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Abstra
t

This report outlines the work 
arried out by the authors on 2D image registration. Starting

from the ba
kground theory, we will show several appli
ation ranging from mosai
s to 
ontent-

based video manipulation. In parti
ular we will fo
us on underwater video mosai
ing. No

assumptions are made about the video sour
e, as our algorithm 
an 
ope with data 
oming from

disparate devi
es, su
h underwater 
ameras and 
ommer
ial hand-held 
ameras. A wide set of

results is shown.

1 Introdu
tion

Image registration[Bro92, GM99℄ is the pro
ess of determining 
orresponden
e between all points

into images of the same s
ene. By registering two images, information from di�erent sour
es 
an be


ombined, the geometry of the s
ene 
an be re
overed, and 
hanges o

urred in the s
ene between

the times the images there obtained 
an be determined. Image registration is often needed in

medi
al image analysis, pro
essing of remotely sensed data, robot vision, automated monitoring,

and industrial inspe
tion.

Dire
t minimization of pixel intensity di�eren
es has been widely used to register images [Sze96,

IAB

+

96, SA96℄. This is 
losely related to the problem of approximating the 2D motion �eld

[BFB94, CV92℄, that is, the ve
tor �eld that des
ribes the relative motion between the viewing


amera and the observed s
ene. An approximation of 2D motion �eld is the opti
al 
ow. Flow-

based methods, though dense and a

urate, are 
omputationally expensive, and are very sensitive

to lo
al minima. An alternative approa
h 
onsists of sele
ting a number of features from the images,

establishing 
orresponden
es between them, and determining a transformation fun
tion that maps

points in one image to points in the other image.

We hold that, although less 
ommon, feature based registration [ZFD97℄ is to be preferred. Besides,

being less 
omplex, methods based on the tra
king of two dimensional features (su
h as 
orners)

use motion information only where it is most reliable, be
ause feature points do not su�er from the

aperture e�e
t [TV98℄, typi
al of an opti
al 
ow approa
h. Digital video sequen
es have a very high

frame rate (usually 25 frames per se
ond), whi
h strongly points toward a feature tra
king based

registration, be
ause on one hand it requires a fast registration and on the other it makes tra
king

feasible, being dense.

Among the various appli
ations of image registration, we will fo
us mainly on Mosai
ing, that is

the automati
 alignment of multiple images into larger aggregates [Sze96℄. In many real s
enarios,

it is adequate to des
ribe a stati
 s
ene, the image motion of whi
h is only due to 
amera motion,

using a mosai
.

1
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A mosai
 des
ription suÆ
es when 
amera 
enter does not move appre
iably or when image motion


an be well approximated by that of a single plane. In both 
ases, a two-dimensional (2D) motion

model 
an be adopted.

Other works in mosai
ing in
ludes [CZ98, RPFRA98, Dav98, GSV98, MC97, SK97℄.

The stru
ture of this report is the following: se
tion 2 reviews the ba
kground notions needed,

in se
tion 3 the feature tra
ker used to extra
t and follow the interesting points is des
ribed, se
-

tion 4 reports how the transformation between two images is 
omputed. Se
tion 5 deals with the

motion estimation problem. Se
tion 6 gives a brief introdu
tion to mosai
ing te
hniques. Se
tion

7 spe
ializes to the stabilization problem, while se
tion 8 reports a mosai
-based approa
h to mo-

tion segmentation. In se
tion 9 an interesting appli
ation of mosai
-based segmentation 
an be

found. Se
tion 10 
ontains a set of results obtained with our experiments in mosai
s 
onstru
tion,

stabilization of sequen
es and video 
oding. The report also 
ontains three appendi
es that give

more details about the two view geometry, the metri
 re
ti�
ation and the information that 
an be

extra
ted from homographies.

2 Ba
kground

A non-singular linear transformation of the proje
tive plane [SK52℄ into itself is 
alled homography

(or 
ollineation). The most general homography is represented by a non-singular 3�3 matrix H:
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Points are expressed in homogeneous 
oordinates, that is, we denote 2-D points in the image plane as
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The matrix H has 8 degrees of freedom, being de�ned up to a s
ale fa
tor. The transformation is

linear in proje
tive (or homogeneous) 
oordinates, but it is non linear in Cartesian 
oordinates:
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Two images taken by a moving 
amera are related by a proje
tive plane transformation in two


ases: a planar s
ene imaged from di�erent points of view or a 3D s
ene viewed from the same

point of view (the 
amera is rotating around its opti
al 
entre).

In general, it 
an be seen that two points m and m

0

, proje
tion of the 3D point w onto the �rst

and the se
ond view respe
tively, are related by

2

�

0

~
m

0

= �A

0

RA

�1

~
m+A

0

t: (3)

where A is a 3 � 3 matrix en
oding the intrinsi
 parameters of the 
amera (fo
al length, aspe
t

ratio, image 
entre), R is a 3� 3 rotation matrix whi
h gives the 
amera rotation between the two

views, and t is a 3 � 1 ve
tor representing the translation of the opti
al 
entre between the two

views. � and �

0

are the distan
es of the 3D point from the �rst and se
ond 
amera fo
al planes.

1

We shall hen
eforth use the symbol ~to indi
ate homogeneous 
oordinates.

2

See Appendix A for details.
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If 
amera is rotating, then t = 0 and we get:

�

0

�

~
m

0

= A

0

RA

�1

~
m: (4)

The 3 � 3 matrix H

1

= A

0

RA

�1

represents an homography, and does not depend on the 3D

stru
ture. In the other 
ase, if the 
amera undergoes a general rigid motion, but 3D points lie on

a plane � with Cartesian equation n

>

w = d, Eq. (3) 
an be spe
ialized, obtaining:
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Therefore, there is a proje
tive plane transformation between the two views indu
ed by the plane

�, given by H

�

= H

1

+A

0

t

n

>

d

A

�1

. The H

1

homography, obtained in the previous 
ase, 
an be

interpreted as the homography indu
ed by a very spe
ial plane, the in�nity plane, as 
an be seen

by letting d!1 in (5).

It might be worth showing how two views are related in the general 
ase of full 3D s
ene and

arbitrary 
amera motion. Starting again from Eq.(3)

�
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~
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0

t; (6)
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; we obtain (from Eq. 5):
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where a = d � n

>

�A

�1

~
m is the orthogonal distan
e of the 3D point w (of whi
h m and m

0

are

proje
tions) to the plane �. If w is on the 3D plane �, then
~
m

0

' H

�

~
m. Otherwise, the remaining

displa
ement, 
alled parallax, is proportional to the relative aÆne stru
ture 
 = a=(d �) of w (wrt

the plane �) [SN96℄. The relative aÆne stru
ture of a point depends on its depth, on the 
hoi
e

of the �rst view and on the referen
e plane. When the referen
e plane is the plane at in�nity, the

relative aÆne stru
ture redu
es to 
 = 1=�; as 
an easily be seen from Eq.(3).

This is not all the story. The homography matrix H

�

that one 
an measure from image 
orrespon-

den
es is de�ned only up to a s
ale fa
tor. Sin
e (in Eq. 7) it o

urs in a sum, we need to normalize

it.

Let 
onsider a point w

0

62 � and s
ale H

�

to satisfy the equation

~
m

0

0
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�
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0
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This implies that

a

0

d �

0

= 1, hen
e d =

a

0

�

0

. Therefore, Eq. 7 rewrites:

~
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where H

�

is s
aled to satisfy
~
m

0

0

' H

�

~
m

0

+ e

0

. The relative aÆne stru
ture is the produ
t of two

ratios, the �rst being the ratio of the perpendi
ular distan
e a of a point w to the plane � and the

depth � to the referen
e 
amera, and the se
ond ratio is of the same form but applied to a �xed

point w

0

whi
h is used to set a uniform s
ale.
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Figure 1: Geometri
 interpretation of the homography+parallax de
omposition of Equation (7).

3 Homography 
omputation

Let us suppose that we are given an image sequen
e in whi
h there is a negligible parallax (i.e.,

subsequent frames are approximately related by a homography, as dis
ussed in Se
. 2) and that

point 
orresponden
es through the image sequen
e have been obtained by features tra
king (Se
. 4).

In this se
tion we shall see how homographies are 
omputed, and how to 
ope with moving obje
ts.

Four points (provided that no three of them are 
ollinear) determine a unique homography. Indeed,

eight independent parameters are required to de�ne the homography. Ea
h point 
orresponden
e

in the plane provides two equations:
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It is then ne
essary to �nd (at least) four point 
orresponden
es to de�ne the transformation matrix

uniquely (up to a s
ale fa
tor). There are two methods of dealing with the unknown s
ale fa
tor in

a homogeneous matrix: 
hoose one of the matrix elements to have a 
ertain value, usuallyH

3;3

= 1,

or solve for the matrix up to a s
ale. We used the latter, whi
h is more general. Equation (10) 
an

be rearranged as:
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For n � 4 points, we obtain a rank de�
ient system of homogeneous linear equations, whi
h has

the form Lh = 0. If n > 4 there are more equations than unknown, and, in general, only a Least
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Squares solution 
an be found. Let L = UDV

>

be the Singular Value De
omposition (SVD)

[GL96℄ of L. One Least Squares solution is the 
olumn of V 
orresponding to the least singular

value of L. The 
omputational 
ost of SVD is O(n

3

).

As pointed out by Hartley in the 
ase of the Fundamental matrix estimation, a better 
onditioned

problem is obtained by data standardization[Har95℄. The points are translated so that their 
entroid

is at the origin and are then s
aled so that the average distan
e from the origin is equal to

p

2. Let T

and T

0

the resulting transformation in the two images and
~
m

�

= T
~
m,

~
m

0�

= T

0

~
m

0

the transformed

points. Using
~
m

�

and
~
m

0�

in the homography estimation algorithm, we obtain a matrix H

�

that

is related to the original one by H

�

= T

0

HT

�1

, as it 
an be easily seen.

3.1 Dominant motion estimation

In the 
ase of a stati
 s
ene with a moving 
amera, the Least Squares estimate are a

urate enough.

In presen
e moving obje
ts the number outliers in the regression problem in
reases, sin
e ea
h pixel

of a moving obje
t is an outlier. Therefore, in this 
ase, a robust method must be employed in

order to estimate the homography that explains the motion of the majority of the features, that is

the dominant motion. Unless the s
ene is 
luttered with many moving obje
ts, this is usually the

motion of the 
amera with respe
t to the stati
 ba
kground.

Least Median of Squares[RL87℄ is a robust regression te
hnique whi
h has been used in many

Computer Vision appli
ations[MMKR91, Zha97℄. The prin
iple behind LMedS is the following:

given a regression problem, where d is the minimum number of points whi
h determine a solution

(four, in our 
ase), 
ompute a 
andidate model based on a randomly 
hosen d-tuple from the data;

estimate the �t of this model to all the data, de�ned as the median of the squared residuals, and

repeat optimizing the �t. The residuals are de�ned, in our 
ase, for ea
h point 
orresponden
e, as

the distan
es between the warped and the a
tual point in the se
ond image. In formulae, let

^

H be

an approximate solution of (11), then the residuals are

s

j

= jjm

0

j

�

^

Hm

j

jj j = 1 : : : n (12)

where n is the number of point 
orresponden
es.

The data points that do not belong to the optimal model, whi
h represent the majority of the data,

are outliers. The breakdown point, i.e., the smallest fra
tion of outliers that 
an yield arbitrary

estimate values, is 50%. In prin
iple all the d-tuples should be evaluated; in pra
ti
e a Monte Carlo

te
hnique is applied, in whi
h only a random sample of size m is 
onsidered. Assuming that the

whole set of points may 
ontain up to a fra
tion � of outliers, the probability that at least one of

the m d-tuple 
onsist of d inliers is given by

P = 1� (1� (1� �)

d

)

m

: (13)

Hen
e, given d, �, and the required P (
lose to 1), one 
an determine m:

m =

log(1� P )

log(1� (1� �)

d

)

: (14)

In our implementation we assume � = 0:5; and require P = 0:99, thus m = 72:

When Gaussian noise is present in addition to outliers, the relative statisti
al eÆ
ien
y (i.e., the

ratio between the lowest a
hievable varian
e for the estimated parameters and the a
tual varian
e)

of the LMedS is low; to in
rease the eÆ
ien
y, it is advisable to run a weighted LS �t after LMedS,

with weights depending on the residual of the LMedS pro
edure [RL87℄.
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The residuals s

j

, j = 1; : : : ; n are used to generate the weights for the �nal, weighted LS regression

as follows. First, a robust standard deviation estimate [RL87℄ is 
omputed as

�̂ = 1:4826

�

1 +

5

n� d

�

r

med

j

s

2

j

; (15)

where d is the number of parameters (4 in our 
ase). Se
ond, a weight is assigned to ea
h point


orresponden
e, su
h that

w

j

=

�

1 if js

j

j=�̂ � 2:5;

0 otherwise:

(16)

The 
omputational 
ost of LMedS with Monte Carlo speed up O(mn logn).

4 Feature tra
king

In this se
tion the Shi-Tomasi-Kanade tra
ker [ST94, TK91℄ will be brie
y des
ribed. Consider

an image sequen
e I(m; t), with m = [u; v℄

>

; the 
oordinates of an image point. If the time

sampling frequen
y is suÆ
iently high, we 
an assume that small image regions are displa
ed but

their intensities remain un
hanged:

I(x; t) = I(Æ(m); t+ �); (17)

where Æ(�) is the motion �eld, spe
ifying the warping that is applied to image points. The fast-

sampling hypothesis allows us to approximate the motion with a translation, that is, Æ(m) =m+d,

where d is a displa
ement ve
tor. The tra
ker's task is to 
ompute d for a number of sele
ted points

for ea
h pair of su

essive frames in the sequen
e.

As the image motion model is not perfe
t, and be
ause of image noise, Eq. (17) is not satis�ed

exa
tly. The problem is then �nding the displa
ement

^

d whi
h minimizes the SSD residual:

� =

X

W

�

I(m+ d; t+ �)� I(m; t)

�

2

(18)

whereW is a small image window 
entered on the point for whi
h d is 
omputed. By plugging the

�rst-order Taylor expansion of I(m + d; t + �) into (18), and imposing that the derivatives with

respe
t to d are zero, we obtain the linear system Gd = e; where

G =

X

W

rI rI

>

; e = ��

X

W

I

t

rI; (19)

with = rI = [�I=�u �I=�v℄

>

and I

t

= �I=�t: Using this linear approximation of the solution, the

Newton-Raphson iterative algorithm for minimizing (18) writes:

�

d

0

= 0

d

k+1

= d

k

+

^

d:

where d

k

is the displa
ement estimate at iteration k and

^

d is the solution of

G

^

d =

X

W

h

(I(m; t)� I(m+d

k

; t+1))rI(m; t)

i

:
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In this framework, a feature 
an be tra
ked reliably if a numeri
ally stable solution to Eq. (4)


an be found, whi
h requires that G is well-
onditioned and its entries are well above the noise

level. In pra
ti
e, sin
e the larger eigenvalue is bounded by the maximum allowable pixel value, the

requirement is that the smaller eigenvalue is suÆ
iently large. Calling �

1

and �

2

the eigenvalues

of G, we a

ept the 
orresponding feature if min(�

1

; �

2

) > �; where � is a user-de�ned threshold

[ST94℄.

5 Motion estimation and sequen
e registration

A feature-based motion estimation te
hnique 
onsists of three main steps, performed on adja
ent

images: extra
tion of features from the images, mat
hing of features and estimation of the trans-

formation between the images.

5.1 Feature based 2D motion estimation

We have performed feature extra
tion and point 
orresponden
e with the feature tra
ker des
ribed

in Se
tion 4.

The tra
ker has three main features:

� Extra
tion of features, that is used on the �rst frame of the sequen
e

� Tra
king of features from one frame to the following

� Re-extra
tion of the features, if ne
essary. This means that if the s
ene has 
hanged there


ould be too few features to tra
k. Indeed, if in theory to obtain an homography 4 features

are enough, in pra
ti
e is better to have mu
h more than that, be
ause the quality of the

features is not always good. The re-extra
tion fun
tion will add new features to the ones still

present in the 
urrent image.

Assuming that the parallax e�e
t is negligible, the homography approximating the transformation

between 
ouple of images is easy to 
al
ulate.

The tra
ker produ
es a list of features 
oordinates for ea
h image. For ea
h 
ouple of images, after

all the features lost by the tra
ker have been dis
arded, the homography 
an be produ
ed, using

the method des
ribed in Se
tion 3.

5.2 2D Image registration

Global registration establishes a mapping between ea
h frame and an arbitrary referen
e frame. We

have des
ribed a mapping between an image and another through a homography. On
e we know

how to 
al
ulate the homography between 
ouple of images, a referen
e frame must be 
hosen, in

order to warp ea
h image of the sequen
e into the 
ommon referen
e frame:

� Frame to �xed frame registration: if the s
ene does not 
hange too mu
h, that is, if

the overlapping between an arbitrary 
ouple of images is not too small, a �xed referen
e

image 
an be 
hosen and all the homographies between ea
h image and the �xed one 
an be


omputed. At this point the homographies 
an be used to warp ea
h image in order to �t

the 
ontent of the referen
e one.
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� Adja
ent frames registration: if the sequen
e spans a wide area the tra
king of the

features will be more robust between 
ontiguous images. To produ
e the global alignment,

sin
e the homography, as de�ned in (1) is a linear operator, the transformation between

non-
ontiguous frames 
an be obtained by multiplying the transformation matri
es of the

in-between image frames. The transformation between the image I

i

and the image I

j

, where

i < j, is

H

i;j

=

j�1

Y

k=i

H

k;k+1

(20)

In most of the 
ases that we present, the images are registered with respe
t to the �rst frame of the

sequen
e. On
e the global alignment have been 
ompleted, if we imagine to pier
e all the aligned

frames with a temporal line, we will interse
t pixels that, in absen
e of parallax, 
orrespond to the

same world point.

5.3 Parallax-based 3D motion estimation and registration

As des
ribed in se
tion 2 a homography relates two views when the 
amera motion is rotational

or when the entire s
ene 
an be approximated by a single parametri
 surfa
e, typi
ally a plane. In

pra
ti
e a 2D alignment is a good approximation if those 
onditions are violated but the violations

are small, for instan
e if the 
amera translates slowly or if the relative depth of the s
ene (�Z) is

small 
ompared to the distan
e between the 
amera and the s
ene (Z). In those 
ases the residuals

will not be zero but they will be small and the mosai
 
onstru
tion has to be 
hanged in order

to re
e
t the parallax e�e
ts [SN96, IAB

+

96, SA96℄ The plane+parallax representation of image

motion provides a mean to register pie
es of a s
ene with arbitrary depth[SA96℄. This approa
h is

based on the fa
t that the relative aÆne stru
ture is invariant on the 
hoi
e of the se
ond view.

This property has been used to solve a variety of 3D geometry from multiple views. If the regular

aÆne stru
ture is 
al
ulated between two views, then a third view 
an be related to the previous

referen
e view, by spe
ifying the new viewing parameters (the plane homography and the epipole):

1. given two views,  

i

and  

0

i

in full 
orresponden
e (m

i

$m

0

i

; i = 0 : : : n);

2. re
over the epipoles (8-point algorithm [Har95℄ or variations);

3. given 3 arbitrary points and the epipoles, 
ompute the plane homography H

�

;

4. s
ale H

�

to satisfy
~
m

0

0

'H

�

~
m

0

+ e

0

;

5. solve for 


i

(relative aÆne stru
ture) in
~
m

0

i

' H

�

~
m

i

+ e

0




i

;

6. a new view  

00

i

is represented by a new epipole e

00

and a new plane homography H

�

;

7. points in the third view satisfy
~
m

00

i

' H

�

~
m

i

+ e

00




i

e

00

and H

�


an be 
omputed from 6 
orresponding points between �rst and third view.

6 Mosai
ing

Video mosai
ing has re
ently attra
ted a growing interest in the �eld of digital video pro
essing

and analysis, in appli
ations su
h as automati
 indexing of video data (see [BMM99℄ for a re
ent

review), video 
oding and video editing.
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A mosai
 is an image 
onstru
ted from all the frames of a s
ene sequen
e, that gives a panorami


view of the s
ene. Mosai
s are a useful way to represent the information 
ontained in video se-

quen
es. Sin
e the images belonging to a sequen
e usually have large overlapping, a mosai
 of the

sequen
e provides a signi�
ant redu
tion in terms of spa
e.

There are a lot of possible des
ription of a s
ene that 
an be 
hosen depending on the s
ene in

exam. A

ording to Anandan et al. [IAB

+

96℄:

� Salient still [MB96, MP94℄: Stati
 mosai
s have been previously referred as salient stills

of simply mosai
s. They are usually built bat
h mode, by aligning all frames of a sequen
e

to a referen
e 
oordinate system, whi
h 
an be either user-de�ned or 
hosen automati
ally

a

ording to some 
riteria and by integrating all the images in a single mosai
 image. The

only information that are diÆ
ult to 
apture are the 
hanges in the s
ene with respe
t to

the ba
kground. On
e a suitable way of dealing with moving obje
ts has been found, stati


mosai
s, eÆ
ient s
ene representation, ideal for video storage and retrieval, 
an also be su
-


essfully used for image stabilization, video 
ompression, 
ontent-based layered representation

of information.

� Dynami
 mosai
: The only real limit of stati
 mosai
 is that they often must be 
onstru
ted

bat
h mode, for this reason they 
annot 
ompletely follow the dynami
 aspe
t of a video

sequen
e. For this reason in various situations dynami
 mosai
s have been 
hosen. The


ontent of a dynami
 mosai
 is variable and is 
onstantly updated with the information of

the 
urrent frame. When the �rst frame is read, the mosai
 will 
oin
ide with the frame itself.

In the further steps, the mosai
 will be updated in order to be 
oherent with the latest frame

read [IAB

+

96, SA96℄.

� Multiresolution mosai
: Changes in image resolution 
an o

ur within a sequen
e if the


amera zooms in or out. If the mosai
 is built at a low resolution, it will 
ontain less infor-

mation that the one that would have been available in the original sequen
e. On the other

hand building the mosai
 at the higher dete
ted resolution, 
an 
ause oversampling of the

low resolution frames. This problem 
an be handled with a multi-resolution stru
ture with


aptures information from ea
h new frame at its highest resolution level. In this way all the

possible information is stored.

6.1 Sequen
e alignment

In this se
tion we deal with the problem of 
reating a mosai
 from a sequen
e of images. The 
on-

stru
tion of a mosai
 is a

omplished in three stages: motion estimation, registration and rendering.

Motion estimation and registration have been des
ribed in general in the previous se
tions.

In this 
ase the 2D motion estimation and alignment of the image frames of the sequen
e 
an be

performed in three ways [IAB

+

96℄:

� Adja
ent frames: the homographies are 
omputed between su

essive frames of the se-

quen
e. They 
an be 
omposed to obtain the alignment between any two frames of the

sequen
e.

� Frame to mosai
: to limit the problem of misalignments, for every new frame a temporary

mosai
 
an be built and the new homography is 
omputed between it and the new frame.

This approa
h is alternative to the one of global alignment and further blending.
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� Mosai
 to frame: if one wants to maintain ea
h image in its 
oordinate system it 
an be

better to align the mosai
 to the 
urrent frame.

If one needs to use a parallax-based 3D model, given a sequen
e of images with full 
orresponden
es

between adja
ent ones, one 
an 
ompute, for ea
h view, the plane homography and the relative

aÆne stru
ture, using the previous view as the \se
ond view", and then warp it to a referen
e view

(the \third" view) using the appropriate view parameters, that is the new 
orresponden
es between

the 
urrent image and the referen
e one.

6.2 Mosai
 rendering

On
e the images have been aligned, they 
an be integrated, using a temporal �lter, into a mosai


image. Several temporal �lters 
an be used to 
onstru
t the mosai
 image. They all work on the

intensity values belonging to the temporal line of ea
h pixel.

� The temporal average of the intensity values. Moving obje
ts would leave a \ghost-like" tra
e

into the mosai
. It is e�e
tive in removing temporal noise.

� The most re
ent information that is, the entire 
ontent of the most re
ent frame is used

to update the mosai
. A variation of this is used in general in the dynami
 
onstru
tion

des
ribed above.

� The temporal median of the intensity values. Moving obje
ts whose intensity patterns are

stationary for less than half of the frames, tend to disappear in the resulting mosai
. In

pra
ti
e, moving obje
ts are treated as outliers. The results are sharper than the ones obtained

with temporal average.

� Weighted temporal average or weighted temporal median where the weights de
rease with the

distan
e of the pixel from the frame 
enter. This s
heme aims at ignoring distortions in the

original sequen
e.

Other temporal �lters have been presented in literature. For a wide panorami
 see [IAB

+

96℄.

7 Stabilization

Image stabilization 
onsists 
ompensating for the 
amera motion by applying a suitable trans-

formation to the image. In the stabilized image, s
ene points are motionless in spite of 
amera

motion.

Image stabilization is really 
lose to mosai
 
onstru
tion, indeed from the stabilized sequen
e a

mosai
 is obtained by merging the frames, that are already registered.

In order to 
ompensate for the relative motion of the 
amera, we need to 
ompute the homographies

that map ea
h frame onto a given referen
e image. In the warped images, stati
 s
ene points are

(ideally) motionless. We assume that ea
h frame in the sequen
e overlaps with the referen
e one.

There is no point in stabilizing an image whi
h does not overlap with the referen
e one; in this 
ase

the latter should be 
hanged.

Usually, the global registration is performed using the �rst image frame as a referen
e and all the

other frames are mapped onto it, either dire
tly with a frame to �xed frame motion estimation or

with a adja
ent frames motion estimation followed by a global alignment.
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8 Segmentation of moving obje
ts

In this se
tion is des
ribed a method to segment moving obje
ts in image sequen
es using a mosai
-

based te
hnique.

We �rst des
ribe what 
hanges in presen
e of moving obje
t and how the results obtained 
an be

used to perform motion segmentation.

After 
onstru
ting the mosai
 with simple features based registration, moving obje
ts are segmented

out by 
omputing the grey-level di�eren
es between the stable ba
kground (mosai
) and the 
urrent

frame. Similar approa
hes to ours have been used in the �eld of surveillan
e and targeting, where

the ego motion of the 
amera is 
ompensated before extra
ting moving targets from the ba
kground.

In [CM99, SA96℄ the motion is 
omputed for every pixel with a robust te
hnique, and outliers masks

give the moving obje
t. In [GJ98℄ temporal analysis of gray levels, based on probabilisti
 models

and a-priori information, is 
arried out in order to segment moving obje
ts.

The motion estimation must be performed with a robust te
hnique as the one des
ribed in se
tion

(3.1). This will produ
e an estimation of the motion of the ba
kground, that is the relative motion

of the 
amera w.r.t. the s
ene, provided that the obje
t moving inside the s
ene is not too big. At

this point a sequen
e registration 
an be performed in the usual way. To segment out the moving

obje
t, or equivalently to build the ba
kground, a suitable temporal �lter must be 
hosen, for in-

stan
e the median or the weighted median. The blending stage will produ
e a mosai
 of all the

ba
kground elements, while the obje
t moving will be disappeared. It is important to noti
e that

to use the median �lter all the frames need to be registered in advan
e, sin
e it does not exist an

in
remental optimal estimator of the median operator. With a mosai
 to frame registration (that

is a ba
k registration of the mosai
 onto every single frame of the image sequen
e) a syntheti


sequen
e of the ba
kground without the moving obje
t 
an be obtained.

The foreground 
an be obtained with 
hange dete
tion and motion segmentation te
hniques that

are now well known in literature [HNR84, Hua81, IRP94℄, 
omparing ea
h frame of the virtual

sequen
e with the 
orresponding frame of the original one.

Irani et al. [IAB

+

96℄ suggest to 
hoose the same lo
al misalignment measure, S

t

, that they su
-


essfully used in their motion analysis works:

S

t

(x; y) =

P

(x

i

;y

i

)2N(x;y)

jI

t

(x

i

; y

i

)� I

pred

t

(x

i

; y

i

)j

P

(x

i

;y

i

)2N(x;y)

j 5 I

t

(x

i

; y

i

)j+ C

: (21)

Their method is based on a temporal 
ontinuity between the frames 
ompared, that are, in our


ase, the mosai
 and the 
urrent frame. Indeed, if the mosai
 is built dynami
ally[IAH95℄, it is


onsistent with the most re
ent frame i.e., the mosai
 
ontains all the information of the latest

frame, for instan
e all the moving obje
ts present in the latest frames. There exists, therefore, a

temporal 
oheren
e between mosai
 and 
urrent frame. Instead, if the mosai
 is still, this 
oheren
e

does not exist any more, sin
e a possible moving obje
t in the mosai
 
an be blurred or, as in our


ase, it has been removed. There is, thus, a strong spatio-temporal dis
ontinuity between mosai


and frame that de
rease the signi�
an
e of the misalignment measure in itself. A di�eren
e-based

te
hnique seems to be more e�e
tive to our purposes. A grey level di�eren
e is performed between

ea
h original frame and the equivalent virtual one. Finally the result is thresholded to obtain a

binary map.



Resear
h Memorandum RM/99/15 12

The binary motion map 
ontains the blobs produ
ed by the moving obje
ts and other smaller

blobs due to misalignments, 
hange in illumination or noise.

To segment out only the obje
ts in motion, a simplifying assumption has been made: we assumed

that only one obje
t was moving in the s
ene. A generalization is 
urrently under investigation. We

dete
ted the obje
t in the �rst frame by 
hoosing the area of the binary map 
ontaining the bigger


onne
ted 
omponent of moving pixels. After this initialization, on every frame i, the 
entroid of

the largest 
onne
ted 
omponent of its binary map is 
omputed. The 
onne
ted 
omponent of the

i+ 1-th binary map 
hosen is the 
losest to the previous 
entroid.

At this point post-pro
essing of the resulting maps is also needed, in order to obtain good qual-

ity segmentations. The morphologi
al operator of 
losure [Ser82℄, that is dilation and erosion

in 
as
ade, produ
e a more 
ompa
t blob, without adding noise and without altering its original

dimension.

8.1 Des
ription of the algorithm

Constru
ting the mosai
:

(1) for ea
h new image of the sequen
e I_i


al
ulate the homography wrt the previous one

perform global registration wrt I_ref: 
al
ulate H(ref,i)

(2) build ba
kground mosai
 blending all the images with a median filter

Obje
t segmentation:

(1) for ea
h image of the sequen
e I_i

warp the mosai
 onto the image ref frame I_ref

binary map B_i with a thresholded differen
e between I_i and I_ref

(2) B_0: find the main 
onne
ted 
omponent


ompute the 
entroid 
_0

for ea
h binary map B_i:

find the 
onne
ted 
omponent 
losest to 
_(i-1)


ompute the 
entroid 
_i

(3) for ea
h B_i

morphologi
al post-pro
essing of B_i

build a grey level map (foreground) merging B_i and I_i

9 MPEG4 video 
oding

In this se
tion we des
ribe how the segmentation method explained above 
an be used to perform

MPEG4 video 
ompression.

The last MPEG standard, MPEG-4 [KPC97℄, follows an approa
h that is 
alled 
ontent-based

[WA94, KPC97℄, based on the way of per
eiving a s
ene typi
al of the human brain. In a 
ontent-

based approa
h the 
oding algorithm must des
ribe the semanti
al meaning of the di�erent obje
ts.

MPEG4 relies on a segmented representation of the video data, in order to a
hieve 
ontent-based
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manipulation of image sequen
es. A s
ene is 
onsidered to be 
omposed of several Video Obje
ts

(VOs). Ea
h VO is 
hara
terized by intrinsi
 properties su
h as shape, texture, and motion. In

this 
ontext, the term obje
t has a very general interpretation, and it is not ne
essarily a physi
al

obje
t. For example, the ba
kground region may be 
onsidered as one VO.

A sprite 
onsists of those regions of a VO that are present in the s
ene, throughout the video

segment. An obvious example is the `ba
kground sprite', whi
h would 
onsist of the mosai
 of the

ba
kground in a 
amera-panning sequen
e.

The MPEG-4 standard does not pres
ribe the method for 
reating VOs, it simply provide a standard


onvention for des
ribing them, su
h that all 
ompliant de
oders are able to extra
t VOs from the

en
oded bit-stream.

If we think of the mosai
 ba
kground and the foreground sequen
e as VOs, the idea des
ribed in

the previous se
tion 
an be seen as an MPEG-4 
ompliant 
ontent-based en
oding te
hnique.

In order to give a sket
h of a whole video 
oding system, let us des
ribe the de
oder fun
tioning.

The large panorami
 mosai
 of the ba
kground (a sprite, in MPEG-4 terminology) is transmitted

to the re
eiver only on
e. The moving foreground obje
t is transmitted separately as an arbitrary-

shape VO, des
ribed in the mosai
 referen
e frame. Finally all the transformations between mosai


and original sequen
e (that is the mosai
 to frame transformation) are needed. A
tually it will

suÆ
e to transmit all the homographies between 
onse
utive frames, sin
e, starting from them, we


an obtain every transformation from one referen
e frame to the other (using Eq. (20) ). In the

de
oding phase, to build the original sequen
e, all we have do is to map the mosai
 onto the frame

of ea
h image and paste the foreground onto it. At this point the original sequen
e is rebuilt.

Content-based representation, allows editing operations on the sequen
e, like inserting novel Video

Obje
ts thereby 
reating a realisti
 syntheti
 sequen
es. An example of this te
hnique will be

des
ribed in Se
tion 10.

10 Results

In this se
tion we will show some results on several appli
ation of 2D image registration, namely

mosai
ing, stabilization, motion segmentation and video representation, 
ontent-based manipula-

tion. The latter is not stri
tly an appli
ation of image registration, but it take advantage of the


ontent-based representation a
hieved before.

10.1 Mosai
 
onstru
tion

Our experiments to still mosai
s 
onstru
tions, have been mainly fo
used on sequen
es a
quired in

the underwater environment. To build the mosai
 we have 
hosen the frame to frame (or adja
ent

frames) approa
h. Figure (2) shows the frames 0, 60, 119 (last) of the sequen
e \Underwater1",

while Fig. (3) shows the resulting mosai
 obtained with a temporal �lter that, at every step,

upgrade the mosai
 with the latest information available.

Figure (3) presents three frames of the sequen
e \Underwater2" (frames 0, 70, 138). The mosai


is shown in Fig. (5).

Other examples of still mosai
s 
an be �nd in the next �gures (from Figure (6) to Figure (12)).

Figures (6)and (7) show other two examples of underwater mosai
s.

Figures (8) and (9) another interesting appli
ation environment of mosai
 te
hniques: art. They

show sequen
e frames and the �nal mosai
 of the \Battistero di Padova" 
upola, a masterpie
e of

Giusto de' Tornabuoni (refs).
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Figure (10) shows the resulting mosai
 of an out-door s
ene of the fa
ade of Mount Batten Building,

in Heriot-Watt. This mosai
 is interesting be
ause the radial distortion ...

Figures (11), (12) and (13) show 3 di�erent results obtained from the same sequen
e 
hanging the

temporal integration. The di�eren
e are due to a person in front that was moving.

Figure 2: First, 
entral and last frame from the sequen
e Underwater1.

Figure 3: Mosai
 of the sequen
e Underwater1.

Figure 4: First, 
entral and last frame from the sequen
e Underwater2.

10.2 Stabilization

Figure (14) shows the frames 0, 35, 45 and 89 of the sequen
e \Clio" made of 90 frames. The white

box represents the position of the referen
e frame (in our 
ase frame 0) with respe
t to the 
urrent

one. The small white 
ross at the 
entre of the box represents a referen
e point that allows to see

how the same pixel in di�erent frames of the stabilized sequen
e, has the same 
ontent.
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Figure 5: Mosai
 of the sequen
e Underwater2.

Figure 6: Mosai
 of the sequen
e Ro
k1.
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Figure 7: Mosai
 of the sequen
e Ro
k2.

Figure 8: First, 
entral and last frame from the sequen
e A�res
o.

Figure 9: Mosai
 of the sequen
e A�res
o.
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Figure 10: Mosai
 of the sequen
e Fa
ade. Noti
e the e�e
ts of radial distortion.

Figure 11: Mosai
 of the sequen
e g78-3. An average �lter has been used to blend the �nal mosai


Figure 12: Mosai
 of the sequen
e g78-3. The �rst image has been put into the mosai
, and in the

next steps only the new pixels have been added
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Figure 13: Mosai
 of the sequen
e g78-3. Every step all the information of the latest image is put

onto the mosai


Sin
e stabilization and mosai
 building are 
losely related, to 
onstru
t the mosai
 from the stabi-

lized sequen
e is straightforward (Figure 15).

10.3 Segmentation of moving obje
ts and video 
oding

Figure (16) and (17) show frames of the two sequen
es that we use to des
ribe our results in

segmenting moving obje
ts. They have been a
quired with a hand-held 
amera. The �rst sequen
e

is an outdoor s
ene with a 
ar driving from the left to the right of the image �eld of view. The ego

motion is nearly rotational, but a small translational 
omponent is present. The se
ond sequen
e

has a slightly di�erent nature, the obje
t (person) in motion is bigger and the natural environment

under the sun produ
es a lot of shadows. The depth of the s
ene 
hanges from the beginning of

the sequen
e to the end. In spite of the fa
t that the 
amera motions are not exa
tly rotational

and the s
enes are not planar, the results obtained are quite satisfa
tory.

Figures (18) and (19) show the mosai
s of the ba
kgrounds obtained with the method explained in

Se
tion 5.

The ba
kground is mapped onto the original sequen
e frames and the residual analysis is performed.

Figure (20) (left) shows the results obtained by using a thresholded di�eren
e between the 28-th

frame of the sequen
e \Manuel" and its ba
kground. In Figure (20) (right) the results obtained

with a gradient based segmentation are shown. As we explained in Se
tion 8, we re
kon that

di�eren
es are more suitable to our purposes.

Figure (21) illustrates results of �nal segmentation, while Figure (22) 
ontains a frame that have

been en
oded and de
oded and the di�eren
es between the same frame and the original one.

As a measure of 
ompression quality we have 
hosen the point signal to noise ratio (PSNR) on the

di�eren
e of ea
h original image of the sequen
e with the 
orresponding 
oded-de
oded one. Given

a sour
e image f , n�m, and a re
onstru
ted image F , obtained by de
oding the en
oded version

of f ,

PSNR(f; F ) = 20 log

10

255

MeanSquareError(f; F )

(22)

where MSE, the mean square error, is

MSE =

1

nm

n

X

i=1

m

X

j=1

(f(i; j) � F (i; j))

1=2

: (23)

The graphi
s in Figure (23) show that the quality of the 
ompression does not degrade too mu
h

throughout the sequen
e.
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Figure 14: Frames (0, 35, 45, 89) stabilized from the sequen
e Clio. The �rst one is the referen
e

frame.

Figure 15: The mosai
 of the sequen
e Clio
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Figure 16: Frames 0, 50, 99 (the last) from \Manuel" sequen
e.

Figure 17: Frames 0, 20, 40 (the last) from \Super5" sequen
e.

Figure 18: Mosai
 of Manuel (ba
kground sprite).
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Figure 19: Mosai
 of Super5 (ba
kground sprite.)

Figure 20: Residual analysis with di�eren
es (left) and normal 
ow (right).

Figure 21: Moving obje
ts extra
ted from the sequen
es.



Resear
h Memorandum RM/99/15 22

Figure 22: Example of a frame from en
oded/de
oded Super5 and di�eren
es with the original one

(right).
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Figure 23: Power signal to noise ratio
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Figure 24: Metri
ally re
ti�ed mosai
 and a sample frame of the syntheti
 advertisement sequen
e.

10.4 Content-based manipulation

In this se
tion we will des
ribe an example of 
ontent-based manipulation of a video sequen
e, in

whi
h the segmented representation is exploited to insert a syntheti
 obje
ts into the ba
kground,

su
h as an advertising poster. The idea is to edit the ba
kground mosai
, then use the same

de
oding pro
edure as des
ribed in Se
tion 9 to to 
reate a new realisti
 sequen
e. The insertion

of the syntheti
 sign is done on the metri
ally re
ti�ed mosai
. After editing, the re
ti�ed mosai


is then is warped ba
k onto its original plane, hen
e the syntheti
 sign gets slanted a

ordingly.

Figure (24) presents a result of video editing. On the left there is the metri
ally re
ti�ed mosai
 of

the ba
kground. All the editing operations 
an be performed on this image. At this point a ba
k

transformation brings the modi�ed ba
kground in its original referen
e frame, so that the altered

sequen
e 
an be built 
orre
tly (Figure (24), right).

More examples and sequen
es are available at the web page:

http://www.
ee.hw.a
.uk/~fusiello/mosai
 demo/.

11 Con
lusions and open issues

This report a

ounts for our resear
h a
tivity in the appli
ations of 2D image registration.

After a 
areful exploration of the literature, we 
on
entrated on some aspe
ts of parti
ular interest

both for us and for our host group. In parti
ular we developed sound 
ode for homography 
ompu-

tation, image mosai
ing, image stabilization, motion segmentation, video 
oding/de
oding, whi
h

our 
olleagues might �nd useful. Yet, there are still a few open issues.

Our work 
ould be extended in several dire
tions. As for the mosai
s, multiresultion, 
ylindri
al

(or spheri
al) proje
tion 
ould be added without modifying the approa
h 
hosen. More stru
tural


hanges would be required to a

ommodate for long sequen
es by employing sub-mosai
ing, or to

perform on line 
onstru
tion of the mosai
 by �nding a re
ursive estimator whi
h 
ould substitute

the median. A big issue in mosai
ing is the obje
tive evaluation of the quality of the result. No

attempt have been made in the past, to the best of our knowledge. The use of image quality indi
es

su
h as Tenengrad, used for estimating the defo
using, or the 
hara
terization of the quality in terms

of the Fourier spe
trum 
ould be investigated.

As for the motion segmentation, stru
tural improvements would be the introdu
tion of an automati


pro
edure for 
omputing the threshold used on the di�eren
e images and the extension of the

method to multiple moving obje
ts, appearing and disappearing in any frame.
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Our 
urrent method 
an be seen as a very simple target tra
ker based on the assumption that

only one obje
t is moving and that it appears in the �rst frame. Without modifying the motion

dete
tion module, a more 
omplex tra
ker 
an be plugged-in, whi
h 
aters for multiple targets in

a 
lutter [BSF88℄.

a
knowledgements

We wish to thank Emanuele Tru

o and Fran
es
o Isgr�o for all the useful dis
ussions and the

suggestions they gave during the 
ourse of this work. Thanks are also due to all the people of

the O
ean Systems Laboratory, Heriot-Watt University, and in parti
ular to Costas Plakas that

implemented the Feature Tra
ker 
ode. Andrea Fusiello has been supported by EPSR (Grant

GR/M40844), Fran
es
a Odone by a Marie Curie Training and Mobility Grant (ERB4001GT-97-

3072).

A Two-view geometry

If we take the �rst 
amera referen
e frame as the world referen
e frame, we 
an write the two

following general 
amera matri
es:

~

P = A[Ij0℄ = [Aj0℄ (24)

~

P

0

= A

0

[Rjt℄ (25)

Let

~
w =

2

6

6

4

x

y

z

1

3

7

7

5

and
~
m =

2

4

u

v

1

3

5

;

be the 3D point and its proje
tion onto the �rst 
amera, respe
tively, Then

�
~
m =

~

P
~
w; (26)

where � is the depth of w, that is, its distan
e from the fo
al plane of the �rst 
amera. Similarly,

for the se
ond 
amera we 
an write:

�

0

~
m

0

=

~

P

0

~
w: (27)

From (26) and (25) we obtain:

�

0

~
m

0

= A

0

[Rjt℄
~
w = A

0

[Rjt℄

0

B

B

�

2

6

6

4

x

y

z

0

3

7

7

5

+

2

6

6

4

0

0

0

1

3

7

7

5

1

C

C

A

= A

0

R

2

4

x

y

z

3

5

+A

0

t; (28)

and from (27) and (24) we obtain:

�A

�1

~
m = [Ij0℄

~
w =

2

4

x

y

z

3

5

: (29)

Substituting the latter in (28) yields

�

0

~
m

0

= �A

0

RA

�1

~
m+A

0

t: (30)
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Figure 25: The epipolar geometry

z

x

W

M

y

C

Figure 26: The map between a world plane and a perspe
tive image is an homography

B Metri
 re
ti�
ation

The map between a 3D point w and its proje
tion onto the image plane is given by a 3� 4 matrix

P (in homogeneous 
oordinates) su
h that:

�
~
m =

~

P
~
w; (31)

where � is the depth of w.

The map between a world plane and a perspe
tive image is a homography (a plane proje
tive

transformation). The easiest way to see it, is to 
hoose the world 
oordinate system su
h that the

plane of the points have zero z 
oordinate.

Then the perspe
tive proje
tion matrix

~

P redu
es to



Resear
h Memorandum RM/99/15 26

Figure 27: A perspe
tive image and a metri
 re
ti�ed image of the plane (from [LCZ99℄).

�

2

4

u

v

1

3

5

=

2

4

P

1;1

P

1;2

P

1;3

P

1;4

P

2;1

P

2;2

P

2;3

P

2;4

P

3;1

P

3;2

P

3;3

P

3;4

3

5

2

6

6

4

x

y

0

1

3

7

7

5

=

2

4

P

1;1

P

1;2

P

1;4

P

2;1

P

2;2

P

2;4

P

3;1

P

3;2

P

3;4

3

5

2

4

x

y

1

3

5

(32)

whi
h is a 3� 3 matrix representing a general plane to plane proje
tive transformation.

A homography is fully de�ned by four points of whi
h we know the relative position in the world

plane. On
e the homography is determined, the image 
an be ba
k proje
ted onto the obje
t plane.

This is equivalent to synthesize an image from a fronto-parallel view of the plane. This is known

as metri
 re
ti�
ation [LZ98℄ of a perspe
tive image.

If four points 
annot be measured a strati�ed approa
h is used. The proje
tive transformation H


an be de
omposed into a 
on
atenations of three matri
es M, C and V representing similarity,

aÆne and pure proje
tive transformations respe
tively:

H =MCV (33)

� the similarity matrix M (four parameters) 
an be ignored;

� geometry is re
overed up to an aÆne transformation by applying proje
tive matrix V:

V =

2

4

1 0 0

0 1 0

l

1

l

2

l

3

3

5

(34)

where l

1

= (l

1

; l

2

; l

3

) is the vanishing line that 
an be re
overed from two vanishing points,

or a set of equally spa
ed lines on the plane;

� re
overy of metri
 geometry requires the aÆne matrix C:

C =

2

4

1=� ��=� 0

0 1 0

0 0 1

3

5

(35)
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The two parameters � and � 
an be 
omputed from the intrinsi
 parameters [LCZ99℄ or from

at least two independent 
onstraints 
hosen among the following:

{ a known angle

{ equality of two (unknown) angles

{ a known length ratio

C Computing things from homographies

Homography H

�

indu
ed by a plane, known intrinsi
 parameters

Using the de�nition of H

1

we get

H

�

= A

0

(R+ t

n

>

d

)A

�1

: (36)

Therefore motion parameters R and t as well as plane parameters n and d are en
oded by H

�

:

A

0�1

H

�

A = dR+ tn

>

: (37)

By taking the SVD fa
torization of

^

H

�

= A

0�1

H

�

A we get

^

H

�

=U�

�

�V

>

(38)

Hen
e

�

�

� =

d

s

(sU

>

RV) + (U

>

t)(V

>

n)

>

= d

0

R

0

+ t

0

n

0>

(39)

where s = det(U) det(V) (to ensure that R

0

is a rotation).

This equation 
an be solved (with a twofold ambiguity in the solution) to obtain: (i) the normal

to the plane n, (ii) the rotation R and (iii) the translation s
aled with the distan
e to the plane

(t=d) [FL88℄.

Homography H

1

of in�nity plane, unknown but 
onstant intrinsi
s

Intrinsi
 parameters 
an be 
omputed (solving a linear system) from

H

1

AA

>

H

>

1

= AA

>

: (40)

Then the rotation 
an be extra
ted from H

1

= A

0

RA

�1

:

This is a very simple auto
alibration te
hnique[Har97℄, that has been extended also to varying

intrinsi
s[dHH99℄.

H

1


an be obtained

� by knowing at least 3 vanishing point;

� by approximating it with a plane \far enough" from the 
amera[VZR96℄;

� by 
ausing the 
amera to rotate (more frequently)[Har97, dHH99℄.
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