned as the portion of plane inside the outer

boundary and outside all inner boundaries.



The concept of boundary, de�ned above, will be used in the following, to-

gether with its symmetric concept of co-boundary: the co-boundary of an entity

O is the set of all entities that contain O in their boundary. Given an entity

O, we denote by @O the boundary of O, and by O the co-boundary of O. No-

tice that the boundary of an object is composed of entities of lower dimension,

while its co-boundary is composed of entities of higher dimension. Thus, points

have an empty boundary, and regions have an empty co-boundary (in 2D). We

also de�ne the immediate boundary and co-boundary, denoted by @

1

O and by
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O, respectively, as the subsets of @O and O that contain only entities of one

dimension lower or one dimension higher than O, respectively. The immediate

boundary of regions and the immediate co-boundary of points are composed only

of lines.

For now, we de�ne a map as a triple M = (P;L;R), where P � P, L � L,

and R � R. Notice that, for the consistency of the map, L shall contain at least

all lines de�ning the boundary of entities in R, and, similarly, P shall contain at

least all points de�ning the boundary of entities in L. Notice that a mapM does

not necessarily contain only points and lines that are part of the boundary of

some other lines and regions of the map, respectively: isolated points and lines

can be present, that denote features of the map. For instance, if M is the map

of a countryside, relevant regions could denote �elds, woods, pastures, etc.; on

the other hand, some lines will denote roads and streams, and some points will

denote houses, huts, springs, etc., that do not necessarily coincide with points

and lines on the border of regions.

In the context of a single map, we do not allow general intersection between

spatial entities: we break lines into chains by inserting points in the map wher-

ever a line intersects another line. Such intersection points are introduced not

only for convenience, but they usually have some semantics associated with:

where a river intersects a road there will be a bridge; where a road intersects

the border of a farm there will be a gate.

A special case of a map is the network : in a network only lines representing

communication channels (e.g., rivers, roads, railways, pipes), and only branches

and crossing points of such lines are important, while regions are irrelevant.

Thus, a network can be regarded as a map N = (P;L; ;).

In the following Subsections, we will try to formalize and classify relation-

ships between spatial entities that can be relevant to the de�nition of spatial

queries. We propose a classi�cation into three major groups, according to a

topological, set-theoretic, or metric point of view. Of course, our classi�cation is

not exhaustive (e.g., we do not consider here order relations [7]). Nevertheless,

we introduce a framework that can help to formalize other relations on spatial

entities, and to de�ne queries based on such relations.

A relation < is de�ned between two classes C

1

and C

2

; in general, we will

denote by

<

� an unordered relation, and by

<

; an ordered relation. Thus, given



an ordered relation < on C

1

�C

2

, and two entities a 2 C

1

and b 2 C

2

, we will

denote with a

<

; b the predicate \a is in relation < with b".

2.1 Topological relations

The de�nition of a spatial entity introduced above induces topological relations

between entities of the three classes, namely, relations between an entity and

lower dimensional entities of its boundary, or, symmetrically, between an entity

and higher dimensional entities of its co-boundary, and relations between entities

of the same class that are adjacent through some entity of a di�erent class. Nine

topological relations can be de�ned by combining P, L and R in pairs. As

topological relations are de�ned through concepts like boundary, co-boundary,

and adjacency, we actually consider them in the context of a single map M =

(P;L;R), that is consistent with the above concepts

1

.

Topological relations can be classi�ed into three di�erent groups, depending

of the relative dimensions of the classes involved; each group is composed in turn

of three relations.

� Adjacency relations are characterized by dim(C

1

) = dim(C

2

).

PP : let a; b 2 P , then a

PP

� b i� 

1

a \ 

1

b 6= ; (i.e., i� there exist a line

l 2 L such that a and b are endpoints of l);

LL: let a; b 2 L, then a

LL

� b i� @a\@b 6= ; (i.e., a and b have an endpoint

in common);

RR: let a; b 2 L, then a

RR

� b i� @

1

a\ @

1

b 6= ; (i.e., there exist a line l 2 L

separating a from b).

� Boundary relations are characterized by dim(C

1

) > dim(C

2

). The follow-

ing de�nition holds for the three relations LP , RP , and RL, by proper

instantiation of sets C

1

and C

2

:

C

1

C

2

: let a 2 C

1

and b 2 C

2

, then a

C

1

C

2

; b i� b 2 @a.

� Co-boundary relations are characterized by dim(C

1

) < dim(C

2

), and they

are symmetric with respect to the previous ones. The following de�nition

holds for the three relations PL, PR, and LR, by proper instantiation of

sets C

1

and C

2

:

C

1

C

2

: let a 2 C

1

and b 2 C

2

, then a

C

1

C

2

; b i� b 2 a.

1

In the following, we use interchangeably a set C and its corresponding class C, whenever

no ambiguity arises.



In Section 4, we will introduce a model and a data structure that allow an

e�cient encoding and retrieval of information on topological relations involving

a given entity of a map. Such relations will be useful in order to answer queries

that involve computing the boundary or the co-boundary of objects, or queries

that involve navigation of the map by following adjacencies.

2.2 Set-theoretic relations

So far, we have considered spatial entities as topological objects. Under a dif-

ferent point of view, points can be considered as basic elements, and lines and

regions can be regarded as in�nite and continuous sets of points. This approach

allows us to de�ne set-theoretic relations, that are based on concepts like coin-

cidence, element-of, inclusion, and intersection, denoted with the usual symbols

�, 2, �, and \, respectively. Notice that, in order to compare spatial objects

through set operators, they do not need to be part of a given map. Thus, the

following relations will be de�ned in general on the three spatial classes rather

than on subsets of such classes composing a map.

We consider four groups of relations, one for each set operator, and, for

each group, we consider all possible ordered pairs of classes C

1

C

2

that lead

to a meaningful relation. The following de�nitions are just a straightforward

translation of set operators into our formalism.

� Coincidence relations are unordered and require C

1

� C

2

� C; thus, they

can be de�ned on pairs PP, LL, and RR. A relation is trivially de�ned

as follows:

�

C

: let a; b 2 C, then a

�

C

� b i� a � b.

� Element-of relations are ordered and can be de�ned on pairs PL and PR,

and, symmetrically, for pairs LP andRP. The following general de�nitions

hold both for C � L and for C � R:

2

C

: let a 2 P and b 2 C, then a

2

C

; b i� a 2 b.

3

C

: let a 2 C and b 2 P, then a

3

C

; b i� b 2 a.

Notice that relation 2

R

is fundamental for de�ning of one of the most

important and common spatial queries, known as point location.

� Containment relations are ordered and are de�ned for pair LR and, sym-

metrically, for pair RL as follows:

�: let a 2 L and b 2 R, then a

�

; b i� a � b.

�: let a 2 R and b 2 L, then a

�

; b i� b � a.



� Intersection relations are de�ned on all pairs obtained by combining classes

L and R and have the following general de�nition:

\

C

1

C

2

: let a 2 C

1

and b 2 C

2

, then a

\

C

1

C

2

� b i� a \ b 6= ;.

Notice that, as for topological relations, each possible ordered pair of classes

appear in at least one set-theoretic relation. Moreover, pairs LL and RR appear

in both coincidence and intersection relations, and pairs RL and LR appear in

both containment and intersection relations. This is obvious, since coincidence

and containment are special cases of set intersection.

2.3 Metric relations

Some important spatial queries, like proximity queries, involve distances between

spatial entities. Given a metric d on the plane (usually the Euclidean metric),

the distance d(p; q) between two points p and q is extended to other entities X

and Y (either lines or regions) as follows:

d(p;X) = min

q2X

d(p; q);

d(X;Y ) = min

p2X

d(p; Y ):

Thus, the distance between a pair of entities is always de�ned, independently

of their classes. Moreover, given an entity O and a group of entities G, if we

consider the distance between O and each entity P 2 G, we can de�ne metric

properties of elements in G with respect to O, like having minimum or maximum

distance from O, or lying within a given range from O.

In the following, we de�ne some relations based on metric concepts, that are

relevant to the de�nition of spatial queries. Notice that metric relations are not

absolute relations between a pair of entities, but they are relative relations de-

�ned with respect to either a reference set (min/max relations), or to a reference

value (range relations).

� Min/max relations are ordered relations de�ned between a pair of entities

a 2 C

1

and b 2 C

2

, and with respect to a reference set B � C

2

.

min

B

: let a 2 C

1

, b 2 C

2

and B � C

2

, then a

min

B

; b i� 8b

0

2 B,

d(a; b) � d(a; b

0

).

max

B

: let a 2 C

1

, b 2 C

2

and B � C

2

, then a

max

B

; b i� 8b

0

2 B,

d(a; b) � d(a; b

0

).

min

B;k

: let a 2 C

1

, b 2 C

2

and B � C

2

, then a

min

B;k

; b i� #fb

0

2

B j d(a; b) > d(a; b

0

)g < k (i.e., there are less than k entities of B that

are closer to a than b is).



� Range relations are unordered relations de�ned between a pair of entities

a 2 C

1

and b 2 C

2

, and with respect to a reference value r.

<r: let a 2 C

1

, b 2 C

2

and r 2 IR, then a

<r

� b i� d(a; b) < r.

>r: let a 2 C

1

, b 2 C

2

and r 2 IR, then a

>r

� b i� d(a; b) > r.

Relations � r and � r can be de�ned analogously. Notice, anyway, that

any range relation can be transformed into an equivalent containment (or

element-of) relation as follows: let a, b and r be as before, and let us de�ne

G

a;r

= fp 2 IE

2

jd(p; a) < rg

called the enlarged a. Then, we have:

a

<r

� b i� b

�

; G

a;r

;

a

�r

� b i� :(b

�

; G

a;r

).

Relations < r and � r can be similarly transformed. Enlarged sets can be

di�cult to compute for regions. Nevertheless, the above transformation is

straightforward if a is a segment or a point: in the latter case, for instance,

G

a;r

is a circle of radius r centered at a.

3 Spatial queries

After de�ning the relations on spatial entities, we de�ne spatial queries. In our

approach, a query is based on a query object q, that is an entity from a given

class C

q

, and a query space S, that is a subset of another class C

S

. Usually, the

query space will be one of the three sets P , L and R de�ning a query map M .

A generic query asks for all entities in the query space that are in a given

relation with the query object. More formally, given q and S as above, and a

relation < de�ned on C

q

�C

S

, a generic query is denoted by a triple � q; S;< �,

and it is de�ned as follows

2

:

return all s 2 S that satisfy q

<

; s

We will also say that A = fs 2 S j q

<

; sg is an answer to query � q; S;< �,

and we will denote � q; S;< �7! A.

All spatial queries we consider are de�ned by proper instantiations of classes

C

q

and C

S

, and of relation < in the generic de�nition given above. From the

classi�cation of relations we have given in the previous Section, we obtain three

2

This de�nition is for a generic ordered query; the de�nition for an unordered query is

analogous by substituting ; with �.



groups of spatial queries; each query directly corresponds to a spatial relation.

In the following, we do not give the tedious list of all queries, but we rather

discuss the three classes of queries, by focusing on the problems related to their

answering, and by giving some relevant examples.

We will denote as before with P , L, and R sets of points, lines, and regions,

respectively, and we will denote with p, l, and r a generic point, line, and region,

respectively.

3.1 Topological queries

As pointed out in Section 2.1, topological relations are de�ned on pairs of sets

that are topologically consistent; one way to guarantee such consistency is to

consider sets from a single map M = (P;L;R). Thus, for a given query, the

query space S will be either P , or L, or R, or a suitable subset of one of them,

while the query object q will be an entity of M (i.e., q 2 P [ L [ R). We list

as examples two region-based and one point-based topological queries, that are

often used in geographic applications, together with their informal expression:

� r; R;

RR

��: \return all regions of M that are neighbors of r";

� r; L;

RL

;�: \return the border of region r";

� p; P;

PP

��: \return all points that are immediately adjacent to point p".

Notice that the point-based query given above is especially useful for traversing

networks, like road maps.

Topological queries can be answered e�ciently if map M is represented

through a model that encodes topological relations between spatial entities, and

if such model is implemented through a data structure that allows e�cient re-

trieval of such relations. In Section 4, we will present and discuss one such

model and data structure. We will see that topological queries are in general

\easier" than other queries, i.e., the algorithms for retrieving them have a low

time complexity.

3.2 Set-theoretic queries

Queries based on set-theoretic relations can have di�erent meanings, and di�er-

ent solutions, when either q belongs to the same map of space S or not.

A set-theoretic query about an entity of the map is generically related with

the localization of point or lineal features, and will be solved by using relational



operators of the model that we will introduce in Section 4. In other words, if

the query object and the query space come from the same map, there exist a

structure that \contextualizes" the query object in the space where the answer

must be retrieved, and the relational operators incorporated in the model allow

an immediate answer (see Section 4.1).

In this Section we will focus on queries induced by set-theoretic relations,

when the query object does not belong to the query map. In this case, the con-

textualization of q must be performed through suitable algorithms that are able

to retrieve the entities in S that spatially interfere with q, once q is \plunged"

into the query map. For this reason we will also refer to this latter group of

queries as interference queries.

Coincidence queries are similar to queries in standard databases, as the co-

ordinates of points provide search keys. A coincidence query for points can be

easily and e�ciently answered if the points in the query space are maintained

sorted (e.g., in lexicographic order) in a balanced tree. A coincidence query for

lines can be answered analogously, by considering �rst coincidences of endpoints,

and then coincidence of geometries. A coincidence query for regions is slightly

more complicated, but it can still be answered in a similar way by scanning the

region boundary.

The other queries need suitable algorithms for geometric search, that either

work on unstructured data, or are able to exploit the structure of the search

space in order to retrieve an answer e�ciently. Here, we only list two important

queries, corresponding to two basic interference problems: point location and

segment intersection.

� p;R;

2

R

;�: \return the region of M containing point p";

� l; L;

\

LL

� �: \return all lines of M intersecting line l".

In Section 5, we will consider the basic techniques o�ered by computational

geometry to search e�ciently planar subdivisions (like maps are), and to inter-

sect sets of segments. We will show that all interference queries can be answered

through such techniques, combined with the exploration of the topological struc-

ture encoding the query map.

3.3 Metric queries

Metric queries are based on metric relations. Thus, they are concerned with

the distance between the query object and the entities in the query space. The

topological structure of the query map is not much helpful in �nding answers to

such queries, since the spatial proximity of entities is not necessarily related to

their topological adjacency/incidence relations.



In some cases, we can transform metric queries into other non-metric queries:

as we anticipated in Section 2.3, range queries can be transformed into interfer-

ence queries by using enlarged sets. A typical range query is the following:

� p; P;

<r

��: \return all points of P that lie closer than a distance r from

point p".

Such a query can be substituted with the equivalent query:

� G

p;r

; P;

3

;�: \return all points of P inside region G

p;r

",

where region G

p;r

is the enlarged set of p, i.e., a circle of radius r centered at p.

Unfortunately, there is no way to cheat metric problems that arise with

min/max queries, which are, however, very important in the context of spatial

databases. A typical example of min query is the following:

� p; P;

min

P

; �: \return the point in P that lies closest to point p".

Auxiliary topological structures superimposed on the query map, like Voronoi

diagrams, can help answering the above query; on the other hand, such structures

are useful only in some cases, while they require a considerable amount of storage

[12].

In order to answer min/max queries e�ciently, we would like to have spatial

information encoded into models that are more space-based than object-based.

On the other hand, space-based structures do not allow an explicit encoding

of spatial entities, and, especially, they do not o�er any support for encoding

topological relations, that are the basis of a large part of spatial queries. Thus,

if we want to maintain a topological object-centered model for spatial entities,

while guaranteeing e�cient spatial search through space-based structures, we

must integrate the two approaches.

A solution consists of using spatial indexes, like grids or quadtree-based struc-

tures, as superstructures on the topological model encoding the maps. As spatial

indexes allow e�cient spatial search, they are not only essential for answering

metric queries, but they can also help speeding-up the treatment of other spatial

queries, and of operations like map overlay, that we will consider later. Finally,

spatial indexes help to organize information for e�cient disk storage. In Sec-

tion 6, we will discuss the use of spatial indexes, and their integration with the

topological model presented in Section 4.



3.4 Multiple queries

It often happens that a query induced by the same relation < is made on the

same query space S for many query objects from a set Q, that we call the

query set: a typical example is when we want to classify a whole set of entities

from a given map with respect to another map. A multiple query is de�ned by

considering all queries about entities of Q as a whole, as follows:

8q 2 Q, return all s 2 S that satisfy q

<

; s.

We will denote the multiple query de�ned above by � Q;S;< �.

A multiple query can be treated either as a \set of queries", or as a \query

about a set". The former approach is trivial, and the corresponding solution

is to answer independently to each query about an object q 2 Q. The latter

approach considers using some global technique that, given Q, S, and <, is able

to answer to � Q;S;< � at a reduced computational cost, with respecto to the

time needed when considering each entity independently.

The trivial approach is convenient whenever the cost of answering a single

query is of the same order of the size of its output: the cost of answering a

multiple query cannot be smaller than the size of the global output, that is

equal to the sum of all sizes of outputs of single queries, i.e., to the cost of

answering all single queries. Thus, we cannot hope to achieve better results

with the global approach. For instance, all topological queries can be answered

e�ciently in this way.

In other cases, especially for interference queries, a single query has a cost

whose order is higher than the output size, being a function f(n) (either loga-

rithmic or linear) of the size n of S. Solving single queries independently gives

a total cost of mf(n), where m is the cardinality of Q. We will see in Section

5 how, depending on the relation < inducing the query, we can use suitable al-

gorithms to achieve a better performance under the global approach. A typical

example of such queries is multiple line intersection, e.g., intersection between

two networks.

A global approach based on sorting can be used to answer coincidence queries:

if objects in Q and S are maintained sorted according to some key (e.g., lexi-

cographically, for points), a multiple coincidence query can be answered in time

O(min(m;n)) by scanning the sorted lists in parallel, while the trivial approach

would require at least O(m log(n)) time.

Also multiple metric queries, that could be answered by using spatial indexes,

can be faced e�ciently with a pseudo-global approach: spatial buckets often

correspond to disk pages; if entities in the query set are sorted according to the

spatial bucket containing each entity, single queries involving search in the same

spatial region can be grouped, and disk access is thus minimized.



3.5 Overlays

Most geographic databases organize data in several thematic maps: information

on entities contained in a given portion of space are spread over di�erent maps,

depending on their semantics. An overlay of maps consists in taking two or

more such maps, and producing a new map, that is a fusion of a part or all the

information contained in the input maps.

More formally, given two maps M

0

= (P

0

; L

0

; R

0

) and M

00

= (P

00

; L

00

; R

00

),

their overlayM

0

�M

00

will be a map consisting of:

� all points of P

0

[ P

00

plus all intersections between lines of L

0

and L

00

;

� all lines obtained by breaking the lines of L

0

[ L

00

at intersection points;

� all regions obtained by fragmenting the regions of R

0

[R

00

with the network

of lines above, i.e., all maximal portions of space that have the property

of being completely contained into one region of R

0

and into one region of

R

00

.

Such new entities will be topologically related among them, and the new map

could be included in the database if a suitable model is built that represents it.

Windowing, i.e., the extraction of a portion of map contained inside a given

(usually rectangular) window is, at least geometrically, a special case of an over-

lay, where one of the two maps is trivially the window itself.

While the aim of the spatial queries is to report entities (contained in the

database), the aim of overlays is to build new entities. It is not our purpose

here to make a thorough discussion of all aspects and problems related with

overlay operations. Nevertheless, we have introduced overlays in this Section,

because the geometric problems involved in their computation (essentially, re-

gion and segment intersection, and point classi�cation), are the same met when

facing multiple interference queries. Thus, algorithms for answering multiple

interference queries are also useful to solve overlays (see Section 5).

4 A topological model for maps

As already mentioned in the introduction, the problem of representing spatial

entities, both in 2D and in 3D, together with their relations in a comprehensive

and global model has been faced by several authors, in the �elds of geometric

modeling, computational geometry, and GIS.

In the 2D case, most literature in geometric modeling and computational

geometry is concerned with the representation of planar subdivisions, i.e., par-



titions of a planar domain into simply connected regions, induced by a Plane

Straight Line Graph (PSLG) [24, 13, 31]. A PSLG is a connected Euclidean

graph with non-crossing straight-line edges and no dangling chains, i.e., such

that every vertex has at least degree two. A PSLG � partitions a portion of the

Euclidean plane into a set of simply connected regions, bounded by edges of �

and containing no edge or vertex of � in their interior. Thus, points and lines

in planar subdivisions are introduced only as parts of the boundaries of regions,

while no isolated points or open chains are allowed.

In geographical information theory, some authors have proposed models for

2D maps based on simplicial complexes, that are special cases of PSLGs with

triangular facets [10, 6, 33]. Some other authors have pointed out the need for

models that overcome the limits of PSLGs by encoding also point and lineal

features without introducing dummy entities [22, 23]; this trend is present on a

more general basis in recent research in geometric modeling [26, 27].

The model we propose here extends a planar subdivision by allowing the

graph inducing the subdivision to be any planar graph with piecewise linear

edges, and possibly containing isolated points and/or dangling chains. The result

is similar in principle to the single valued vector maps proposed in [22], but

here we focus on the explicit encoding of all spatial entities, and mainly on the

embedding of relational operators in the model. These requirements lead to the

development of an e�cient data structure for representing the model, and of

e�cient accessing algorithms that encode relational operators.

4.1 The Plane Euclidean Graph

The Plane Euclidean Graph (PEG) is de�ned by an Euclidean graph G =

(V;E; F ), where:

� V , called the set of vertices, is a set of points in the plane;

� E, called the set of edges, is a set of polygonal chains having their end-

points in V , and such that any two edges of E never cross (i.e., they

never intersect, except at their endpoints). A polygonal chain of E is de-

�ned as a sequence of points e = (v; p

1

; : : : ; p

k

; w), where v; w 2 V and

p

1

; : : : ; p

k

62 V ; points p

1

; : : : ; p

k

are called joints of e.

� F , called the set of faces, is a set of maximal regions f bounded by chains

of E, such that for every two points P and Q inside f , there exists a curve

on the plane that joins P to Q without intersecting any edge of E.

In practice, a PEG is induced by any Euclidean graph with piecewise linear

edges, with the only restriction of being a plane graph. The planarity is necessary



to guarantee that topological relations between entities in the PEG are well

de�ned.

Given a map M = (P;L;R), de�ned as in Section 2, we can represent M

through a PEG G

M

= (V;E; F ) where V � P , E � L, and F � R; this

notation is intended to make a distinction between spatial entities and their

representations embedded in the topological model. In a PEG:

� A vertex of degree zero represents a point feature.

� A vertex of degree one represents an endpoint of a lineal feature.

� A vertex of degree two represents a junction point, either on the border

between two regions or on a lineal feature: as edges are polygonal chains,

junction points should not be introduced (unless they represent point fea-

tures lying on edges) in order to make the topology of the model as simpler

as possible. Notice that a closed chain that does not contain relevant points

can be represented, without introducing vertices, as a sequence of joints,

where the �rst and the last joints are coincident.

� A vertex of degree more than two represents either a branch point or a

cross point. Besides being necessary in order to ensure the planarity of the

PEG, branch and cross vertices are relevant to the semantics of the map.

� An edge completely contained inside a face represents a lineal feature.

� An edge that separate two regions represents a border edge.

Entities in a PEG G are topologically related, like the spatial entities they

represent, according to the de�nitions given in Section 2.1. Moreover, entities

representing point and lineal features of the map are related to edges and faces

of the model through element-of and containment relations given in Section 2.2.

We have de�ned relational operators on the PEG, capable of returning ob-

jects topologically related with a given entity of the model. Relational operators

directly reect the three classes of adjacency, boundary, and co-boundary rela-

tions we introduced in Section 2.1. Let G = (V;E; F ) be a PEG, and let v 2 V ,

e 2 E, and f 2 F generic elements of G. We de�ne on G nine topological

operators as follows:

� V V (v): returns all vertices of V that are adjacent to v in G;

� V E(v): returns all edges of E that are part of the co-boundary of v in G;

� V F (v): returns all faces of F that are part of the co-boundary of v in G;

� EV (e): returns the two vertices of V that are endpoints of e in G;

� EE(e): returns all edges of E that are adjacent to e in G;



� EF (e): returns the two faces of F that form the co-boundary of e in G;

� FV (f): returns all vertices of V that are part of the boundary of f in G;

� FE(f): returns all edges of E that are part of the boundary of f in G;

� FF (f): returns all faces of F that are adjacent to f in G.

Notice that the above operators directly answer topological queries we de�ned

in Section 3.1. Moreover, we de�ne the following set-theoretic operators, that

encode relations involving point and lineal features af the map. Such operators

directly answer to set-theoretic queries when the query object is part of the

query map (the intersection operator is not given because intersections are not

allowed within a PEG):

� 2(v): returns the face of F containing point feature v;

� �(e): returns the face of F containing lineal feature e;

� 3(f): returns all point features of V belonging to face f in G;

� �(f): returns all lineal features of E contained into face f in G.

In Section 5, we will consider geometric algorithms for solving interference

queries that manipulate PEGs. As such algorithms always deal with straight-

line segments, and regions bounded by such kind of lines, we introduce here the

expanded graph of a PEG. The idea is simply to divide each edge (polygonal

chain) of the PEG into the straight-line segments forming it, and to add these

segments to the set of edges, and their endpoints (corresponding to joints) to

the set of vertices. Formally, given a PEG G, we de�ne its expanded graph

G

�

= (V

�

; E

�

; F ) as follows:

� V

�

= V [ fp j p is a joint of e for some e 2 Eg;

� E

�

= f(p; q) j 9e 2 E such that p and q are either vertices or joints with

consecutive positions on eg.

Notice that the faces of a PEG and of its expanded graph are coincident.

4.2 A data structure for the PEG

In order to encode a PEG e�ciently, we need to de�ne a data structure that

ful�lls the following requirements:

1. all entities of a graph G = (V;E; F ) are explicitly encoded;



2. a part of the relations used by the relational operators are explicitly en-

coded;

3. all other relations can be retrieved e�ciently, i.e., all relational operators

can be computed in a time that is linear in their output size.

4. the storage space is as small as possible.

The data structure we propose for representing a PEG is a modi�cation of

the well known DCEL data structure [24], extensively used for encoding planar

subdivisions. The data structure is edge-oriented, as it encodes explicitly rela-

tions between each edge and its either adjacent, or boundary, or co-boundary

entities. A speci�cation of the data structure follows:

� For each vertex:

{ its two coordinates;

{ if the vertex is isolated, a pointer to the face containing it, otherwise,

a pointer to one of the edges incident into it;

� For each edge:

{ a pointer to its geometry (a chain of joints);

{ two pointers to its endpoints (vertices);

{ two pointers to its incident faces (in case the edge is a lineal feature,

the two faces will be coincident);

{ four pointers to the �rst adjacent edges met by rotating counterclock-

wise and clockwise about its endpoints, respectively.

� For each face:

{ a pointer to a list of edges, containing one edge for each connected

component of its boundary;

{ a pointer to a list of edges, containing one edge for each connected

component of its contained edges (lineal features);

{ a pointer to a list of isolated points contained in the face.

The list of vertices can be maintained sorted (e.g., lexicographically), and

stored into a balanced tree; also, similar lists of edges and vertices could be

maintained.

It is easy to show that such data structure ful�lls the requirements stated

above. A complete analysis of its space complexity and of the time complexity

of relational operators implemented on it is omitted here, for brevity.



This data structure is intended for main memory; disk storage, instead, re-

quires partitioning information among di�erent disk pages. It is not immediately

clear, and it is not our subject here, how to distribute entities such that links

between them can be retrieved e�ciently. Spatial indexes we discuss in Section

6 can be used to group together into buckets entities that are spatially close one

another.

5 Algorithms for interference queries

In this Section, we briey outline how geometric problems that arise in answer-

ing interference queries can be solved by using e�cient algorithmic techniques

developed in computational geometry.

Interference queries induced by element-of, containment and intersection re-

lations can be answered e�ciently by solving the point location problem, men-

tioned in Section 3.2. LetG be a PEG representing a map, let G

�

be its expanded

graph, and let n be the number of non-isolated vertices of G

�

. Then, the loca-

tion of a query point p in G would require O(n) time by using a \brute force"

approach (exhaustive search). A more interesting approach based on a prepro-

cessing of the query map is the so-called slab method [24]. The expanded PEG

G

�

is intersected with n+ 1 horizontal strips obtained by drawing a horizontal

straight-line through each of its n vertices. The intersection of G

�

with each slab

de�nes a set of non-intersecting segments, thus partitioning G

�

into trapezoids.

Slabs are sorted by y-coordinate (with O(n logn) preprocessing time), and the

slab containing the query point p can be retrieved in O(log n) time by applying

a binary search. Similarly, trapezoids within a slab are sorted along the x-axis,

and the trapezoid (or the segment) containing p can be retrieved in O(log n) time

by applying another binary search within the slab. The trapezoidal diagram can

be computed in O(n

2

) preprocessing time, but its main drawback is an O(n

2

)

storage cost.

Other methods for point location have been proposed in the literature, that

require linear storage cost. Among them, we can mention the chain method

[20], that is based on the decomposition of a G

�

into a set of monotone chains;

point location can be performed in O(log

2

n) time, using O(n) storage and with

O(n logn) preprocessing time. Another method, which also achieves O(log n)

query time, is the triangulation re�nement method [19], that requires O(n) stor-

age and O(n logn) preprocessing time.

The segment intersection problem de�ned in Section 3.2 would require again

O(n) processing time, if solved through exhaustive search. The performance

can be improved by �rst applying a point location algorithm to the endpoints

of the query segment l (O(log n) time), and then traversing G

�

while testing

the intersections of l only with the edges bounding (or contained into) the faces



crossed by l.

A di�erent approach can be used for solving multiple interference queries,

involving multiple line intersection. This approach is based on a sweep-line

technique, and it can also be used successfully for computing overlays [1]. Let

G

�

1

= (V

�

1

; E

�

1

; F

1

) and G

�

2

= (V

�

2

; E

�

2

; F

2

) be two expanded PEGs with n and m

vertices, respectively. The endpoints of the edges of E

�

1

and E

�

2

are �rst sorted

by x-coordinate (with O((n +m) log(n+m)) preprocessing time).

Then, a vertical sweep-line is moved over the n + m segments from left to

right, stopping at each endpoint and at each intersection point between two

lines. For each such event, an ordered collection of the line segments intersected

by the sweep-line is maintained, called the sweep-line status. At each event, the

algorithm performs one of the following operations, depending of the kind of

event:

� the left endpoint of a new segment s is met: the new segment s enters the

sweep-line status, that is updated accordingly;

� the right endpoint of a segment s is met: the segments leaves the sweep-line

status, that is updated accordingly;

� an intersection point between two segments s

1

2 E

1

and s

2

2 E

2

is met:

s

1

and s

2

are exchanged in the sweep-line status.

At each event, all the pairs of segments that become adjacent in the status are

checked for possible intersections. If an intersection is found, it is added in the

sorted list of events. The event list and the sweep-line status are maintained

into two dynamic structures, a priority queue and a balanced tree, respectively.

This leads to a global time complexity of O((k + n+m) log(n+m)), where k is

the number of intersections.

More recently, an optimal algorithm has been proposed [4], which achieves an

O((n+m) log(n+m)+k) time complexity. Although the crucial tool is still the

sweep-line, not only the status but the entire scene to the right of the sweep-line

is maintained. In order to reach the optimal computational cost, re�ned tools

(such as segment tree, topological sweep and cost amortization) are used. Unlike

the suboptimal algorithm presented above, which uses O(n + m) storage, this

technique uses O(n+ k) space. Therefore, it remains an open question whether

optimal time and space performances are simultaneously attainable.

6 Spatial indexes

The topological model we have de�ned in Section 4 gives an object-based repre-

sentation of maps, that o�ers useful support to the solution of several problems



related to spatial queries and overlays. On the other hand, as already pointed

out, for some purposes, it would be convenient to organize spatial data accord-

ing to a space-based scheme, where objects having close locations in space are

grouped together. Major reasons for adopting a space-based scheme are the

following:

1. answering metric queries e�ciently;

2. speeding-up interference queries and overlays by localization of interference

computation;

3. achieving e�cient disk storage and retrieval.

It is not our purpose to discuss here the third point, that would deserve a separate

and thorough study. Our aim is to obtain a hybrid model, that is able to support

both an object-based and a space-based approach to the representation of spatial

entities, by superimposing a spatial index to the topological model. Approaches

based on hybrid structures have been proposed also in three dimensions [2, 28, 3].

A spatial index is essentially a space partitioning technique that allows locat-

ing e�ciently any spatial entity in the portion of space it occupies. The simplest

and most popular example of a spatial index is the regular rectangular grid, that

partitions a rectangular domain using equally-spaced rectangular cells. A point

can be located in constant time, while a line or a region can be located in a time

that is linear in the number of cells it crosses. A hierarchical approach to spatial

indexing is the quadtree, where space is recursively subdivided into quadrants.

In this case, the quadrant containing a point can be found in a time that is linear

in the height of the quadtree, i.e., logarithmic in the maximum number of its

quadrants. In the following we will refer to both a cell of a grid and a quadrant

of a quadtree with the generic term of bucket.

The main di�erence between using buckets in the context of a hybrid model

and following a raster approach in encoding spatial data, is that here buckets

are not atomic entities: a bucket is rather a container of (parts of) spatial

entities, that are fully described in the topological model. Suitable links must

be set between the spatial index and the topological model, in order to support

e�cient retrieval of entities contained or crossing a given bucket.

If a regular grid is used, there is a priori no bound on the maximum number

of entities per bucket: with a coarse grid, a large number of entities per bucket

is expected; conversely, with a �ne grid, a large number of almost empty buckets

is expected. Quadtree based structures, like PM-quadtrees, PMR-quadtrees, R-

trees, and R

+

-trees [28], allow a control over the maximum number of spatial

entities per bucket by re�ning the spatial index only where the density of entities

is higher. PM-quadtrees are well-suited as spatial indices for maps, since they

allow exact representation of point, line, and region data; PMR-quadtrees are

especially well-suited for networks, since they are designed to represent line data.



R-trees and R

+

-trees are based on a binary partitioning technique, they allow

the representation of generic geometric objects, and they are especially suited

for mapping the spatial index on disk, because their structure reects the B-tree

structure of disk pages.

Independently of the spatial index used, queries and overlays are solved by lo-

calizing computations and searches into buckets, provided that e�cient retrieval

of spatial entities in a bucket is supported. In the following, we discuss the major

techniques adopted. For brevity, we consider the main classes of problems, and

we give, for each class, a relevant example.

Metric queries are solved by searching �rst the bucket(s) containing the query

object, and then searching its adjacent buckets, if necessary. Let p be a query

point, P be a query space of points, and � p; P;

min

P

; � be a min query for p with

respect to P .

1. The bucket B containing p is found, and the set P

B

of points of P lying

in B is retrieved.

2. An exhaustive search is performed on P

B

to �nd the point p

0

2 P

B

that is

closest to p.

3. If either P

B

is empty or the circle centered at p and through p

0

intersects

adjacent buckets that have not been visited yet, points 2 and 3 are repeated

on such adjacent buckets.

4. Otherwise p

0

is the answer.

Such a technique is explained in details in [17] for metric search based on PMR-

quadtrees.

Interference queries are improved simply by localizing computation into buck-

ets crossing or containing the query object. Let l be a query line, L be a query

space of lines, and � l; L;

\

LL

� � be an intersection query for l on L.

1. All buckets B

1

; : : : ; B

k

intersected by l are found, and all corresponding

subsets L

B

1

; : : : ; L

B

k

of L are retrieved.

2. An intersection algorithm is applied for each subset independently.

Multiple interference queries can be solved similarly by �rst selecting all buck-

ets crossing the query objects, and then applying the suitable geometric algo-

rithm inside each bucket. If the number of query objects is large enough, i.e.,

if most bucket are expected to be involved, it is better to apply the following

technique described for overlays.



Overlays are improved by scanning all buckets and solving the problem locally

inside each bucket, as above. LetM

0

andM

00

be two maps; we want to compute

M

0

�M

00

. For each bucket B in the space covered by the two maps do:

1. Retrieve the entities M

0

B

and M

00

B

of the two maps crossing bucket B.

2. Solve M

0

B

�M

00

B

.

Experiences of e�cient overlays on large maps using regular grids are discussed

in [11].

7 Concluding remarks

We have introduced a formal framework for two-dimensional spatial entities and

we have classi�ed three major groups of spatial relations on such entities: topo-

logical, set-theoretic, and metric relations. On the basis of spatial relations, we

have formally de�ned spatial queries, and we have discussed geometric problems

related to their solution.

We have presented a topological model for representing spatial entities form-

ing maps and their topological relations, and we have discussed how such model

supports topological queries. We have reviewed major geometric algorithms for

interference queries and overlays. Finally, we have discussed how metric queries

can be supported, and interference queries and overlays can be improved by us-

ing a spatial index. The integration of a topological model with a spatial index

provides a hybrid model that supports both an object-based and a space-based

description of two-dimensional geometric entities.

Spatial databases should be built on models that support e�ective and e�-

cient representations of spatial data and their relations. Moreover, they should

incorporate suitable algorithms that allow e�cient information retrieval for spa-

tial queries. Our work is a step towards the design of one such database for

geographic maps.

Our framework for the formal de�nition of spatial entities, relations, and

queries can be extended to the three-dimensional case for applications like solid

object representation in a CAD system [3]. Also, suitable topological models,

spatial indexing structures, and geometric algorithms are known in the litera-

ture, that can help solving representation and retrieval problems in the three-

dimensional case by following our approach.

The e�cient encoding of spatial entities on disk is a very important subject

in spatial database design, that we plan to tackle in the future in order to

implement our approach. Also, the integration of spatial and tabular data in



an environment that supports both the structure and the attributes of spatial

entities, together with standard alphanumeric information, should be faced.
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