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Abstrat

This report outlines the work arried out by the authors on 2D image registration. Starting

from the bakground theory, we will show several appliation ranging from mosais to ontent-

based video manipulation. In partiular we will fous on underwater video mosaiing. No

assumptions are made about the video soure, as our algorithm an ope with data oming from

disparate devies, suh underwater ameras and ommerial hand-held ameras. A wide set of

results is shown.

1 Introdution

Image registration[Bro92, GM99℄ is the proess of determining orrespondene between all points

into images of the same sene. By registering two images, information from di�erent soures an be

ombined, the geometry of the sene an be reovered, and hanges ourred in the sene between

the times the images there obtained an be determined. Image registration is often needed in

medial image analysis, proessing of remotely sensed data, robot vision, automated monitoring,

and industrial inspetion.

Diret minimization of pixel intensity di�erenes has been widely used to register images [Sze96,

IAB

+

96, SA96℄. This is losely related to the problem of approximating the 2D motion �eld

[BFB94, CV92℄, that is, the vetor �eld that desribes the relative motion between the viewing

amera and the observed sene. An approximation of 2D motion �eld is the optial ow. Flow-

based methods, though dense and aurate, are omputationally expensive, and are very sensitive

to loal minima. An alternative approah onsists of seleting a number of features from the images,

establishing orrespondenes between them, and determining a transformation funtion that maps

points in one image to points in the other image.

We hold that, although less ommon, feature based registration [ZFD97℄ is to be preferred. Besides,

being less omplex, methods based on the traking of two dimensional features (suh as orners)

use motion information only where it is most reliable, beause feature points do not su�er from the

aperture e�et [TV98℄, typial of an optial ow approah. Digital video sequenes have a very high

frame rate (usually 25 frames per seond), whih strongly points toward a feature traking based

registration, beause on one hand it requires a fast registration and on the other it makes traking

feasible, being dense.

Among the various appliations of image registration, we will fous mainly on Mosaiing, that is

the automati alignment of multiple images into larger aggregates [Sze96℄. In many real senarios,

it is adequate to desribe a stati sene, the image motion of whih is only due to amera motion,

using a mosai.

1
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A mosai desription suÆes when amera enter does not move appreiably or when image motion

an be well approximated by that of a single plane. In both ases, a two-dimensional (2D) motion

model an be adopted.

Other works in mosaiing inludes [CZ98, RPFRA98, Dav98, GSV98, MC97, SK97℄.

The struture of this report is the following: setion 2 reviews the bakground notions needed,

in setion 3 the feature traker used to extrat and follow the interesting points is desribed, se-

tion 4 reports how the transformation between two images is omputed. Setion 5 deals with the

motion estimation problem. Setion 6 gives a brief introdution to mosaiing tehniques. Setion

7 speializes to the stabilization problem, while setion 8 reports a mosai-based approah to mo-

tion segmentation. In setion 9 an interesting appliation of mosai-based segmentation an be

found. Setion 10 ontains a set of results obtained with our experiments in mosais onstrution,

stabilization of sequenes and video oding. The report also ontains three appendies that give

more details about the two view geometry, the metri reti�ation and the information that an be

extrated from homographies.

2 Bakground

A non-singular linear transformation of the projetive plane [SK52℄ into itself is alled homography

(or ollineation). The most general homography is represented by a non-singular 3�3 matrix H:
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The matrix H has 8 degrees of freedom, being de�ned up to a sale fator. The transformation is

linear in projetive (or homogeneous) oordinates, but it is non linear in Cartesian oordinates:
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Two images taken by a moving amera are related by a projetive plane transformation in two

ases: a planar sene imaged from di�erent points of view or a 3D sene viewed from the same

point of view (the amera is rotating around its optial entre).

In general, it an be seen that two points m and m

0

, projetion of the 3D point w onto the �rst

and the seond view respetively, are related by

2
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where A is a 3 � 3 matrix enoding the intrinsi parameters of the amera (foal length, aspet

ratio, image entre), R is a 3� 3 rotation matrix whih gives the amera rotation between the two

views, and t is a 3 � 1 vetor representing the translation of the optial entre between the two

views. � and �

0

are the distanes of the 3D point from the �rst and seond amera foal planes.

1

We shall heneforth use the symbol ~to indiate homogeneous oordinates.

2

See Appendix A for details.



Researh Memorandum RM/99/15 3

If amera is rotating, then t = 0 and we get:
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The 3 � 3 matrix H
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represents an homography, and does not depend on the 3D

struture. In the other ase, if the amera undergoes a general rigid motion, but 3D points lie on

a plane � with Cartesian equation n

>

w = d, Eq. (3) an be speialized, obtaining:
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Therefore, there is a projetive plane transformation between the two views indued by the plane

�, given by H
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homography, obtained in the previous ase, an be

interpreted as the homography indued by a very speial plane, the in�nity plane, as an be seen

by letting d!1 in (5).

It might be worth showing how two views are related in the general ase of full 3D sene and

arbitrary amera motion. Starting again from Eq.(3)
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where a = d � n

>

�A
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~
m is the orthogonal distane of the 3D point w (of whih m and m

0

are

projetions) to the plane �. If w is on the 3D plane �, then
~
m

0

' H

�

~
m. Otherwise, the remaining

displaement, alled parallax, is proportional to the relative aÆne struture  = a=(d �) of w (wrt

the plane �) [SN96℄. The relative aÆne struture of a point depends on its depth, on the hoie

of the �rst view and on the referene plane. When the referene plane is the plane at in�nity, the

relative aÆne struture redues to  = 1=�; as an easily be seen from Eq.(3).

This is not all the story. The homography matrix H

�

that one an measure from image orrespon-

denes is de�ned only up to a sale fator. Sine (in Eq. 7) it ours in a sum, we need to normalize

it.
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. The relative aÆne struture is the produt of two

ratios, the �rst being the ratio of the perpendiular distane a of a point w to the plane � and the

depth � to the referene amera, and the seond ratio is of the same form but applied to a �xed

point w

0

whih is used to set a uniform sale.
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Figure 1: Geometri interpretation of the homography+parallax deomposition of Equation (7).

3 Homography omputation

Let us suppose that we are given an image sequene in whih there is a negligible parallax (i.e.,

subsequent frames are approximately related by a homography, as disussed in Se. 2) and that

point orrespondenes through the image sequene have been obtained by features traking (Se. 4).

In this setion we shall see how homographies are omputed, and how to ope with moving objets.

Four points (provided that no three of them are ollinear) determine a unique homography. Indeed,

eight independent parameters are required to de�ne the homography. Eah point orrespondene

in the plane provides two equations:
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It is then neessary to �nd (at least) four point orrespondenes to de�ne the transformation matrix

uniquely (up to a sale fator). There are two methods of dealing with the unknown sale fator in

a homogeneous matrix: hoose one of the matrix elements to have a ertain value, usuallyH

3;3

= 1,

or solve for the matrix up to a sale. We used the latter, whih is more general. Equation (10) an

be rearranged as:
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For n � 4 points, we obtain a rank de�ient system of homogeneous linear equations, whih has

the form Lh = 0. If n > 4 there are more equations than unknown, and, in general, only a Least
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Squares solution an be found. Let L = UDV

>

be the Singular Value Deomposition (SVD)

[GL96℄ of L. One Least Squares solution is the olumn of V orresponding to the least singular

value of L. The omputational ost of SVD is O(n

3

).

As pointed out by Hartley in the ase of the Fundamental matrix estimation, a better onditioned

problem is obtained by data standardization[Har95℄. The points are translated so that their entroid

is at the origin and are then saled so that the average distane from the origin is equal to

p
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and T

0

the resulting transformation in the two images and
~
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0
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m

0�

in the homography estimation algorithm, we obtain a matrix H

�
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is related to the original one by H

�

= T

0

HT

�1

, as it an be easily seen.

3.1 Dominant motion estimation

In the ase of a stati sene with a moving amera, the Least Squares estimate are aurate enough.

In presene moving objets the number outliers in the regression problem inreases, sine eah pixel

of a moving objet is an outlier. Therefore, in this ase, a robust method must be employed in

order to estimate the homography that explains the motion of the majority of the features, that is

the dominant motion. Unless the sene is luttered with many moving objets, this is usually the

motion of the amera with respet to the stati bakground.

Least Median of Squares[RL87℄ is a robust regression tehnique whih has been used in many

Computer Vision appliations[MMKR91, Zha97℄. The priniple behind LMedS is the following:

given a regression problem, where d is the minimum number of points whih determine a solution

(four, in our ase), ompute a andidate model based on a randomly hosen d-tuple from the data;

estimate the �t of this model to all the data, de�ned as the median of the squared residuals, and

repeat optimizing the �t. The residuals are de�ned, in our ase, for eah point orrespondene, as

the distanes between the warped and the atual point in the seond image. In formulae, let

^

H be

an approximate solution of (11), then the residuals are

s

j

= jjm

0

j

�

^

Hm

j

jj j = 1 : : : n (12)

where n is the number of point orrespondenes.

The data points that do not belong to the optimal model, whih represent the majority of the data,

are outliers. The breakdown point, i.e., the smallest fration of outliers that an yield arbitrary

estimate values, is 50%. In priniple all the d-tuples should be evaluated; in pratie a Monte Carlo

tehnique is applied, in whih only a random sample of size m is onsidered. Assuming that the

whole set of points may ontain up to a fration � of outliers, the probability that at least one of

the m d-tuple onsist of d inliers is given by

P = 1� (1� (1� �)

d

)

m

: (13)

Hene, given d, �, and the required P (lose to 1), one an determine m:

m =

log(1� P )

log(1� (1� �)

d

)

: (14)

In our implementation we assume � = 0:5; and require P = 0:99, thus m = 72:

When Gaussian noise is present in addition to outliers, the relative statistial eÆieny (i.e., the

ratio between the lowest ahievable variane for the estimated parameters and the atual variane)

of the LMedS is low; to inrease the eÆieny, it is advisable to run a weighted LS �t after LMedS,

with weights depending on the residual of the LMedS proedure [RL87℄.



Researh Memorandum RM/99/15 6

The residuals s

j

, j = 1; : : : ; n are used to generate the weights for the �nal, weighted LS regression

as follows. First, a robust standard deviation estimate [RL87℄ is omputed as

�̂ = 1:4826

�

1 +

5

n� d

�

r

med

j

s

2

j

; (15)

where d is the number of parameters (4 in our ase). Seond, a weight is assigned to eah point

orrespondene, suh that

w

j

=

�

1 if js

j

j=�̂ � 2:5;

0 otherwise:

(16)

The omputational ost of LMedS with Monte Carlo speed up O(mn logn).

4 Feature traking

In this setion the Shi-Tomasi-Kanade traker [ST94, TK91℄ will be briey desribed. Consider

an image sequene I(m; t), with m = [u; v℄

>

; the oordinates of an image point. If the time

sampling frequeny is suÆiently high, we an assume that small image regions are displaed but

their intensities remain unhanged:

I(x; t) = I(Æ(m); t+ �); (17)

where Æ(�) is the motion �eld, speifying the warping that is applied to image points. The fast-

sampling hypothesis allows us to approximate the motion with a translation, that is, Æ(m) =m+d,

where d is a displaement vetor. The traker's task is to ompute d for a number of seleted points

for eah pair of suessive frames in the sequene.

As the image motion model is not perfet, and beause of image noise, Eq. (17) is not satis�ed

exatly. The problem is then �nding the displaement

^

d whih minimizes the SSD residual:
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�

2

(18)

whereW is a small image window entered on the point for whih d is omputed. By plugging the

�rst-order Taylor expansion of I(m + d; t + �) into (18), and imposing that the derivatives with

respet to d are zero, we obtain the linear system Gd = e; where

G =

X

W

rI rI

>

; e = ��

X

W

I

t

rI; (19)

with = rI = [�I=�u �I=�v℄

>

and I

t

= �I=�t: Using this linear approximation of the solution, the

Newton-Raphson iterative algorithm for minimizing (18) writes:
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is the displaement estimate at iteration k and

^

d is the solution of

G

^

d =

X

W

h

(I(m; t)� I(m+d

k

; t+1))rI(m; t)

i

:
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In this framework, a feature an be traked reliably if a numerially stable solution to Eq. (4)

an be found, whih requires that G is well-onditioned and its entries are well above the noise

level. In pratie, sine the larger eigenvalue is bounded by the maximum allowable pixel value, the

requirement is that the smaller eigenvalue is suÆiently large. Calling �

1

and �

2

the eigenvalues

of G, we aept the orresponding feature if min(�

1

; �

2

) > �; where � is a user-de�ned threshold

[ST94℄.

5 Motion estimation and sequene registration

A feature-based motion estimation tehnique onsists of three main steps, performed on adjaent

images: extration of features from the images, mathing of features and estimation of the trans-

formation between the images.

5.1 Feature based 2D motion estimation

We have performed feature extration and point orrespondene with the feature traker desribed

in Setion 4.

The traker has three main features:

� Extration of features, that is used on the �rst frame of the sequene

� Traking of features from one frame to the following

� Re-extration of the features, if neessary. This means that if the sene has hanged there

ould be too few features to trak. Indeed, if in theory to obtain an homography 4 features

are enough, in pratie is better to have muh more than that, beause the quality of the

features is not always good. The re-extration funtion will add new features to the ones still

present in the urrent image.

Assuming that the parallax e�et is negligible, the homography approximating the transformation

between ouple of images is easy to alulate.

The traker produes a list of features oordinates for eah image. For eah ouple of images, after

all the features lost by the traker have been disarded, the homography an be produed, using

the method desribed in Setion 3.

5.2 2D Image registration

Global registration establishes a mapping between eah frame and an arbitrary referene frame. We

have desribed a mapping between an image and another through a homography. One we know

how to alulate the homography between ouple of images, a referene frame must be hosen, in

order to warp eah image of the sequene into the ommon referene frame:

� Frame to �xed frame registration: if the sene does not hange too muh, that is, if

the overlapping between an arbitrary ouple of images is not too small, a �xed referene

image an be hosen and all the homographies between eah image and the �xed one an be

omputed. At this point the homographies an be used to warp eah image in order to �t

the ontent of the referene one.
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� Adjaent frames registration: if the sequene spans a wide area the traking of the

features will be more robust between ontiguous images. To produe the global alignment,

sine the homography, as de�ned in (1) is a linear operator, the transformation between

non-ontiguous frames an be obtained by multiplying the transformation matries of the

in-between image frames. The transformation between the image I

i

and the image I

j

, where

i < j, is

H

i;j

=

j�1

Y

k=i

H

k;k+1

(20)

In most of the ases that we present, the images are registered with respet to the �rst frame of the

sequene. One the global alignment have been ompleted, if we imagine to piere all the aligned

frames with a temporal line, we will interset pixels that, in absene of parallax, orrespond to the

same world point.

5.3 Parallax-based 3D motion estimation and registration

As desribed in setion 2 a homography relates two views when the amera motion is rotational

or when the entire sene an be approximated by a single parametri surfae, typially a plane. In

pratie a 2D alignment is a good approximation if those onditions are violated but the violations

are small, for instane if the amera translates slowly or if the relative depth of the sene (�Z) is

small ompared to the distane between the amera and the sene (Z). In those ases the residuals

will not be zero but they will be small and the mosai onstrution has to be hanged in order

to reet the parallax e�ets [SN96, IAB

+

96, SA96℄ The plane+parallax representation of image

motion provides a mean to register piees of a sene with arbitrary depth[SA96℄. This approah is

based on the fat that the relative aÆne struture is invariant on the hoie of the seond view.

This property has been used to solve a variety of 3D geometry from multiple views. If the regular

aÆne struture is alulated between two views, then a third view an be related to the previous

referene view, by speifying the new viewing parameters (the plane homography and the epipole):

1. given two views,  

i

and  

0

i

in full orrespondene (m

i

$m

0

i

; i = 0 : : : n);

2. reover the epipoles (8-point algorithm [Har95℄ or variations);

3. given 3 arbitrary points and the epipoles, ompute the plane homography H

�

;

4. sale H

�

to satisfy
~
m

0

0

'H

�

~
m

0

+ e

0

;

5. solve for 

i

(relative aÆne struture) in
~
m

0

i

' H

�

~
m

i

+ e

0



i

;

6. a new view  

00

i

is represented by a new epipole e

00

and a new plane homography H

�

;

7. points in the third view satisfy
~
m

00

i

' H

�

~
m

i

+ e

00



i

e

00

and H

�

an be omputed from 6 orresponding points between �rst and third view.

6 Mosaiing

Video mosaiing has reently attrated a growing interest in the �eld of digital video proessing

and analysis, in appliations suh as automati indexing of video data (see [BMM99℄ for a reent

review), video oding and video editing.
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A mosai is an image onstruted from all the frames of a sene sequene, that gives a panorami

view of the sene. Mosais are a useful way to represent the information ontained in video se-

quenes. Sine the images belonging to a sequene usually have large overlapping, a mosai of the

sequene provides a signi�ant redution in terms of spae.

There are a lot of possible desription of a sene that an be hosen depending on the sene in

exam. Aording to Anandan et al. [IAB

+

96℄:

� Salient still [MB96, MP94℄: Stati mosais have been previously referred as salient stills

of simply mosais. They are usually built bath mode, by aligning all frames of a sequene

to a referene oordinate system, whih an be either user-de�ned or hosen automatially

aording to some riteria and by integrating all the images in a single mosai image. The

only information that are diÆult to apture are the hanges in the sene with respet to

the bakground. One a suitable way of dealing with moving objets has been found, stati

mosais, eÆient sene representation, ideal for video storage and retrieval, an also be su-

essfully used for image stabilization, video ompression, ontent-based layered representation

of information.

� Dynami mosai: The only real limit of stati mosai is that they often must be onstruted

bath mode, for this reason they annot ompletely follow the dynami aspet of a video

sequene. For this reason in various situations dynami mosais have been hosen. The

ontent of a dynami mosai is variable and is onstantly updated with the information of

the urrent frame. When the �rst frame is read, the mosai will oinide with the frame itself.

In the further steps, the mosai will be updated in order to be oherent with the latest frame

read [IAB

+

96, SA96℄.

� Multiresolution mosai: Changes in image resolution an our within a sequene if the

amera zooms in or out. If the mosai is built at a low resolution, it will ontain less infor-

mation that the one that would have been available in the original sequene. On the other

hand building the mosai at the higher deteted resolution, an ause oversampling of the

low resolution frames. This problem an be handled with a multi-resolution struture with

aptures information from eah new frame at its highest resolution level. In this way all the

possible information is stored.

6.1 Sequene alignment

In this setion we deal with the problem of reating a mosai from a sequene of images. The on-

strution of a mosai is aomplished in three stages: motion estimation, registration and rendering.

Motion estimation and registration have been desribed in general in the previous setions.

In this ase the 2D motion estimation and alignment of the image frames of the sequene an be

performed in three ways [IAB

+

96℄:

� Adjaent frames: the homographies are omputed between suessive frames of the se-

quene. They an be omposed to obtain the alignment between any two frames of the

sequene.

� Frame to mosai: to limit the problem of misalignments, for every new frame a temporary

mosai an be built and the new homography is omputed between it and the new frame.

This approah is alternative to the one of global alignment and further blending.
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� Mosai to frame: if one wants to maintain eah image in its oordinate system it an be

better to align the mosai to the urrent frame.

If one needs to use a parallax-based 3D model, given a sequene of images with full orrespondenes

between adjaent ones, one an ompute, for eah view, the plane homography and the relative

aÆne struture, using the previous view as the \seond view", and then warp it to a referene view

(the \third" view) using the appropriate view parameters, that is the new orrespondenes between

the urrent image and the referene one.

6.2 Mosai rendering

One the images have been aligned, they an be integrated, using a temporal �lter, into a mosai

image. Several temporal �lters an be used to onstrut the mosai image. They all work on the

intensity values belonging to the temporal line of eah pixel.

� The temporal average of the intensity values. Moving objets would leave a \ghost-like" trae

into the mosai. It is e�etive in removing temporal noise.

� The most reent information that is, the entire ontent of the most reent frame is used

to update the mosai. A variation of this is used in general in the dynami onstrution

desribed above.

� The temporal median of the intensity values. Moving objets whose intensity patterns are

stationary for less than half of the frames, tend to disappear in the resulting mosai. In

pratie, moving objets are treated as outliers. The results are sharper than the ones obtained

with temporal average.

� Weighted temporal average or weighted temporal median where the weights derease with the

distane of the pixel from the frame enter. This sheme aims at ignoring distortions in the

original sequene.

Other temporal �lters have been presented in literature. For a wide panorami see [IAB

+

96℄.

7 Stabilization

Image stabilization onsists ompensating for the amera motion by applying a suitable trans-

formation to the image. In the stabilized image, sene points are motionless in spite of amera

motion.

Image stabilization is really lose to mosai onstrution, indeed from the stabilized sequene a

mosai is obtained by merging the frames, that are already registered.

In order to ompensate for the relative motion of the amera, we need to ompute the homographies

that map eah frame onto a given referene image. In the warped images, stati sene points are

(ideally) motionless. We assume that eah frame in the sequene overlaps with the referene one.

There is no point in stabilizing an image whih does not overlap with the referene one; in this ase

the latter should be hanged.

Usually, the global registration is performed using the �rst image frame as a referene and all the

other frames are mapped onto it, either diretly with a frame to �xed frame motion estimation or

with a adjaent frames motion estimation followed by a global alignment.
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8 Segmentation of moving objets

In this setion is desribed a method to segment moving objets in image sequenes using a mosai-

based tehnique.

We �rst desribe what hanges in presene of moving objet and how the results obtained an be

used to perform motion segmentation.

After onstruting the mosai with simple features based registration, moving objets are segmented

out by omputing the grey-level di�erenes between the stable bakground (mosai) and the urrent

frame. Similar approahes to ours have been used in the �eld of surveillane and targeting, where

the ego motion of the amera is ompensated before extrating moving targets from the bakground.

In [CM99, SA96℄ the motion is omputed for every pixel with a robust tehnique, and outliers masks

give the moving objet. In [GJ98℄ temporal analysis of gray levels, based on probabilisti models

and a-priori information, is arried out in order to segment moving objets.

The motion estimation must be performed with a robust tehnique as the one desribed in setion

(3.1). This will produe an estimation of the motion of the bakground, that is the relative motion

of the amera w.r.t. the sene, provided that the objet moving inside the sene is not too big. At

this point a sequene registration an be performed in the usual way. To segment out the moving

objet, or equivalently to build the bakground, a suitable temporal �lter must be hosen, for in-

stane the median or the weighted median. The blending stage will produe a mosai of all the

bakground elements, while the objet moving will be disappeared. It is important to notie that

to use the median �lter all the frames need to be registered in advane, sine it does not exist an

inremental optimal estimator of the median operator. With a mosai to frame registration (that

is a bak registration of the mosai onto every single frame of the image sequene) a syntheti

sequene of the bakground without the moving objet an be obtained.

The foreground an be obtained with hange detetion and motion segmentation tehniques that

are now well known in literature [HNR84, Hua81, IRP94℄, omparing eah frame of the virtual

sequene with the orresponding frame of the original one.

Irani et al. [IAB

+

96℄ suggest to hoose the same loal misalignment measure, S

t

, that they su-

essfully used in their motion analysis works:
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P
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i

; y

i

)j+ C

: (21)

Their method is based on a temporal ontinuity between the frames ompared, that are, in our

ase, the mosai and the urrent frame. Indeed, if the mosai is built dynamially[IAH95℄, it is

onsistent with the most reent frame i.e., the mosai ontains all the information of the latest

frame, for instane all the moving objets present in the latest frames. There exists, therefore, a

temporal oherene between mosai and urrent frame. Instead, if the mosai is still, this oherene

does not exist any more, sine a possible moving objet in the mosai an be blurred or, as in our

ase, it has been removed. There is, thus, a strong spatio-temporal disontinuity between mosai

and frame that derease the signi�ane of the misalignment measure in itself. A di�erene-based

tehnique seems to be more e�etive to our purposes. A grey level di�erene is performed between

eah original frame and the equivalent virtual one. Finally the result is thresholded to obtain a

binary map.
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The binary motion map ontains the blobs produed by the moving objets and other smaller

blobs due to misalignments, hange in illumination or noise.

To segment out only the objets in motion, a simplifying assumption has been made: we assumed

that only one objet was moving in the sene. A generalization is urrently under investigation. We

deteted the objet in the �rst frame by hoosing the area of the binary map ontaining the bigger

onneted omponent of moving pixels. After this initialization, on every frame i, the entroid of

the largest onneted omponent of its binary map is omputed. The onneted omponent of the

i+ 1-th binary map hosen is the losest to the previous entroid.

At this point post-proessing of the resulting maps is also needed, in order to obtain good qual-

ity segmentations. The morphologial operator of losure [Ser82℄, that is dilation and erosion

in asade, produe a more ompat blob, without adding noise and without altering its original

dimension.

8.1 Desription of the algorithm

Construting the mosai:

(1) for eah new image of the sequene I_i

alulate the homography wrt the previous one

perform global registration wrt I_ref: alulate H(ref,i)

(2) build bakground mosai blending all the images with a median filter

Objet segmentation:

(1) for eah image of the sequene I_i

warp the mosai onto the image ref frame I_ref

binary map B_i with a thresholded differene between I_i and I_ref

(2) B_0: find the main onneted omponent

ompute the entroid _0

for eah binary map B_i:

find the onneted omponent losest to _(i-1)

ompute the entroid _i

(3) for eah B_i

morphologial post-proessing of B_i

build a grey level map (foreground) merging B_i and I_i

9 MPEG4 video oding

In this setion we desribe how the segmentation method explained above an be used to perform

MPEG4 video ompression.

The last MPEG standard, MPEG-4 [KPC97℄, follows an approah that is alled ontent-based

[WA94, KPC97℄, based on the way of pereiving a sene typial of the human brain. In a ontent-

based approah the oding algorithm must desribe the semantial meaning of the di�erent objets.

MPEG4 relies on a segmented representation of the video data, in order to ahieve ontent-based
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manipulation of image sequenes. A sene is onsidered to be omposed of several Video Objets

(VOs). Eah VO is haraterized by intrinsi properties suh as shape, texture, and motion. In

this ontext, the term objet has a very general interpretation, and it is not neessarily a physial

objet. For example, the bakground region may be onsidered as one VO.

A sprite onsists of those regions of a VO that are present in the sene, throughout the video

segment. An obvious example is the `bakground sprite', whih would onsist of the mosai of the

bakground in a amera-panning sequene.

The MPEG-4 standard does not presribe the method for reating VOs, it simply provide a standard

onvention for desribing them, suh that all ompliant deoders are able to extrat VOs from the

enoded bit-stream.

If we think of the mosai bakground and the foreground sequene as VOs, the idea desribed in

the previous setion an be seen as an MPEG-4 ompliant ontent-based enoding tehnique.

In order to give a sketh of a whole video oding system, let us desribe the deoder funtioning.

The large panorami mosai of the bakground (a sprite, in MPEG-4 terminology) is transmitted

to the reeiver only one. The moving foreground objet is transmitted separately as an arbitrary-

shape VO, desribed in the mosai referene frame. Finally all the transformations between mosai

and original sequene (that is the mosai to frame transformation) are needed. Atually it will

suÆe to transmit all the homographies between onseutive frames, sine, starting from them, we

an obtain every transformation from one referene frame to the other (using Eq. (20) ). In the

deoding phase, to build the original sequene, all we have do is to map the mosai onto the frame

of eah image and paste the foreground onto it. At this point the original sequene is rebuilt.

Content-based representation, allows editing operations on the sequene, like inserting novel Video

Objets thereby reating a realisti syntheti sequenes. An example of this tehnique will be

desribed in Setion 10.

10 Results

In this setion we will show some results on several appliation of 2D image registration, namely

mosaiing, stabilization, motion segmentation and video representation, ontent-based manipula-

tion. The latter is not stritly an appliation of image registration, but it take advantage of the

ontent-based representation ahieved before.

10.1 Mosai onstrution

Our experiments to still mosais onstrutions, have been mainly foused on sequenes aquired in

the underwater environment. To build the mosai we have hosen the frame to frame (or adjaent

frames) approah. Figure (2) shows the frames 0, 60, 119 (last) of the sequene \Underwater1",

while Fig. (3) shows the resulting mosai obtained with a temporal �lter that, at every step,

upgrade the mosai with the latest information available.

Figure (3) presents three frames of the sequene \Underwater2" (frames 0, 70, 138). The mosai

is shown in Fig. (5).

Other examples of still mosais an be �nd in the next �gures (from Figure (6) to Figure (12)).

Figures (6)and (7) show other two examples of underwater mosais.

Figures (8) and (9) another interesting appliation environment of mosai tehniques: art. They

show sequene frames and the �nal mosai of the \Battistero di Padova" upola, a masterpiee of

Giusto de' Tornabuoni (refs).



Researh Memorandum RM/99/15 14

Figure (10) shows the resulting mosai of an out-door sene of the faade of Mount Batten Building,

in Heriot-Watt. This mosai is interesting beause the radial distortion ...

Figures (11), (12) and (13) show 3 di�erent results obtained from the same sequene hanging the

temporal integration. The di�erene are due to a person in front that was moving.

Figure 2: First, entral and last frame from the sequene Underwater1.

Figure 3: Mosai of the sequene Underwater1.

Figure 4: First, entral and last frame from the sequene Underwater2.

10.2 Stabilization

Figure (14) shows the frames 0, 35, 45 and 89 of the sequene \Clio" made of 90 frames. The white

box represents the position of the referene frame (in our ase frame 0) with respet to the urrent

one. The small white ross at the entre of the box represents a referene point that allows to see

how the same pixel in di�erent frames of the stabilized sequene, has the same ontent.
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Figure 5: Mosai of the sequene Underwater2.

Figure 6: Mosai of the sequene Rok1.
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Figure 7: Mosai of the sequene Rok2.

Figure 8: First, entral and last frame from the sequene A�reso.

Figure 9: Mosai of the sequene A�reso.
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Figure 10: Mosai of the sequene Faade. Notie the e�ets of radial distortion.

Figure 11: Mosai of the sequene g78-3. An average �lter has been used to blend the �nal mosai

Figure 12: Mosai of the sequene g78-3. The �rst image has been put into the mosai, and in the

next steps only the new pixels have been added
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Figure 13: Mosai of the sequene g78-3. Every step all the information of the latest image is put

onto the mosai

Sine stabilization and mosai building are losely related, to onstrut the mosai from the stabi-

lized sequene is straightforward (Figure 15).

10.3 Segmentation of moving objets and video oding

Figure (16) and (17) show frames of the two sequenes that we use to desribe our results in

segmenting moving objets. They have been aquired with a hand-held amera. The �rst sequene

is an outdoor sene with a ar driving from the left to the right of the image �eld of view. The ego

motion is nearly rotational, but a small translational omponent is present. The seond sequene

has a slightly di�erent nature, the objet (person) in motion is bigger and the natural environment

under the sun produes a lot of shadows. The depth of the sene hanges from the beginning of

the sequene to the end. In spite of the fat that the amera motions are not exatly rotational

and the senes are not planar, the results obtained are quite satisfatory.

Figures (18) and (19) show the mosais of the bakgrounds obtained with the method explained in

Setion 5.

The bakground is mapped onto the original sequene frames and the residual analysis is performed.

Figure (20) (left) shows the results obtained by using a thresholded di�erene between the 28-th

frame of the sequene \Manuel" and its bakground. In Figure (20) (right) the results obtained

with a gradient based segmentation are shown. As we explained in Setion 8, we rekon that

di�erenes are more suitable to our purposes.

Figure (21) illustrates results of �nal segmentation, while Figure (22) ontains a frame that have

been enoded and deoded and the di�erenes between the same frame and the original one.

As a measure of ompression quality we have hosen the point signal to noise ratio (PSNR) on the

di�erene of eah original image of the sequene with the orresponding oded-deoded one. Given

a soure image f , n�m, and a reonstruted image F , obtained by deoding the enoded version

of f ,

PSNR(f; F ) = 20 log

10

255

MeanSquareError(f; F )

(22)

where MSE, the mean square error, is

MSE =

1

nm

n

X

i=1

m

X

j=1

(f(i; j) � F (i; j))

1=2

: (23)

The graphis in Figure (23) show that the quality of the ompression does not degrade too muh

throughout the sequene.
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Figure 14: Frames (0, 35, 45, 89) stabilized from the sequene Clio. The �rst one is the referene

frame.

Figure 15: The mosai of the sequene Clio
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Figure 16: Frames 0, 50, 99 (the last) from \Manuel" sequene.

Figure 17: Frames 0, 20, 40 (the last) from \Super5" sequene.

Figure 18: Mosai of Manuel (bakground sprite).
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Figure 19: Mosai of Super5 (bakground sprite.)

Figure 20: Residual analysis with di�erenes (left) and normal ow (right).

Figure 21: Moving objets extrated from the sequenes.
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Figure 22: Example of a frame from enoded/deoded Super5 and di�erenes with the original one

(right).
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Figure 23: Power signal to noise ratio
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Figure 24: Metrially reti�ed mosai and a sample frame of the syntheti advertisement sequene.

10.4 Content-based manipulation

In this setion we will desribe an example of ontent-based manipulation of a video sequene, in

whih the segmented representation is exploited to insert a syntheti objets into the bakground,

suh as an advertising poster. The idea is to edit the bakground mosai, then use the same

deoding proedure as desribed in Setion 9 to to reate a new realisti sequene. The insertion

of the syntheti sign is done on the metrially reti�ed mosai. After editing, the reti�ed mosai

is then is warped bak onto its original plane, hene the syntheti sign gets slanted aordingly.

Figure (24) presents a result of video editing. On the left there is the metrially reti�ed mosai of

the bakground. All the editing operations an be performed on this image. At this point a bak

transformation brings the modi�ed bakground in its original referene frame, so that the altered

sequene an be built orretly (Figure (24), right).

More examples and sequenes are available at the web page:

http://www.ee.hw.a.uk/~fusiello/mosai demo/.

11 Conlusions and open issues

This report aounts for our researh ativity in the appliations of 2D image registration.

After a areful exploration of the literature, we onentrated on some aspets of partiular interest

both for us and for our host group. In partiular we developed sound ode for homography ompu-

tation, image mosaiing, image stabilization, motion segmentation, video oding/deoding, whih

our olleagues might �nd useful. Yet, there are still a few open issues.

Our work ould be extended in several diretions. As for the mosais, multiresultion, ylindrial

(or spherial) projetion ould be added without modifying the approah hosen. More strutural

hanges would be required to aommodate for long sequenes by employing sub-mosaiing, or to

perform on line onstrution of the mosai by �nding a reursive estimator whih ould substitute

the median. A big issue in mosaiing is the objetive evaluation of the quality of the result. No

attempt have been made in the past, to the best of our knowledge. The use of image quality indies

suh as Tenengrad, used for estimating the defousing, or the haraterization of the quality in terms

of the Fourier spetrum ould be investigated.

As for the motion segmentation, strutural improvements would be the introdution of an automati

proedure for omputing the threshold used on the di�erene images and the extension of the

method to multiple moving objets, appearing and disappearing in any frame.
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Our urrent method an be seen as a very simple target traker based on the assumption that

only one objet is moving and that it appears in the �rst frame. Without modifying the motion

detetion module, a more omplex traker an be plugged-in, whih aters for multiple targets in

a lutter [BSF88℄.
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A Two-view geometry

If we take the �rst amera referene frame as the world referene frame, we an write the two

following general amera matries:

~

P = A[Ij0℄ = [Aj0℄ (24)
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be the 3D point and its projetion onto the �rst amera, respetively, Then

�
~
m =

~

P
~
w; (26)

where � is the depth of w, that is, its distane from the foal plane of the �rst amera. Similarly,

for the seond amera we an write:
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and from (27) and (24) we obtain:
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Substituting the latter in (28) yields
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Figure 25: The epipolar geometry
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Figure 26: The map between a world plane and a perspetive image is an homography

B Metri reti�ation

The map between a 3D point w and its projetion onto the image plane is given by a 3� 4 matrix

P (in homogeneous oordinates) suh that:

�
~
m =

~

P
~
w; (31)

where � is the depth of w.

The map between a world plane and a perspetive image is a homography (a plane projetive

transformation). The easiest way to see it, is to hoose the world oordinate system suh that the

plane of the points have zero z oordinate.

Then the perspetive projetion matrix

~

P redues to
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Figure 27: A perspetive image and a metri reti�ed image of the plane (from [LCZ99℄).
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(32)

whih is a 3� 3 matrix representing a general plane to plane projetive transformation.

A homography is fully de�ned by four points of whih we know the relative position in the world

plane. One the homography is determined, the image an be bak projeted onto the objet plane.

This is equivalent to synthesize an image from a fronto-parallel view of the plane. This is known

as metri reti�ation [LZ98℄ of a perspetive image.

If four points annot be measured a strati�ed approah is used. The projetive transformation H

an be deomposed into a onatenations of three matries M, C and V representing similarity,

aÆne and pure projetive transformations respetively:

H =MCV (33)

� the similarity matrix M (four parameters) an be ignored;

� geometry is reovered up to an aÆne transformation by applying projetive matrix V:
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where l
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= (l
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; l

2

; l

3

) is the vanishing line that an be reovered from two vanishing points,

or a set of equally spaed lines on the plane;

� reovery of metri geometry requires the aÆne matrix C:
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(35)
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The two parameters � and � an be omputed from the intrinsi parameters [LCZ99℄ or from

at least two independent onstraints hosen among the following:

{ a known angle

{ equality of two (unknown) angles

{ a known length ratio

C Computing things from homographies

Homography H

�

indued by a plane, known intrinsi parameters

Using the de�nition of H

1

we get

H

�

= A

0

(R+ t

n

>

d

)A

�1

: (36)

Therefore motion parameters R and t as well as plane parameters n and d are enoded by H

�

:

A

0�1

H

�

A = dR+ tn

>

: (37)

By taking the SVD fatorization of

^

H

�

= A

0�1

H

�

A we get

^

H

�

=U�

�

�V

>

(38)

Hene

�

�

� =

d

s

(sU

>

RV) + (U

>

t)(V

>

n)

>

= d

0

R

0

+ t

0

n

0>

(39)

where s = det(U) det(V) (to ensure that R

0

is a rotation).

This equation an be solved (with a twofold ambiguity in the solution) to obtain: (i) the normal

to the plane n, (ii) the rotation R and (iii) the translation saled with the distane to the plane

(t=d) [FL88℄.

Homography H

1

of in�nity plane, unknown but onstant intrinsis

Intrinsi parameters an be omputed (solving a linear system) from

H

1

AA

>

H

>

1

= AA

>

: (40)

Then the rotation an be extrated from H

1

= A

0

RA

�1

:

This is a very simple autoalibration tehnique[Har97℄, that has been extended also to varying

intrinsis[dHH99℄.

H

1

an be obtained

� by knowing at least 3 vanishing point;

� by approximating it with a plane \far enough" from the amera[VZR96℄;

� by ausing the amera to rotate (more frequently)[Har97, dHH99℄.
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