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Abstract

We investigate the automatic estimation of �sh weight from sets of

morphometric measurements. Our solution combines a vision system

with a robust regression method, the Support Vector Machine (SVM).

Measurements are taken automatically from two binarised views of

each �sh in a training sample, then fed to a quadratic SVM along

with approximate weight estimates. The SVM learns the law linking

weight to shape directly (without computing volume) and compensates

for several inaccuracies in the training measurements. We suggest a

methodology identifying optimal shape measurements for the task, and

report results obtained with a sample of 99 trouts between 300 and

600g, showing good accuracy and reliability, and better performance

with respect to length-weight relations adopted commonly in �sheries

science.

1 Introduction

This work explores a new way of estimating �sh weight from shape using com-

puter vision. The relation between weight and shape is important both for �sh

biology [4, 5, 7, 11] and �sheries applications. Weight measures from shape are

approximate as indirect (density may not be uniform across individuals), but no

technology currently allows to weight directly live, moving �sh. The stress in-

duced by constraining or anaesthetizing is strongly discouraged for most species,

and may lead to serious damage for others (e.g., sea bass).

Many studies in �sh biology and farming are based on equations predicting

weight from a single shape measure, traditionally length [5, 13], or width in most

mechanical �sh graders. In particular, it is common practice to model weight as a

function of length through the allometric equation

W = KL

b

; (1)
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introduced by Fulton [5], where W is the weight, L the length, K is the condi-

tion factor (sometimes used as an index of �sh health), and b a coe�cient close

to 3. The inadequacy of formulae like (1) for weight prediction was pointed out

by Fulton himself [5], and, more recently, by various researchers [1, 2, 13]. The

main inadequacies include the facts that weight depends really on several shape

parameters, that the exponential is in itself an approximation (especially if iso-

metric growth is assumed, i.e., b � 3), and that such laws assume invariance to

time, populations and grading conditions, or make hypothesis on the �sh (e.g., sex,

age) or on the environment (e.g., temperature, season). The practical advantage

of single-measurement relations are that they are simple, and can be implemented

easily in mechanical devices (e.g., by graded holes) to support fast �sh grading.

Vision systems can take multiple measurements in real time, as �sh swims in

front of imaging sensors. Therefore, they are well-placed to provide better accuracy

of weight estimates than mechanical systems, at comparable speed. Indeed exper-

imental and commercial vision systems exist for biomass estimation, counting,

species classi�cation, grading on shape, weight and colour. The crux of existing

weight-based graders is that weight is computed through volume, which in turn is

estimated using approximations and �xed formulae which are assumed invariant

against time, populations and grading conditions.

Most of these assumptions would be unnecessary if the system learned the

weight-shape relation for each �sh batch considered, which is the scenario in-

vestigated by our study. An automated learning algorithm, the Support Vector

Machine (SVM), learns the speci�c relation between weight and a vector of mor-

phometric measurements for each �sh batch under consideration. Measurements

are extracted automatically from two binarised views of each �sh. The basic ar-

chitecture is illustrated in Figure 1. Instead of using �xed, approximate formulae

to estimate �sh weight from one shape parameter, the system tunes its estimates

to the speci�c batch, with a resulting increase in accuracy given a su�ciently large

training set. The law linking shape and weight is found directly, without going

through volume at all. There is no need for assumptions on the �sh density, no-

toriously a variable quantity, nor to assume density constant across batches, as a

speci�c law is learnt for each batch.

This paper is organised as follows. Section 2 reviews briey the main features

of SVMs. Section 3 describes the prototype vision system acquiring morphometric

measurements. Section 4 illustrates the learning process, and Section 5 reports

the results of our experimental assessment of the system with a batch of 99 trouts.

Finally, Section 6 discusses our �ndings and draws some conclusions.

2 Support Vector Machines

A detailed explanation of SVMs would take us far beyond the scope of this pa-

per, so we limit ourselves to a brief summary with references. SVMs implement

a learning technique useful for solving both classi�cation and regression problems

[3, 9, 10, 18]. The main idea behind SVMs is the minimisation of structural risk as

opposed to empirical risk. Intuitively, given a �nite number of sample points and

a class C of approximating functions, empirical risk minimisation determines the

function

^

f 2 C which best approximates f by minimising a certain cost function
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Figure 1: Essential architecture of the prototype.

(e.g., in the least squares case, the sum of the squared distances of the sample

points from

^

f). Apart from robustness considerations, empirical risk minimisation

is a sound minimisation principle only in the presence of a large number of sam-

ple points (here, large means that all the theoretical estimations are valid in the

asymptotic case). Structural risk minimisation, instead, aims at minimising an up-

per bound on the approximation error and works also in the case of small number

of samples. This bound consists of a term which accounts for how well the function

^

f approximates f plus a term depending monotonically on the VC-dimension of

the class C of approximating functions (roughly a measure of the approximating

power of the given function class [17]). Therefore, SVMs trade accuracy of the

approximation at the sample points for smoothness of the approximating function

^

f . As a result, SVMs are able to determine the optimal approximating function,

which depend on, say, m parameters, even in the presence of a number of sample

points far smaller than m.

3 Acquiring shape measurements

Although our case study focused on harvested �sh, we took into account the main

requirements of real �sh grading environments: high speed, reliable measurements,

low cost. To achieve fast processing and reliable shape measurements, we worked

with silhouettes acquired by illuminating the �sh from the back, and thresholding

the raw images. Measurements were computed from two views: the �sh was rested

on the translucent top of a box containing neon tubes (Figure 2), �rst at (side

view), then vertically using a transparent support (top view). All �sh appear

approximately horizontal

1

.

From the side view, the system computed area, perimeter, length, the ratios

area/length and area/perimeter, and the minimum and maximum widths. The

1

This simulates a design suitable for live �sh moving through a mechanical grader, which is

currently covered by con�dential agreements.
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Figure 2: Schematic of the acquisition system and examples of top and side view before

binarisation. Notice the image of the transparent support used to stand the �sh under

the camera (top view), which is eliminated by binarisation.

same shape parameters were computed from the top view, excluding the minimum

width, which proved unstable as too dependent on the pose of the �sh. Area

is given simply by the number of black pixels, and perimeter obtained by edge

detection followed by chaining and edge following. The ratios area/perimeter and

area/length indicate elongation. Length and width are calculated following [15]:

we obtain a �rst, rough approximationof length by calculating the number of image

columns intersecting the �sh silhouette. Then, we use a subset of these columns

(e.g., one every 10; the frequency depends on the accuracy desired) to compute

an approximate skeleton by joining the midpoints of the column portions falling

within the �sh silhouette. We then compute a piecewise linear approximation of

the resulting curve. The �sh width at each linear segment is computed by tracing

the normal to each segment; the length is the length of a linear piecewise skeleton

along the normals to the width segments (Figure 3). The minimum width (side

view only) corresponds to the thickness of the �sh in the narrowest part between

body and tail.

4 Learning the shape-weight relation

Each �sh is associated with a vector p of n measures (n � 13 in our experiments)

taken from the two views. By showing a number of training points (p

j

; w

j

), where

w

j

is a weight estimate for the j-th �sh, the SVM determines the best approximat-

ing hypersurface w = f(p), that is, a relation linking weight and shape parameters.

It is important to notice that, in the case of live �sh, the weight estimates w

j

used

in the training stages may include rather signi�cant errors and even outliers, but

these are compensated for by the robust approximation performed by SVM in the

training stage.
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Figure 3: Illustration of length/width estimation: (a) initial skeleton points (column

midpoints), (b) normal sections and �nal skeleton points.

5 Using the shape-weight relation: results

We tested the system with a sample of 99 harvested trouts between 300 and

600g approximately

2

(see Figure 4). Weights and lengths used for training were
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Figure 4: Weights of the trout sample, sorted by weight and plotted against �sh index.

measured manually. The weights were read from a set of electric scales for shop

use, nominally accurate to 5g in our weight range. Lengths were measured using a

standard graduated board, with an uncertainty of about 1cm (as per EU �sheries

guidelines).

Testing equation 1. We checked the consistence of our sample with equation

(1), with coe�cients computed by linear regression (based on log

e

(W ) = log

e

(K)+

b log

e

(L)) [4, 5, 7, 11]. Using the average of the lengths in the top and side views

for L, we got b = 2:177, � = log

e

K = �1:605, with standard deviations �

�

= 0:52

and �

b

= 0:36. The results, summarised in Figure 5 and Table 1, suggest that the

hypothesized relation between length and weight is unsatisfactory [11, 4]. Figure 5

also suggests that the assumption of isometric growth does not hold satisfactorily

for this sample; in fact, the estimated b from the weight-length regression was

2.177, not 3; Fulton's K decreases with increasing length instead of being almost

constant [11].

2

We report only one real experiment as organising tests with large numbers of �sh is a lengthy

process, and this study spanned a few months only.



British Machine Vision Conference 6

28 30 32 34 36 38 40
300

350

400

450

500

550

600

length (cm)

w
e
ig

h
t 
e
s
ti
m

a
ti
o
n
 a

n
d
 e

rr
o
r 

b
a
r

28 30 32 34 36 38 40
0.9

1

1.1

1.2

1.3

1.4

1.5

fitting
k      

Figure 5: Left: result of �tting equation 1 to our data (� = log

e

K = �1:605, b = 2:177).

Right: regression of Fulton's condition factor. Our sample violates the assumption of

isometric growth (b � 3); in fact, K decreases with increasing length instead of being

almost constant.

Testing SVM regression. We then trained a SVM with quadratic kernel

using di�erent subsets of the 13 shape measurements available and 98 trouts at

a time, each time estimating the weight

^

W of the trout left out. The quadratic

kernel is simple, has a limited number of coe�cients, and seems appropriate for

the limited weight-length ranges envisaged for batch grading on �sh farms. We

recorded the average and standard deviation of the percentage error, (

^

W�W

t

)=W

t

,

where W

t

are the weights measured by hand. The whole test was run for several

di�erent subsets of shape parameters, containing increasing numbers of features.

The results are summarised in Table 2. We notice immediately a better accuracy

than equation 1 (0% average error and 3% standard deviation without outliers,

less than half of the 7% standard deviation from equation 1), with and without

outliers.

err st.dev outlrs number err (0 outlrs) st.dev.(0 outlrs)

�xed b -11 % 8 % 7 -10 % 7 %

regression 0 % 8 % 2 1 % 7 %

Table 1: Error analysis for weight estimation. First row: assuming isometric growth

(b = 3, �xed, and log

e

K = 4:212). Second row: K;b obtained by linear regression.

Optimal sets of shape parameters. It is evident from Table 2 that not

all feature sets are equally reliable for weight estimation, but produce varying

accuracies on the same data. Indeed, Table 2 allows one to identify the optimal

feature sets (as well as the most important individual features) for weight estima-

tion, that is, the sets leading to minimum average error and error spreads. The

practical signi�cance is apparent: given a �sh batch, one can identify the sets of

shape measurements leading to minimum errors for practical tasks like sorting,

grading and so on. Notice that some shape parameters worsen the weight esti-

mates because they cannot always be measured reliably: for instance, the values of
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area and perimeter would be sometimes skewed by half-transparent �ns, and the

minimum-width section could not always be located correctly in the thin top view.

Figure 6 visualises the errors of the experiments of the �rst four lines of Table 2,

compared with the errors of equation 1. Using only the lengths (features 4 and

11) measured in the two views, the errors are comparable, as expected; adding two

unreliable shape parameters (perimeters: 2, 9) the SVM errors increase; adding

reliable parameters (ratios area/length and maximumwidth in the top view: 5, 7,

12) the SVM errors decrease.

feat.s in set feat.s used err st.dev. err (0 outls) st.dev. (0 outls)

2 4 11 1 % 8 % 1 % 7 %

4 2 4 9 11 1 % 8 % 0 % 7 %

4 4 5 11 12 0 % 6 % 0 % 3 %

5 4 5 7 11 12 0 % 5 % 0 % 3 %

6 4 5 7 11 12 13 0 % 4 % 0 % 3 %

7 3 4 5 7 11 12 13 0 % 5 % 0 % 4 %

7 4 5 6 7 10 11 13 0 % 4 % 0 % 4 %

7 1 4 5 7 11 12 13 0 % 4 % 0 % 3 %

8 3 4 5 7 10 11 12 13 0% 6 % 0 % 4 %

8 2 3 4 5 9 10 11 12 -1% 7 % 0 % 4 %

13 all features 0 % 9 % 0 % 7 %

Table 2: Error analysis with SVM estimation using a quadratic kernel and di�erent

feature sets. One outlier was present in all experiments. Side view: 1=area, 2=perime-

ter, 3=area/perimeter, 4=length, 5=area/length, 6=minimum width, 7=maximum

width. Top view: 8=area, 9=perimeter, 10=area/perimeter, 11=length, 12=area/length,

13=maximum width.

6 Discussion

We have addressed the estimation of �sh weight from shape measurement using

a vision system incorporating SVM-based learning. Equation (1), commonly used

in �sheries applications, makes weight a function of length only, and depends on

several restricting assumptions (�sh density constant and invariant to �sh batch,

temperature, season, time, grading conditions, and sometimes isometric growth).

These facts limit the accuracy of weight predictions, both with �xed coe�cients

K; b and with K; b specialised for a given �sh batch (found by linear regression)

[4, 7, 13]. This conclusion has indeed been con�rmed by our experience.

Our technique does not make any assumptions on the �sh batch; its only limit

is the fact that estimating weight from shape is an indirect process depending

on an unobservable quantity, density. However, within this inevitable restriction,

the technique has many advantages: fast, binary vision allows one to acquire

many shape measurements, not one, and preserve real-time performance; learning

the shape-weight relation for each �sh batch allows one to adapt predictions to

speci�c batches; robust SVM regression tolerates and compensates for errors in

the approximate weight estimates (and shape measurements) of the training set.
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Figure 6: Average errors of weight estimates using the SVM-computed law (solid lines)

and Equation 1 (dashed-dotted lines). Each graph refers to an experiment with a di�erent

set of shape parameters. Top left: 4 and 11 (�rst line in Table 2). Top right: 2,4,9 and

11 (second line). Bottom left: 4,5,11 and 12 (third line). Bottom right: 4, 5, 7, 11 and

12 (fourth line).
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Moreover, thanks to the ability of SVMs to generalise from limited numbers of

examples, reliable laws can be learnt from limited percentages of �sh from a rather

homogenous �sh batch, such as most of those those routinely graded on �sh farms.

Our experiments with a batch of 99 trouts indicate a better accuracy for the

polynomial SMVs than for equation 1. Notice that the weights of the �sh used

(Figure 4) span a rather wide range; our experience suggests that errors in weight

estimates improve signi�cantly with limited weight ranges, which is the case with

farmed �sh (�sh grown in a same pool or cage are kept approximately uniform

in size and weight). Importantly, our technique can reveal the optimal subset of

shape parameters, that is, the one guaranteeing the best accuracy for the batch,

obviously a crucial information in applications. For instance, in our experiments

area, perimeter and minimumwidth proved the most unreliable measurements, as

very sensitive to the �sh position; lengths and maximum widths (in both views)

proved the most critical, i.e., their presence in the feature set was crucial to ob-

tain good results, followed by the ratios between area and length. A corollary is

that larger sets of shape parameters, even if plausible intuitively, do not imply

necessarily better accuracies.
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