Dipartimento di Informatica e 4 OIS

Scienze dell’ Informazione

Learning to classify visual dynamic cues
by

Nicoletta Noceti

Theses Series DISI-TH-2010-09

DISI, Universita di Genova
v. Dodecaneso 35, 16146 Genova, Italy http://www.disi.unige.it/

Universita degli Studi di Genova

Dipartimento di Informatica e

Scienze dell’Informazione

Dottorato di Ricerca in Informatica

Ph.D. Thesis in Computer Science

Learning to classify visual dynamic cues
by

Nicoletta Noceti

July, 2010

Dottorato di Ricerca in Informatica
Dipartimento di Informatica e Scienze dell’Informazione
Universita degli Studi di Genova

DISI, Univ. di Genova
via Dodecaneso 35
[-16146 Genova, Italy
http://www.disi.unige.it/

Ph.D. Thesis in Computer Science (S.S.D. INF/01)

Submitted by Nicoletta Noceti
DISI, Univ. di Genova
noceti@disi.unige.it

Date of submission: February 2010
Title: Learning to classify visual dynamic cues

Advisor: Francesca Odone
Dipartimento di Informatica e Scienze dell’Informazione
Universita di Genova
odone@disi.unige.it

Ext. Reviewers:
Andrea Cavallaro
School of Electronic Engineering and Computer Science
Queen Mary University of London
andrea.cavallaro@elec.gqmul.ac.uk

Andrea Prati
Dipartimento di Scienze e Metodi dell’Ingegneria
Universita di Modena e Reggio Emilia
andrea.prati@unimore.it

Abstract

Classification based on dynamic information is a challenging research domain that finds
application in a number of fields, including video-surveillance and video retrieval.
Traditional approaches based on motion analysis address many interesting applications,
such as access control, anomaly detection, congestion analysis and multi-camera event de-
scription: in all these cases it is common practice to devise a measurement phase that
extracts low level information from videos. To this purpose a wide variety of methods
have been presented in the computer vision literature, leading to solutions that effectively
describe the video content in moderately difficult conditions. A well known limit of these
methods is that while they provide effective tools to model the dynamics of a single video,
they do not suffice when the problem of interest requires a higher generalization level.

In the case of behaviors modeling or dynamic events classification, it is advisable to in-
crease the abstraction of the data, designing higher-level descriptions able to model more
general structures. In recent years a few interesting works employing machine learning
methods showed how these techniques may improve performance in terms of accuracy and
efficiency: data-driven approaches are effective to understand possible correlations between
measurements and provide systems with the ability of being adaptive. In the field of video
surveillance we may exploit the availability of possibly huge sets of examples, acquired
by long time observations, and endowed with an internal structure provided by temporal
coherence.

Within this framework this thesis focuses on:

e Studying and developing of robust methods to retrieve space-time information from
a video;

e Studying and developing of higher-level descriptions, in order to include space-time
information within a machine learning framework;

e Devising machine learning strategies to model common events and anomalies from
huge sets of (possibly) unlabeled examples.

These objectives will be addressed both from the algorithmic and the application stand-
point and will be integrated in a prototype architecture that combines vision methods
for scene perception and analysis and learning techniques for high level description and
decision making.

To my family

As far as the laws of mathematics refer to reality, they are not certain; as far
as they are certain, they do not refer to reality. (Albert Einstein)

List of symbols

x; = (x}, 22, ... af)
X = {xi}}Y,

X = {ziti=1 b fim1n
K(z,y)

KP(S, t)

A

W= [WP> Ws, Wi, WD}
THpoints

THst'rings

A

{Mi}i B

T1,72

video frame at time t

background model at time t

motion segmentation at time t

feature vector of target i at time t (tracking)

time stamp of frame at time t (when part of M?)
position of target i at time t

size of target i at time t

velocity of target i at time t

velocity magnitude of target i at time t

velocity direction of target i at time t

color descriptor of target i at time t

width of bounding box enclosing target i at time t
height of bounding box enclosing target i at time t
t-th element of i-th trajectory

i-th trajectory of length k;

set of N trajectories

subset of the feature space

generic kernel function between x and y
P-Spectrum kernel between strings s and ¢
alphabet (partition) on the feature space

weights in the multi-cue kernel

spectral clustering cut threshold for alphabet computation
spectral clustering cut threshold for behavioral patterns detection
regularization parameter of RLS classifier
candidates of B behavioral patterns

thresholds of test data associations

Chapter 1

Introduction

1.1 Scope and motivations

(Classification based on dynamic information is a challenging problem in computer vision
and plays a central role in a number of applications, including video surveillance, human-
machine interface, and semantic retrieval from videos [HTWMO04, ZJ05, EBMMO03, Rob05].
The large scale diffusion of video cameras has been favored by advances on hardware
components that allow for easy storage and fast processing. As a side effect, in the last
decades we have assisted to the growing interest for applications where central topics are
the analysis and the interpretation of video content .

Although the urging need for effective systems, is fueling an intense research activity,
several crucial issues are still either not solved or even not addressed, especially for what
concerns the ability of mining information from big video data sets.

In this work we refer specifically to the field of video surveillance, where an important issue
is the efficient analysis of behavioral patterns of people activities in the scene.

The study and the understanding of human activities from videos has been widely ad-
dressed in the last decades (see for instance [SG00, Gea98, IB0O0, PCV00, PMF08, ACO08)),
particularly with the availability of an enormous amount of installed video surveillance
cameras. As a consequence, a huge amount of video data are daily acquired, becoming
more and more difficult to be handled by human operators. This justifies the growing need
for computational methods able to assist the user, suggesting where to focus attention.

In video analysis, the mutual distance between camera and observed scenario, or more
specifically the camera field of view, influences the specific tasks the system might be able
to address. In the video surveillance framework, in particular, it suggests a number of
different applications, ranging from crowd analysis, when the distance is relevant, to the
problem of considering the motion or even the specific action of single entities, and of

humans in particular.

In this work, we assume we are monitoring possibly complex scenarios from a distance
where the ”action of interest” is the trajectory of a moving object as a whole, and no
information is available or needed on the motion of objects parts. We thus explicitly refer
to data that may be modeled as time-series of instantaneous observations.

It is in this framework that our work has been developed, with the final, ambitious goal
of modeling common behaviors by learning frequent patterns of activities from huge sets
of unlabeled data, with a very limited a-priori information included into the pipeline.
The understanding of what is usual in a given scenario, also, sets the basis for anomalies
detection, where an anomaly is thought of as an event differing from what usually observed,
thus potentially (but not surely) dangerous.

Video
stream

Low-level Tracki Data High-level
analysis racking abstraction analysis

Figure 1.1: A visual representation of the general processing pipeline of a video surveillance
system.

The availability in our reference application of long-time observations calls for solutions be
adaptive and able to exploit knowledge coming from previously seen scenarios.

To achieve these results we study, implement and validate computer vision and machine
learning methods that can be cast in a rather standard processing pipeline (see Fig. 1.1):

e An initial low-level processing allows us to detect moving objects in the observed
environment by means of motion-based image segmentation. The moving structures
are then described by an appropriate feature vector;

e The instantaneous observations of such objects are tracked along the video sequence
in order to build a model of their dynamic evolution as long as their identities can be
preserved. The output of the tracking procedure is a set of trajectories representative
of dynamic events occurring into the scene;

e In order to understand and describe common patterns of activities (behaviors) a
higher-level analysis is applied to detect internal structures among the set of trajec-
tories.

The trajectories, estimated by the tracking process can be conveniently exploited to per-
form a higher level analysis aiming at understanding the dynamic evolution of the observed

4

scene. To this purpose, traditional computer vision approaches represent a viable solution
when the focus is on a single event (or even a single class of events), while they are not
appropriate when a higher generalization is required, as in the task of behavior under-
standing.

A priori knowledge on the analysed environment and its dynamics may be exploited in
different ways. A first example, widely explored in the literature, refers to stochastic
grammars (see, for instance, [IB00]). In certain application domains (e.g., traffic control)
the amount of structures contained in the expected events may be profitably used to model
the dynamics of the scene. For instance, in [MCB™01] the results obtained by a robust
low-level processing module are associated to context information to identify possible ab-
normal behaviors in aerial images.

Otherwise a very effective way to exploit prior knowledge is to rely on learning from ex-
amples. In the last decades, it has been assessed how computer vision approaches can
be profitably coupled with the paradigm of learning from examples [Vap98, HTF03]. The
paradigm refers to a widely used set of statistical tools to extract knowledge on the basis
of the properties of a given data set, called the training set, estimating the underlying
model(s) on top of which they are generated. The learned models should be able to rep-
resent in the best way the training set, and at the same time a generalization to other
data must be ensured. One of the main characteristics of learning is, actually, the ability
to perform a prediction on the model of a new data on the basis of the rules previously
learned.

It is possible to distinguish among different kinds of learning from examples. In supervised
learning the available data are a collection of pairs z = (x1,41),. ., (Xn, Yn) Where x is a
vector whereas y takes on discrete or continuous values. The key idea of the supervised
learning paradigm is to infer the unknown input-output relation on the basis on the train-
ing set. The nature of the output leads to the definition of patterns classification problems,
if output values are taken from a finite unordered set C' = {C4, ..., Cy}, or regression prob-
lems, when output values are real numbers.

In unsupervised learning no output correspondent the the input data is provided: under
this perspective, the training set can be interpreted as observations of a random vector
having some probability density. The goal of unsupervised techniques is to directly infer
properties of this probability density without the help of a supervisor. In a sense, unsuper-
vised learning can be thought of as finding patterns in the data above and beyond what
would be considered pure unstructured noise.

In the case of behavior analysis, if the available data are labeled, i.e., to each one of them
we may associate a label of a known behavior, the use of state-of-the-art machine learning
algorithms lead to effective behavior categorization methods. On this respect we mention
the work by Pittore et al. [PCV00], where the available data are mapped in the parameter
space induced by the fit of each trajectory with B splines, then Support Vector Machines
(SVMs) are applied. Otherwise, the sequential structure of trajectories may be captured by

training a well designed Hidden Markov Models (HMM) [Rab89] or other similar dynamical
systems (see, for instance, [BKS07] and references therein).

Focusing on the task of modeling behaviors, we point out that given the huge variety of
possible behavioral patterns, even in moderately complex scenarios, and the high variability
of such phenomena, a fully supervised approach in unfeasible, requiring the availability of
an accurate annotation that, considering the great quantity of data, is not an option. For
the same reasons, it is likely to fail to produce systems that are both robust, i.e. able to
detect and recognize effectively many classes of events, and flexible, i.e. easy to be modified
to recognize new (classes of) events.

The same characteristics provide an ideal test bed for the application of an unsupervised
approach. The peculiarity of video-surveillance is a great help in this direction. Usually
a system observes the same scene for very long periods. Thus, such system could learn
common behaviors in that scene from long-time observations, carried out in an initial or
intermediate calibration stage. This aim naturally calls for some form of unsupervised data
analysis: an analysis of available literature makes it clear that unsupervised methods for
behavior understanding or, more in general, to time series analysis are quite limited - see
[JSTO07, JCNO6, MEO2]. The most popular technique among unsupervised methods is data
clustering. It refers to a well-known and widely applied tool to automatically partition a
set of data into coherent sub-sets (or clusters) with respect to an appropriate similarity
measure. The literature on unsupervised learning, and clustering in particular, is very
large, a survey for the specific case of temporal data can be found in [Lia05] to which we
refer the interested reader. We consider in our work spectral clustering [SMO00] based on
the spectral analysis of a special matrix, the Laplacian, to compute the data partition on
a graph structure adopted to summarize the pairwise similarities between points.
Referring to our setting, the presence of the temporal component requires a more accurate
handling of the data. Previous works on clustering temporal series approached the problem
from two distinct viewpoints (see [6] and references therein). The first approach relies on
modifying suitable existing algorithms for clustering static data in such a way that time
series data can be handled. An alternative is to convert temporal series data into the form
of static data so that the existing algorithms for clustering static data can be directly used,
trying to keep information on the structure of data. Our work is more related to this latter
approach.

A challenging question when dealing with unsupervised learning methods is how to evaluate
the goodness of results, and also, related to it, how to appropriately select the best set of
parameters. Popular approaches are based on the use on quality measures, often referred
to as quality indices [HBVO1, GB03| that should quantify the goodness of a partition by
summarizing important properties that must hold. However, there are no attempts to
apply this technique to complex feature spaces and to time-series analysis, and it is not
clear whether the quality criteria that are meaningful for static data still hold for temporal
data, and for the specific task. We explore this direction observing how a limited benefit

may be obtained from such measures. Instead we define an evaluation procedure based on
a set of rough feedbacks given by the user on the specific scenario.

Even if the research on video analysis and scene understanding is greatly contributing
to these problems, in this general setting a number of questions are still open “how to
represent data limiting the amount of ambiguities, when there is no or little knowledge on
the underlying data acquisition process?” And, more specifically, “how to exploit the data
internal structure induced by time-coherence of observations?” Also, “how to learn from
large amounts of noisy data, particularly when they belong to high dimensional spaces?”
Moreover, the specific domain we refer to opens various practical issues, related to the
scene complexity, the specications of the video-surveillance system (e.g., the number and
the position of the cameras), and the amount of prior information available on the observed
phenomena. Referring to the pipeline stated above, our contributions are several. With
respect to the video processing, we propose a tracking procedure based on a combined
motion and appearance model of objects [NDLOO09]. The method is specifically designed
for video surveillance purposes, reaching high performances from the point of view of
accuracy in data association while keeping the computational cost low. In the worst case
we achieve an almost real-time performance (about 20fps).

For what concerns high-level analysis, we propose a pipeline for a system of behavior
understanding based on the use of spectral clustering to detect frequent patterns of activity
by analyzing (possibly) big sets of time-series data [NSO08b, NSO08a, NO09, NSO10,
NO10]. The choice of a proper input space strongly affect the capability of the system
to detect what is ”common” or "anomalous” in a given scenario. Although lots of work
in the literature is based on trajectories of 2D observations (the instantaneous position in
the image plane), we experienced how the learning model can benefit from the adoption
of a more heterogeneous input space, especially when the mutual positions of camera and
observed scene gives rise to data ambiguities when considering only the positions.

In particular we address two main issues: (1) How data should be represented?, and (2) How
to compare them?. We thus carry out an extensive comparison of representation schemes
including fitting with curves (polynomials and B-Splines in particular), the well-known
Hidden Markov Models and a string-based approach [NSO08b, NSO10]. The choice of the
specific feature map by means of which to represent a specific moving object at each time
instant is not crucial to our analysis: we only require that the sequences are described by
means of d x T matrices, where d is the number of components of the feature map and
T is the number of elements in the sequence. In general, T" may change from sequence to
sequence.

The last contribution of the thesis builds on top of the previous achievements and is a string-
based behavior understanding pipeline relying on a loose annotation [NSO10, NO10].

An extensive experimental analysis is performed analyzing different kind of data: from
synthetic trajectories, to real controlled data for which a ground truth is available, to

conclude on large-scale data sets, spanning weeks of acquisitions from a video surveillance
system. Making use of learning techniques, we evaluate (i) the robustness of the represen-
tation schemes (in this case supervised and unsupervised approaches are both adopted and
compared), and (ii) the reliability of clustering as a tool to detect common behaviors. The
obtained results lead us to conclude that the string-based approach is the most promising
for our setting, coupling the capability of strongly characterizing the input data as well as
the final models, with a high adaptability to different scenarios, being the computation of
the trajectories representations and the behavioral models almost completely independent
from the input space.

In the last set of experiments, we perform a test analysis on data of a week, with the aim
of judging our system with respect to the capability of generalizing the dynamic properties
learned during the modeling phase to new observed and (possibly) different events. Notice
that the ability to predict the “class” of a new event is a fundamental add-on for monitoring
systems that can aspire to address the challenging problem on detecting anomalies.

1.2 Structure of the thesis

This thesis is organized as follows:

e Chapter 2 presents an overview of state-of-art methods related to the various topics
considered in this thesis. The organization of the chapter reflects the structure of
the thesis. We start from the analysis of methods for low-level video processing,
considering the problem of segmenting images with respect to motion information and
the problem of tracking objects in video sequences. The second part of the chapter
describes the literature of high-level analysis of video contents: we review possible
intermediate descriptions for trajectories and show how they have been applied to
behavior analysis.

e In Chapter 3 we address the video processing stage of the pipeline. The focus of the
discussion is on the details of our modules for low-level image processing and object
tracking. For the latter, we use a joint model of motion and appearance information:
the problem of preserving the identities of interesting targets is approached using
graph structures, naturally embedding different levels of complexity depending on
the properties of the scene.

The last part presents the experimental analysis, in which we compare our system
against a selection of popular approaches using an annotation on the video content
based on the use of a set of source-sink regions.

e Chapter 4 is devoted to the discussion on the different higher-level representations,
explaining advantages and drawbacks of each one on a synthetic data set of 2D obser-

vations. Each representation is coupled with an appropriate kernel-based similarity
measure and the performance of each scheme is qualitatively evaluated analyzing sim-
ilarity matrices. The quantitative analysis is based instead on supervised learning.
In the second part of the chapter the benefit of using a heterogeneous input space,
rather than the usual 2D information, is discussed, showing how it is a suitable way
to cope with data ambiguities. The experimental analysis reflects the one performed
on synthetic data and it is done on a set of real yet controlled trajectories, acquired
from a surveillance camera, for which a ground truth has been specified.

The clustering-based approach to behavior modeling is discussed in Chapter 5: each
representation is used to feed the Spectral Clustering, which is equipped with the
corresponding kernel. The experimental analysis, based on the same data of Chapter
3, aims at evaluating the clustering results with respect to the ground truth. In
essence we evaluate the correspondence among real behaviors (the ones arising from
the ground truth) and estimated behaviors (the clusters). We design two different
procedures to cluster association, to cope with the requirements of a typical system
for behavior analysis. The comparison of adopting supervised and unsupervised
learning is discussed. At the end, a conclusion in favor of the string-based scheme is
reached.

In Chapter 6 we propose a behavior modeling system based on the use of strings as
meta-descriptors for the trajectories. The behavioral patterns are estimated by means
of Spectral Clustering, according to the general pipeline discussed on the thesis. We
evaluate the system with an extensive experimental analysis on data acquired by a
video surveillance system over a temporal range of a few weeks. During the model
selection phase since manual labeling of big training sets is not advisable, we adopt
an automatic loose annotation based on spatial properties of the data.

We then select as a model, the best performing clustering result with respect to the
loose annotation. For completeness, we compare the system against the other repre-
sentation schemes, including supervised classifiers trained on the loosely annotated
data. The second part of the chapter is the place where we present the test analysis,
performed again on data of weeks: two different out-of-sample strategies allows to
associate a new test data to one of the known models or detecting it as an event
different from the “normality” of the scene.

The last chapter (Chapter 7) is left to conclusions and future developments. Af-
ter a summary on the problems tackled in this thesis and the corresponding main
contributions, we briefly review on-going work and highlight future directions for the
work.

Chapter 2

State-of-art

In this chapter we present an overview of state-of-art methods related to the various top-
ics considered in this thesis. The organization of the chapter reflects the structure of the
thesis. We start from the analysis of methods for low-level video processing, considering
the problem of segmenting images with respect to motion information (Sec. 2.1) and the
problem of tracking objects in video sequences (Sec. 2.2). The second part of the chapter
describes the literature of high-level analysis of video contents: we review possible inter-
mediate descriptions for trajectories (Sec. 2.3) and show how they have been applied to
behavior analysis (Sec. 2.4).

2.1 Motion-based image segmentation

The apparent motion of objects in the image plane is a strong visual cue to understand
the semantics of 3D motion. A basic operation when dealing with videos is to analyze
the information regarding small temporal windows. Within this setting, it is common
practice to assume that the illumination does not change, so that image variations can be

SCENE . .
CAMERA Static Dynamic
Static absence of motion || only a subset of moving pixels
Moving Ego motion 2 types of motions

Table 2.1: Possible settings for video acquisitions lead to different characteristics of the
dynamic content of a video.

interpreted as consequences of the relative motion between camera and scene.

10

On this respect, Table 2.1 summarizes possible settings. In the very general setting, a
moving camera acquires images of a dynamic scene: this case would lead to very general
solutions that could be applied to all scenarios to the price of a high computational cost.
However, in most cases, a-priori information on the setting is available and would lead to ad
hoc more efficient solutions. Low-level methods for studying the motion of a scene include
pixel-based analysis to determine the displacements of each pixel between two consecutive
frames: this operation can be performed globally (e. g. by computing the optical flow
[SH81]) or locally using a sparse approach (e. g. by tracking local features, see [WB95] as
an example). In both cases, the problem of estimating motion vectors is addressed.

A higher level of analysis is centered on the motion segmentation problem [WB95, ea05,
HHD99, KCHDO5], where the focus is on moving regions, instead of single pixels. The key
idea is that regions from an image can be classified as static or dynamic. Motion-based
immage segmentation, in fact, aims at detecting regions corresponding to moving objects,
providing hints on where to focus the attention for subsequent analysis. Structures moving
into the scene are typically referred to as foreground, while the background includes all the
elements permanently belonging to the scene, not always static (e.g. a waving tree is a
permanent structure of the environment but an apparent motion will be estimated due to
the wind).

From the algorithmic standpoint, the problem of motion segmentation can be stated as
classifying a pixel as belonging to the background of the scene or to a moving structure of
foreground. A number of approaches have been proposed in the literature, in the following
we briefly review the most common: the selection includes approaches with the potential
of performing in real-time, a central requirement in video surveillance.

When there is no information on the conditions under which the video was acquired, or
again in the case of moving camera, segmentation is interwined with motion estimation.
Optical flow provides a viable way to address the problem. In Fig. 2.1 an example is
provided, where two consecutive images from a video are compared using optical flow:
below, the estimated motion vectors clearly identify the moving person and suggest the
direction and intensity of motion. Note that the procedure can be strongly affected by
noise: on the bottom-right corner, a high-saturated area provides noisy, thus unreliable,
information.

Instead, when the camera is still this can be solved as a pixel based classification (moving
or still?). A connected component of pixels moving coherently can be seen as a visual
representation of a structure performing some dynamic action in the scene: it is usually
called target or blob (in what follows the two terms will be adopted as synonyms).

In the following, we discuss more in deeply this latter setting, the one we consider in the
remainder of the thesis.

11

Figure 2.1: An example of motion segmentation induced by the computation of the optical
flow. Top row: two consecutive images are extracted from a sequence. Below, the estimated
motion vectors visually identify the moving person, also capturing the direction of motion.

12

2.1.1 Background subtraction

When the camera is still (and thus the background is static), the typical approach for
discriminating moving objects of a frame I; is called change detection [ea05]. In the most
simple formulation, it consists in comparing the current frame against a background model
[ea98a, Gea98, HHD98, ¢a98b| with the so-called background subtraction method!:

The pixel classification takes place by thresholding the map of changes (see Figure 2.2):

1if | A(e,) |> 7

0 otherwise. (2.2)

Mi(i,j) = {

The role of the background is fundamental within motion-based analysis methods, con-

Figure 2.2: A reference frame (a) represents the background in the change detection
method: the current scene (b) is subtracted from it to detect the moving foreground

(c).

cerning in particular the robustness to cope with

e local and global illumination changes (shadows and highlights);

e static background variations occurring after the modeling phase (object added or
removed) or multiple backgrounds (due, for example, to waving trees).

!Note that this formulation applies to the case of unimodal backgrounds (see Sec. 2.1.2), where the
background is an image. When the background model increases in complexity, the definition of background
subtraction is too relate to the specific properties of the model and the modality can not be defined in a
unique way.

13

Change detection methods for motion detection differ from each other mostly in the way
the background model is built and updated: a review of proposed solutions can be found
in [Pic04]. They can be roughly divided into statistical methods, mainly based on gaussian
models [SG02, WADP97, PMTHO1] , kernel-based density estimations [EHD00, BCD04],
also the so called eigenbackgrounds [RRGT04].

It is finally worth mentioning that a good amount of work in literature has been devoted to
address the problem of shadows removal. In [PMTCO03] the authors discuss a taxonomy of
shadows detection algorithms, highlighting a selection of the most interesting approaches
[PMC*00, HHD99, SM0O99, CGN*01]. The reference is more specifically to the field of
video-surveillance applications, thus there is a particular attention to the detection of
moving shadows. In the following we discuss the most popular approaches, while briefly
analyzing the state of the art.

2.1.2 Unimodal backgrounds

When the background model consists of an image, then it is known as unimodal background.
The simplest way to obtain such a model is by temporally averaging a sequence of static
images, i.e. frames without foreground moving objects

1 N
B=—-% 1. 2.
N;t (23)

Closely related to this approach, in [YL92] the authors proposed a method based on the
observation that the median value of a pixels sequence is far more robust than the mean
value to the presence of noise and small (short) dynamic events. However, in real sys-
tems one cannot rely on the availability of static sequences when needed. Also, such naive
approaches are extremely sensitive to changes of dynamic scenes due to lighting or extra-
neous events. This naturally calls for methods able to dismiss moving structures from the
modeling operations.

A compromise between accuracy and computational efficiency is the so-called running av-
erage, based on a simple incremental strategy combined with the output of the change
detection process, so that pixels laying in moving areas are discarded: starting from an
average of the first NV frames or, alternatively, an initial empty background (in both cases
we call it By), the estimate at time t > 1 is:

aB;_1(i,7) + (1 — a)l; if (i,j) is classified as static pixel

B, _1(i,j) otherwise (2.4)

Bt(ivj) = {
where 0 < a < 1 controls how fast new structures are included in the background and

the pixel classification is performed using the change detection discussed in the previous
section. The procedure ends when every pixel is assigned with a value but it is common

14

practice to periodically update the reference frame following the same procedure. An
alternative is to fit the distribution of each pixel with a gaussian (u,o), obtaining the
so-called running gaussian average adopted, for instance, in [WADP97|. The updating
mechanisms become:

e = OéIt_l + (1 - oz),ut_l (25)

07 = alls — put)” + (1 - 2o, (2.6)

Even if very effective in many cases thanks to the computational efficiency which makes
it suitable for real-time applications, all these methods do not suffice in presence of more
difficult conditions, due to the assumption on unimodal distribution for modeling the trend
of pixel values. An alternative is thus the use of multimodal background models, discussed
in the next section.

oMo 1
™
150 J

Figure 2.3: Pixels temporal evolutions with different characteristics: the blue arrow indi-
cates a road pixel showing a rather stable value only temporary affected by a significant
variation due to car passage. An example of multiple background, instead, is provided by
the red pixel, being an element of tree or road alternatively, due to the wind influence.

15

2.1.3 Multimodal backgrounds

The problem of background modeling becomes more complicated in outdoor environments
where multimodal (or multiple) backgrounds are frequent. The concept of multiple back-
ground is visually illustrated in Figure 2.3: a pixel belonging to the static background model
presents a rather stable appearance, even if it might be temporary affected by strong vari-
ations due to the dynamic in the scene. It is the case of the blue pixel that, being a
point of the road, is temporary occluded by the car passing by. Moreover, the pixel could
change appearance after that a stable change in the environment occurred, event that the
background model should be able to recognize. Instead, let us consider the red pixel which
falls on the tree. Due to the wind influence, such pixel assumes alternatively values related
to the leaves or the road, so that its temporal evolution appears as in Figure 2.3.

Coping such difficulties requires more refined, and thus computationally costly, solutions.
Considering complex approaches, many works in literature are based on parametrizing
grey level changes over a time space[Gea98, HHD98, ea98b]. These methods have been
widely incorporated in algorithm with Bayesian framework [LHEO03], mean-shift analysis
[PT03] and region-based information [CBMO02]. These kind of techniques, together with
the ones based on probability estimation (see [EHD00, HNR84] as examples), in spite of
their accuracy in terms of resulting segmentation, are not suitable for an applied video
surveillance framework, where the computational efficiency plays a fundamental role.

An interesting trade-off between the discriminative power of the complex approaches
discussed above and the computational efficiency of unimodal models can be found in
[KCHDO5] where a real-time algorithm for foreground-background segmentation based on
the use of codebooks [Cea04] is proposed. The codebooks provide the system with the capa-
bility of representing each pixel with (possibly) multiple descriptors and capture structural
background variations due to periodic-like motion over a long period of time under limited
memory. A comparison between unimodal background modeling and codebook-based ap-
proach is shown is Figure 2.4: on the left, the segmentation obtained by the incremental
method cannot deal with multiple backgrounds, while on the right the foreground object
is correctly detected.

In this specific case, the information collected to describe the dynamics of each pixel allows
us also to distinguish between different levels of background: traditional approaches con-
sider static variations of the scene (objects added or removed) as variations with respect
to the reference image, in other words as motion. But if we consider a structure added to
the scene and stable over a proper interval of time, it should be interpreted as a further
layer of the static background. A visual representation of this situation is visible in Figure
2.5.

16

Figure 2.4: The comparison between foreground segmentation obtained with incremen-
tal background and codebook methods shows how the second better deal with multiple
backgrounds.

Figure 2.5: Different layers of static background: an object (magenta) is added to the
scene, becoming a stable variation.

17

2.2 Object tracking

A fundamental tool to recover basic space-time description of a motion event is object or
feature tracking, whose main goal is to aggregate temporally correlated information. It
consists of two subproblems:

e Trajectory initialization typically rely on motion-based image segmentation but
several recent approaches have started to explore the possibilities of combining track-
ing with detection [LSGO7];

e Target following is usually addressed by classical tracking approaches strengthened
by the employment of prediction filters.

The literature on object tracking is very rich. Here we focus on methods that have been
proposed in the context of real-world video-surveillance systems. Dynamic filters have
been thoroughly studied in this application domain. The Kalman filter [WB] is an efficient
recursive filter which estimates the state of a dynamic system from a series of incomplete
and noisy measurements but it is limited to a linear assumption. However, most non-trivial
systems are non linear: in such cases the Extended Kalman filter [Gel96], the Unscented
Kalman filter and the Particle filter [IB98] may help to address the non-linearity issue.

In particular, particle filters, also known as Sequential Monte Carlo methods (SMC), are
sophisticated model estimation techniques based on simulation and represent instances of
more powerful dynamical filters [AMGC02, WVDMO00]. They are usually used to estimate
Bayesian models and the advantage with respect to the Kalman tools is that, with sufficient
samples, they approach the Bayesian optimal estimate, achieving a higher level of accuracy.
The approaches can also be combined by using a version of the Kalman filter as a proposal
distribution for the particle filter.

For computational efficiency reasons, Kalman-based tracking is often preferred to more
sophisticated yet costly approaches. These motion-based methods often suffer from the
absence of appearance models, thus they are not robust to static events (e.g., a person
standing for some time).

A complementary approach is appearance-based tracking [FT97, KS00, STB*T06]. Mean-
shift [CRMOO] is a very popular strategy, belonging to the family of kernel-based approaches
to the problem: it is a nonparametric estimator of density gradient employed in the joint,
spatial-range domain of gray level and color images for discontinuity preserving filtering
and image segmentation. However, its original formulation leaves open problems as target
initialization and occlusions handling. Another major drawback is its computational cost.
Many variants have been proposed to cope with these difficulties: in [YDDO05] the authors
introduce a new discriminative similarity measure in spatial-feature spaces, achieving good
results; a very recent attempt to exploit mean-shift properties is presented in [ZYS09] where
the technique is adapted to track sift features. In Camshift (Continuously Adaptive Mean

18

Shift) [Bra9d8] the mean-shift algorithm is modified to deal with dynamically changing color
probability distributions and applied to the problem of tracking faces.

Since motion and appearance approaches can be regarded as complementary, the litera-
ture proposes various methods combining appearance-based methods (and mean-shift in
particular) with dynamic filters. Among different techniques available, particle filters are
often adopted for their ability to maintain multiple hypothesis about target properties.
[SWTOO04] integrates the advantages of the two methods, showing that filter-based track-
ing (in the specific case of hand) benefits from introducing appearance properties; a color
histogram is integrated in a particle filter framework in [NKMVGO03]. In [PYLO5] the
authors propose to plug a color histogram, describing the visual appearance of a target,
into a Kalman-based framework so that the appearance model is filtered and contributes
to estimate the new object model. A possible drawback of this choice is that appearance
information may be very unstable when illumination changes, intersections occur, or tem-
porary occlusions (total or partial) take place. This would introduce uncertainty in the
whole state system.

2.3 Representation and comparison of temporal series

When dealing with trajectories representation, several authors adopted approaches in which
the temporal component of the observed behaviors is kept explicit [Lia05], therefore relying
on methods for time-series analysis. In what follows, instead of considering representations
that explicitly refer to 2D or 3D trajectories, we focus on methods that do not make any
assumption on the size of each instantaneous measurement.

[IMTO08] reports a review of popular methods to pre-process trajectories to plug them into
learning frameworks. In particular, methods for normalizing trajectories or reducing their
dimensionality are discussed. Trajectories normalization ensures that they all have the
same length. Zero-padding [HXF*06b] and track extensions [Cuc05] are very simple tech-
niques where the common length is automatically chosen on a training set, with major
drawback due to computational issues. Alternatively, the equal length can be fixed a-
priori: each sequence is then adapted to it by resampling [ME02, HXF07, LCSTO06] steps
sometimes coupled with smoothing [LHHO6] to attenuate the noise effects.

Even if the methods mentioned so far represent a simple and intuitive class of techniques,
they are not tailored for on-line analysis, being typically applied on entire tracks. Notice,
moreover, that there is not guarantee that the intrinsic properties of data are maintained:
as a simple example, when subsampling two sequences corresponding to people walking
and running the information related to the velocity could be lost, if not explicitly included
into the description.

More related to our work, another main class of approaches relies on reducing the di-
mensionality of the trajectories so that they can be more easily handled, both from the

19

standpoint of computational issues and the capability of learning methods to extract knowl-
edge from the data. Each trajectory (or group of coherent trajectories) is assumed to be
generated by a model, finding the set of parameters best describing it. Vector quantization
is a very popular and simple technique to select a sub-set of prototype able to symbolize
the whole data-set [BS98, SG02, ZSV04].

The curve-based approach is based on fitting a function on the trajectories and mapping
it into the parameters space [PCV00, YFO05]: the complexity of the functional should be
dictated by the intrinsic complexity of the data-set. When plugging scale-based features
(as wavelets) into this approach [KN05, NK06, LHH06] a multi-resolution representation
of the trajectory is achieved: a smoothing effect on each datum is inherently obtained,
whose amount can be controlled by choosing the appropriate wavelet level.

Other two main popular approaches are based on the eigenvectors of a training set, the well-
known principal component analysis (PCA) [BAT05, BQKSO05] and the so-called spectral
methods [XG05, HXFT07, Por04, AMPO06]. In the first one, a new space is built which is
spanned by the largest eigenvectors of the training set; the trajectories are then projected
onto the subspace accounting for most of the signal and discard low-variance direction.
The spectral-based approach, instead, relies on the computation of a particular matrix,
the laplacian [Chu97], which is decomposed to find its K biggest eigenvectors. Such vec-
tors compose the new trajectories descriptors. Our approach shares similarities with this
techniques.

The representation based on natural languages has been inherited from text retrieval and
widely applied to application based on motion analysis [HXF*06a, SG00]. An alphabet of
symbols is defined on the input space, namely the space of the trajectory elements, and
with respect to it a trajectory is represented, assuming the string-form. The alphabet is
built by partitioning the input space in states and associating a symbol to each one of
them. Finally, a trajectory is translated into string by associating their elements to the
states they belong to and replacing each element with the corresponding state symbol.
Also, it is worth mentioning some examples of how traditional approaches can be applied
from slightly different view-point. Hidden Markov Models (HMM) [Rab89] are highly pop-
ular methods to model a group of trajectories that are assumed to be generated by a
common underlying hidden stochastic process. In [JKH04, JST07] the authors proposed a
promising approach based on modeling each single trajectory with an HMM (as opposite to
the traditional use that modeled group of trajectories). The space of the final fixed-length
representation is that of parameters of the HMMs. Analogously, the Kalman filter [WB]
and related ARMA models have been adopted for the same purpose [DCWS03, XY04].

For what concerns more specifically the issue of learning from examples, an important
issue is what similarity measure using to extract meaningful information: [RLO08] offers
a complete survey to such a topic applied to sequential data. If sequences of different
lengths must be compared in the native input space, Euclidean distance and derivative
measures (see [BI05] as an example) performs poorly. They can be alternatively coupled

20

with methods for temporal alignment: the very popular Dynamic Time Warping [R.J93]
aims at minimizing the distance between matched points of two trajectories, goal for which
many other variants have been proposed. We cite here the method based on Longest Com-
mon Subsequence (LCSS) [VGK02, BSK04], more robust to noise, and the work in [PF06]
which does not require the entire sequence and it is thus more appropriate for on-line and
predictive analysis. The Hausdorff distance is designed to cope with data of different length
and has thus ben applied to the problem of comparing trajectories [JJS04]. However, a
major drawback is that it disregards the temporal component, so an adaptation was re-
quired to be tailored to the problem [AOPO06]. In general, when comparing temporal series
described with a non-parametric approach (in other words, using raw data) a number of
mathematical distance and similarity measures have been proposed in the literature (see
[Lia05] for an almost complete survey), although can be easily applied only when the se-
ries have the same lengths. In the opposite case, some adaptation to the comparison of
sequences of different lengths must be implemented.

When the trajectories are mapped in some different space, instead, the distance or similar-
ity measure strictly depends on such transformation. In some cases, one of the traditional
distances cited above can be directly applied to the new representation (e.g. when the
representation is composed of the parameters of a fitting function). Otherwise, in more
complex spaces a specific measure must be adopted. It is the case of statistical-based
representations [JKHO04, JST07, XY04] or string-based descriptions. In the latter case, a
complete survey can be found in [TC04] where a number of kernels to compare sequences
of symbols are discussed.

2.4 Learning from temporal series for behavior mod-
eling

The study and the understanding of human activities from videos has been widely ad-
dressed in the last decades (see for instance [SG00, Gea98, IB00, PCV00, PMF08, ACO8]
and references therein). With the availability of an enormous amount of installed video
surveillance cameras a huge amount of video data are daily acquired, becoming more and
more difficult to be handled by human operators. This justifies the growing need for
computational methods able to assist the user, suggesting where to focus attention.

A priori knowledge on the analysed environment and its dynamics may be exploited in
different ways. A first example, widely explored in the literature, refers to stochastic
grammars (see, for instance, [IB00]). In certain application domains (e.g., traffic control)
the amount of structures contained in the expected events may be profitably used to model
the dynamics of the scene. For instance, in [MCB™01] the results obtained by a robust low-
level processing module are associated to context information to identify possible abnormal

21

behaviors in aerial images.

In the case of behavior analysis, if the available data are labeled, i.e., to each one of them
we may associate a label of a known behavior, the use of state-of-the-art machine learning
algorithms lead to effective behavior categorization methods. On this respect we mention
the work by Pittore et al. [PCV00], where the available data are mapped in the parameter
space induced by the fit of each trajectory with B splines, then Support Vector Machines
(SVMs) are applied. Otherwise, the sequential structure of trajectories may be captured by
training a well designed Hidden Markov Models (HMM) [Rab89] or other similar dynamical
systems (see, for instance, [BKS07] and references therein).

However, the huge amount of available data, for which a manual labeling is an unfeasible
solution, calls for some form of unsupervised data analysis, since: an analysis of the related
literature makes it clear that unsupervised methods for behavior understanding or, more
in general, to time series analysis are quite limited - see [JST07, JCN06, ME(02]. In [Lia05]
the interested reader can find a rather complete review.

The general goal of unsupervised approaches applied on temporal data in the field of video-
surveillance is to model normal behaviors from (possibly big) sets of unlabeled observations.
Many successful methods have been proposed to discover classes of similar pattern in a
data set. Unfortunately most of them are not tailored for clustering sequential data, such
as temporal series. In fact, while analyzing temporal data, the temporal dimension usually
induces specific, inherent structure to the sequence of feature vectors that is likely to be
disregarded by traditional clustering methods. Furthermore, sequences of different lengths
cannot be compared in a unique way.

Among the first contributions to this topic is the influential work by Stauffer and his
co-workers (see, for instance, [SG00]), based on learning from data a code-book derived
from data quantization. Co-occurrence of motion patterns in the analysed trajectories is
evaluated, through the use of a hierarchical classification module. More recently [HXFT06a]
propose a pipeline based on k-means to track objects, represent trajectories with respect
to an estimated code-book, and cluster them. Finally, a Bayes method is applied to detect
anomalies. Experimental analysis is based on both synthetic and real traffic sequences. In
[PMF08] normal behaviors are associated to one class only. Then a one-class SVM is used
to model the class of normal trajectories, against which identify abnormal behaviors. The
representation is a sequence of 2D coordinates and the fixed length property is restored
by means of trajectory sub-sampling. Again, the reference application is outdoor traffic
control analysis. [AC08] adopt a multi-feature representation of each trajectory based on
a cumulative approach: each measurement at time t refers to all previous observations.
Clustering is performed with mean-shift. A trajectory is labeled as normal or anomalous,
according to the trajectories density among the clusters.

More specific to our problem is previous work on temporal series clustering. In this context

22

the literature addressed the problem from two distinct viewpoints (see, for instance, [JSTO7,
Lia05, JCNO6] and references therein). The first approach relies on modifying suitable
existing algorithms for clustering static data in such a way that time series data can be
handled. The rationale of the second approach is to convert temporal series data into the
form of static data so that the existing algorithms for clustering static data can be directly
used. An interesting alternative to these two mainstream approaches, is to tackle directly
the problem of building suitable similarity/kernel functions that encompass dynamical
properties of the events. In [VSV07], the authors provide a unifying theoretical framework
to study and design different kernels based on dynamical systems, which can be used for
behavioral analysis (through the so called ARMA models [DCWS03]), diffusion processes,
graphs-based systems. A number of efficient methods for computing such kernels are also
discussed, making the paper a valuable starting point for a more detailed study of this
approach.

A rather complete account of the open issues related to events classification in an unsu-
pervised setting is reported in [MTO08].

To conclude, a challenging aspect of applying unsupervised learning to real world complex
scenarios consists of evaluating the quality of the obtained clusters both with respect of the
initial set of data and with respect to possible future observations. As reported in [GB03,
BA03, HBVO01] most of the work is devoted to estimate an appropriate model (usually
related to the choice of the number of clusters to consider) by comparing the estimated
membership against a ground truth, when available. Otherwise, when several instances
have been computed (e.g. for different values of the parameters) an analysis based on quality
measures, or quality indices, is used to select the most promising computation. A rather
complete account of the open issues related to events classification in an unsupervised
setting is reported in [MT09].

23

Chapter 3

Low-level video processing

In this chapter we address the video processing stage of the pipeline. The focus of the
discussion is on the details of our modules for low-level analysis (Sec. 3.2) and object
tracking (Sec. 3.3). In the latter, a joint model of motion and appearance information
1s adopted: the problem of preserving the identities of interesting targets is approached
using graph structures, naturally embedding different levels of complexity depending on the
properties of the scene.

The last part (Sec. 3.4) presents the experimental analysis, in which we compare our system
against a selection of popular approaches, using an annotation on the video content based
on the use of a set of source-sink regions.

3.1 Introduction

The apparent motion of objects in the image plane is a strong visual cue to understand the
semantics of 3D motion and usually represents the first goal of behavior analysis models.
This thesis considers scenarios acquired by a single static camera, and deals with the infor-
mation loss caused by the image formation process by looking for rich data representations
(Chapter 4).

At the lowest processing level the apparent motion patterns are captured by means of
change detection and object tracking. We start-off from the literature discussed in Chap-
ter 2, adopting a rather standard motion segmentation while proposing an effective object
tracking method, able to perform in real-time.

In the following, the two modules are discussed in details.

24

3.2 Low-level analysis

We now describe or approach to extract low level information from videos (see Fig. 3.1).
Let us first observe that in our reference application domain real time processing is a strong

Video
stream

N Low-level

s —>
analysis

Tracking

Data
abstraction

r r 1 N
Background Blob
model extraction
e 4 J
f l 4 '
Motion Morphological Shadows
Lsegmentation operations X removal)

High-level

Figure 3.1: The main steps followed during the low-level analysis of each frame in a video.

requirement: this significantly reduces the set of suitable methods for motion segmentation.
Second, we consider the fact we will mainly focus on indoor scenes, thus our choice falls
on unimodal descriptions, and the running average method in particular.

Once a first segmentation is obtained we further process it by applying morphological
operations to better approximate the shape of blobs, more specifically the erosion and
the dilation: given a local patch @ around each pixel (7,j) of the binary map I;,, the
corresponding pixel in the output map I,,; is defined as

Iwt(i,j) = min L, i+, 5+) (3.1)
(') €Q
for the erosion, and
Iowt(1,7) = max Ly(i+74,j+7) (3.2)

(i',5')€Q
for the dilation.
Finally we apply a procedure to remove shadows [SFGKO02], performed on the YUV color

25

space. YUV is the native space of videos, thus its adoption avoids the computational costs
of conversions into different color spaces (as RGB or HSV).

When the final motion-based segmentation is achieved, the connected components of the
binary map, called blobs or targets, can be identified and described by an appropriate set of
low-level features. The next stage of the pipeline aims at correlating this information along
the sequence to provide a temporal description for the dynamic evolution of the target.

3.3 A combined motion and appearance tracking

Motion-based trackers often rely on the use of dynamic filters that help to increase precision
and performance. A very common choice is to adopt a Kalman filter with a hidden state

Figure 3.2: When based on motion information only, tracking might be unreliable. The
Kalman-based approach let the system learn over time the motion model so that it is able
to predict the future position. It is in some cases not sufficient to successfully address the
tracking problem (first row), as the motion model is deceived by the change of directions.
Adding appearance information, the system is able cope with the problem (second row).

x; made of target position and velocity, while the noisy observation includes position
only. This model was proved quite effective in moderately simple environments. As the
observed scenario becomes more complex, the ability of predicting the next state of the
system exploiting the model built over time might be inappropriate, leading to incorrect
data association. Figure 3.2 shows an example of wrong association: in the video sequence

26

(belonging to a toy data set acquired in our labs), two cups get close to each other and then
go back to the original positions. When the two objects start getting apart, the motion-
based tracker will predict the new associations according to its state model, therefore it
will wrongly assume that the objects trajectory did not change (Fig. 3.2, top row). In this
simple case objects appearance would help and leads to correct matching.

A possible way to implement this simple intuition is to model an appearance description

*

- - — —
|Blobs /,f”/ TTTe—

4
_[

Motion model
_(Appearance mode

Video
stream

High-level
analysis

Low-level
abstraction >

analysis

Data association [Kalman Cc:rrection)

Trajectory updating)—

q Intersection manager

(Kalman)
[

Appearance updatin
L.

)

Figure 3.3: An overview of our system: motion and appearance information are processed
in parallel and jointly exploited to reach a robust behaviour. Data association is based on
a matching procedure, followed by a stage for managing complex events.

within the filter state model, similarly to [SWTOO04] in a particle filter setting. However,
all the methods briefly discussed in the previous section fully integrate appearance into a
motion tracking model.

The peculiarity of the approach we propose is different, since motion and appearance
information is measured, stored and updated independently, but together participate to
address the tracking task as we deal with more complex events occlusions and intersections.
Therefore our main contribution is a simple solution able to perform real-time as many
motion-based approaches do, and to resort to appearance only when necessary, with no
loss in computational efficiency.

Figure 3.3 shows a visual representation of our tracking system [NDLOO09]. The pipeline is
designed as a cascade of simple modules that are combined to reach a robust final result,
rather than based on more complex mechanisms that achieve good results at the price of

27

high computational costs.

At time t, motion and appearance information describing a certain moving object or target
O; follow a similar process, being (1) measured and modeled with a feature vector M, that
we refer to as thetarget description, (2) associated to previously seen targets by comparing
them with predicted or estimated models (identity association), and finally (3) updated
for the next evaluation time t + 1 (Kalman correction and appearance updating). Identity
association includes a procedure to solve intersections and occlusions, which allows us to
cope with the tracking task in presence of more complicated scenarios.

When target O; exits from the scene its trajectory is stored as a trajectory {Mt},—1 x of
instantaneous observations.

3.3.1 Target description

At time t, the instantaneous observation of a moving object or target O;, is a vector
M = [TH}, P, S}, Vi, CH}, WY, H{| where

e TH! € R is the frame timestamp at time ;

e P! = [z} y!] € R? is the position of the target centroid on the image plane;

S; € R is the spatial occupancy of the target, Sf = > ;cccr B'(i, j), where CCY is
the connected component of the binary map at time ¢ corresponding to O;;

o Vi=[Vzl Vyi] € R? is the apparent velocity vector estimated by Kalman;

Pi

CH! = ZuC’Z?:1 K(|| ;P§ ||2)5(b(P§) —u) € RM is a weighted color histogram

[CRMO00] where
— u is a candidate color from a quantization in M states of the {R, G, B}-space
— C is a normalization constant

- K(z) = %e_%”xwis the kernel profile with radius h (which depends on blob
size)

— ¢ is the Kronecker delta function

—b: R — 1..M maps pixels locations into histogram bins, depending on their
color

— P; is a pixel location lying in the spatial extent of target O;.

e W!eRand Hf € R are, respectively, width and height of the bounding box of C'C?.

28

At each time instant ¢ > 1, the motion information is predicted and updated accordingly
to the well-known Kalman filter pipeline.

Concerning the the appearance model, it is updated if not significant changes occurred -
thus avoiding the corruption with incorrect color information due to tracking temporary
failures - according to the following update rule: given the model at time ¢t — 1, CH!™!,
the new one is computed as

CH! = aCH!™' + (1 — a)CHY, 54 (3.3)

if dist(CH!™', CH.,5¢) < 7, where CH', 5 is the color histogram measured at the current
target location, « is a learning factor, dist is a suitable distance between histograms (e.g.,
Bhattacharyya distance) and 7 is an appropriate threshold (the choice of a and 7 is dictated
by the environment and can be set in a system calibration phase). The above updating
rule allows to control how quickly the system learns the color model.

3.3.2 Graph-based data association

We now briefly sketch the data association procedure, core of the tracking system. Data
association (Fig.3.4 reports a simple example) is based on graphs using two distinct sets
of nodes:

previously observed targets {T)}.",

current observations {OBSj}jyzolBS.

Each edge in the graph is directed from a target to an observation and models a match
between them.

Following an all-vs-all matching configuration, based on computing a distance vector for
each pair (T, OBS;), we obtain a graph which is

e Bipartite, because each edge goes from a target to an observation, which are elements
of the distinct sets named above;

e Complete, as in first instance we try the match between each possible pair (target,
observation);

o Weighted, since edges are labelled with the distance vector.

Distances, used as edge weights, measure the goodness of a match. To compare a target
T), against an observation OBS; , we build a distance vector [Dy;, Rk, I1;, By;], where (1)
D is the Euclidean distance of the mass centers, (2) R is the ratio between sizes, (3) [

29

Previously observed Current observations {0BS;}#*
targets
{Te}iZ,

1-to-1 match

4@)
- __-_-;;:::::::::::::_‘.'.'.".\

“Isplit event

““imerge event

Figure 3.4: An example of data association. Above, a graph G, is built on targets and
observations nodes with an all-vs-all matching strategy, each edge is weighted with a vector
of distances between features. Below, a simplification of G; is obtained by rejecting edges
for which a matching condition does not hold. The new graph, G5, includes different types
of matches, representing simple associations (1-to-1 match) or more complex events (split
or merge).

30

represents the intersection of the spatial extents, and (4) B is the Bhattacharyya distance
between the color descriptors. By computing the distance vector between all the possible
pairs of elements in the two sets of node, a first matching graph G is built.

Since edges are oriented from targets to observations, we can define

e The outgoingflow OUTr(Ty) of a target Ty as the number of edges exiting from the
correspondent node

e The incoming flow INp(OBS;) of an observation OBS; as the number of edges
entering the node.

A first matching evaluation is based on a condition that considers D, R and I,
(D<TD)&& (R>TR)&&(]>T[) (34)

where 7p, Tg and 7; are appropriately chosen thresholds (the values of the thresholds
are fixed during a calibration phase, by observing the scene dynamics and estimating
the average expected displacements of targets over subsequent frames). This procedure
provides a set of potential matches: note that in our framework it corresponds to delete
edges of graph (1, for which the condition does not hold, obtaining a second graph Gbs.
We distinguish four possible match configurations that differ with respect to the flows:

1-to-1 match (OUTp(T; =1 and INp(OBS; =1) - In this case if the color descriptors
are coherent we conclude that OBS; is a new realization of the previously observed
target T

N-to-1 match (a set of targets {T;}¥ ; match with the same observation OBS;, so that
OUTr(T; = 1 for each ¢ = 1...k and INp(OBS; = k) - in this case that a merge
event might have happened, that is different targets moved in a limited spatial range
so that during segmentation only one connected component has been detected. The
observation gives raise to a new target but the history stores the merge event together
with the identifier of the targets involved. A new identifier is univocally associated to
a new target, so it is sufficient to completely determine it. However, before concluding
that a merge event occurred, we compare the color descriptors to test whether one of
the targets is much more similar to the observation than others. In this case, we force
the association with the correct target: this happens when an occlusion occurs.

1-to-N match (a target T, matches with a set of observations {OBS;}_,, so that
OUTp(Ty = j and INp(OBS; = 1 for each ¢ = 1...j) - Similarly as above, we
look for possible match much more robust that the others by comparing the appear-
ance properties, and, in case, correct the association. If such match is not found,
we conclude that a split event occurred, that is a group of targets moving coherently
differentiate their dynamics. Again, the event is stored in the history.

31

N-to-N match (a set of targets {T;}%, match with a set of observations {OBS;})_,,
so that OUTr(Ty > 1 and INp(OBS), > 1 for i = 1...k and h = 1...j) - We further
analyse this complex event and reject the weakest matches until we reach one of the
previous cases.

When a target does not take part in any match, we consider it as missing from the current
scene, as well as an observation with the same behaviour is treated as a new target just
entered in the camera view. The graph-based approach allows us to better deal with more

Figure 3.5: Details on tracking results for a controlled sequence (first and second row)
and a real scenario (last row): by comparing the appearance model of targets using the
Bhattacharyya distance, the system is able to recover after occlusion events, which are
typically characterized by sequences of merge and split events.

complex data associations. Intersections and occlusions are typically characterized by a
merge event followed by a split event: the sequence in Figure 3.5 (first and second) clearly
explain the mechanism. The two cups go towards each other and are identified as distinct
entities (first row, targets 0 and 2) up to the moment they intersect, so that the binary
map includes only one connected component. The latter is interpreted as a new entry in

32

the targets set (second row on the left, target 5), but the matching procedure is able to
recognize the merge event: more precisely, it encodes the event by storing the information
that targets 0 and 2 become sub-targets of 5 on a dedicated data structure, that we call the
target history. Later on, when they split, the data association is able to re-associate the
correct identity to each target by comparing the color histograms of new observations and
sub-targets of target 5 (second row, right). The last row of Figure 3.5 reports an analogous
case for a sequence of a real environment.

3.4 Experiments

We test the performance of our algorithmic pipeline on scenarios of variable complexity:

1. The whole CAVIAR! data set

2. A selection of videos from the VISOR collection? appropriate for the problem under
consideration, including highly challenging scenarios

3. The data set of PETS 2006 workshop?, of which we processed one of the 4 views.

Figure 3.6: Examples of the regions adopted to build the ground truth (see text).

In order to present a coherent quantitative analysis of the results obtained on different
data sets we devised a simple ground truth labeling adequate to show the appropriateness
of our approach towards our task: we defined for each scenario a set of source and sink
regions (see Figure 3.6 for some examples) and built a ground truth that lists, for every
dynamic event entry region, entry time instant, exit region and exit time instant.

http://www- prima.inrialpes.fr/PETS04/caviar_data.html
thtpzwww.openvisor.org
3http:www.cvg.rdg.ac.uk/PETS2006 /index.html

33

When entry and exit points are few, as for the CAVIAR data set, we enrich the ground-
truth with labels of intermediate regions that the target goes through.

The data sets we used are interesting and complex in different aspects: PETS looks at
a medium-crowded scenario, where people often intersect and occlude each other but en-
ter and leave the scene in a limited number of regions. VISOR data, instead, provide
quite localized trajectories but several starting and finishing points. Moreover, it refers
to an outdoor environment and thus presents some difficulties related to the illumination.
Although CAVIAR might seem to include simpler videos, the variety of the represented
events constitute an useful test bed for our application. Also, the presence of windows
causes a disturbing illumination.

Kalman | Particle | CamShift | [NKMVGO03] | Our Proposal
(real time) | (~ 12fps) | (~ 12fps) (~ 9fps) (~ 20fps)
CAVIAR 89.3% 89.1% 48.1% 48.1% 92.3%
VISOR 61.1% 65.1% 78.1% 81.4% 83.2%
PETS 70.2% 70.2% 77.3% 70.6% 80.5%

Table 3.1: Comparison between our proposal and a selection of popular tracking methods.
The percentages refer to the number of estimated trajectories having a full correspondence
with some entry in the ground truth.

We compare our proposed method with standard Kalman and Particle filters, whose state
models consider target position and velocity, an appearance-based tracker derived from
mean-shift, CamShift, and the method proposed in [NKMVGO03], where particle filter is
coupled with mean-shift. For what concerns Kalman and particle filter, we adopted our
own implementations, which are bases on BFL libraries*; instead, we exploit OpenCV? for
mean-shift and CamShift modules.

The table in Figure 3.1 summarizes the results obtained on a total of 42 videos and about
70.000 frames: the reported percentages refer to the number of measured trajectories having
a full correspondence with the ground truth described above. We consider a range (of 30
frames or 50 frames, depending on the video frame rate) around the source and sink times
reported in the ground truth to account for slight delays in the measurements.

As expected, CAVIAR data set suffers from illumination problems, thus a pure appearance-
based tracker performs poorly. For what concerns VISOR, instead, it is apparent how the
results benefit from the introduction of appearance properties of targets.

In the case of PETS, the high number of occlusions and intersections between targets
causes failures for both motion and appearance-based approaches.

Globally, the method we propose outperforms the others. When the gap between results is

4http:/ /www.orocos.org/bfl
Shttp://sourceforge.net /projects/opencvlibrary/

34

not significantly high, the computational efficiency clearly speaks in favor of our solution.

Figure 3.7: VISOR scenario: a target is correctly maintained for several frames (from left
to right, time instants 1:45, 1:59, 2:02, 2:10), even in presence of temporary occlusions.

Our method has proved to be robust in time, as one can see in Figure 3.7, where a subject
is nicely tracked in a long sequence, even after partial occlusion (after the third frame and
before the last one). As expected, the appearance descriptor coupled with motion copes
with difficult scenes, as in Figure 3.8, first row, where the target is maintained even when
entering in a very difficult area, characterized by a high light intensity; mean-shift does
not provide the same robustness (same figure, second row).

The system performs well even in the presence of complex configurations: Figure 3.9 shows
an example from one of the VISOR scenarios, where in a scene with medium crowd most
of the targets are correctly tracked along the sequence. However, as one can observe, some
errors occurred.

A crucial feature of our approach is that it works at more than 20fps on 640 x 480 images
and therefore guarantees portability on real video-surveillance systems. In Fig. 3.10 some

35

Figure 3.8: Results on a CAVIAR scenario. First column: thanks to the robust color
descriptor and the use of motion information, our system can cope with difficult illumina-
tion. Right: the results obtained with mean-shift, showing wrong association caused by
the failure of the appearance matching.

36

examples extracted from a real surveilled environment are shown, with the background
smoothed for privacy issues.

Figure 3.9: A complex scene from the VISOR scenario: the system behaves nicely even in
presence of many people temporary occluding each other.

3.5 Discussion

In this chapter we described the low-level analysis of our pipeline. We started from the very
low-level processing, which is based on segmenting each frame of the sequence to detect
moving regions. Then we moved to the tracking procedure, based on a combined motion
and appearance model of objects. The method represents the data association problem
as a graph simplification to adapt to different levels of the complexity of the monitored
environment. A quantitative experimental analysis on benchmark data sets showed the

37

Figure 3.10: Sample frames of a real video-surveillance scenario (to keep the location secret,
we only show the targets, smoothing the background). First and second images show
multiple targets correctly maintained during time; in the others two people (identifiers
234 and 237) go towards each other, meeting and then splitting. The identities are re-
associated.

38

appropriateness of our approach both in term of accuracy of the results and low compu-
tational cost. The evidence of the very good performance on standard data sets adopted
in the field, encouraged us to adopt our tracking module as a pre-processing of a more
complex behavior analysis pipeline, obtaining, as we will see in the remainder of the thesis,
very good results.

As a further improvement, we plan to investigate the use of different appearance mod-
els, with the aim of reaching an higher accuracy against complex tracking configurations.
Different appearance descriptors might adapt to different applications: when dealing with
traffic scenarios, where the objects of interest, cars, have on average similar shape, color
is strong cue. In presence of a more heterogeneous targets set, joint information on shape
and color could be profitably exploited.

39

Chapter 4

Intermediate representations

This chapter is dedicated to the discussion on different higher-level representations (Sec.
4.2), explaining advantages and drawbacks of each one on a synthetic data set of 2D obser-
vations. Each representation is coupled with an appropriate kernel-based similarity measure
(Sec. 4.3) and the performance of each scheme is qualitatively evaluated by means of sim-
ilarity matriz (Sec. 4.4). The quantitative analysis is based instead on supervised learning
(Sec. 4.4). In the second part of the chapter the benefit of using an heterogeneous input
space, rather than the usual 2D information, is discussed (Sec. 4.5.1), showing how it is
a suitable way to cope with data ambiguities. The correspondent experimental analysis s
performed on a set of real yet controlled trajectories, acquired from a surveillance camera,
for which a ground truth has been specified.

4.1 Introduction

Data abstraction is a mapping from input data gathered by the video processing phase
(Chapter 3) to an appropriate feature space where data may be analyzed by means of
machine learning algorithms.

Many successful methods have been proposed to discover classes of similar pattern in a
data set. Unfortunately most of them are not tailored for learning from sequential data,
such as temporal series. In fact, while analyzing temporal data, the temporal dimension
usually induces a specific, inherent structure to the sequence of feature vectors that is likely
to be disregarded by traditional learning methods.

Previous works on learning from temporal descriptions approached the problem from two
distinct viewpoints (see [Lia05] and references therein):

e The first approach relies on modifying suitable existing algorithms for learning from

40

static data in such a way that time series data can be handled

e An alternative is to convert temporal series data into the form of static data so that
the existing learning algorithms for static data can be directly used, trying to keep
information on the structure of data.

The way we approach the problem of discovering similarities among temporal data is more
related to the second, relying on solving two basic issues:

ow to map temporal series into intermediate representations suitable for learnin
1) H t t 1 ies into int diat tati itable for 1 ing
purposes and able to keep the internal structures of the data?

(2) How to find a proper similarity measure to compare the representations?

Video
stream
| »| Low-level 3 - l Data High-level
[analysis] [Tracking] abstractiun] [analysis

Trajectories mappin)
[Feature] [(! PPIng

mapping J {[Similarity measure)

‘ Representation scheme‘

Figure 4.1: A visual representation of the module that in our system is dedicated to build
higher level representations of trajectories.

In this chapter we discuss a procedure to deal with sequential data representations, shown
in Fig. 4.1. The translation of the trajectories (feature mapping) gathered by the tracking
is performed in order to better enhance the interesting features for the problem at hand
(this phase is discussed in Sec. 4.5.1): some features extracted and stored during the track-
ing procedure might be unnecessary for the subsequent analysis (e.g. for our case color
information) or better manageable if expressed in a different form.

Then, to increase the abstraction level of the trajectory representation, we consider differ-
ent representation scheme, coupling specific parametric mappings of the trajectories in a
different feature space with appropriate similarity measures (Sec. 4.2, Sec. 4.3). We more

41

H Representation\ Kernel H

H strings \ P-spectrum H

polynomial fitting | Gaussian
B-Splines fitting Gaussian

| HMMs | PPK |

Table 4.1: The representation schemes we discuss and compare: among them, we propose
the string-based solution.

specifically refer to kernel-based measure, being the kernel a common main ingredient of
learning methods (for a brief introduction to kernels see the Appendix). Table 4.1 reports
the schemes we compare that will be discuss in detail in the remainder of the chapter. Our
main contribution is a string-based representation built on top of automatic partitions of
the domain of the instantaneous observations which are elements of some trajectories.
The nice feature of our approach relies to the almost complete independent of its compu-
tation from the characteristics of the specific domain (e.g. the size of the feature vector)
this it naturally applies to different scenarios. The comparison among strings is based on
the P-Spectrum kernel [TCO04].

We compare strings against a selection of promising representations proposed in the lit-
erature of temporal series modeling. Gaussian and B-Splines based approaches, largely
used in this context, fit the trajectories with respect to one of the two and map them into
the space of parameters; the well-known Gaussian kernel is appropriate for computing the
similarities.

The last scheme relies on Hidden Markov Model and is suggested by the works in [JKHO04,
JSTO7], where the authors adopt the popular tool to model single temporal series with the
HMM parameters, that are finally compared with the Probability Product Kernel (PPK).

4.2 Temporal series representations

In this section we provide a more detailed discussion on some popular representation
schemes for temporal series, referring to techniques which showed promising performances
during our experimental analysis and there adopted. The common underlying idea of the
following approaches is that raw temporal data (trajectories) may be conveniently trans-
lated into a suitable parametric model. The subsequent behavioral analysis can then be
performed using effective methods for dealing with static data.

This approach allows us to overcome two crucial issues related to temporal series: (1) the
fact that the events to be represented do not last the same amount of time, and (2) they
do not have the same spatio-temporal evolution (sometimes even within events of the same

42

class).

In the following, a data set of N temporal series is denoted by means of the set X =
{x;}Y,, where each datum x; is a sequence of k; vectors in some Euclidean space RY, i.e.
x; = (¢}, 22,...,2")T and 2! € R?, t = 1,..., k;. A natural way to interpret the index # is
as the temporal index.

We denote with 3
X = {{xf}tzl...ki}i:L..N

the set of instantaneous observations in the trajectories: it thus derives from the set X by
discarding the temporal component (in other words, each observation is treated indepen-
dently from the others).

After a brief discussion on non-parametric approaches, the reminder of the section will
focus on the parametric counterpart.

4.2.1 Non-Parametric Approach

If a non-parametric approach is adopted, then the most simple and direct representation
of a set of temporal series is simply X itself. For instance, in the special case where all the
series have the same length, that is how saying

ki=k Vi=1..N.

It is sometimes convenient to think of a k x (d - N) matrix X = (x1,Xa,...,Xy) which
provides a compact formulation of some structural properties of the data in terms of vector
matrix calculations. When the lengths £; are not all the same, zero-padding or resampling
techniques may be applied.

However, this approach only applies to an extremely restricted class of applications, since
it does not provide an appropriate solution to problems where some kind of higher ab-
straction is needed. A more common practice is to resort to parametric approaches: in
the following we thus review, as a more general and useful alternative, a set of possible
parameterization techniques for temporal data.

4.2.2 Curve Fitting

A popular parametric approach is based on curve fitting, in which a regression function is
built for each sequence (see [PCV00] and references therein). Here an important step is
to choose a specific family of fitting functions. Such choice depends on the observations
distribution of set 5(, which is strongly connected to the complexity of observed behaviors.
When the feature vector includes measurements of different type, it is suggested to first

43

normalize the components (e.g. in the interval [0, 1]) to cope with the different numerical
ranges where they might live.

Under reasonably simple conditions, a polynomial fitting might be a viable solution: a sim-
ple least squares-based method can be adopted to fit the regression function to a trajectory
[LOWOO0].

In a more articulated scenario one relies on a family of B-spline models, as proposed in
[PCV00], where a maximum likelihood regression is performed separately for each com-
ponent to estimate the coefficients of a piecewise linear fixed-knot spline. The B-spline
models have all the same fixed size according to the number m of knots. The normaliza-
tion is required in order to make the coefficients of the B-spline models consistent among
each other.

According to a common thread of previous works on the topic, the piecewise linear fixed
knot splines are obtained using an intermediate feature space in which a point x is repre-
sented by a vector ¢(z) defined as

o) = 1,z |z —t1]+,. .o |2 — tim|4) (4.1)

where |x — x| is equal to zero if z < ¢, and (z — ;) otherwise. In such space it is possible
to define a Mercer kernel

K(zi,z)) =1+ am;+ Y |v — tellwy — til. (4.2)
k=1

At the end of the above process, each temporal series x; can be described by means of a
single d x (m + 2) dimensional vector obtained by concatenating the regression coefficients
for all the dimensions of the feature vector x?.

4.2.3 Probabilistic Models

A popular probabilistic approach to temporal series analysis is based on Hidden Markov
Models (HMMs): a brief introduction to this class of methods is given in the Appendix.
The traditional use of HMMs relates to the estimation of sets of models underlying groups
of temporally correlated data and whose number is known a-priori. Each model consists
in the main parameters of an HMM 0; = (m;, o, p1;, ;) that univocally identifies it.
However, in the general case we consider, such labels are not available.

An alternative is thus to adopt HMMs to model single trajectories [JKH04, JST07]. From
our point of view, the advantage of this second approach is that is it more related to the
general representations schemes that we proposed, thus it is our choice for the experiments.

44

4.2.4 String-based approach

This approach is based on the observation that a temporal sequence of discrete elements
can be seen as a concatenation of symbols from a finite alphabet A.

Intuitively the alphabet could be associated to an appropriate partitioning of the input
space, which could be performed manually or automatically: since the choice of an ap-
propriate alphabet is crucial and as the input size d may grow manual partitioning is not
always conceivable, the alternative is to address the problem of partitioning the space
guided by the available data. In the literature methods for automatic space partitioning
(usually based on vector quantization or clustering) have been proposed [SG00, HXF*06a).

Focusing on our work, we adopt an approach originally proposed in [NSO08a] and previ-
ously discussed in [NSOO08b] which relies on clustering data in the d—dimensional input
space represented by the set X defined above. As for the specific clustering algorithm,
we adopt spectral clustering (see the Appendix for more details). A peculiarity of the im-
plementation we adopt is the possibility to control the granularity of the solution with a
specific parameter, the cut threshold (TH). Such method requires an appropriate kernel
function that allows us to build a similarity matrix able to capture the internal structure
of the data set. To combine different measurements, which could take values in different
ranges, various choices are possible. A first way is to simply concatenate input vector,
after an appropriate data normalization in the [0, 1] range, similar to the one adopted in
the curve fitting approach. An alternative way (sometimes referred to as Multi-Cue Inte-
gration in the supervised learning literature [TOCO08]), is based on a convex combination
of similarity or kernel functions on sub-sets of coherent features. Given two observations
in RY, x and y:

Ny
K(z,y) = ZwiKz‘(l’uyz',@i) (4.3)
i=1
where

o N; < d is the number of features, component of the measurement vector

e {w;};—1. N are the feature weights allowing to control the importance of each feature
in the process. They are subjected to the constraint vazfl =1

e (; are the parameters of kernel K;, which depends from its type.
Once the alphabet is built, a temporal series x; may be translated into a string s with an
association of each element z! € R? to the partition it belongs to. The association can be

naturally made if the trajectories points took part to the partition estimation; as opposite,
out-of-sample methods can be exploited to associate new points to the partition.

45

To obtain compressed descriptions that capture the peculiarities of each behavior we con-
sider only transitions between states, skipping the replicates of the same symbol, i.e., if a
string contains replicates of the symbol u € A it can be compressed as:

au’ s — auf

for every arbitrary substrings o and J3.

4.3 Kernels for time-series

It is well assessed that, in the learning from examples approaches, the obtained results
strongly depend on the ability to capture the underlying notion of metric - or the similarity
structure - over the input space. In turn, the similarity structure is related to the choice
of a proper kernel function on the data. Since in our experiments we compare different
representation schemes we have to choose appropriate kernels.

In the case of curve fitting, we refer to a well established kernels, the Gaussian kernels.
Given two temporal series x and y and their parameterization in the B-splines coefficients
space X and ¥, the kernel is defined as

S

K<§(7 5’) =e 27

where o denotes the standard deviation of the gaussian and must be conveniently estimated
on the input data.

The other two approaches require a more careful choice of the kernel. On one case, the
HMMs, the capability of dealing with data that are distributions is needed. In the case
of strings, instead, the main issue regards the variable lengths of the descriptions. In the
following we briefly discuss the main characteristics of the kernels we chose.

4.3.1 Probability Product Kernel (PPK)

PPK is an efficient measure of similarity among temporal series represented by means of
HMMs, introduced in [JKHO04], and used in [JST07] in tasks similar to ours.

Given two probability distributions representing two pairs of data sequences over the space
of all potential observable sequences X, the generalized inner product can be computed by
integrating the product of the distributions:

K(p(e]0), p(al0)) = /X P (216)p (216)d, (4.4)

46

where (3 is a free parameter which allows for the specification of some properties of the
kernel. For instance, if § = 1/2, the PPK becomes the classic Bhattacharyya affinity metric
between two probability distributions, which is a Mercer kernel and can be conveniently
used in our context. In addition, it is computable in closed form for a variety of distribution
families.

4.3.2 Kernels for string-based representations

In this case the choice of an appropriate kernel is quite critical, considering the peculiarities
of the available data. Indeed, even after the translation of each temporal series in a string,
the event description is still variable length — depending on the number of transitions of a
behavior instance from one state to another.

When translating a temporal series with respect to a finite alphabet, it is possible to
borrow from studies on text and biological data manipulation [LEN03, LSST*02]. The
most natural way to compare two series is to count how many transition they have in
common from one symbol of the alphabet to a different. This is tightly related to the
concept of spectrum of order P (also known as P-spectrum kernel) of a sequence s to be
the histogram of frequencies of all its (contiguous) substrings of length P. Formally, the
kernel may be defined as a feature map of strings followed by an appropriate dot product
[TCO04]. The map makes explicit all sub-strings of length P of string s:

" (s) = {(v,12) : s = vjuvy }|,u € A", (4.5)

The associated kernel between two strings s and ¢ is defined as:

Kp(s,t) = (¢"(s),6"(t)) = Y ¢l (s)ok(t). (4.6)
ue AP

String length independence is achieved with by the following normalization [TC04]

R B KP(Sat)
Ke(s,t) = \/KP(Sas)\/KP(t’t)‘

P-spectrum kernel is a Mercer’s kernel, therefore it is also symmetric and positive.

(4.7)

4.4 Experimental assessment on synthetic data

In this section we show the results obtained during an experimental analysis performed on
a set of synthetic 2-dimensional data. The discussion will focus on different issues, related
to

47

e Clarify the specific properties of each scheme

e Compare the different representations applied to the problem of discriminate among
trajectories

e Validate the whole representation pipeline.

Figure 4.2: Examples of series from the synthetic data sets generated to assess the represen-
tation schemes: the top row refers to DS3B (unidirectional series), while below examples
from DS6B (bidirectional series) are reported. On both rows, on the left the noise level
is low and the trajectories are smooth and almost linear. On the right the noise level
increases and the classification of the series is far more difficult.

We generated a number of synthetical temporal series of 2D points on a plane - see Figure
4.2 - building the data set we called DS3B. Such data are evocative of a simple yet realistic
video surveillance scenario, where positions of objects moving at constant velocity along
the image plane are used to describe dynamic events. In this case data are fully represented
by their position, thus the input space is so that d = 2. The sequences are divided into 5
groups with an increasing level of noise on the points (0.1, 0.3, 0.5, 0.7, 0.9 respectively),

48

so to model situations where a smooth object tracking is increasingly more difficult (e.g.,
because of scene clutter or bad illumination).

Each group of series comprises 3 distinct behavioral models (represented with different
colors in Figure 4.2, top row). Each behavior is composed by N = 150 series, each of
length L = 50. In order to make some statistical analysis of the results, we built 20
different re-samplings of each group of data.

Since in principle some of the proposed kernels should be able to capture more complex
properties of temporal series - such as to distinguish between opposite directions - we
generated a second data set (named DS6B) where each of the 3 behaviors is split in two
subgroups by choosing randomly the direction of the points. The opposite directions are
highlighted in Fig. 4.2, below, with different colors. By exploiting the availability of labels
we can test whether a particular parameterization coupled with the corresponding kernel
have the capability to characterize groups of coherent trajectories (the 3 or 6 behaviors for
DS3B and DS6B, respectively).

4.4.1 Representation schemes: some discussions

Each scheme of representation poses a number of practical issues that have to be solved
adequately: in the following we review and discuss the main issues related to each type of
parameterization.

Gaussian Kernels for curve fitting

When adopting polynomials as fitting functions, the main issue concerns the choice of the
degree. The lesser the degree, the smaller is the dimensionality of the parameter space and
the faster is the fitting algorithm. However, if the degree is too low, the approximation
of the actual points of the series may be too loose and the method may fail to capture
important properties of the data. Therefore one always needs to balance between these
two important aspects.

In order to avoid arbitrariness at this stage, we adopted the following heuristic strategy.
For each data set, we first selected randomly a small fraction of series and fit polynomials
with increasing degree. The ratio between the number of non zero coefficients and the total
number of coefficients represents how complex the data are, and can be used to choose the
proper degree for that specific data set. We observed experimentally that straight lines
are sufficient if the level of noise is low, while noisy data can be represented by means of
second (at most third) degree curves.

A normalization step is suggested by a visual inspection of the resulting coefficients that
are numerically rather separated. In this experimental phase we will compare the use of
the original coefficients as well as the normalized version.

49

For what concerns B-Splines, the derived parametric model requires, as parameters, just
the definition of the fixed knots m. Since the described approach relies on several mono-
dimensional curve fitting problems — with the independent variable being the time — one
has to set only the temporal spacing between two consecutive knots. In our experiments!,
we set such spacing as one third of the average length of the trajectories in our data set.
In such way, on average, all the trajectories are represented by a fair number of non trivial
regression coefficients.

Probability product kernels for HMM-based representation

The initialization stage is the very critical for the HMM-based method.

However, according to [JKHO04], since the HMM is just an intermediate step in forming the
kernel and to capture the similarity among series, it is not necessary to build a very accurate
model. In principle, we agree with this viewpoint, but in our application scenario temporal
series corresponding to the same behavioral pattern may have very different lengths and
structure. These may affect negatively the the algorithm that “learns” the HMM model
2. In all our experiments, the number of possible states is 3 and the probability density
function corresponding to each state is Gaussian.

The kernel used to compare two HMMs are the probability product kernels, described
briefly in section 4.3.1. According to the authors that first introduced such kernels [JKHO04],
they are very robust with respect to the choice of the kernel parameters. In the specific
case of HMM, the kernel becomes the popular Bhattacharyya affinity matrix, and the only
significative parameter T is called mizing proportion, and corresponds to the time interval
considered for the evolution of the underlying dynamical systems. In our experiments we
used the same value (7" = 10) proposed in [JSTO07], where the authors showed convincing
evidence about the stability of such value. Our experiments confirmed such claim.

P-spectrum kernels for string-based representations

A comparison between manual and automatic partition is shown, respectively, in Fig.
4.3(a) and Fig. 4.3(b). The association of a symbol/state to each point in the sequence
is shown in Fig. 4.3(b), where the colours represent different symbols and each string is a
concatenation of symbols. As for the choice of the partitioning strategy, we evaluate three
different approaches against increasing noise levels:

LOur software for experiments on B-Splines is based on the Spline Matlab Toolboz, further details at
http://www.mathworks.com/products/splines/.

2We learned the parameters of HMMs from our data by means of well established Bayes Net Toolbox
for Matlab, available for downloading at http://people.cs.ubc.ca/ murphyk/Software/BNT/bnt.html.
Developed by Kevin Murphy, it is widespread used by machine learning practitioners.

50

(b) Automatic quantization

Stability

08

06 7

05 -

04 .

03+ =

02r -
= Clusteting

=+ — Adaptive Manual
01 e Figed Manual —

i} | | | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 IR 1

MNoise Level
(c) Stability
Figure 4.3: The choice of a proper alphabet. The top-left figure shows the states assigned

by manual choice, compared with the result of our automatic procedures (top-right). The
bottom plots show the stability of the representations while the noise level increases.

o1

1. Data-driven partition
2. Fixed manual partition (performed once, when the noise is low)

3. Adaptive manual partition.

From the perspective of the representation, the goodness of a partition, and consequently
of an alphabet, reflects in its capability to similarly represent series (trajectories) which are
instances of a common behavioral model. For a quantitative assessment of the quality of
the alphabet definition on data set DS3B, we evaluated the stability of the representation
in terms of how similar the corresponding strings are when two similar sequences are
considered. Since the series in data set DS3B and DS6B are known to belong to a fixed
set of behavioral classes, we evaluated the intra-class stability of the different methods
via the computation of averages and variances of intra-class similarities. The values are
computed separately for each of the 3 behaviors and then averaged. Similarity between
strings is computed with the P-spectrum kernel with P = 2. This choice is dictated by
the the fact that, as reported in Sec. 4.2.4, we keep only the transitions between atomic
symbols to build the final strings. Fig. 4.3, below, shows the trends of mean and variance
over 20 replicates of different data sets with increasing noise. Blue plot refers to the
automatic partition, red plot to the definition of a fixed manual partition specified - and
kept fixed - at the beginning of all the experiments. Finally, in the green plot an ad-hoc
partition is defined for each experiment: even if the results are slightly better that those
obtained with the fixed manual partition, this approach is not suitable for real applications.
It is apparent that the most robust approach is based on automatic partitioning the data,
since both its average similarities are almost independent on the quantity of noise and the
variances are almost negligible.

The effect of parameter selection in spectral clustering is not crucial to the quality of the
obtained alphabet. We tested

(i) The impact of varying the high cut threshold of the spectral clustering of the alphabet
(top row of Fig. 4.4), and

(i) To what extent the clustering is robust with respect to the resampling of the points
along each trajectory (Fig. 4.4, below).

The results we obtained clearly confirm the robustness of the underlying method, showing
that.

(i) Varying the cut threshold influences the level of granularity of the alphabet. In other
words it allows for an adaptation of the partition which may depend on the input
data and the specific task;

52

Figure 4.4: Parameter tuning for spectral clustering. Top row shows the dependence on
the cut threshold T'H parameter (from left to right. TH = 0.1,0.4,0.6). The results reflect
the expected increase in the alphabet refinement. Bottom row shows the robustness to the
points density (from left to right, the points are 25%, 10% (regular subsampling) and 10%
(random subsampling) of the entire data set). A Gaussian kernel with 0 = 10 was used in
all experiments.

53

(i9) The capability to identify the internal structures of the input data is guaranteed,
although the density of such data may vary.

4.4.2 The choice of p for the P-Spectrum

In this section we explore the P-Spectrum kernel from the perspective of a correct choice for
the p parameter, to enhance possible relationships between such values and the structure of
the strings to be compared. In particular we investigate the influence of p when comparing
strings composed by the same symbols in reversed order. The following analysis looks
towards a justification for our choice of keeping only the transitions between states in the
strings representation and the consequent adoption of a 2-Spectrum kernel.

We consider in the experiments reported here a set of n, strings {s; }i=1..,, built on top on
an alphabet A = {ay, ..., a,} of n symbols. The strings have lengths [; and are composed

by concatenating r; = % replicates of each symbol. We fix the length of a pair of strings

1 . X I |
o °
]
0.8f b e]
>
‘= 06 o
m @
N o4 .
0.2 B
® ®
e
0 1 - 1
2 4 6 8 10 12 14 16 18 20

Figure 4.5: The effect of choosing p when comparing strings with the same replicated
symbols in reversed order.

s and t built on the alphabet A and evaluate the pairwise similarity when varying the

o4

symbols order: more specifically we consider strings of reversed order so, for instance, if
s = a¥ alaf then t = a al, a¥ where ay,as,a3 € A.

The goal of this experiment is to evaluate the influence on the similarity between s and ¢
of both the symbols configuration and the choice of p: it is worth to point out that in our
interpretation reversed strings correspond to different dynamic events.

Intuitively, when dealing with a high number of consecutive replicates of the same symbols,
a small p should cause a low influence of the transitions between different symbols; as
opposite, the transitions should become more and more important as p increases.

Fig. 4.5 reports the results of this analysis performed for different numbers r of replicates
of symbols averaging the similarity of 10 pairs of reversed strings: as one can observe,
for a given r, the choice of p strongly influences the similarities, that tends to decrease
as the value of p approaches r. The results are helpful in different aspects. First, they
suggest that when the problem at hand requires that two reversed strings are different,
then transitions between symbols must be preferred. Second, such results is achieved when
the value of p is similar to the number of replicates.

In our setting it is not possible to know a priori the latter, so the natural choice is to achieve
the same robustness by discarding the replicates of symbols from strings, so to keep only
the transitions. From the standpoint of the computational cost, moreover, it is advisable
to reduce the amount of information (i.e. the length of strings) if the same performance
can be achieved by means of an appropriate tuning of the parameters.

4.4.3 Temporal series classification

As a first analysis, we inspected the similarity matrices obtained with each kernel function
and noise level on data set BS3B, see Fig. 4.6. In order to highlight possible block
structures of the matrices and make the qualitative analysis more effective, we ordered
the series beforehand so that the “optimal” classifier should produce exactly three distinct
blocks along the diagonal of the similarity matrix.

It is apparent from the visual analysis of Fig. 4.6 that a P-spectrum kernel (P = 2)
combined with string based-representation is very close to get this optimal result when the
noise level is low and it is also the closest one on more noisy data (Fig. 4.6 (a), from left to
right). The similarity matrices corresponding to the manual annotation look very similar
to the ones we reported.

As opposite, polynomials (Fig. 4.6 (b)) provide the poorest performances even in presence
of low noise. The matrices we report are estimated by normalizing the coefficients of
polynomials to be in [0, 1], step that slightly improves the results.

HMMs and B-splines present rather equivalent performances, even in different aspects:
while the former seem to prefer discriminating between different classes, the latter better
highlights intra-class similarities. This simple visual analysis makes thus difficult to speak
in favor of one of the two approaches.

95

i i
s s
0z 0z
07 07
s s
os os
o4 o4
o3 o3
o2 o2
o1 o1

o

o 10 o 4w w0 0 1

(a) Automatic partition on strings

i
s
0z
07
s
os
o4
o3
o2
o1

£l

(d) B-Splines

Figure 4.6: Similarity matrices on data set DS3B: the left examples refer to moderately
noisy data (0.3), on the right the noise level is increased (0.9).

56

Data set DS3B Data set DS6B

Noise Level | 0.1 [03] 050709 [01]03[05][07]09
Strings (automatic) [96.8 [96.5 [98.4 [96.9 [95.5 [| 81.7 | 81.8 | 82.3 | 81.6 | 78.9
Strings (manual) | 96.8 [96.7 [98.2 [96.6 | 95.3 [81.9 | 81.3 [82.4 [81.1 [78.2

| HMMs || 96.5 | 96.5[97.9 | 95.4 [93.8 || 81.1 | 79.8 | 79.7 [76.9 | 74.4 |
Polynomials || 95.1 | 91 | 87.4 | 81.9 | 76.9 || 43.3 | 41.4 | 42.7 | 39.6 | 36.7
Norm. Polynomials | 88.7 [81.2 | 84.9 | 75.1 | 74.3 | 39.4 [38.7 [41.6 [39.3 [37.7
Splines [| 96.8] 96.7 | 98.6 | 97.2 | 96.5 | 81.5 | 81.8 | 82.8 | 81.7 | 79.4

Table 4.2: Supervised analysis based on RLS on data sets DS3B and DS6B5.

When the data set is synthetically generated with respect to a set of underlying known
models - in other words, the data set is annotated with labels that associate each temporal
series to the corresponding behavioral model - then supervised learning from examples is
a viable and efficient solution to validate the different data mapping.

The problem is a multi-class classification task, that we solved by means of a one-vs-all
Regularized Least Squares (RLS) approach (see the Appendix).

Among the method a kernel is needed to be a Mercer’s kernel, that is symmetric and positive
definite. The kernels we associate so each representation scheme present this properties,
then are viable functions.

The problem of selecting the parameters is tackled by k-Fold Cross Validation (k-CV),
with £ = 5 sub-samplings; the numerical range of the regularization parameter A has been
chosen as [1073,1].

Table 4.2 reports the results we obtained by following this protocol. When dealing with
data set DS3B, almost all the mappings behave quite nicely and show robustness against
the noise increasing. Polynomials decrease their performances as noise increases, even if
not significantly. Moving to the slightly more difficult bidirectional series - data set DS6B
- their inappropriateness for the problem at hand arises. The other schemes, instead,
properly handled the representation tasks.

Note that when applying the HMMs following the “traditional” formulation (which only
applies to cases where the ground truth is available), the performance are in almost all
the cases above the 98%, testifying how the adoption on single trajectories does not allow
us to exploit in the best way the methodology (we run k = 5 different times the learning
algorithm for each class keeping separate a fraction of the data set for the test, trying to
be as close as possible to the experimental setting for RLS).

The results obtained in this assessment phase suggest that polynomials are not suitable to
deal with our data. For what concerns string-based approaches, we substantially observe
the equivalence between manual and automatic partition and the advantage, for the latter,

o7

to be data-driven and thus easily adapt to changes in the observations.
For these reasons, in the remainder experimental analysis we will concentrate on strings
with automatic partition, HMMs and B-Splines representations.

Figure 4.7: Data set RC5B. On the first row, the annotation of 5 behavioral patterns
corresponding to people walking (left). The other images refer to samples trajectories
referring to behavior 1 to 5.

4.5 Experiments on real data

We now consider a real, yet controlled, scenario: an annotated data set has been acquired
by means of a video surveillance setup?, discussed more in details in Chapter 6.

Dynamic events correspond to people walking or running according to a fixed number of
behavioral patterns. More specifically, firstly we built a data set RC5B of real controlled
sequences, instances of 5 different behaviors, of about 50 series. Fig. 4.7 reports a visual
schema of the annotation (first row on the left) and samples from each behavior. The
trajectories have been covered by people that were walking following one of the allowed
behavioral patterns. Secondly, we enrich RC'5B with some new classes, including patterns
that differ from one of the known models in the velocity modules: we created such data

3The Imanalysis suite, we obtained within a technology transfer program with the company Imavis srl,
http://www.imavis.com/.

58

set acquiring dynamic events of people running. The new set of data, whose annotation
is reported in Fig. 4.8 (left) constitutes the new data set RC'11B. The input space will
be thus characterized by a more significant richness from the semantics standpoint, since
behavioral patterns that share the same spatial regions - in other words the positions are
overlapped - are actually different (people walking against people running). It is the case,
as an example, of behavior 2 and 10, visually represented in Fig. 4.8, right: notice how
the gap between consecutive points gives a visual evidence of the different dynamics.

Figure 4.8: On the left, behavioral patterns added to RC5B to compose the new data set
RC11B. The main difference is in the richness of the input data, since some groups of
trajectories correspond to people running (dotted arrows on the left image). With these
new inclusions, some behaviors will share the same spatial regions but differ in the dynamic
properties: on the right, this is clarified for behavior 2 (blue series) and 10 (orange).

4.5.1 The choice of heterogeneous input spaces

In the literature of video analysis systems based on the use of trajectories of instantaneous
observations, a common choice is to describe dynamic events by means of targets position
into the image plane [NSO08b, PMF08]. In general, modeling the observations as plain
positions may be ambiguous in many situations, where the camera is not optimally placed
or it is not possible to intervene on it. Consider the case of a camera placed on front of the
observed scenario, as illustrated in Fig. 4.9, where two different targets are moving covering
spatially overlapping regions. If considering only their positions, the two different dynamic
events occurring could not discriminated (Fig. 4.9, right). However, we can observe how
the apparent size of the targets is clearly different among the two: the analysis of the
trend of such feature, reported in the plot of Fig. 4.10 testifies its pertinence, showing that

59

Figure 4.9: A video surveillance scenario where the camera is placed in front of the scenario
of interest. The plain positions are ambiguous and do not allow to discriminate between
the events.

the numerical ranges of sizes are rather distinct. Moreover, we can notice that even the
apparent targets velocity is perceived as different.

A way to cope with ambiguities is to consider heterogeneous input spaces where to
measure, not only position, but also dynamic features (e.g., velocity or acceleration) or
geometric features (as area, perimeter or shape features — the latter useful if a variety of
different objects may be moving in the scene). Notice that such features are often available,
or easy to compute, from the object tracking phase. For this reason, it is advisable to map
the trajectory description (as gathered by the tracking process) into an appropriate form,
with the capability of capturing information semantically meaningful for the problem at
hand.

However, in general, the meaning of such measurements may change according to the
application domain under consideration. Let us consider an environment where, perhaps
in some temporal ranges, the access is allowed only to security guards wearing uniforms.
In that case, the color of clothes should be taken into account by a monitoring application,
since uniforms are expected to be comprised in a certain hue range. Supposing instead
that the purpose of the system is instead monitoring a wider area where many people could
be present - e.g. the level of crowd might be of interest for security - the way people are
dressed is completely irrelevant.

In the next section we discuss the properties of the features we adopt.

For clarity, we recall and report here the descriptions adopted by our tracking system, as
discussed in Chap. 3, to which we refer the reader for more details. At time ¢, the instanta-
neous observation of a moving object or target O;, is a vector Mt = [T H!, P, S, Vi CH:, W, H!]
where T'H} is the frame time-stamp, P} = [z, y!] the location, S! the size, VI = [vz!, vy!]

60

Area

I O Event close to the camera
+ Event far from the camera

Cay,

a 50 00 150 200 250 300 350 400

Figure 4.10: The size of targets is differently perceived depending on their distances from
the camera. This suggests that they could be profitably inserted in their description to
cope with ambiguities.

the apparent velocity and, finally, CH is the appearance description.

We derived from this vector our current description, that seems appropriate for the degree
of complexity of the available test bed, that will be discussed in Sec. 4.5, and takes inspira-
tion from the seminal work by Stauffer and his co-workers [SG00]. It may be summarized
as a H-dim vector

where,

l‘: = [Pfa Sf7Mzt7Df]

P! € R? still represents the 2-dim object position on the image plane

S; € R is the apparent object size at time ¢

t

vyt

D! = atan (=%
'UZ',L-

M! = \/(val)? + (vyl)? € R is the velocity module

(2

) € R represents the direction of motion.

Appearance information is discarded, being not meaningful for the modeling experimen-
tal setting we consider in the following. The time-stamp is disregarded since temporal

61

alignment among events is not relevant to our purpose. Finally, width and height of the
bounding box, related to of the target dimension, are synthesized with the only size feature.
The velocity is represented in the module-direction space as it is semantically more mean-
ingful (e.g. the module of the velocity helps to discriminate among walking or running
people, while the direction is an apparent and powerful feature that groups of coherent
events probably have in common). As we will see, these features appear to summarize a
set of interesting properties among which building the behavioral models.

4.5.2 Data abstraction from heterogeneous inputs

Before moving to the analysis of the different representation, some more details on the
extension of the representation schemes to the higher dimensional input vector must be

given.
For all the representations involving a Gaussian function, the standard deviation o must
be selected. We empirically estimated an appropriate value as o; = dmmetf—g"(dam) for each

i = 1..N;y < d - that is the values are computed separately for each feature (to deal
with the fact that the numerical ranges of different features could be different as well) and
depend on the diameter # of the data set, when projecting the data only on that feature.

String-based with Multi-Cue integration. For the automatic partition a clustering
step must be performed, and to do so a proper kernel must be selected. As anticipated
in Sec. 4.2.4, a viable solution to deal with an heterogeneous feature vector is adopting
a strategy based on Multi-Cue Integration which allows us to easily extend the setting to
changes of the input space. More specifically, in our case, d = 5 while Ny = 4 (being the
position a 2-dim feature), so, given two observations Oy, O, € R® with O; = (py, 51, m1, d1)
and Oy = (p2, S2, Mo, da), the final kernel can be written as

K(O1,0) = WpGp(p1,p2, 0p)+WsGs(s1, s2,05)+WrGar(my, ma, Oy)+WpGp(dy, ds, 0p)

where Gp, Gg, Gy, Gp are Gaussian functions and 6s refer to their parameters, mean and
standard deviation.

As discussed on Sec. 4.2.4, the vector [Wp, Wg, W)y, Wp] includes the weights associated
to each feature, which we might be interested in adapting with respect to different scenarios
or tasks.

Instead of fixing a set of parameters, we build a family of alphabets

F = {Apar }parGPAR

4The diameter d of a data set S is defined as d = maw, yesdist(r,y), where dist is a proper distance
(the Euclidean distance in our experiments).

62

where PAR is the set of allowed combination of parameters. As for the specific parameters
choice, we consider each selection of weights in the set

W = Uk{[Wp, W, W, VVD”VVZ c {O,k},VZ c {P, S, M,D}}

where k € {%1,%, 1} and), W; = 1. Moreover, since we adopt Spectral Clustering as
specific method to build the partitions, a cut threshold T'H ;s must be defined (see the
Appendix): even in this case we vary the value, s0 T'Hppinss € [0.6, 1], sampling the interval
with a step of 0.05. We thus end up with 99 possible models, among which we aim at
selecting the one best fitting our data set with a further analysis.

To conclude this section, we briefly comment the influence of weighting different features
on the automatic partition. Fig. 4.11 reports two partitions built with a low threshold
T Hppints = 0.6 (to better distinguish the clusters). On the left, Wp = 1, thus only the posi-
tion is weighted when partitioning the data: the clusters reflect in turn spatial properties.
On the right, instead, Wp = % and Wg = %, that is both the position and the size features
are considered. The projection of the estimated clusters on the image plane shows that
different structures of the data are enhanced. From this considerations, the ductility of
the method arises: changing the weights means to look at the data from slightly different
view-points.

Figure 4.11: Examples of automatic partitions of the input data: on the left, only positions
are considered, while on the right the size is also taken into account

Probabilistic models. In this case we considered two different configurations. Accord-
ing to the first one, the parameters of the HMMs are learnt from the data using, at each
time, input vectors comprising all the features (i.e. X and Y position on the image plane,
area of the tracked object, and amplitude and modulus of the vector representing the

63

approximate velocity). According to the second configuration, training data of each tra-
jectory are based on only the two features corresponding to the position on the image
plane. As already pointed out in [NSO08b], HMMs depend strongly on the initialization of
their joint probability density function. Since in the unsupervised setting the HMM is used
only as an intermediate step towards the computation of the similarity function between
two trajectories, one is forced to train the HMMs using one trajectory only. Note that
comments about this possibly troublesome choice are present in the original work [JKHO04]
to which we refer the interested reader for further discussions. In principle, such approach
is somehow robust with respect to the specific dimensionality of the instantaneous obser-
vations. That is, the algorithm used for generating the representative vectors 6; does not
depend on the number of components of the single vectors zt. Although this is certainly
true from an algorithmic viewpoint, in practice we noted that the higher is the number of
dimensions the coarsest is estimation of the HMM parameters, and in many cases it may be
troublesome to consider them as probabilistic generators of the observed trajectories. For
this reason in the experiments we report the results obtained with the second configuration
only.

4.5.3 Real data classification

Let us start with data set RCHB and string-based representation. Table 4.3 reports the
results in order of quality: for each selection of weights, we select the cut threshold T'Hpgints
that produces the partition corresponding to the descriptions with the lowest classification
error. The last column reports the percentages of trajectories that have been correctly
classified. It is apparent that the position is a highly discriminative feature for the specific
scenario and the specific data set. This is not surprising, since we train the learning systems
with a set of data highly discriminated by spatial properties.

Also, the direction seems to be rather significant, being the alphabets where position and /or
direction are weighted the best performing.

Fig. 4.12 reports the trends of the error, computed on average on the 5 splittings of the 5-
fold cross validation, against the value of the regularization parameter \. The figure shows
such analysis for the best performing alphabet, on top, and the worst one, on bottom; the
different plots refer to different values of the cut threshold T'H,,;ns. As one can observe,
the errors reported on the left are in average consistently lower than on the right. The
A parameter does not strongly affect the performance if considering an appropriate cut
thresholds. When analyzing an alphabet which is not appropriate in modeling the data
set, it is apparent that the choice of the parameters strongly influences the performance,
since the errors are higher.

From this analysis one could conclude that the alphabet 10 is appropriate and sufficient
to well define the events occurring in the given scenario. However, when the ambition of a

64

[IR=S

ne

| .
o
=
w
0.1 0.2 0.3 0.4 05 OF (™ 0o ng
A |Selected T Hpoints
0.7 -
0.65 L
0.6
0.55
_
o
=
W 054

0.4%

0.4

\ Selected TH oints

035 | | 1 1 1 I
0.1 0.z 0.3 0.4 0= 0.6 0y n.sa 049

Figure 4.12: Error estimated during the 5-Fold cross validation for data set RCHB con-
sidering the best performing alphabet, above, and the worst performing one, bottom. The
different plots refer to different values of the cut threshold.

65

[[Wo [Ws [War [Wo [THymes | M(x10°9) [it Rate |

10 1 0 0 0 0.60 1 100
8 | 0.5 0 0 0.5 0.90 224 98
91 05 | 05 0 0 0.95 2.8 96.2
71 0.5 0 0.5 0 0.95 1 96.0
2 0 0 0.5 | 0.5 0.95 1 96.0
4 0 0.5 0 0.5 0.90 1 94.2
11 1 0.25 | 0.25 | 0.25 | 0.25 0.95 251.1 89.7
1 0 0 0 1 0.90 1 86.7
) 0 0.5 | 0.5 0 0.85 1 83.6
3 0 0 1 0 0.95 1 69.9
6 0 1 0 1 224 59.9

Table 4.3: RLS analysis on RC5B exploiting the string-based representation with multi-cue
integration.

system of behavior analysis is not only to describe a previously seen scenario, but also to
classify as known new events or recognize then as new patterns, some information may be
missed.

Let us consider a set of trajectories of behavior 10 and 11, from data set RC11B: they
might be interpreted as realizations of behaviors 2 and 4 respectively, if the only posi-
tions were considered. The first row of Fig. 4.13, in fact, reports the similarity matrices
obtained by comparing such trajectories against the representations of the 5 behaviors in
RC5B with respect to alphabet 10: the first column refers to trajectories from behavior 10,
the second column from behavior 11, each row in the matrices corresponds to a test data,
while each column refers to one of the known models. Each behavior has been represented
by a string candidate selected via a voting strategy (that we will discuss more in details
on Chapter 6); the similarity measure is based on the 2—spectrum.

Notice that the new trajectories are recognized as instances of the known behaviors, be-
cause of the spatial overlap. However, the particular analysis application might require
to discriminate among people walking or running - when monitoring wide areas, the fact
that many people are running may indicate the presence of some danger. If we perform the
same analysis by considering an alphabet where the position is weighted, as alphabet 8, the
trajectories can not be associated to the known models, as shown on the second row of Fig.
4.13. This suggest that features that seem to be the most meaningful for a specific scenario
on a particular data set, may be unreliable if data are changed. This is also testified by
the results obtained by performing the same multi-class classification on data set RC'11B,
where the data consider different dynamics. In Table 4.4 the best performing alphabet is
the one where both position and velocity module are considered. The take home message

66

1

1
09 09
2 08 08
3 07 07
08 06

4
0s 05

5
04 04
5 0.3 03
7 02 0z
01 01

8

1 2 o 4 5 B | 2 3 4 5 B

1

1

09 g
2 03 08
3 07 07

06 06
4

0s 05
5

04 04
5 03 03
7 02 0z

01 01
8

1 2 E] 4 5 g 1 2 3] 5 !

Figure 4.13: Similarity measures computed among the known models and a set of test
trajectories that differ from the models for the dynamic properties (people walking vs
people running). The first column refers to trajectories of behavior 10, spatially overlapped
to behavior 2; the second column instead considers behavior 11, related from the standpoint
of the positions to behavior 4. Thus, when only the positions are taken into account, the
new trajectories are associated to known behaviors because of spatial overlapping (first
row). When considering also the velocities, the differences among events arise (second
row).

67

| [We | Ws | Wy | Wp || THpoimss | A(x107%) || Hit Rate |

1
8 | 0.5 0 0.5 0 0.90 1 93.2
11 1 0.25 1 0.25 | 0.25 | 0.25 0.90 1 86.2
2 0 0 0.5 | 0.5 0.90 1 84.9
10 1 0 0 0 0.95 2.8 83.9
71 0.5 0 0 0.5 0.95 1 82.6
4 0 0.5 0 0.5 0.95 1 79.5
91 05 | 05 0 0 0.95 1 75.6
) 0 0.5 | 0.5 0 1 1 2.7
1 0 0 0 1 0.90 224 70
3 0 0 1 0 1 1 60.2
6 0 1 0 0 1 224 49.5

Table 4.4: RLS analysis on RC'11B exploiting the string-based representation with multi-
cue integration.

is that when dealing with completely data-driven models it is very important that input
data (or training set) is a reliable representative of the analyzed scenario. Alternatively,
our system should cope with the problem by considering a set of potential models: in this
case, the adoption of string-based representations which can constitute different views of
the same data set - enhancing different properties - is a viable solution.

We conclude the section with a comparison of string-based representation and the rep-
resentation schemes that resulted as promising in the analysis on synthetic data, HMMs
and B-Splines fitting (Table 4.5). For what concerns B-Splines and strings, we consider
position only and the whole feature vector. In the case of HMMs we do not include results
on the whole feature vector since it shows convergency problems.

A first inspection shows that the performances decrease when moving from the simple
RC5B to the more complex RC'11B. In the case of B-Splines, the advantage of using the
whole information - rather than position only - on data set RC'11B is clearly visible. We
can conclude from the global performances that there is a slight advantage in using strings.

4.6 Discussion

In this chapter, we explored the use of different representations schemes applied to the raw
trajectories. More specifically, we compared three different schemes, including a feature
mapping and an appropriate similarity measure: we proposed a string-based representation
coupled with the P-Spectrum kernel, and compared it against HMMs with Probabilistic

68

Table 4.5: Comparisons among different promising representation schemes.

Data set CR5B | Data set CR11B
2F | 4F 2F | 4F
Strings 100 98 83.9 93.2
HMMs 97.8 - 74.1 -
B-Splines || 98 98.2 70.4 92.4

Product kernels, and curve fitting with the well-know Gaussian kernel. The experimental
analysis relied on the use of supervised learning methods, and Regularized Least Squares
in particular, and was based on both synthetic and real data for which the ground truth
was available. The results showed the advantages of using strings with respect to the other
schemes of representations.

For what concerns the criticality of choosing a particular input representation, we ob-
served how the use of a more complex feature vector, other than the sequence of plain
positions, allows us to achieve higher percentages of correct classification of temporal data
characterized by a more complex internal structure (in our examples position and velocity
module).

For these reasons part of the future work will be devoted to investigate how the choice of
an appropriate feature vector can be derived from information on scenarios and applica-
tions. In the case of strings, we will also consider different methods of data partitioning
with attention to the possibility of automatically updating over time the representations,
thus the alphabet. In this case, some kind of technique for incremental clustering can be
appropriate.

69

Chapter 5

Unsupervised behavior analysis

In this chapter we discuss a clustering-based approach to behavior modeling: each represen-
tation proposed in Chapter 4 is used to feed the Spectral Clustering, which is equipped with
the corresponding kernel. The experimental analysis, based on the same data of Chapter
4, aims at evaluating the clustering results with respect to the ground truth. In essence
we evaluate the correspondence among real behaviors (the ones arising from the ground
truth) and estimated behaviors (the clusters). We design two different procedure to cluster
association, to cope with the requirements of a typical system for behavior analysis. The
comparison of adopting supervised and unsupervised learning is discussed. At the end, a
conclusion in favor of the string-based scheme is reached.

5.1 Introduction

The supervised approach implicitly adopted in the previous chapter may not be appropri-
ate to analyze common behaviors. In fact, the significant number of interesting behaviors,
even when dealing with relative simple environments, requires adaptability and robustness
and, also, sets conditions under which a, accurate ground truth of the data is difficult, if
not impossible, to achieve.

Thus in this chapter we address the problem of modeling behaviors from an unsupervised
perspective by setting out an analogy between behavior analysis and clustering of temporal
series.

The key idea underlying our approach relies on looking for coherent groups of trajectories,
among the training set, representing recurring patterns of activities, or, in other words,
events commonly occurring into the scene. Under this view-point, each cluster groups tra-
jectories which are instances of some common behavior.

We now summarize our approach on unsupervised behavior analysis. Fig. 5.1 shows a

70

Video
stream

5
| > Low-level 3 . Data High-level] . | Behavioral
[analysis] [Tracking] l abstraction [analysis J “| patterns

y

PR ey :

Feature (Trajectories mapping)] Spectral
i clusterin
mapping (Similarity measure)J 9

| Representation scheme |

Figure 5.1: The visual representation of our pipeline to model behaviors.

visual representation of this pipeline. The representation schemes adopted to build the
higher-level descriptions follow the discussion in Chapter 4.

The high level analysis we perform relies on Spectral Clustering [SMO00], an efficient clus-
tering method that address the problem of data partition by means of the spectral analysis
of graphs: for an introduction see the Appendix.

Spectral Clustering starts by a similarity matrix computed on the available data. All the
kernels discussed in Chap. 4 may be used as similarity measures, being symmetric and
positive.

The choice of different parameters in the various representation schemes leads on this case
to different data partitioning. For instance, in the case of strings, when the partition is
built with a Multi-Cue Feature integration, this translates into the estimation of several
alphabets and, consequently, different trajectories partitioning: in Fig.5.2 an example is
reported where the clustering is made on representations derived from the positions.

High variety of the input space and future variations of the scenario might be better handled
if more that one models are selected (we recall the discussion on Sec. 4.5.3 for an intuitive
example). This should allows the system to perceive significant changes into the observed
data, enabling a procedure to update the model, if possible. This would also call for a
strategy to merge the results of all models.

The experimental analysis reflects the pipeline followed in the previous chapter, being
based on the same data sets. To perform model selection and implicitly compare the
clustering performances with respect to the goal of discriminating among behaviors, we
devise a strategy to associate estimated behaviors (clusters) to the classes on the ground

71

Figure 5.2: An example of trajectories partitioning: the alphabet on top of which strings
are built considers only the position. As an effect, the trajectories clusters reflect this

property.

truth. Some attempts to use quality indices within this framework are considered.

When dealing with unsupervised learning, model selection turns into a very complex prob-
lem, for which no solution valid in general has been proposed. Some discussion on this
chapter will focus on this topic.

To evaluate a specific clustering, we thus experimented the adoption of different quality
indices [MT09], measures proposed in the literature aiming at judging the goodness of a
partition with respect to some criteria. They often refer to conditions related to intra and
inter class similarities.

5.2 Temporal series clustering

In this section we carry out an analysis based on the data sets (both synthetic and real)
described in Chapter 4. Since all the data are labelled in this case labels are used ad
ground truth to perform model selection and report final results [HBVO01, BA03, GBO03].
More in general the issue of evaluating results from unlabeled data is not trivial. At the
end of the section we will discuss the adoption of quality indices.

For the time being, we rely on the available ground truth. More precisely, we evaluate the

72

goodness of clustering results using the annotated labels to establish the correspondence
between the true (annotated) behaviors and the estimated ones (i.e. the clusters). Inspired
by the work in [MT09], where the Correct Clustering Rate is adopted to evaluate clustering
results, we say that an estimated cluster C corresponds to a true behavior B if the most
of elements laying in C are labeled (in the ground truth) as instances of B. By following
this procedure, we can evaluate the results with respect to different granularity:

e With the strict association to cluster we assume that there exist a unique correspon-
dence between true and estimated behaviors (a real behavior must correspond to
exactly one estimated cluster)

e Using loose association to cluster we admit that a true behavior could be split to more
that one estimated clusters (a real behavior can correspond to multiple estimated
clusters).

Indeed, it is worth pointing our that in many applications of unsupervised learning one
is not necessarily interested in assigning a class to “each” datum but to cluster coherent
data, discarding noisy or uncommon patterns, see for instance [CV05]. This reason speaks
in favor of the appropriateness of the second approach in our analysis. However, it might
tend to favor over-estimated clustering instances in terms of number of classes. It is thus
suggested, in some cases, to restrict the evaluations on the clustering results whose number
of clusters lies inside an interval centered on the real number of clusters.

In the string-based approach this procedure is also implicitly adopted to select the best
alphabet from the family computed when adopting the multi-cue features integration: in
particular, the choice of an appropriate selection of weights allows us to obtain a sub-set
of alphabets which can be appropriate for a given environment and adaptable to its stable
changes. This choice is guided by the set of available data, assuming to carry all meaningful
information on common behaviors. Being a completely data-driven approach, from the
experimental analysis we carried out on real yet controlled data set, the hypothesis that
the given training set is representative of the common behaviors we might be interested in
recognizing is of fundamental importance and strongly affects the final modeling results.

5.2.1 Assessment on synthetic data

We first consider the synthetic data, DS3B and DS6B.

We performed the analysis as follows: given one of the 20 resampling of the data set for a
fixed amount of noise, we first run the spectral clustering varying the parameter related to
the cut value, that we call T'Hy,;, to indicate that it refers to the clustering of trajectories.
Notice that when adopting the string-based representation we have here 2 different cut
thresholds:

73

Data set DS3B

Noise Level | 01 | 03 | 05 | 07 [09

Strings (automatic partition) | 99.9(3) | 99.8(3) | 99.5(3) | 97.9(3) | 95.4(3)
Strings (manual partition) || 100(3) | 99.8(3) | 98.5(3) | 93.4(3) | 89.8(3)
| HMMs || 89.0(3) | 91.4(3) | 80.7(3) | 66.2(3) | 55.2(3) |
)

Polynomials | 96.6(3) | 88.4(3.4) | 77.9(4.4) | 68.2(5.6) | 55.3(6.4)
Normalized polynomials || 61.2(8.4) | 57.9(8.1) | 51.1(7.5) | 50.4(6.5) | 46.9(4.6)
B-Splines | 93.5(3.4

) [95.0(3.3) | 94.5(3.3) | 92.8(3) | 82.7(2.7)

Table 5.1: Percentages of correct behavior strict associations on data sets DS3B5, in round
brackets the average (computed on the 20 resampling) numbers of estimated clusters are
reported.

1. The first, T'Hpyints is the one controlling the granularity of the partition when using
Spectral Clustering to build the alphabet(s). As in the previous experiments, its
values is selected from [0.6, 1]

2. The other, T'H,, ;s impacts of the solution of the trajectories clustering, which under
this specific scheme consists in clustering strings. The value of this threshold is varied
in the interval [0.5, 1]

We select the strict association result corresponding to the best performing experiment. We
then average the 20 values, and the corresponding obtained average number of estimated
clusters. We finally summarize the results in Tab. 5.1, for data set DS3B, and Tab. 5.2,
for DS6B, where we highlighted in bold the best results for each noise level.

The above results provide experimental evidence that, in general, the approach based on
the use of string kernel gives better results than the others. Manual partition seems to
be slightly more accurate than the automatic method for moderate noise levels but, as
the clutter increases, data-driven states estimate provides better and better performances,
leading naturally to a system providing the ability to adapt to changes into the observed
scenario. B-Splines provide comparable, even if significantly less accurate, performances.
HMMs and polynomials perform very poorly as the noise increase, while normalized poly-
nomials, even when dealing with synthetical and thus highly controlled data, are not able
to cope with the behavior estimation task. As for the number of estimated clusters ac-
curacy, there is a verification of the appropriateness of the string-based approach, which
consistently estimates 3 classes. This result is achieved also by the HMMs, that, however,
do not guarantee the same accuracy in the strict association.

Moving to bidirectional series (data set DS6B) the performances reflect the results just

74

Data set DS6B

Noise Level 01 | 03 | 05 | 07 | 09
Strings (automatic partition) | 98.7(6.2) | 98.7(6.2) | 99.2(6.1) | 95.7(6.1) | 94.9(6.1)
Strings (manual partition) || 100(6) | 99.8(6) | 99.1(6) | 94.2(6.1) | 89.0(5.9)
| HMMs || 51.7(5.7) | 49.8(5.8) [45.5(5.95) | 38.3(6) | 38.7(6) |

)

Polynomials | 58.2(3.1) | 52.7(4) | 48.3(4.6) | 42.8(5.3) | 40.9(5.1)

Normalized polynomials | 41.6(7.6) | 39.9(8.5) | 38.4(8.4) | 38.2(6.7) | 35.9(4.7)
B-Splines | 94.55(6.8) | 95.6(6.8) | 95.5(6.5) | 96.0(5.9) | 73.1(4.4)

Table 5.2: Percentages of correct behavior strict associations on data sets DS6B. Inside
the brackets we report the average number of estimated clusters.

discussed. The goodness of the string representation coupled with P-spectrum kernel is
clearly confirmed, included the number of estimated behaviors. Also, B-Splines perform
well, although the correspondence between real and estimated number of clusters is less
precise and the strict association is strongly affected by the amount of noise is significant.
HMDMs and polynomials provide comparable estimations, decreasing rather quickly as the
noise increase. Normalized polynomials is the worst-performing representation scheme.

5.2.2 Evaluations on a real data set

The experimental assessment on synthetic data lead us to conclude in favor of the string-
based approach with automatic partition: we verify this impression on real data. The
data sets RC5B and RC'11B, we introduced in Sec. 4.5, provides a natural test bed for
the problem at hand: the annotation available allows us to select for each experiment
the model best fitting it. Similarly to the analysis we carried out in the supervised case,
we consider (1) the string-based representation with automatic partition and P-spectrum
kernel, (2) the HMMs modeling on single trajectories compared with probability product
kernel, and (3) the B-Splines fitting coupled with a gaussian kernel. In the case of HMMs,
however, some problems on model convergence impeded the test with richer input vector.
Moving to real but controlled data, we will try to conclude our analysis clarifying the
following main issues:

e [s there any advantage in using an heterogeneous input space, rather than the plain
positions? If yes, under what conditions?

e [s clustering able to provide a robust tool to partition trajectories with the final aim
of detecting frequent patterns of activity?

75

o [s there a representation scheme globally performing better than the others?

To this purposes, we evaluate the performances of the schemes of representations plugged
into the spectral clustering framework and associating each estimated behavior (clusters)
to the real (annotated) sets. The percentages of correct association can be estimated by
considering a one-to-one mapping between estimated and real behavior (the strict asso-
ciation). However, it is not always advisable to force such strict constraint, since in the
unsupervised case there is no guarantee that the obtained data partitioning reflects the
annotation given by the user. Instead, an evaluation where multiple association (that
is, admitting that a real behavior can be split into multiple clusters) are allowed should
be taken into account (loose association). A possible drawback of this procedure is that
solutions with higher granularity (i.e. over-segmentation effects) might benefit from the
multiple association. In this case we may consider a [oose association with a constraint.
This procedure can be applied if a ground truth on the real number of clusters, Ng, is
available, to consider solutions clusterings where the number of estimated classes N¢ is in
a neighborhood of the correct number, that is No = Nr + A. In our experiments, A = 1.

Strict Loose with constraint Loose
2F 4F 2F 4F 2F 4F
Strings | 88.9 (6) | 82.2 (6) | 97.8 (6) 93.3 (6) 97.8 (6) | 93.3 (6)
HMMs 62.2 (5) - 77.8 (5) - 82.2 (5) -
B-Splines || 84.4 (5) | 75.6 (7) | 84.4 (5) 71.1 (6) 84.4 (5) | 82.2 (7)

Table 5.3: Evaluations of clustering-based classification of trajectories fro data set RC5B.

Table 5.3 reports the designed analysis on data set RC5B. It is apparent that the string-
based representations allow for performances constantly better than the others. Instead
it is not obvious whether an heterogeneous input space is better than plain positions
in the image plane. However, such conclusion was rather predictable given the higher
characterization of behaviors with respect to the position. The reported results of string-
based have been selected by a further analysis considering the set of allowed alphabets:
it is worth pointing out that in all 3 cases, the best performance when considering more
than one feature corresponds to the alphabet where position and direction are weighted,
testifying the importance of the latter in the given scenario and with respect to the given
data set.

The reliability of clustering can be evaluated ignoring the constraint on the number of
clusters, and simply selecting the partition associated to the highest correct association
rate: the selection with strings does not vary, proving the robustness of this solution.

The analysis on data set RC11B confirms the superiority of a string-based scheme, which
produced the best correct association percentages coupled with a proper estimation of

76

Strict Loose with constraint Loose
2F 4F 2F 4F 2F 4F
Strings 75.2 (12) | 73.0 (10) | 85.2 (12) | 80.0 (12) | 85.8 (12) | 82.2 (12)
HMMs 57.6 (10) - 70.6 (10) - 78.8 (18) -
B-Splines || 58.8 (10) | 55.3 (11) | 68.2 (10) | 67.1 (11) | 68.2 (10) | 81.2 (20)

Table 5.4: Evaluations of clustering-based classification of trajectories fro data set RC11B.

the number of clusters (and reliability when the evaluation is not restricted to solutions
with proper number of clusters). B-Splines and HMMs highly over-estimate the number of
clusters in absence of constraint. For what concerns the advantage of a richer input space,
when adopting a completely data-driven solution, the good representation of the input
space by means of a proper training set is a main requirements to successfully address
the modeling problem. When dealing with slightly more complex data, as the ones in
data set RC'11B, it is important the characteristics we may be interested in highlighting
are properly represented. In particular, in this second data set the velocity modules were
sampled from a richer input space, since trajectories were produced by people walking
or running, The latter constitutes a quite significant smaller set than the other. When
we dealt with the supervised analysis, the availability of the labels which were plugged
into the learning system allowed to compensate for such inequality. In the unsupervised
framework, instead, the difference is clearer, as shown in Table 5.4. The advantage of
using an heterogeneous input space, that was clear in the supervised analysis, does not
hold. This suggests that a substantially equal presence of all the interesting properties
of the data must be available into the training set, used to compute the model. This
hypothesis is enforced by the results obtained when restricting the analysis pipeline to a
subset of trajectories where running and walking people are equally present. In fact, in
this case the performance of string-base descriptions increases from the 89.5% of correct
association when only the position is taken into account, to 97.3% when also the velocity
module is weighted.

5.2.3 The use of quality indices

In this section, we address the problem of evaluating the quality of a given data partition
in the case a ground truth is not available. To this purpose we explore the use of quality
indices to perform model selection on different clustering instances. We focus our analysis
on string-based representations and specifically address the problem of selecting the best
performing alphabet (i.e. the partition which leads to the best clustering results).

Let us first briefly analyze common approaches to the problem. The procedure of evaluating
the results of a clustering algorithm is known as cluster validity. Three main approaches can

77

be adopted to investigate towards this direction [HBVO01] by using some quality measures
to evaluate the clustering results:

e The first one, based on external criteria requires the availability of a ground truth

e When using internal criteria, instead, the evaluation is based on quantities measured
on the data themselves (e.g. quality indices, proximity matrix,...)

e Finally, the key idea of the so called relative criteria is evaluating the clustering
structures against other clustering schemes, obtained e.g. with different values for
the parameters, with respect to one of the measures used in the previous method.

The latter approach is the one which better adapts to our requirements.

When the number of clusters n is a parameter of the clustering method, then a common
strategy to perform model selection can depend on a given quality index ¢ and can be
states as follows:

e Different values of n from a minimum to a maximum value allowed are a-priori

decided

e For each one of such values, the algorithm is run r times using different values for
the other parameters

e The best value of index q is selected for each value of n, and the analysis of the trend
of such value can be an indication of the correct number of clusters.

To adapt this procedure to our clustering algorithm (that does not control explicitly the
number of clusters), we fix the features weights and run the spectral clustering by varying
the values of the cut thresholds T'H,yins and T'Hy, 5, selecting for each weights vector the
best performing parameter. Then the analysis should lead to select the most appropriate
alphabet for the behavior analysis problem.

As for the quality measures, we select a set of promising indices [HBVO01], whose definitions
have been adapted to handle string data. The distance adopted to compare two strings s
and t depends on the P-Spectrum Kernel, and more precisely is defined as

Di(s,t) =1 — Kp(s,t) (5.1)

where Kp(s,t) is the normalized P-Spetrum kernels introduced in Sec. 4.3.2.

In the remainder of the section we adopt the following notation. With S we refer to the
set of input trajectories converted into strings with respect to some alphabet. Each cluster
C; is represented with a candidate v; by selecting one of its strings via a voting strategy

78

(see Sec. 6.5).
We define the variance o; of cluster C; as

o = iZD(sk,vi) (5.2)

n.
v k=1

g

where n; is the number of elements of ¢; and s, € C; Similarly, we represent the whole
input set S with a candidate string s and define its variance as

1 o«
05 =— Dl(sk,s) (5.3)
5 k=1

where ng is the number of input elements and s, € S

Considering a partition P with n, clusters, we thus adapt a set of known indices to the
string case, according to the following:

Scattering
1 o ag;
Scat(P) = —» — (5.4)
Np 57 98
indicates the Scattering, that is the average compactness of clusters (i. e. intra-class
distance). A small value for this index reflects compact clusters, as the scattering within

clusters increases (i.e. clusters become less compact) it increases as well;

Total Separation
Tp

Dis(P) = ZZZ S (Z DK<vk,vz)) , (5.5)

where D,,,. is the higher pairwise distance between clusters candidates while D,,;, is the
lower one, indicates the Total Separation between clusters (i.e. an indication of the inter-
class distance). Such values is influenced on the geometry of the data and increases with
the number of clusters.

SD-Index

SD(P) = aScat(P) + Dis(P) (5.6)
defined the SD-Index which finds a trade-off between intra and inter class distances.
The two terms are in different ranges, thus the weighting factor « is needed to tackle the
problem. When comparing different clustering results, in [HBVO01] a value suggested for o
is DiS,q, corresponding to the Dis measure of the clustering with the maximum number
of clusters.
The lower the value of this index, the better the partition P fits the data set.

79

Davies-Boulding Index

1 & Di. + D}

DB(P) = — max K K (5.7)
Ny — j=1..np,j#i DK<U,L',UJ')

where D_}(and D} are the average distances of strings from, respectively clusters C; and C}
from the corresponding candidate. A low value for this index indicates the appropriateness
of the clustering result.

Table 5.5 reports the values of the adopted indices for each alphabet. After a first inspec-
tion, it is apparent that they do not provide a viable solution towards model selection,
as the alphabets they indicate as the best performing do not reflect the properties that,
intuitively, should be enhanced. Also, the results of each one of them are unstable and
clashing. A visual inspection of the results obtained when evaluating the partitions with
respect to the ground truth, the last column of the table , confirms these considerations.
Notice that, among the results of indices, alphabet number 10 has never been selected.
This evaluation leads us to conclude that the design of a strategy to perform model selec-
tion, as well as evaluate the clustering results, is needed when the availability of a ground
truth is not guaranteed. In the next chapter, where we will be in the circumstance of
dealing with high quantity of data, a strategy based on a loose annotation is preferred to
the use of quality measures. The devised solution is inspired to the specific application
domain.

Alphabet | Wp | Wa | Wm | Wd || Scat | Dis SD DB | Hit rate %
1 0 0 0 1 043 | 3.67 | 2742 |0.19 73.3
2 0 0 0.5 | 0.5 || 0.70 | 242 | 12.90 | 0.48 80.0
3 0 0 1 0 0.33 | 248 | 260.81 | 0.19 64.4
4 0 0.5 0 0.5 || 17.51 | 3.73 | 522.49 | 0.63 80.0
5 0 0.5 | 0.5 0 1.036 | 2.00 | 4955.44 | 0.44 71.1
6 0 1 0 0 19.08 | 1.35 | 155.31 | 0.25 66.7
7 0.5 0 0 0.5 || 0.74 | 2.51 | 16.04 | 1.09 93.3
8 0.5 0 0.5 0 0.85 | 2.63 | 73.27 | 0.72 82.2
9 0.5 | 0.5 0 0 8.21 | 2.63 | 769.38 | 0.67 77.8
10 1 0 0 0 1.38 | 2.04 | 86.11 | 0.45 97.8
11 0.25]0.25| 0.25 | 0.25 || 3.77 | 4.72 | 52.87 | 1.18 77.8

Table 5.5: Quality measures on the family of alphabets computed for different values of
the parameters. The last column reports the hit percentages obtained when evaluating the
partitioning results using the ground truth.

80

5.3 Discussion

We addressed in this chapter the issue of extracting information from sets of unlabeled
temporal data by means of unsupervised learning. We completed the pipeline for behavior
analysis, started in the previous chapters, proposing to plug the intermediate representa-
tions into a clustering step, based on Spectral Clustering. The experiments were designed
similarly to Chapter 4 so to explore the unsupervised counterpart of the learning problem.
The key idea during the evaluation was to interpret the clustering results as an association
tool between estimated and real clusters. Even in this case the predominance of strings
is apparent. By looking at real behavior analysis applications, where in the most cases
the annotation is not available, we experimented the use of quality indices to evaluate the
clustering results. We conclude that such techniques are not tailored for our setting.

The main open problem relates to how to better exploit the complexity of the input data
in the unsupervised setting. We have seen from the experiments in this chapter that when
the data are heterogenous but the classes are not equally represented (in the data set
RC11B trajectories of people running were in a severely lower number that the ones of
people walking), a feature vector which might have the potential of well describe the data
(in our case, a description considering spatial and velocity properties) can not provide
the expected result. We thus aim at better clarifying the mechanisms that govern such
relation, trying to define conditions under which specific properties of the input data can
be modeled with an unsupervised approach. The analysis of the input feature space could

be of help.

81

Chapter 6

Application to a large scale scenario

In this chapter we propose a behavior modeling system based on the use of strings as meta-
descriptors for the trajectories. The behavioral patterns are estimated by means of Spectral
Clustering, according to the general pipeline discussed on the thesis. We evaluate the
system with an extensive experimental analysis on data acquired by a video surveillance
system over a temporal range of a few weeks (Sec. 6.1). During the model selection
phase,since manual labeling of big training sets is not advisable, we adopt an automatic
loose annotation based on the environment physical properties. We then select as model,
the best performing clustering result with respect to the loose annotation. For completeness,
we compare the system against the other representation schemes, including the supervised
analysis. The second part of the chapter (Sec. 6.5) is the place where we present the test
analysis, performed again on data of weeks: two different out-of-sample strategies allows to
associate a new test data to one of the known models or detecting it as an event different
from the “normality” of the scene.

6.1 Introduction

In this chapter we go through the whole pipeline of our system for learning behavioral
patterns. The analysis on synthetic and real but controlled data, carried out in Chap. 4
and 5, provides evidence of the superiority of the string-based approach coupled with the
P-spectrum kernel to compare data. We thus exploit such representation on the system,
which is visually represented in Fig. 6.1. Notice how such representation contains the main
building blocks discussed on the thesis and now better specified with respect to our final
choices.

We briefly sketch here the main steps of the procedure, which includes two main phases.
During the batch training phase, the behavioral models are estimated by first extract-

82

Video

stream
Batch training phase
f N
o1 Low-level > Data High-level
’L analysis] [Tracklng-] l abstractlon] analysis)
- [
ﬁ
Alphabets) Spectral
Feature computation D clustering
mapping +
('._i-dimensional :
input space) (String-based representatimD
Model Behavioral
(__p-spectrum kemet) selection P nodels
Representation scheme M #
|Test phase
Feature (Strlng-based representatlmD] .
L5 Low-level Tracki mapping Trajectory
analysis racking (5- dlmenswnal p-Spectrum Kernel)J association
input space)
Representatlon scheme

Figure 6.1: A visual representation of our system for behaviors modeling.

ing temporal information on dynamic events that are represented with respect to the
5-dimensional input space which considers position, size and velocity of each target. Then,
the alphabets to compute the string-based representations are automatically estimated by
means of clustering on the input points.

The model selection phase allows us to keep only the partitions better fitting the input data
set with respect to a very loose manual annotation based on prior knowledge properties.
When it is the case, e.g. when the confidence associated to the solution is low, it might be
an option to consider different alphabets, which in our settings translates in building more
than one model on the same data set with slightly different view points.

Given one of the selected partitions, the trajectories are represented on top of it as strings,
that are finally clustered to detect the behavioral models.

During the test phase, once a new events is observed, it is translated into string accordingly
to the built model (i.e. the selected alphabet) and the similarities with the known models
are estimated. A procedure to associate the new event to one of the known behavior is

83

designed so to consider also the possibility that an event remains undefined or classified as
anomalous.

This chapter is organized as follows. In the first part, an extensive evaluation of the
string-based representation is performed on data spanning a week of acquisition from a
real surveillance system. For completeness, we compare the string-based representation
against the other schemes we considered in the experimental analysis of the previous chap-
ters, Hidden Markov Models and B-Splines. Also, for the only strings, we compare the
use of multi-cue integration against the adoption of the plain full vector of features. The
conclusions will lead to an effective model selection.

With the second part, we evaluate the behavioral models on test data, spanning a week as
well. In the last part, the anomaly detection is discussed.

Figure 6.2: Sample frames acquired by the surveillance camera, showing the potentially
complex conditions of the observed environment: the crowd level differs depending on
the temporal interval considered, while the illumination is strongly affected by physical
properties of the environment, in particular the presence of windows along the right wall.

6.2 The video surveillance setting

The data we consider have been collected by means of a real video surveillance system®,
we briefly introduced on Sec. 4.5. We summarize its properties here, with a more detailed
discussion on the main properties of the setup.

The system monitors an indoor open space (one of the main halls of our Department),
shown in Fig. 6.2, where a good amount of dynamic events occur during daytime. Only

!The Imanalysis suite, we obtained within a technology transfer program with the company Imavis srl,
http://www.imavis.com/.

84

Figure 6.3: An example of the resulting binary map after the low-level video analysis: the
connected components (left) are first extracted and described with a features vector, then
correlated over time (right) by means of tracking to model their dynamic evolution in the
scene.

people are supposed to be moving in the scene: the monitored environment provides differ-
ent complexity with respect to the crowd level, which in turn depends on several factors,
such as day, temporal interval, period of the academic year (presence of lessons, examina-
tions). The weather conditions strongly affect the scene appearance (see Fig. 6.2), being
the hall illuminated by windows (all along the right wall) as well as artificial lights. Ac-
cordingly to the video processing step, we discussed on Chapter 3, at each time instant,
first the current frame has been segmented with respect to motion information (Fig. 6.3,
left), then the tracking procedure is applied (Fig. 6.3, right) to build the trajectories and
map them into the dynamic events descriptors, discussed in Sec. 4.5.1. This scenario
summarizes in a sense the peculiarities of the benchmark data we adopted in Chapter 3 to
evaluate our tracking procedure. Thus, the main causes of failure in that case are present

’ Starting time ‘ Ending time ‘

08:45 10:00
12:30 14:30
16:00 17:00

Table 6.1: Temporal ranges where video data have been considered for the experimental
analysis.

also here. The robustness of our solutions allows us to appropriately cope with the problem

of gathering trajectories, exploiting the fact the camera continuously acquires the video
signal.

85

In order to collect the training set we extracted trajectories from observations of a week
and to obtain a meaningful data set, we select the temporal ranges listed in Tab. 6.1. The
dynamic content of the included peak time intervals is highly representative of the totality
of events typically occurring in the scene (e.g., people arriving and leaving, entering and
exiting doors, studying or chatting by the desks).

The low-level video processing phase is applied to all videos within the selected time spans,
then an automatic pruning procedure is applied to build the training set:

e First, we discard trajectories shorter than a minimum length L,,;,, as we assume
being generated by noise. The threshold must be accurately chosen depending on
the specific scenario, to avoid the exclusion of short trajectories corresponding to
interesting events (e. g. people running or spanning a limited spatial extent). Since
the camera view of our setup is rather wide, the trajectories tend to be of significant
length, so in our experiments we set L,,;, = 100;

e Then, an analysis on the trend of trajectories is performed discarding those con-
taining many high jumps — a jump is a gap between two consecutive observations
usually caused by tracking failures. We estimated the distance (gap) G between two
consecutive observations, O; and O, as

G(Ot, Ot—i—l) - 1 - K(Ot, Ot+1) (61)

where K is the convex kernel discussed in Sec. 4.5.2.

This coarse procedure for data pruning aims at discarding extremely noisy trajectories,
so to count during the training phase on a reasonably accurate data set. However, the
presence of noisy trajectories is not a major problem for our setting: since clustering
captures the global structure in the data, the noisy trajectories, if not prevail on the set,
will be “absorbed” by the clusters.

Such intrinsic complexity of the data naturally leads to a highly challenging test bed for
our pipeline. We collect the training set shown in Fig. 6.4, left.

The same considerations hold when gathering the test set, built on acquisitions of a week
as well. However, as opposite to the modeling phase, where some kind of control on the
data, even if rather limited, is applied by means of the coarse cleaning procedure, during
the acquisition of the test data we mimic the work of a real surveillance system: in this
case, in fact, the goal is to monitor each event occurring into the scene to associate it to
some known model or detect it as abnormal event. We thus decide to only apply the first
step of the cleaning procedure to reject very short trajectories, keeping all the other, highly
heterogeneous, events. Fig. 6.4, right, reports the 5727 trajectories included in the test
set, giving an impression of the richness of the observed events.

86

Figure 6.4: Data used in the experimental phase: from the left, training and test set.
The trajectories have been acquired during two weeks considering a set of interesting
temporal ranges and pruned to reject highly noisy trajectories. Red and green dots indicate,
respectively, first and last points.

6.3 The loose annotation

As anticipated, the evaluation of the results of unsupervised learning is a highly challenging
problem, for which no general solution has been found. When dealing with clustering, in
absence of a ground truth, some quality measures might be adopted. However, as discussed
on Sec. 5.2.3, this approach is not appropriate for our setting.

At the same time, the manual annotation of thousands dynamic data is difficult and very
subjective. We propose a viable solution to annotate the observed environment on the
basis of its physical properties, by detecting interesting regions corresponding to doors,
tables, coffee urns and drinks dispensers and so on. This intuitive operation can be easily
performed by a user which is asked to select such regions on a snapshot of the scene. The
environment annotation we adopted for the experiments in this chapter is reported in Fig.
6.5, left. Such regions can be interpreted in fact as possible source and/or sink regions for
trajectories observed in the scene. Following this idea, it can be argued that the manual
annotation of the environment induces a loose annotation of the data, which are grouped
with respect to source and sink points. The term loose refers to two main aspects:

e Since the coherence criteria depends only on first and last points of trajectories,
very different patterns can belong to the same group. Let us consider the regions in
Fig. 6.5, left. The group of coherence induced by the path R3 — Ry may include
trajectories of people going directly from region 3 to region 9, as well as motion of
subjects moving from region 3 to region 2 and, finally, region 9;

e The manual annotation reflects the spatial properties of the trajectories, thus from

87

the point of view of the other features (target size, velocity expressed in terms of
module and direction of motion) the obtained groups are heterogeneous. As an
example, we do not classify moving entities in different classes, so that a trajectory
can correspond to a single person as well as a group of people moving close each other.
Even the direction, that in principle might appear strictly related to the position,
can have strong variability among a single annotated behavior.

Starting from the trajectories shown in Fig. 6.4, left, we considered the groups of coherence
induces by the regions annotation and discarded the less populated. We thus ended up
with 8 general behaviors, for a total of 1205 trajectories (Fig. 6.5, right). The behaviors
are detailed in the table of Fig. 6.5 and visualized in Fig. 6.6.

H Behavior \ Source regions \ Sink regions \ # trajectories H

1 1 9, 10 281
8 165

7.8 96

5 51

1,2 210

7 104

1,2 215

8 83

Figure 6.5: Above, the annotation of dynamic events with respect to the set of source and
sink regions shown below, on the left. On the right, the resulting 1205 trajectories. Red
and green circles denote, respectively, first and last points.

88

Figure 6.6: The 8 behaviors resulting after the annotation process.

6.4 Model selection

In the context of the experimental analysis of this chapter, if not different stated, all the
assumptions on settings and choice of the parameters still hold. In the case of the string-
based representation, we test 2 different settings during the computation of the alphabets.
To combine different features we consider

1. A simple concatenation of the features in a vector, after that a normalization made
the features comparable, and

2. The previously multi-cue integration,where each feature is processed singularly.

We also extend the family of alphabets we consider according to the following: the allowed
combinations of features weights verify

W = Uk{[WP,Ws,WM,WD”I/Vi € {O,l{},VZ € {P, S, M,D}}

89

where k € {1,5,3,1} and >, W; = 1.

)99

6.4.1 Analysis in the supervised case

We now evaluate the results obtained with RLS analysis. A supervised approach has the
capability of learning some properties of the data on the basis of the a-priori knowledge
introduced in the framework by means of the labels. This naturally leads to model highly
dependent of the input data. In our case, this could be somehow troublesome since input
labels correspond to a loose annotation that is not accurate. It is highly subjective and
only partially describe the data, i.e. only some interesting properties of the data might
be captured since it mostly relies on the positions. We thus just consider the supervised
results as a crosscheck of our expectations.

In the string-based approach we first need to estimate the most appropriate alphabet
with respect to the different possible weight vectors W for the multiple cue integration
of features. Table 6.2 reports the average hit rates obtained by 5-CV for a selection of
weights. It is apparent how the presence of position leads, in this case, to the best results,
with the highest performance obtained by for W = (1,0,0,0). This is mainly due to the
dependence of the labels from the positions, as before mentioned, so that the learnt model
reflects the properties used to feed the learning algorithm.

Table 6.3 compares the best result obtained with a string-based approach against the
performances given by B-splines. By using the representation schema based on B-spline,
the performances are slightly higher.

It also reports a comparison between feature concatenation and multi-cue integration for
the string-based case, highlighting a clear superiority of the latter.

In order to deal with HMM-based representation, we start from a 2-dim representation
based on the positions only and use a standard approach of estimating one probabilistic
model for each class, and then using the models as a composite classifier. Given a new
trajectory, the output label can be assigned by computing the likelihood to belong to all
the models and then choosing the one that maximizes such likelihood.

Similarly with the previous 5-fold learning method, for the training of the HMM models
we divided the data set into 5 distinct subsets and run the inference algorithm for each of
them, using the others as test set. The average performance is 64.98%, which is below the
performances of the methods reported in Table 6.3. However, by considering the confusion
matrix (Fig. 6.7) of this classifier, one can easily see that the some of classifiers — those
corresponding to behavior 1, 4, 5 and 8 — achieve extremely good performances while most
of the errors are done by the others; more specifically those corresponding to behaviors 2, 3
and 7 (a visual inspection to Fig 6.6 suggests that these behaviors are not well discriminated

90

| Alphabet | Wp [Wy | Wy | Wp || THpoimus | % ||

10 1 0 0 0 0.95 67.48
13 033 0 [0.33]0.33 1.00 64.33
8 0.5 0 0.5 0 1.00 63.91
7 0.5 0 0 0.5 0.95 63.9
9 0.5 | 0.5 0 0 0.95 63.64
11 0.2510.25] 0.25 | 0.25 1.00 62.58
14 0331033 0 |0.33 1.00 62.5
15 0330331033 0 1.00 62.16
2 0 0 0.5 | 0.5 0.95 52.70
12 0 [033]0.33)0.33 0.95 52.54
4 0 0.5 0 0.5 0.95 50.29
1 0 0 0 1 0.90 48.38
) 0 0.5 | 0.5 0 0.95 41.18
3 0 0 1 0 0.95 38.68
6 0 1 0 0.90 24.57

Table 6.2: Hit rates in the string-based approach with a multi-label classification based on
RLS.

| Representation schema | Success rate (%) |

strings (concatenation) 27.97
strings (multi-cue integration) 67.48
B-Spline (5 dim) 71.93
B-Spline (2 dim) 72.26

Table 6.3: Supervised analysis based on RLS multi-label classification: comparison between
methods.

to others).

From the obtained results we may conclude that in the supervised case a B-spline ab-
straction module fitting the sole positions is the most appropriate data abstraction for the
considered supervised scenario. However, as we will see below for the unsupervised sce-
nario, such representation approach tends to be influenced by local properties of the data
set, thus producing a large number of clusters consistent with the labels. More extensive
experiments are needed in order to verify the robustness of the approach in the supervised
case with respect to the increase of observed behaviors.

91

.

0 z0 40 B0 an 100

Figure 6.7: Confusion matrix relative to the classifiers obtained by training on HMM model
for each behavioral pattern. The classes are ordered according to table in Fig. 6.5.

6.4.2 Analysis in the unsupervised case

In the unsupervised case we evaluate the goodness of the results using the labels as a ground
truth to establish the correspondence between the true (annotated) behaviors and the
estimated ones (i.e. the clusters), accordingly to the strict and loose association described
in Sec. 5.2. In the string-based approach this procedure is also adopted to select the best
alphabet from the family computed when adopting the multi-cue features integration: in
particular, the choice of an appropriate selection of weights allows us to obtain a sub-set
of alphabets which can be appropriate for a given environment and adaptable to its stable
changes. This choice is guided by the set of available data, assuming to carry all meaningful
information on common behaviors.

Our first experiment for the unsupervised case relies on performing such association as-
suming that each real behavior can correspond to just one estimated cluster (above, we
called such approach strict clusters association). Since this could discourage solutions with
higher numbers of clusters, we fix a constraint on the number of clusters by using the prior
on the true number Ny (Np = 8 according to our loose annotation): we admit in the final
evaluation only solutions whose estimated number of clusters N¢ is in [Ny — d, Ny + 0]
where ¢ > 0 is an integer number.

In Tab. 6.4 we report the performances of the family of alphabets computed when adopting
the multi-cue integration: the alphabet which results to perform the best is the number
13, based on partitioning the input space by considering position and dynamic information
of targets. The corresponding performance is then selected and compared against the
other approaches in Tab. 6.5. Although the highest recognition rate corresponds to the

92

H Alphabet H Wp \ W \ Wy \ Wh H T Hpoints \ TH,,, H # Clusters \ % H

13 033 0 [0.33]0.33 0.95 0.6 7 65.80
10 1 0 0 0 1 0.5 7 59.00
14 0331033 0 |0.33 0.9 0.7 7 95.60
7 0.5 0 0 0.5 0.95 0.5 7 95.51
2 0 0 0.5 | 0.5 1 0.75 7 52.61
1 0 0 0 1 1 0.85 6 20.53
11 0.25]0.25] 0.25 | 0.25 0.95 0.85 3 49.37
12 0 1033]0.33]0.33 0.9 0.75 7 49.29
4 0 0.5 0 0.5 0.95 0.9 8 48.96
3 0 0 1 0 1 0.9 7 34.85
3 0 0.5 | 0.5 0 1 0.7 6 21.90
6 0 1 0 0 - - - -

8 0.5 0.5 0 - - -

9 05 | 0.5 0 0 - - - -

15 0330331033 0 - - - -

Table 6.4: Strict association rate for the alphabet computing with multi-cue integration,

Dll‘gM is computed independently for each feature.

g =

| | # Cluster | % ||

String (concatenation) 2 34
String (multi-cue integration, o = %) 7 65.80
B-Spline (5 dim) 6 62.20
B-Spline (2 dim) 6 67.94
| HMM (2 dim) | 8 [6229]

Table 6.5: Summary and comparison among representation schema for the strict association
of dynamic events.

B-splines representation computed in the 2-dimensional input space, one can notice that
string-based and HMM-based representations better estimate the true number of clusters.
The result obtained when the string-based representation is made upon an alphabet built
on observations which are the plain concatenation of features is very poor: the spectral
clustering fails in splitting the data in more than 2 sub-groups, testifying the poor capability
of the representation in characterizing the data-set. Again, this result speaks in favor of
the advantages of Multi-Cue Integration.

We now evaluate the results with respect to the loose annotation, more appropriate to our

93

H Alphabet H Wp \ Wy \ Wy \ Wh H T Hpoints \ TH,,, H # Clusters \ % H

13 033 0]0.33]0.33 0.95 0.6 7 76.18
14 0331033 0 |0.33 0.95 0.6 8 73.36
7 0.5 0 0 0.5 0.95 0.5 7 72.36
11 0.2510.25]0.25 | 0.25 0.95 0.85 8 69.95
2 0 0 0.5 | 0.5 0.9 0.75 8 69.46
10 1 0 0 0 1 0.5 7 66.39
12 0 [033]0.33|0.33 0.95 0.85 3 65.47
4 0 0.5 0 0.5 0.95 0.9 8 62.57
1 0 0 0 1 1 0.95 8 26.26
3 0 0 1 0 1 0.9 7 45.89
3 0 0.5 | 0.5 0 1 0.7 6 44.56
6 0 1 0 0 0.6 0.5 2 23.31
8 0.5 0 0.5 0 0.6 0.5 2 23.31
9 05 | 0.5 0 0 0.6 0.5 2 23.31
15 0331033{033] 0 0.6 0.5 2 23.31

Table 6.6: Loose association rate for the alphabet computing with multi-cue integration

and o = 2 %M for each feature.

setting, and without considering the constraint on the number of clusters, since our loose
annotation cannot be compared to a real and accurate ground truth. Table 6.6 reports the
obtained results.

Consistently with what previously observed, alphabet 13 performs better that the other.
Notice that the very good performance provided by alphabet 7 (position and direction) is
furthermore improved by adding the size (alphabet 14) or, more convincingly, the velocity
module (alphabet 13). These considerations suggest that, on the specific input data-set
that we considered, position and direction are the most semantically meaningful feature,
followed by velocity module and size.

We conclude our analysis with the comparisons among different methods against the loose
association, reported in Tab. 6.7. When relying only on the percentage of correct associ-
ations, B-spline fitting results in an unreliable schema, highly overestimating the correct
number of clusters. The performance of HMM and string-based representations (the latter
with Multi-Cue Integration) are comparable.

Fig. 6.8 (similarity matrices computed on the ordered data-set with respect to the 3 data
representations) confirms this analysis: B-spline tend to over-estimate similarities and then
over-segment data; string-based approaches slightly underestimate similarities, but capture
the expected diagonal block structure; HMM appear to under-segment data and miss the

94

| | # Cluster | % |

String (concatenation) 2 34
String (multi-cue integration, o = %) 7 76.18
B-Spline (5 dim) 30 83.38
B-Spline (2 dim) 31 91.94
| HMM (2 dim) | 8 [7430]

Table 6.7: Summary and comparison among representation schema for the loose association
of dynamic events.

expected block structure.

200 400 00 00 1000 1200

o0 1200

Figure 6.8: Similarity matrices. Form left to right: best alphabet for string-based rep-
resentation with multi-cue features integration (Wp = 0.33, Wg = 0,W)y; = 0.33, Wp =
0.33,TH, = 0.95,TH; = 0.6; B-splines based on 5 features; HMM-based representations
on a 2-dimensional input space.

Finally, Fig. 6.9 and Fig. 6.10 report the estimated behaviors for string-based and HMM.
It is clear in both cases they do not completely match the given annotations, but seem to
reflect the fact the discriminative power of close range observations is higher than the one
of far observations. This is not surprising, and simply suggests how, given the complexity
of the scenario, a multi-camera video-surveillance system would be appropriate.

After a quick view of the results it might be apparent that some models appear to be
rather similar, e.g., the first, the third, and the fourth from the left in Fig. 6.9, showing
the results of string-based representation with multi-cue integration. Notice, however, that
the visualization is unfair since it favors visual similarities among positions. An analysis
on the other features better highlights the difference between clusters. Considering for
examples the velocity modules for the same results when using string, shown as a box plot
in Fig. 6.11: they show how apparently similar behavior are actually associated to rather
different velocity features.

95

Figure 6.9: Best clustering results obtained with the string-based representation schema
with the loose evaluation. The resulting weights combination is Wp = 0.33,Wg =
0.00, Wy, = 0.33, Wp = 0.33.

6.4.3 Discussion

We conclude this section with some final comments.

As for the choice of appropriate data abstractions, in the supervised case, the B-spline
fitting approach lead to the best performance, regardless the choice of a specific input space.
Similar conclusions were reached in the unsupervised case, if an estimate of the number
of clusters is available. In this case string-based approaches lead to comparable results.
Finally, in the more realistic case the number of clusters is not available, B-splines strongly
over-segment the data, while string-based and HMM report more convincing results, with
a better balance between the number of estimated clusters and the percentage of correct
associations.

For what concerns the criticality of choosing a particular input representation, we observed

96

Figure 6.10: Best clustering results obtained with the HMM-based representation schema
with the loose evaluation.

how in a supervised setting, where labels are available, the positions, even if visibly ambigu-
ous, allows to obtain acceptable percentages of correct associations to known behaviors,
being enforced by the labels which in turn depend on the positions. As opposite, in an un-
supervised setting the position fails to disambiguate the data, while other information can
be profitably inserted into the descriptions and significantly help to disambiguate the data.
As a consequence, we can conclude that the unsupervised approach is more appropriate to
our purpose.

Considering the ability of the data abstraction chosen to adapt to a change in the input
representations (which could be useful if new input features were added to the initial repre-
sentation), we observed how, in the case of curve fitting, the addition of a new measurement
would require the estimation of a new fitting function; string-based approaches would re-
quire the construction of a new set of alphabets, but the process is entirely data-driven
and could be performed automatically. The HMM method, in theory would scale nicely

97

35t B

25 g

Mean ¢ StdDew

0%k 1 1 1 1 1 I 1 -

Behavior

Figure 6.11: Average and standard deviations of the velocity modules of behaviors esti-
mated when using the string-based representation with multi-cue integration.

with the input representation change, but in practice, since we model one trajectory at a
time, increasing the number of parameters, immediately degrades to performance (this was
observed in the experimental analysis, where a full 5 — dimensional input representation
failed to produce convincing results).

All the reported experiments highlighted the fact that a specific labeling of dynamic events
may be highly subjective and thus supervised approaches may not be in general appropri-
ate for this application domain. Observing the manual annotation reported in Fig. 6.6 we
see how behaviors 3, 4, and 6 appear to be very similar as they occur at a high distance
from the viewing point. Not surprisingly, the estimated behaviors always fail to discrimi-
nate among these groups. This effect is magnified if we consider a more granular manual
annotation.

To have a visual evidence of the capability of the representations to scale with the com-
plexity, we specialize the data annotation as reported in Fig. 6.12, where, moreover, for
each pattern source and sink regions are specified.

Figure 6.13 reports the similarity matrices obtained by reordering the data with respect to
the new 14 behaviors (we do not consider in this analysis the B-spline fitting for its poor
performance when adopted into the clustering framework, see Sec. 6.4.2). It is apparent
that the string-based representation (Fig. 6.13, left) provides a way to enhance this more

98

<t ||
— ||= |
o
piivl | I Ne)
AN DO
— = |
—
= |[oo |
(@) (@)
— || =
m
.W919
®
= |00 || |oo
o |
B791
© [|00 |+
1O |00 [P~
<t ||— |00
™ ||O O
QAN [N [CO
— [|OY |00
3
e
= .=
O [N
n

Figure 6.12: An annotation on the training data characterized by a higher granularity.

99

detailed structures into the data, even if the compactness of classes might be improved.
On the other hand, HMM-based approach (6.13, right), although having the capability
of enforcing the similarities among component of a same class, tends to see as similar
events which are instances of different behaviors. This encouraging results highlights the
appropriateness of the description we propose, the one based in string, in the context of
dynamic events description fir monitoring applications. We thus focus only on this specific
approach for the remainder of the chapter, where we discuss the analysis performed when,
at run-time, a new trajectory must be associated to one of the known behaviors or detected
as an anomaly event.

: 5 =
200 400 BOO &00 1000 1200 200 400 600 &0o 1000 1zo0

Figure 6.13: Similarity matrices for the alphabet Wp = 0.33, Wg = 0.33, W), = 0, Wp =
0.33 and the HMM -based representation considering 14 annotated behaviors.

6.5 Analysis on test data

Once a new dynamic event is observed, the objective of a behavior understanding module
is to associate this new observation to one of the common behaviors learned by the system.
In case none of the previously observed behaviors is appropriate for the new observation
we say that an anomaly or an undefined event is detected, depending on the likelihood with
known models.

6.5.1 Test data association
According to the adopted pipeline, the dynamic event is first represented with respect to

the appropriate input space (Sec. 4.5.1), then it is translated into strings according to one
or more alphabets computed as described in (Sec. 4.2). Finally, it is compared against the

100

known models to associate it to some known behavior, if it is the case. For the last point,
a strategy to represent a behavioral model (in our setting it corresponds to a clustering
instance) must be defined.

We approach the problem following two different strategies. The first one relies on the
use of a compact representation, the string candidate, that shares similarities with the
approach based on medoid [VDLPBO03].

The candidate for each cluster is computed as follows: for each cluster ', each string s of
C votes for the string ¢ in C' most similar to it. The similarity is based on the P-Spectrum
kernel with P = 2. By putting together the votes of all the strings in C, the string obtaining
the higher number of votes becomes the candidate to represent the cluster. In this setting,
thus, the N behavioral models {B;};=1. n are compactly described by means of a set of
candidate strings {M,},—1. v, one for each cluster highly representative of the content of
the cluster itself.

This technique allows for a rapid visual inspection of the obtained results, since archetypical
sequences can be easily visualized and compared with data waiting to be associated to
clusters.

Given a test string s; the comparison with the candidates {M;};—; n is based on two
thresholds, 7 and 75 . We refer to My, as the most similar candidate (whose similarity
with s; is Spirsr), and Mg, the second most similar candidate (whose similarity is Sse).
Then:

o If Syt > 11 and (Sfirst — Ssec) > T2 associate s; to cluster represented by Mgt
o If Stivet < 71 an anomaly is detected;

o If Spirst > 1 and (Spirst — Ssec) < T2 no reliable association can be made (undefined).

As an alternative, since we deal with unsupervised learning, an out-of-sample method on
the clustering tree [FBCMO04b] may be applied. Thus, our second approach to the run-time
analysis is based on the Nystrom method (see the Appendix for a detailed description).
Although it represents a more common practice to associate a new datum to a given set
of classes, it guarantees robustness at the price of a high computational cost and in a pure
implementation the case of undefined association is not considered.

6.5.2 Experiments on test data

We complete the experimental analysis with a testing phase aiming at associating new
observed trajectories to one of the known behaviors, when it is the case. Alternatively, it
can be detected as an anomaly or the impossibility to decide can arise, when the information
is considered not sufficient to provide a decision with an appropriately high confidence.

101

100 T T T T T T T T

a0k Assigned .
Mot assigned
80 —— Anomaliss .

70| 1

0% i

HIT RATE

40 | .

o+ .

10+ g

i} 1 1 I I 1 1 1 1
0 04 0.2 0.3 0.4 0% 06 0.7 0.8 0.9

THRESHOLD

Figure 6.14: Trends of associated, undefined and anomalous events with respect to the 7
for a fixed model.

For what concerns the first test analysis, the one based on the use of candidates, the
choice of the thresholds 7 and 75 needs to be done. We selected 71 so to reach a good
compromise between the amount of associations and the number of anomalies: in Fig. 6.14
is reported the trend of the number of events that have been associated to some known
models, detected as anomalies or undefined for uncertainty in the association. With respect
to the graphic we decided to fix 71 = 0.35, while 7 has been set to the value 0.1, which
seems an appropriate gap between similarities to reach a sufficient confidence in the system
decision.

Table 6.8 reports the results we obtained when using one of the four best performing
alphabets. Some comments arise when analyzing the percentages. Test trajectories are
more complying with the alphabet 14, reaching a higher percentage of association against
a lower number of anomalies. The amounts of undefined events are comparable.

Both alphabets 13 and 14 consider position and direction, while differ in one of the weighted
features (velocity module for the first, size for the second): the results thus suggest that
changing focus of attention when considering the features strongly influence the set of tra-
jectories considered as instances of the built models.

102

|| Model || % Assoc. | % Undef. | % Anom. ||

13 44.42 17.76 37.82
14 63.26 17.03 19.71
7 95.81 20.47 23.72
11 34.45 28.92 36.63

Table 6.8: Statistics on test sequences when modeling a behavior with a candidate string:
the table reports the percentages of trajectories associated to some learned behavior, un-
defined or detected as anomaly (see text for details on the association procedure).

Figure 6.15: Clusters built with the candidates approach on the test set.

While discarding information (in alphabet 7 position and direction are taken into account
while in the number 11 only the first is considered) the number of undefined events in-
creases, suggesting that the the amount of information on top of which the models were

103

estimated is not sufficient to properly discriminate among the content into the data. Also,
the variability on the percentages of association suggest that an accurate selection of the
weighted features should be performed, considering the semantic of each one of them, with
respect to the specific task, since they naturally lead to different views of the same scenario.

Figure 6.16: Clusters built with out-of-sample based on Nystrom method on the test set.

Fig. 6.15 depicts strings associated according to alphabet n. 13. They are compared with
the test associations performed with the more standard out-of-sample based on Nystrom
in Fig. 6.16. The comparison first shows how the models learned on the initial set of data
nicely apply to a wider test set. The Nystrom approach produces comparable results to
the price of a higher computational cost the obtained clusters are denser since a pure out
-of-sample does not implement the option “undefined association”.

104

Figure 6.17: Events classified as anomalies with respect to the model built on top of
alphabet 13, when adopting the candidate-based strategy.

Figure 6.17 reports examples of trajectories detected as anomalies if compare against the
model corresponding to the alphabet 13 following the association strategy based on can-
didates.

The trajectories correspond to uncommon dynamic events (that is events weakly present,
or even absent, in the training set). For instance, on the first row, the image on the left
shows the trajectory of a person which starts walking from the table area and then pro-
ceeds towards the camera with a zigzagging motion, partially coming back. The central
trajectory of the first row represents, instead, the motion of a loitering person, while on
the right an apparently common event is the result of a person which is running away from

105

the camera position.

In Table 6.9, the similarities of the estimated models with each trajectory are reported:
the values highlight how the events might be associated to models that for some aspects
share similarities, but without reaching a high confidence. Very low similarities, as the
ones for events (h) and (i), respectively 0.17 and 0.19, denote a significant discrepancy
among observed events and learned models: a visual inspection confirms such intuition.
Notice that, for the particular case of the event (c), including the velocity module on the
description would allows us to detect the dissimilarity with one of the models: the same
test trajectory would be associated to behavior 3 by alphabet 7.

Anom. | B By | Bs By, Bs Bg B,
a 0.33| 0. |0.14] 0.23 | 0.02 | 0.07 | 0.34
b 0.17 1 0.09 | 0.07 | 0.19 | 0.05 | 0.23 | 0.18
c 0.01 |/ 0.14] 0. |0.34 | 0.25 0. 0.
d 0.13| 0.]0.06 | O. 0. 0.07 | 0.18
e 0.18 | 0. |0.11 | 0.19 0. 0.24 | 0.26
f 0. [0.080.02|0.19] 0.16 0. 0.
g 0.17{ 0.]0.06 | O. 0. 0.11 | 0.32
h 0.07 { 0.05 | 0.03 | 0.17 | 0.09 | 0.01 | 0.08
i 0.16 | 0.05 | 0.07 | 0.08 | 0.19 | 0.04 | 0.02

Table 6.9: Statistics on test sequences when modeling a behavior with a candidate string:
the table reports the percentages of trajectories associated to some learned behavior, un-
defined or detected as anomaly (see text for details on the association precedure).

6.5.3 Discussion

This section was focused on the test analysis: given a new test datum, it is compared
against all the behavioral patterns estimated in the previous modeling stage to decide
whether it is a new realization of some known behavior or, instead, it can be defined an
anomaly. The decision criteria we proposed, based on the use of thresholds, considers also
that an event can remain undefined, if the system confidence is too low.

The analysis, performed on a big quantity of data, showed the capability of the thresh-
olding mechanism of (i) preserving the shape of the induced clusters with respect to the
original one (i.e., the one of the corresponding cluster estimated via the spectral clustering
of strings) and, at the same time, (ii) highlighting anomalous events.

Given the promising results, the pipeline can be extended towards different directions, as
reported in the final conclusions (Chapter. 7).

106

Chapter 7

Discussion and future work

This thesis investigated the problem of modeling common patterns of activity from long
time observations for video surveillance applications. More specifically, an approach has
been proposed that is based on exploiting string-based representations coupled with un-
supervised learning theory that includes three main stages: (1) first, a low-level video
processing gathers a set of descriptions (trajectories) of the dynamic events occurring in a
given scenario, (2) then a higher abstraction level is reached by mapping the trajectories
in an appropriate feature space, and finally (3) the new temporal descriptors are used to
feed the Spectral Clustering to detect common patterns into the data.

The main contributions of our work refer to several aspects related to the behavior analysis
problem:

e Regarding the video processing, we designed a tracking procedure based on a com-
bined motion and appearance model of objects (Chapter 3). The method represents
the data association problem as a graph simplification to adapt to different levels of
the complexity of the monitored environment. The experimental analysis showed the
appropriateness of our approach on different benchmark data sets both in term of
accuracy of the results and low computational cost.

e For what concerns data abstraction, we explored the use of different representations
schemes applied to the raw trajectories. In Chapter 4 we introduced three different
schemes, including a feature mapping and an appropriate similarity measure: more
specifically, we proposed a string-based representation coupled with the P-Spectrum
kernel, and compared it against HMMs with Probabilistic Product kernels, an curve
fitting with the well-know Gaussian kernel. The experimental analysis relied on the
use of supervised learning methods, and Regularized Least Squares in particular, and
was based on both synthetic and real data for which the ground truths were available.
The results showed the advantages of using strings.

107

e As for the behavior analysis, we addressed the issue of extracting information from
sets of unlabeled temporal data by means of unsupervised learning. In Chapter 5
we completed the pipeline for behavior analysis, proposing to plug the intermediate
representations into a clustering step, based on Spectral Clustering. The experiments
were designed similarly to Chapter 4 so to explore the unsupervised counterpart of the
learning problem. The key idea during the evaluation was to interpret the clustering
results as an association tool between estimated and real clusters. Even in this
case the predominance of strings is apparent. By looking at real behavior analysis
applications, where in the most cases the annotation is not available, we experimented
the use of quality indices to evaluate the clustering results. We conclude that such
techniques are not tailored for our setting.

e The last contribution of the thesis builds on top of the previous achievements and
consists of a prototype behavior analysis tool. The tool, discussed in Chapter 6,
involves two main steps, modeling phase and test phase. The first one refers to
the previously described pipeline with strings-based representation and P-Spectrum
kernel. The selection of the method parameters has been performed by evaluating the
results with respect to a very loose annotation of the data, based on simple feedbacks
from the user, that helps to capture general properties of the scenario. The behavioral
models refer to the clustering results, instead of directly on the annotation, for the
capability of the first to capture a higher granularity of the solution (the annotation
is typically dictated by 3D properties). The second phase, instead, associates a new
datum to one of the learned patterns (clusters) and has been addressed following two
different out-of-sample strategies.

The final experimental analysis has been performed on data acquired along weeks, to test
the robustness of the pipeline with respect to scene changes: the superiority of the string-
based approach is confirmed.

At present, a number of issues are still open, deserving further investigations, and we
expect the pipeline to be extended towards different directions.

A straightforward and natural improvement concerns the design of the test phase as a
pure run time analysis. In the formulation of the problem we discussed here, a test set is
gathered and processed as a whole considering one trajectory at a time. However, the same
approach can be followed in an on-line setting, when trajectory modeling and association
is made “on the fly” once a trajectory is observed. This calls for a requirement of low
computational cost, so that the method can provide a feedback after a very little delay. In
our case, the trajectory must be first represented with respect to a given alphabet (the one
chosen during the model selection) by associating each instantaneous observation to one of
the states in the partition: the computational cost is linear in the number of comparisons.
Secondly, the string representation is compared against the candidates of model clusters
by means of 2-Spectrum, which is efficiently computed by means of dynamic programming

108

techniques. We can thus conclude that the pipeline can be directly adopted in an on-
line setting. As a further extension, instead of waiting for a trajectory to be complete,
our test analysis can be directly applied to the trajectories under construction, to provide
intermediate guess on the possible known patterns to which it might be related, until a
high confidence is reached. These extensions is currently under development.

The problem of modeling behaviors on a batch training phase, we discussed in Chapter
6, has the major drawback it builds a “static” model. However, in a dynamic context
as video analysis, where the temporal component can not be ignored and influences the
observed data, having a first set of models that can then be extended and/or updated is
the best choice. Also, it provides the robustness against the number of observed events,
that continuously increases. After that the evaluation of the batch pipeline we proposed
provided promising results, this is in our hypothesis a fundamental future extension.
Starting from a set of clusters, results of the batch training phase, the incremental strategy
takes inspiration from the following considerations:

e Some new clusters may take shape. In our framework, it translates in saying that
events that in first instance are recognized as anomalies but then are frequently
observed in the scene should give rise to a new behavioral pattern.

e The clusters detected on the batch training phase should be updated with new points
to capture the temporal variations into the scene.

e Finally, clusters might become irrelevant, if no instances of its data are observed for
a proper amount of time. In such case, the correspondent pattern should be rejected
by the model.

The technique of incremental learning [CCFM04, HK03, WF00] can help to address the
problem. Related to the same topic, the use of some kind of sliding window on which
focusing the analysis can be conveniently considered into the pipeline.

Finally we mention our aim of integrating our pipeline on a more complex video analysis.
The low-level part we adopted is able to cope with medium crowd, and in general with
scenarios where the identity of a single target or group of targets can be maintained. As the
crowd increases, however, the tracking methods reach a sort of “breaking point” becoming
unreliable. In such cases, our pipeline simply stops the analysis notifying the incapability
to deal with the current scenario. An alternative is to design a more complex system able
to trigger different video analysis procedures, with similar pipeline, on the basis of the
scene conditions.

109

Appendix A

Machine learning ingredients

This appendix introduces the various machine learning methods exploited in the thesis.
First, a brief introduction to supervised and unsupervised learning is given in Sec. A.l.
Then, a more detailed discussion about supervised methods and related topics is presented
in Sec. A.2. Sec A.3 is focused on the unsupervised counterpart, with particular attention
to clustering problems: the Spectral Clustering is discussed in detail, including an out-of-
sample strategy. Finally, the last section presents the popular Hidden Markov Models.

A.1 Supervised vs. unsupervised learning

It is possible to define and distinguish between different kinds of learning from examples
In supervised learning the input data is paired with a given a sequence of outputs (yi, ..., Yn)-
The idea is to infer an unknown input-output relation on the basis of the given set of
input-output instances. The available data, the training set, are a collection of pairs
z = (X1,Y1),---,(Xn,Yn) Where x is a vector whereas y takes on discrete or continuous
values. The distinction in output type has led to a naming convention for the following
prediction tasks:

e Pattern classification, a learning problem with output values taken from a finite
unordered set C' = {C1,...,Cy},

e Regression, a learning problem whose output values are real.

If one supposes that the input and output are observations of random variables represented
by some joint probability density p(x,y), then the supervised learning can be formally
defined as a density estimation problem where one is concerned with determining properties
of conditional density p(y|x).

110

In unsupervised learning the inputs data (x,,...,X,) are not provided with any target
outputs. In this case one has a set of n observations of a random vector x having a joint
density p(x). The goal is to directly infer the properties of this probability density without
the help of a supervisor or a teacher providing correct answer or degree-of-error for each
observation. In a sense, unsupervised learning can be thought of as finding patterns in the
data above and beyond what would be considered pure unstructured noise.

Within unsupervised learning, cluster analysis attempts to find multiple convex regions
of the feature space that contains modes of p(x). This can tell whether or not p(x) can
be represented by a mixture of simpler densities representing distinct types or classes of
observations.

With supervised learning there is a clear measure of success that can be used to compare
the effectiveness of different methods over various situations. Lack of success is directly
measured by expected loss over the joint distribution p(x,y). This can be estimated in a
variety of ways including cross-validation [Efr87].

In the context of unsupervised learning, there is no such direct measure of success. One
must often resort to heuristic arguments not only for motivating the algorithms, as is often
the case in supervised learning as well, but also for judgments to the quality of the results.
In the next sections we present an overview of the supervised learning theory, while the
focus of Sec. A.3 will be on the unsupervised approach.

A.2 Supervised learning

As we explained above, the idea of supervised learning is to infer an unknown input-
output relation on the basis of a given set of input-output instances. A supervised learning
problem can be described as: given a certain number of observations we want to recover an
approximation of the model underlying them. The problem is not trivial since we always
have a finite amount of information available and various causes of uncertainty might affect
the problem.

A (simplified) graphical visualization of a 2-dimensional toy problem is useful. In Figure
A.1 each input point is a 2-dimensional vector and its label is given by its color (red or
blue). On the top left we see a set of data which can be thought of as a sample from a
larger (possibly infinite) population on the top right. In this model the goal is then to draw
a line such that points belonging to different classes falls in different sides. It is crucial to
remember the goal is not only to describe the available data but rather to be predictive on
new data. A solution which perfectly separates the data (above, left) can perform poorly
on other points of the same population (above, right). Even in this toy model we can see
some features of the problem. If we simply try to find a prediction rule which performs well

111

Figure A.1: A 2-dimensional toy classification problem. Top left there is a data sample from
a larger population on top left. Top left, we can see a solution with very low empirical error
and top right we see the poor performance of the same solution on the entire population.
Below, a more regular solution better applies to new data.

112

on the data we tend to perform bad on new data. Clearly this is due to the fact that we
have a finite number of examples. Moreover it should be clear that the more complex is the
problem at hand the more examples we need: we can see an interplay between regularity
of the target and number of required data.

A solution which simply describes the data is too irregular or too complex, that is it is
an overfitting solution. If we postulate that the problem has some regularity properties,
then we might want to impose constraints on the class of possible solutions. Regularity
is described in terms of complexity (see [Bou02] and references therein) or stability of
the solution. In Fig. A.1, below, a more regular solution provides both an appropriate
separator of the sampled points (left) and a good predictor on new data (right).

In the next section we formally present some ingredients of supervised learning and regu-
larization theory (regularization networks [EPPO00] or regularized kernel methods [CST00],
[SS02], [Vap9s]).

Input and output spaces

We consider two sets of random variables x € X C R? and y € Y. The labels y; belong
into a bounded subset Y C R (for example in a binary classification problem Y = {—1,1}).
Let X and Y be related by an unknown probability distribution p(x,y) defined over the
set X xY.

We are provided with examples of this probabilistic relationship, that is with a data set
z = {(x;,y;) € X x Y}, called training set, obtained by sampling n times the set X x Y

according to p(x,y) = p(ylx)px(x).

We assume that the examples z are drawn identically and independently distributed ac-
cording to p(x,y). Moreover, we assume that X is a compact subset of R?, and the labels

y; belong into a bounded subset Y C R (for example in a binary classification problem
Y ={-1,1}).

Given the data set z, the “problem of learning” consists in providing an estimator f, :
X — Y that can be used to predict a value f,(x) ~ y for each x € X. Since we know
only a finite set of points z the estimator f, can be seen as an approximation of the ideal
estimator f : X — Y also named the target function.

Expected risk
The standard way to deal with the learning problem consists in defining a risk functional,

which measures the average amount of error or risk associated with an estimator, and then
looking for the estimator with the lowest risk. If ¢(y, f(x)) is the loss function measuring

113

the error we make when we predict y by f(x), then the average error, the so called expected
risk, is:

1] = /X . £, 9) dxdy (A1)

Different loss functions lead to different learning algorithms (see [EPP00]). A common
choices is the square loss, {(y, f(x)) = (f(x) —y)?

Empirical Risk Minimization

In this section we focus on a specific learning approach, the Empirical Risk Minimization
(ERM). The importance of ERM lies in the fact that most algorithms can be seen as
refinements of it. In a few words the idea is that since we cannot minimize the expected
error directly we can replace it with its empirical counterpart. Given a training set, a
possible way to estimate I[f] is to evaluate the empirical risk

ol = = 3 s S0, (A2)

Straightforward minimization of the empirical risk (ERM) is an ill posed problem, since
the solution is not unique. A well established approach to deal with ill posedness is regu-
larization. In the following we first recall the concept of kernel functions and then briefly
introduce regularized kernel methods.

Kernel functions

The “kernel trick” is a method for using a linear classifier algorithm to solve a non-linear
problem by mapping the original non-linear observations into a higher-dimensional space,
where the linear classifier is subsequently evaluated. This makes a linear classification in
the new space equivalent to non-linear classification in the original space. Specifically, we
can project (see Figure A.2) a data point x in R? to a high dimensional feature space R,
by a nonlinear mapping function ¢ : R — R, F' > d, and proceed to training and testing
in the feature space.

The kernel trick transforms any algorithm that solely depends on the dot product between
two vectors. Wherever a dot product is used, it is replaced with the kernel function
K:R*xR!—R

K(x.5) = 6(x) - 6(s) (A3)

114

Figure A.2: A visual representation of the feature mapping induced when applying a
kernel function on a given domain: the non-linear relations between data in the native
space becomes linear in the feature space, so that linear algorithms can be applied to
successfully capture similarities among them.

instead of defining ¢(x) explicitly.

Given the training set (xp,...x,) the n x n matrix K formed by K;; = K(x;,x;) is
called the kernel matriz. A natural question to ask is, given a function K(x,s) how to
decide whether it is a kernel function, or whether there exists a function ¢(x) such that
K(x,s) = ¢(x) - ¢(s). The answer is provided by the following sentence [SS02]: a function
K :R? x RY — R can be decomposed as an inner product (see Eq. A.3) for some feature
map ¢(x) if and only if the function is symmetric and the matrix formed by restriction to
any subset of the space R™ is positive semi-definite. K is a Mercer kernel if K : X x X — R
is a symmetric continuous function, which is positive definite [Aro50].

An example of kernel functions is the polynomial kernel K(x,s) = (x - s)? where p is the
polynomial degree. Another widely-used kernel that we will make use of below is the radial
basis function (RBF) kernel [TCO04], [Bur9g]

lx—s||?

K(x,8) =¢e o2 (A.4)

where o is a width controlling parameter. The RBF kernel implies a function ¢(x) that is
infinite dimensional.

Predictivity is a trade-off between the information provided by training data and the com-
plexity of the solution we are looking for. An important class of problems in regularization
theory are generated by a positive definite kernel K (x,s) and the corresponding space of
functions H is called Reproducing Kernel Hilbert Space.

115

Regularized Least Squares

From the seminal work of Tikhonov and others [TA77] regularization has been rigorously
defined in the theory of ill-posed inverse problems.

The idea of using regularization in statistics and machine learning has been explored since
a long time - see for example [Wah90], [PG92] and references therein - and the connection
between large margin kernel methods such as Support Vector Machines and regularization
is well known — see [Vap98|, [EPP00], [SS02] and reference therein. Ideas coming from
inverse problems regarded mostly the use of Tikhonov regularization and were extended
to several error measures other then the quadratic loss function.

Straightforward minimization of the empirical risk (ERM) is an ill posed problem, since
the solution is not unique. The basic idea of regularization is to restore well-posedness of
ERM by constraining the hypothesis space H. A possible way to do this is considering
penalized ERM.

We look for solutions minimizing a functional composed of two terms: the first one is a
fitting term and the second is a smoothness term. This functional can be written as:

J

ERR(f.) + APEN(/2) (A.5)

-—
empirical error penalization term

where) is the regularization parameter, being a trade-off between the two terms.

We assume that the kernel K is bounded by 1 and is universal (see [MXHO06] and references
therein), that is the set of functions

H={) aiK(x,x)|x € X, o €R}

=1

is dense in L*(X), the Hilbert space of functions that are square-integrable with respect

to px.
Tikhonov regularization or Regularized Least Squares (RLS) amounts to minimize

1 n
min ¢ — Ly, f(x; M| F1? A.6
m{nZ (v S 02)) + HfHH} (A6)
As mentioned above, the second term is a smoothness or a complerity term measuring the
norm of the function f in a suitable Hilbert space H. The minimization takes place in the

hypothesis space H.

The minimizer of the regularized empirical functional, for each training set z = (x,y) =
{(x1,¥1), "+, (Xn, yn)} of n-examples (x;,y;) € X XY, can be represented by the expression
(representer theorem)

116

f(x) = Z%’K(X, x;) with o= (K+nAl)y. (A7)
i=1
where K is a Mercer kernel and K is the kernel matrix.
Since A > 0, it is clear that we are numerically stabilizing a matrix inversion problem which
is possibly ill-conditioned (that is numerically unstable). With the choice of the square
loss, the generalization property of the estimator means that the estimator f) is a good
approximation of the regression function

£,(x) = /Y y dp(yl), (A8)

with respect to the norm of £2(X). In particular the algorithm is (weakly) consistent
[Vap98] if, for a suitable choice of the parameter A = \,, as a function of the examples,

n—o0

lim [(£200) = £,(0)? dpx(x) = Jim 112 = fI = 0 (A.9)

with high probability — see for example [Vap98].

A.3 Unsupervised learning: clustering

In an unsupervised setting, a data set of input {x1, zs,...,x,} is gathered but there is no
a priori information about their outputs. The goal is to build representations of the input
that can be used for decision making and predicting future inputs: in a sense, unsupervised
learning can be thought of as finding patterns in the data. Almost all work in unsupervised
learning can be viewed in terms of learning a probabilistic model of the data, i.e. to estimate
a model that represents the probability distribution for a new input {z,1} given previous
inputs {z1, 2, ..., Tn}
P(il?n+1\iv1, T2y ..y ZEn)

In simpler cases, where the order in which the inputs arrive is irrelevant or unknown, the
machine can build a model of the data which assumes that the data points are indepen-
dently and identically drawn from some distribution P(z). Such a model can be used for
outlier detection or monitoring and for classification.

It is worth to point out that, for what concerns the evaluation of the results when dealing
with unsupervised learning, there is not a counterpart for the theoretical background in the
supervised case: this fact turns unsupervised results evaluation into a highly challenging
problem.

A very simple and classic example of unsupervised learning is clustering, an approach which
aims at extracting knowledge from an input set detecting internal structures, or, in other

117

words, groups of coherent data with respect to some criterion.
The literature on clustering methods is extremely wide and does not the focus of this thesis;
a survey for the interested reader can be found in

Among the different techniques, the popular Spectral clustering refers to a class of tech-
niques to partition points into disjoint clusters by analyzing the eigenstructure of the
Laplacian matrix of a similarity graph associated to the data set. In the original method,
the first few eigenvectors of the graph’s Laplacian [Chu97] were shown to carry information
about the optimal cut to partition the graph. However, a major drawbacks referred to the
requirement of fixing a-priori the number of clusters, analogously to what happens with
the majority of clustering methods traditionally adopted in literature.

Different algorithms have been proposed in the last years that exploit this result, as in
INJWO02] and [SMO00]. In the latter, in particular, an efficient recursive algorithm for
spectral clustering is proposed where it is not required to decide the number of the clus-
ters beforehand, which is rather a tricky parameters when no a-priori information on the
problem is available. In this section we start by reviewing the original formulation of the
problem, focusing afterwards on the modified recursive algorithm.

A.3.1 Clustering based on spectral analysis

We assume to have an input data set X = {x1,...,2,} and and some pairwise similarity
sij > 0 between all the possible pairs x; and z; in the set. Clustering the set means
that we are looking for a disjoint partition made of groups of coherent data. In Spec-
tral Clustering, the relationships among the points into the input set are represented in a
graph-based fashion, building an undirected similarity graph G = (V, E), such that each
node in V' = {v;, ..., v, } corresponds to a point of X. The elements in F, instead, represent
the connections (edges) among all the pair of vertices (v;,v;) and are weighted with a value
w;; strictly related to the similarity between the corresponding input points, s;;. Since the
graph is undirected it holds that w; ; = w;; for all i,5 =1,...,n.

From this perspective, the clustering task can be restated as the problem of finding a
partition of the graph such that the weights are low for edges across the partition classes
and high among each class. This translates in requiring a low inter-class similarity and a
strong intra-class similarity.

Several popular construction of the similarity graph have been proposed in the literature,
depending on the concept of similarity applied to the goal of modeling the local neighbor-
hood relationships between points:

e In the e-neighborhood graph two points are connected with an edge if dist;; < ¢,
where dist is an appropriate pairwise distance;

e By applying the concept of k-nearest neighbors we obtain the k-nearest neighbor

118

graph. Since this leads naturally to a connected graph, a slight adaption must be
done to obtain an undirected graph, as required by the framework;

e Finally, the fully connected graph is built by weighting the edges with the similar-
ity between the corresponding points, This construction is suitable only for those simi-
larities modeling local neighborhoods, as the well-known Gaussian similarity function

s(xi,x;) = e(iuxi;‘;ﬂﬁ) (A.10)

where the standard deviation o controls the width of the neighborhoods and plays
an analogous role to the one of ¢ in the first approach.

We refer here to the latter case.

Before moving on throw the discussion, let us define some basic ingredients used later
to formalize the problem. The adjacency matriz of the graph G is the matrix W =
{wij}ij=1,.n: when w;; = 0 then the similarity s;; is null and thus it does not exist an
edge between v; (z;) and v; (x;).

The degree d; of a vertex v; € V' is defined as

di == Zwi]‘ (A'll)
j=1

Since w;; = 0 when the vertices v; and v; are not connected, the sum runs over all the
adjacent vertices to v;.
We now define the degree matriz which is the diagonal matrix with the degree dy, ..., d, on
the diagonal.
Finally, we explain the concept of volume of a subset A C V as the sum of degrees of
elements in A:

Vol(A) = d; (A.12)

1€A

The normalized graph Laplacians The main ingredient of Spectral Clustering is the
Laplacian matriz [Chu97], a matrix that has the capability of capturing the structure of
the graph to which it refers, defined as

L=D-W (A.13)

The Laplacian matrix L satisfies the following main properties (for a more complete
overview see [Moh91, MJ97)):

1. L is symmetric and positive semi-definite

119

2. L has non-negative, real-values eigenvalues 0 = A\; < Ay < ... <\,

3. The smallest eigenvalues of L is null, while the corresponding eigenvector is equal to
the constant 1 vector, 1

4. The multiplicity k of the null eigenvalue of L is equal to the number of connected
components in the graph which L corresponds to.

From L, another important matrix, the normalized Laplacian can be directly derived.
There is not a unique definition of such matrix, here we specifically refer to the proposal
in [NJW02]:

Lym=D":LD 3 =1-D:WD 2 (A.14)

It can be shown (see [Lux07]) that the properties 1., 2. and 4. still hold; the properties
number 3. can be restated as follows: the null eigenvalues of Ly, corresponds to the
eigenvector D31

The algorithm: pseudo-code Following the notation introduced so far, we can now re-
port the main steps of the spectral clustering algorithm based on the normalized Laplacian
by means of pseudo-code. The main characteristic is related to a change of representation,
from the input points z; in some real space, to points y; € R*: such mapping enhances
the clusters properties, so that a rather simple clustering method, as k-means, is able to
address the problem of finding the partition.

Algorithm 1 Spectral clustering

Input: Similarity matrix S € R™", number of clusters k

1: Build the fully connected similarity graph and obtain the adjacency
matrix

2: Build the normalized Laplacian L,

3: Estimate the first k eigenvectors uy,...,u; of Lsym (which correspond to
the k smallest eigenvalues of the matrix) and build the matrix U € R™**
whose columns are the eigenvectors

4: Build the matrix T € R™** by applying a normalization step to matrix U

so that t;; = —

(Xwu;)
for 1 =1,...,n do
set y; € R¥ to the i-th row of matrix 7'

end for

Cluster using k-means the points (yi)izlwn obtaining the clusters

C, ..., Cp

Output: partition A, .., Ay such that A; = {jly; € C;}

[N

o N O O

120

The graph cut As mentioned before, when representing the data and their pairwise
similarities with a graph structure, the problem of finding a consistent partition of the
data translates in looking for a partition of the graph such that the edges across groups
have very low weights, while connections among each group are very strong.

The most simple attempt in finding a graph partition relies on solving the so-called mincut
problem. For a given number of clusters k the solution P* = {Aj, ..., A;} of the mincut
problem is chosen as the partition minimizing the cut function:

P* = argminp(cut(P)) (A.15)

where P = { A, ..., Ay} is a possible partition of the input data set, and
1< _
cut(P) = cut{Ay, ..., Ay} = Q;W(Ai,Ai) (A.16)

with A; being the complement of A;.

However, thus rather naive approach has the major drawback that it tends to separate
isolated points from the rest of the graph, leading to unsatisfactory solutions. This suggest
that a constraint on the clusters size should be included in the method. The most popular
approaches in this direction are the Ratio Cut [HK92] and the Normalized Cut (or Ncut)
[SMO00]: here we briefly discuss the latter. In the Ncut the size of each cluster is measured
by the volume of its edges:

k k =
Neut(Ay, ..., Ay) = Z A“A Z “; (A.17)

The objective of minimizing the function is to achieve a balance between clusters in term
of their volumes, since the minimum of ZZ 1(\/01(T)) is reached when the volumes of all
clusters coincide.

The major disadvantage resides in the computational cost, that when introducing the
constraint on the clusters size, becomes NP hard [WW93]. It is in this context that the
advantage of using spectral clustering is more convincing, since its formulation represents
a way to solve relaxed versions of the Ncut problem: a complete derivation of the problem

from this perspective is discussed in [Lux07].

Discussions The use of Spectral Clustering poses a number of critical issues that need
to be specified for an appropriate definition of the problem: the solution reached by the
method is sub-optimal, so an accurate selection of the main parameters allows to achieve
a higher confidence in the result, for which there is not guarantee.

The first choice relates of which type of graph adopting, among the list reported in Sec.
A.3.1. This is strictly related to the choice of the similarity measure, that should be

121

dictated by the domain of the data and the task, so no general advice can be given. The
main requirement is that the local neighborhood induced by the similarities must reflect
meaningful groups. The requirement is also conditioned by the width of such neighborhood.
When using the similarity based on Gaussian, which is the most popular option when
dealing with fully connected graphs, it depends of the o parameters, the standard deviation
of the function.

The choice of ¢ is a highly challenging problem and no satisfactory solutions have been
proposed so far. However, some heuristics can be employed. A rather popular approach
consists in considering the n x n matrix of the pairwise euclidean distances of points and set
to value of ¢ as the median of the K-nearest neighbors distances, where K is a reasonable
percentages of the data set. A second technique relies on the use of the diameter of a data
set X, which is defined in the following way:

diam = max_(dist(z;,z;)) (A.18)

i, ;€X

where dist in an appropriate distance measure (typically the euclidean distance). The
value of o is then fixed as a percentage of the diameter.

Notice that with both these approaches, some hypothesis on the geometry of the data are
implicitly done.

Another important open problem that strongly affects the final results is the a-priori choice
of the number of clusters, an issue that in this original formulation the Spectral Clustering
shares with the most of other popular clustering methods. The presence of the final step
of k-means leads not only to the requirement for this a-priori choice, but also influences
the results with the non-deterministic step typical of k-means.

These considerations lead to the proposal in literature of a different approach to Spec-
tral Clustering able to combine the power of the hierarchical methods together with an
independence from the choice on the number of clusters.

A.3.2 Two-way Spectral Clustering

The Two-Way Spectral Clustering is an efficient recursive clustering algorithm able to suc-
cessfully combine the advantages of clustering based on spectral analysis with the approach
to subdivision problems of the hierarchical methods.

The starting point is the popular work presented in [SMO00], where it has been demonstrated
that the optimal cut is strictly related to the first eigenvalue. The result is a clustering
method which does not require the number of clusters to be fixed a-priori and does not
include the final step based on k-means, present in the original formulation of Spectral
Clustering: thanks to this variation, the method produces results which are stable across
multiple runs.

The key idea is that, at each recursion, clusters are subdivided in two. At the first step,

122

the input data set is split in two groups, and to each group is then recursively applied the
same operation. The subdivision is dictated by the minimization of the Normalized Cut
objective function, introduced in the previous section. It can be shown that rewriting the
Normalized Cut problem and relaxing the solution, the final expression can be found by
solving the generalized eigenvalue system

D73(D - W)D 7x = \x (A.19)

where D and W have been discussed when describing the original formulation of Spectral
Clustering. Notice that this is a formulation adopting the normalized Laplacian matrix
(Lsym) described above.

The values of the second eigenvector corresponding to each cluster is adopted as a tool
to associate the points to the two new sub-clusters: in [SMO00], in fact, the authors show
that the closest approximation of the optimal graph partition is the one associated to the
sign of the components of such eigenvectors. The recursion stops when a given condition
is verified: in [SMO0] it was related to a threshold on the Ncut, which allows for some kind
of control on the granularity of the solution.

The definition of the method leads naturally to schematize the procedure as a binary tree of
the input points, as shown in Fig. A.3 for a toy example. In the picture, another interesting
property of the method is shown, related to the fact that at each step of recursion, the
most significant separation is performed: in the first step, the circles are separated from
the rest of polygonal figures; then the number of edges are considered, and finally squares
are divided from rectangles.

Figure A.3: A visual representation of the recursive Two-Way Spectral Clustering on a toy
example. The red sets denote the final partition.

123

The recursive procedure can thus be algorithmically defined as folllows:

Algorithm 2 Two-Way Spectral clustering

Input: Similarity matrix S € R™", cut threshold TH

1: repeat

2: Build the fully connected similarity graph and obtain the adjacency
matrix W

3: Solve the eigenvalues system D 2(D —W)D 2x = \x

4: Use the eigenvector corresponding to the second smallest eigenvalue
to bipartite the graph

5: until NCut <TH

A.3.3 The Nystrom method

When dealing with unsupervised learning a main issue is related to the capability of as-
signing a new test datum to one of the clusters estimated during the training phase. A
class of approaches rely on the use of some kind of “clustering structure”, learned in the
training phase as well. In is the case of the popular Nystrom method, which represents a
simple and at the same time solution to the problem [Nys28, Bak77, PTVF92].

The Nystrom method is a technique to find numerical approximations to a class of problems
defined as

/ Ale.p)d(y)dy = Ab(x) (A.20)

that is referred to as autofunctions problems.

The key idea is to extend the eigenvalues associated to a given matrix A to a new point
using the elements of the matrix as weights to interpolate. The solution is first estimated on
a set of squaring nodes and then extended to the whole domain by means of interpolation.
More formally, given a set of equally spaced points {&;1, &, ..., .} € [a, b] a simple squaring
rule is

(b—a)

D Al@,§)0(E) = rd(w) (A.21)

where ¢(z) is an approximation of the real ¢(z). The system can be solved by setting
x = & obtaining the new system

295 A0 =) (422

124

The problem can be restated in a matrix form considering, without loss in generality,
[G, b] = [O, 1], and ﬁXing AZJ = A(gz,gj)

AD = ndA (A.23)

where & = [y, @9, ..., | are the eigenvectors of A correspondent to the eigenvectors
A1, A2, ..., A,. When substituting the ¢; e A\; values in Eq. A.21 the Nystrom extension
for each ¢; is defined as

dile) =k i Al &)ail&) (A.24)

In other words, the obtained method allows us to extend an eigenvector, computed on a
fixed points set, to a new arbitrary datum, by exploiting A(-,&;) as matrix of the interpo-
lating weights. This formulation can be profitably adopted in the context of kernel-based
learning methods [DMO05] and Spectral Clustering in particular [FBCM04a].

We refer here to a specific application in this second context, where the Nystrom method
is exploited with respect to the normalized Laplacian matrix Lgy,.

Computing the interpolating weights

Il Normalized Laplacian Lyy,, has been defined in Eq. A.14.

It is worth first noticing that computing the smallest eigenvalues, and correspondent eigen-
vectors, of a generic matrix I — A is equivalent to estimate the biggest eigenvalues (and
eigenvectors) of A. The Nystrom extension we will consider relies on the biggest eigenvec-
tors of D_%WD_%, that are the smallest of Lgy,,).

The matrix D~2WD~2 can be computed as follows:

L 0 L 0
1 1 Vin Wit - Wi Vin
D 2WD 2 = o ... O 0o ... 0
1 1
0 T Wyt ... Wpp 0 T
1 1 1
din L Vdidey 12 Vdirdn, ™
— ;w. ;w, ;w.
- Vdidin 1 Vddas 2 Vddng,
—1 __w —1 W 1
Vdnndll nl Vdnnd22 n2 T dnn nn

At this point the computation of D= 2W D2 for a new point reduces to the following steps:

e Computing the similarities between a new point and the training set (w(,11); Vi =
1,...,n)

125

e Obtaining the degree of the new node in the graph as di11) (1) = D opeq Wint1)i

e Building the new row in the matrix on the basis of the previous results by computing

_1
2

-3 S N S AUUR S
D2 WDy —<¢mw<n+l>l> vd(n+1><n+nw<n+l><n+l>> (A.25)

Assuming that n.;, eigenvalues and eigenvectors have been computed, for each ¢ = 1, ..., ngjq

bilx) = LS DIWD A, Ai(E) (A.26)

where); is the i-th eigenvalues of L, which corresponds to the eigenvector gzgl(ﬁj) Each

eigenvector is thus extended to a new point a interpreting the new row of D :WD"2 as
weights for the interpolation.

Nystrom extension and Two-Way Recursive Spectral Clustering

The general formulation of the Nystrom extension derived so far can be easily adapted
to the recursive Spectral Clustering observing that at each step only 2 eigenvalues (also
eigenvectors) must be computed. More specifically, it holds that the first eigenvalues is
always null [Lux07] (thus the Nystrom extension can not be applied to it); to the second
eigenvalues, instead, corresponds the eigenvector ¢22(£j), thus

Go(x) =30 (DTEWD™2) () 02(&)) (A.27)

Applying the Nystrom Extension after a recursive clustering is equivalent to explore the
clusters tree from the root and for each node, computing the Nystrom Extension of the
new point by only considering the points involved in the specific recursion step. Depending
on the extension value with respect to the split point, the tree is visited following the left
or the right path. The same procedure is repeated until a leaf node is reached and whose
label is associated to the new point.

To summarize, when considering a new point x and for each step ¢ of the Two-Way Spectral
Clustering, the main steps of the procedure include the following:

1. Computing the similarities between x and all the n; points &, involved in step 7 as
W(n;+1),j v] = 17"'7”1’

2. Computing the degree of the new node as din,1),(n,+1) = D521 Winit1).j

3. Updating the degrees of the old nodes to include the weights of the new one, when
it is the case, dj; = dj; + W41y VIi=1,..,n

126

4. Building the new row in the matrix to obtain the interpolating weights

1 :
(D™2WD™3), 41, = Wnsryy V=1, (A.28)
VAo djj
5. Computing the Nystrom extension
.] — . N .
O(0) = o= > (DTIWD i 62(8)) (A.29)
N2 i

6. Evaluating qggi (x) with respect to the criteria for the cut and consequently assigning
the new point to one of the 2 clusters.

All the reported steps should be included during the training stage of the recursive clus-
tering so to be able to exploit the same procedure during the test phase. More specifically
information regarding (1) the points involved, (2) the degrees matrix, (3) Ay, e ¢, values,
(4) the split value, and finally (5) the labels must be stored at each iterations.

At this point, the same information can be exploited to associate a new point to one of
the clusters.

Detection of outliers

As mentioned above, during the test phase the clustering tree is visited by plugging the
information of a new point into the Nystrom procedure to finally reach one of the leaf and
associate the correspondent label to the new point.

However, such procedure forces each point to be associated to one of the clusters even if
it is an outlier, that is none of the previously learned patterns is appropriate to the new
point.

A possible solution is based on the consideration that an outlier should have very low
similarities against all the other points, that is how to say that the gap between its value
for the Nystrom extension and 0 is remarkable. The approach to detect outliers can thus
be summarized as follows (it is shown in Fig. A.4): a threshold is set which is based on the
smallest, in absolute value, components of the eigenvector, including a tolerance. At this
point, the Nystrom extension is compared against such values and considered as outlier if
in the range [s;, sp].

127

'SI +Sh

Figure A.4: A visual representation of the outlier detection. The eigenvector elements
are represented as points on a straight line: light blue dots denote component of points
associated to the cluster, the red ones correspond to outliers. For the latter, the value
of the Nystrom extension is in the ranges [s;,0] and [0, s] for, respectively, negative and
positive components.

A.4 Hidden Markov Models

A very traditional parametric approach to temporal series modeling consists of building a
probabilistic model of the present observation given all past observations:

p(l'i,t|xz‘7la Yi2, .- ayi,t—l)-

Because the history of observations can grow arbitrarily large it is necessary to limit the
complexity of such a model. A common approach to overcome this problem is to limit the
window of past observations. The simplest model, p(z;|z;;—1), is known as a first-order
Markov model. One popular choice of probabilistic models that make this assumption,
are the hidden Markov models (HMMs), stochastic state machines based on the use of
hidden variables. In Fig. A.5 a visual representation of the architecture of an Hidden

Figure A.5: A visual representation of the architecture underlying an Hidden Markov
Model.

Markov Model is shown. At a certain time instant ¢, the hidden variable (hidden state) z;

128

is statistically related to the previous state and to the current observation.
For an HMM, it is always possible to write down explicitly the likelihood function [Rab89)]:

k

p(x10) = > plzolao)p(qo) [[plwelap(arla—r) (A.30)

q0s--qK t=1

where the q = {q1,...,q,} are the hidden states corresponding to each element of x and
can take one of the discrete values {1,...,M}. In order to define a HMM, one has to
specify the parameter vector 6 = (7, «, i1, 22), where

o 7 € RM represents the initial state probability distributions m; = p(qo = i) for all
i=1,....M

RMXM

e o€ is the state transition probability distribution, i.e. a;; = p(q: = j|g—1 = 1)

o = {py,...,pn} and X = {3¥;,..., X} represents the mean and covariance of the
Gaussian distributions for each state 4, i.e. the emission density p(z¢|¢: = 7) is a
normal distribution N (z¢|pi, X;).

In order to exploit such representation schema, given a data set of N trajectories the
first step is to estimate the parameters of K distinct HMMSs representing the probabilistic
dynamical models that generated the observations. For example, such estimation may
be achieved quite efficiently by choosing one off-the-shelf methods for maximizing the
likelihood of the HMM parameters given the observations.

It is important to note that such approach is somehow robust with respect to the spe-
cific dimensionality of the instantaneous observations. That is, the algorithm used for
generating the representative vectors #;, in principle, does not depend on the number of
components of the single vectors zt.

129

Bibliography

[ACOS]

[AMGC02]

[AMPOG6]

[AOPO6]

[Aro50]

[BAO3]

[Bak77]

[BATO5]

[BCDO4|

[BI05]

N. Anjum and A. Cavallaro. Multifeature object trajectory clustering for
video analysis. IEEE Trans on Circuits and Systems for Video Technology,
18(11), 2008.

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on
particle filters for online nonlinear/non-gaussian bayesian tracking. Signal
Processing, IEEE Transactions on, 50(2):174-188, 2002.

S. Atev, O. Masoud, and N. Papanikolopoulos. Learning traffic patterns at
intersections by spectral clustering of motion trajectories. In IROS, pages
4851-4856, 2006.

S. Atev, Masoud O., and N. Papanikolopoulos. Learning traffic patterns at
intersections by spectral clustering of motion trajectories. In IROS, pages
4851-4856, 2006.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68, 1950.

N. Bolshakova and F. Azuaje. Cluster validation techniques for genome
expression data. Signal Process., 83(4):825-833, 2003.

C.T.H. Baker. The numerical treatment of integral equations. Ozxford:
Clarendon Press, 1977.

D. Biliotti, G. Antonini, and J.P. Thiran. Multi-layer hierarchical clustering
of pedestrian trajectories for automatic counting of people in video sequences.
In Motion05, pages II: 50-57, 2005.

B.Han, D. Comaniciu, and L Davis. Sequential kernel density approximation
through mode propagation. In In Proc. ACCV 2004, 2004.

O. Boiman and M. Irani. Detecting irregularities in images and in video. In
ICCV05, pages 462-469, 2005.

130

[BKS07]

[Bou02]

[BQKS05]

[Bra9s]

[BS98]

[BSK04]

[Bur9g)

[CBMO2]

[CCFMO04]

[Ceal4]

[CGN*01]

[Chu97]

F. Bashir, A. Khokhar, and D. Schonfeld. Object trajectory-based activity
classification and recognition using hidden markov model. IEEFE Transactions
on Image Processing, 16, 2007.

O. Bousquet. Concentration Inequalities and Empirical Processes Theory
Applied to the Analysis of Learning Algorithms. PhD thesis, 2002.

F. Bashir, Wei Qu, A. Khokhar, and D. Schonfeld. Hmm-based motion
recognition system using segmented pca. In Image Processing, 2005. ICIP
2005. IEEE International Conference on, volume 3, pages I11-1288-91, 2005.

G. R. Bradski. Computer vision face tracking for use in a perceptual user
interface, 1998.

A.J. Bulpitt and N. Sumpter. Learning spatio-temporal patterns for predict-
ing object behaviour. In BMV(C98, 1998.

D. Buzan, S. Sclaroff, and G. Kollios. Extraction and clustering of motion
trajectories in video. In ICPR, volume 2, pages 521-524. IEEE Computer
Society, 2004.

C. J. C. Burges. A tutorial on support vector machines for pattern recogni-
tion. Data Mining and Knowledge Discovery, 2(2):121-167, 1998.

M. Cristiani, M. Bicego, and V. Murino. Integrated region- and pixel-based
approach to background modeling. In Proceedings of IEEE Workshop on
Motion and Video Computing, 2002.

M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental cluster-
ing and dynamic information retrieval. SIAM J. Comput., 33(6):1417-1440,
2004.

G. Csurka and et. al. Visual categorization with bags of keypoints. In ECC'V,
2004.

R. Cucchiara, C. Grana, G. Neri, M. Piccardi, and A. Prati. The sakbot sys-
tem for moving object detection and tracking. In P. Remagnino, G.A. Jones,
N. Paragios, and C.S. Regazzoni, editors, Video-based Surveillance Systems
- Computer Vision and Distributed Processing, pages 145-158. Kluwer Aca-
demic Publishers, 2001.

Fan R. K. Chung. Spectral Graph Theory. Number 92 in CBMS Regional
Conference Series in Mathematics. AMS, 1997, 1997.

131

[CRMO00]

[CST00]

[Cuc05]

[CVO05]

[DCWS03]

[DMO5]

[ea98al

[ea98b]

[ealb)]

[EBMMO3]

[Efr87]

[EHDO0]

[EPPO0]

[FBCMO04a)

D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid
objects using mean shift. In CVPR, volume 2, pages 142-149, 2000.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-
chines and other kernel-based learning methods. Cambridge Univ. Press,
2000.

R. Cucchiara. Multimedia surveillance systems. In VSSN ’05: Proceedings
of the third ACM international workshop on Video surveillance € sensor
networks, pages 3-10, New York, NY, USA, 2005. ACM.

F. Camastra and A. Verri. A novel kernel method for clustering. IEEE Trans.
on PAMI, 27(5):801-804, 2005.

G. Doretto, A. Chiuso, Y. Wu, and S. Soatto. Dynamic textures. Int. J.
Comput. Vision, 51(2):91-109, 2003.

P. Drineas and M. Mahoney. On the Nystrom Method for Approximating a
Gram Matrix for Improved Kernel-Based Learning. Technical Report, 2005.

T. Boult et al. Frame-rate multibody tracking for surveillance. In IUW,
pages 305-308, 1998.

T. Kanade et al. Advances in cooperative multi-sensor video surveillance. In
1UW, pages 3-24, 1998.

R. J. Radke et al. Image change detection algorithms: A systematic survey.
In IEEE Trans. Image Processing, volume 14(3), pages 294-307, 2005.

A.A. Efros, A.C. Berg, G. Mori, and J. Malik. Recognizing action at a
distance. In IEFEE Int. Conf. on Computer Vision, pages 726-733, 2003.

Bradley Efron. The Jackknife, the Bootstrap, and Other Resampling Plans
(CBMS-NSF Regional Conference Series in Applied Mathematics). Society
for Industrial & Applied Mathematics, 1987.

A. Elgammal, D. Harwood, and L. S. Davis. Non-parametric model for
background subtraction. In ECCV, 2000.

T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support
vector machines. Advances in Computational Mathematics, 13:1-50, 2000.

C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral Grouping Using
the Nystrom Method. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 2004.

132

[FBCMO4b]

[FT97]

[GBO3]

[Gea9s|

[Gel96]
[HBVO01]

[HHDOS)]

[HHD99)

[HK92]

[HK03]

[HNR84]

[HTF03]

[HTWMO4]

C. Fowlkes, S. Belongie, F.R.K. Chung, and J. Malik. Spectral grouping
using the nystrom method. IEEE Trans. on PAMI, 26(2):214-225, 2004.

P. Fieguth and D. Terzopoulos. Color-based tracking of heads and other
mobile objects at video frame rates. In in Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, pages 21-27, 1997.

S. Glnter and H. Bunke. Validation indices for graph clustering. Pattern
Recogn. Lett., 24(8):1107-1113, 2003.

W. E. L. Grimson and et. al. Using adaptive tracking to classify and monitor
activities in a site. In C'VPR, pages 22-29, 1998.

A. Gelb. Applied optimal estimation. In MIT Press, 1996.

M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clustering validation
techniques. Journal of Intelligent Information Systems, 17:107-145, 2001.

[. Haritaoglu, D. Harwood, and L. S. Davis. W4: Who? when? where?
what? a real-time system for detecting and tracking people. In the third
IEEFE International Conference on Automatic Face and Gesture Recognition,
IEEE Computer Society Press, pages 222—227, 1998.

T. Horprasert, D. Harwood, and L. S. Davis. A statisctical approach for
real-time robust background subtraction and shadow detection. In IEEFE
Frame-Rate Applications Workshop, 1999.

L. Hagen and A. Kahng. New spectral methods for ratio cut partitioning
and clustering. In IEEFE Trans. Comput.-Aided Des, pages 1074-1085, 1992.

K. M. Hammouda and M. S. Kamel. Incremental document clustering using
cluster similarity histograms. In IEEE/WIC International Conference on
Volume, pages 597-601, 2003.

Y. Hsu, H. Nagel, and G. Rekers. New likelihood test methods for change
detection in image sequences. In Comput. Vis. Graph. Image Process., vol-
ume 26, pages 73-106, 1984.

T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical
Learning. Springer, 2003.

W. Hu, T. N. Tan, L. Wang, and S. J. Maybank. A survey on visual surveil-
lance of object motion and behaviors. IEEE Tran. on Systems, Man and

Cybernetics, 34(3):334-352, 2004.

133

[HXF*06a)

[HXF*+06b]

[HXF*07]

[1BYS]

[1BOO]

[JCNOG]

73804]

[JKHO4]

[JST07]

[KCHDO5]

[KNO5]

[KSO0]

W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank. A system for
learning statistical motion patterns. IEEE Trans on PAMI, 28(9), 2006.

Weiming Hu, Xuejuan Xiao, Zhouyu Fu, Dan Xie, Tieniu Tan, and Steve
Maybank. A system for learning statistical motion patterns. IEFEE Trans.
Pattern Anal. Mach. Intell., 28(9):1450-1464, 2006.

Weiming Hu, Dan Xie, Zhouyu Fu, Wenrong Zeng, and Steve Maybank.
Semantic-based surveillance video retrieval. Image Processing, IEEE Trans-
actions on, 16(4):1168-1181, 2007.

M. Isard and A. Blake. Condensation-conditional density propagation for
visual tracking. In IJCV, 1998.

Y. Ivanov and A. Bobick. Recognition of visual activities and interactions
by stochastic parsing. IEEE Trans on PAMI, 22(8), 2000.

L Fei-Fei J C Niebles, H Wang. Unsupervised learning of human action
categories using spatial-temporal words. In Proc. of BMVC, 2006.

[.N. Junejo, O. Javed, and M. Shah. Multi feature path modeling for video
surveillance. In ICPR04, pages 1I: 716-719, 2004.

T. Jebara, R. I. Kondor, and A. Howard. Probability product kernels. Journal
of Machine Learning Research, 5:819-844, 2004.

T. Jebara, Y. Song, and K. Thadani. Spectral clustering and embedding with
hidden markov models. In Joost N. Kok, Jacek Koronacki, Ramon Lépez
de Méntaras, Stan Matwin, Dunja Mladenic, and Andrzej Skowron, editors,
ECML, volume 4701 of Lecture Notes in Computer Science, pages 164—175.
Springer, 2007.

K. Kim, T. Chalidabhongse, D. Harwood, and L. Davis. Real-time
foreground-background segmentation using codebook model. Real-Time
Imaging, 11(3):172-185, 2005.

S. Khalid and A. Naftel. Classifying spatiotemporal object trajectories using
unsupervised learning of basis function coefficients. In VSSN ’05: Proceedings
of the third ACM international workshop on Video surveillance € sensor
networks, pages 45-52. ACM, 2005.

S. Khan and M Shah. Tracking people in presence of occlusion. In In Asian
Conference on Computer Vision, pages 1132-1137, 2000.

134

[LCSTO6]

[LENO3]

[LHEO3]

[LHHO6]

[Lia05]

[LOWO00]

[LSGO7]

[LSST+02]

[Lux07]

[IMCB+01]

IME02]

IMJ97]

M.H.-Y. Liao, Duan-Yu C., Chih-Wen S., and Hsiao-Rang T. Real-time event
detection and its application to surveillance systems. In Circuits and Systems,
2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on,
pages 4 pp.—512, 0-0 2006.

C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: a string kernel for
svin protein classification. Bioinformatics, 1(1), 2003.

D. S. Lee, J. J. Hull, and B. Erol. A bayesian framework for gaussian mixture
background modeling. In IEEE International Conference on Image Process-
ing, 2003.

X. Li, W. Hu, and W. Hu. A coarse-to-fine strategy for vehicle motion
trajectory clustering. In ICPR ’06: Proceedings of the 18th International
Conference on Pattern Recognition, pages 591-594, Washington, DC, USA,
2006. IEEE Computer Society.

T. W. Liao. Clustering of time series data: A survey. Pattern Recognition,
38(11), 2005.

W. Lin, M. A. Orgun, and G. J. Williams. Temporal data mining using
multilevel-local polynominal models. In Int. Conf. IDEAL, volume 1983 of
Lecture Notes in Computer Science, 2000.

B. Leibe, K. Schindler, and L. Van Gool. Coupled detection and trajectory
estimation for multi-object tracking. In ICC'V, 2007.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. text
classification using string kernels. JMLR, 2, 2002.

U. Von Luxburg. A tutorial on spectral clustering. Statistical computing,
2007.

G. Medioni, I. Cohen, F. Bremond, S. Hongeng, and R. Nevatia. Event
detection and analysis from video streams. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 23, 2001.

D. Makris and T. Ellis. Path detection in video surveillance. IVC, 20(12):895—
903, October 2002.

B. Mohar and N.T.M. Juvan. Some applications of laplace eigenvalues of
graphs. In Graph Symmetry: Algebraic Methods and Applications, volume
497 of NATO ASI Series C, pages 227-275. Kluwer, 1997.

135

[Moh91]

IMTO8]

[MT09]

IMXHO6]

[NDLOOY]

INJWO02]

[NKO6]

INKMVGO03]

INO09]

[INO10]

[NSO08a]

[NSOO08b)]

INSO10]

B. Mohar. The Laplacian spectrum of graphs. Graph Theory, Combinatorics,
Applications, 2:871-898, 1991.

B.T. Morris and M.M. Trivedi. A survey of vision-based trajectory learning
and analysis for surveillance. CirSysVideo, 18(8):1114-1127, 2008.

B. Morris and M. M. Trivedi. Learning trajectory patterns by clustering:
Experimental studies and comparative evaluation. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR °09), 2009.

C. A. Micchelli, Y. Xu, and Zhang H. Universal kernels. JMLR, 7:2651-2667,
2006.

N. Noceti, A. Destrero, A. Lovato, and F. Odone. Combined motion and
appearance models for robust object tracking in real-time. In AVSS, 2009.

A.Y. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an
algorithm. In NIPS 1/, 2002.

Andrew N. and Shehzad K. Motion trajectory learning in the dft-coefficient
feature space. Computer Vision Systems, International Conference on, 0:47,
2006.

K. Nummiaro, E. Koller-Meier, and L. Van Gool. An adaptive color-based
particle filter. Image and Vision Computing, 21(1):99-110, 2003.

N. Noceti and F. Odone. Towards an unsupervised framework for behavior
analysis. In Workshop on Pattern Recognition and Artificial Intelligence for
Human Behaviour Analysis (PRAI*HBA), 2009.

N. Noceti and F. Odone. Anomaly detection in a loosely annotated frame-
work. In Submitted to the International Conference on Patterns Recognition,
2010.

N. Noceti, M. Santoro, and F. Odone. String-based spectral clustering for
understanding human behaviours. In THEMIS-BMVC' 2008.

N. Noceti, M. Santoro, and F. Odone. Unsupervised learning of behavioural
patterns for video-surveillance. In Workshop MLVMA-ECCYV, 2008.

N. Noceti, M. Santoro, and F. Odone. Learning behavioral patterns for video
surveillance. Submitted to the book titled Machine Learning for Vision-based
Motion Analysis, 2010.

136

[Nys28]

[PCVO0]

[PFO6]

[PG92]

[Pic04]

[PMC00]

[PMFO08]

[PMTCO3]

[PMTHO1]

[Por04]

[PT03]

[PTVF92]

E.J. Nystrém. Uber die praktische auflésung von linearen integralgleichun-
gen mit anwendungen auf randwertaufgaben der potentialtheorie. Commen-
tationes Physico-Mathematicae, vol. 4, 1928.

M. Pittore, M. Campani, and A. Verri. Learning to recognize visual dynamic
events from examples. IJCV, 2000.

C. Piciarelli and G. L. Foresti. On-line trajectory clustering for anomalous
events detection. Pattern Recogn. Lett., 27(15):1835-1842, 2006.

T. Poggio and F. Girosi. A theory of networks for approximation and learn-
ing. In C. Lau, editor, Foundation of Neural Networks, pages 91-106. IEEE
Press, Piscataway, N.J., 1992.

M. Piccardi. Background subtraction techniques: a review. In IEEE In-
ternational Conference on Systems, Man and Cybernetics, volume 4, pages
3099-3104, 2004.

Ivana Miki Pamela, Ivana Miki?, Pamela C. Cosman, Greg T. Kogut, and
Mohan M. Trivedi. Moving shadow and object detection in traffic scenes,

2000.

C. Piciarelli, C. Micheloni, and G. L. Foresti. Trajectory-based anomalous
event detection. IEEE Trans on Circuits and Systems for Video Technology,
18(11), 2008.

Andrea Prati, Ivana Mikic, Mohan M. Trivedi, and Rita Cucchiara. Detecting
moving shadows: Algorithms and evaluation. IEEFE Transactions on Pattern
Analysis and Machine Intelligence, 25:918-923, 2003.

I. Pavlidis, V. Morellas, P. Tsiamyrtzis, and S. Harp. Urban surveillance
systems: From the laboratory to the commercial world. Proceedings of the
IEEE, 89(10):1478-1497, 2001.

F.M. Porikli. Learning object trajectory patterns by spectral clustering. In
ICME, pages 1171-1174, 2004.

F. Porikli and O. Tuzel. Human body tracking by adaptive background mod-
els and mean-shift analysis. In IEEFE International Workshop on Performance
Evaluation of Tracking and Surveillance, 2003.

W.H. Pressm, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numeri-
cal recipies in ¢. Cambridge Univ. Press, 1992.

137

[PYLO5]

[Rab89)]

[RJ93)]

[RLOS]

[Rob05]

[RRG+04]

[SFGK02)

SGO0]

[SG02)]

[SHS1]

[SMO0]

[SMOY9)]

S502]

N.S. Peng, J. Yang, and Z. Liu. Mean shift blob tracking with kernel his-
togram filtering and hypothesis testing. PRL, 26(5):605-614, April 2005.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77:257-286, 1989.

L. Rabiner and B. H. Juang. Fundamentals of Speech Recognition. Signal
Processing Series. Prentice Hall, 1993.

K. Rieck and P. Laskov. Linear-time computation of similarity measures for
sequential data. JMLR, 9:23-48, 2008.

[. Robertson, N. Reid. Behaviour understanding in video: a combined
method. In IEEE Proc. on ICCYV, volume 1, 2005.

J. Rymel, J. Renno, D. Greenhill, J. Orwell, and G. A. Jones. Adaptive eigen-
backgrounds for object detection. In Image Processing, 2004. ICIP ’04. 200/
International Conference on , vol.3, no.pp. 1847- 1850, pages 24-27, 2004.

O. Schreer, I. Feldmann, U. Golz, and P. Kauff. Fast and robust shadow de-
tection in videoconference applications. In Video/Image Processing and Mul-
timedia Communications 4th EURASIP-IEEE Region 8 International Sym-
posium on VIPromCom, pages 371-375, 2002.

C. Stauffer and E. Grimson. Learning patterns of activity using real-time
tracking. IEEE Transactions on Pattern Recognition and Machine Intelli-
gence (TPAMI), 22(8), 2000.

C. Stauffer and W. E. L. Grimson. Adaptive background mixture models for
real-time tracking. Computer Vision and Pattern Recognition, 1999. IEEE
Computer Society Conference on., 2:252 Vol. 2, 2002.

B.G. Schunck and B.K.P. Horn. Determining optical flow. In DARPASI,
pages 144-156, 1981.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEFE Trans.
on PAMI, 22(8):888-905, 2000.

Jrgen Stauder, Roland Mech, and Jrn Ostermann. Detection of moving cast
shadows for object segmentation. IEEE Transactions on Multimedia, 1:65—

76, 1999.

B. Scholkopf and A.J. Smola. Learning with Kernels. MIT Press, Cambridge,
MA, 2002.

138

[STB*06]

[SWTO04]

[TAT77]

[TCOA]

[TOCO8]

[Vap9g|
[VDLPBO3]

[VGK02]

[VSV07]

[WADP97]

A. Senior, A.and Hampapur, Y. Tian, L. Brown, S. Pankanti, and R. Bolle.
Appearance models for occlusion handling. Image and Vision Computing,
24(11):1233-1243, 2006.

C.F. Shan, Y.C. Wei, T.N. Tan, and F. Ojardias. Real time hand tracking
by combining particle filtering and mean shift. In AFGR0/, pages 669674,
2004.

A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill Posed Problems. W. H.
Winston, Washington, D.C., 1977.

J. Shawe Taylor and N. Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

T. Tommasi, F. Orabona, and B. Caputo. Discriminative cue integration for
medical image annotation. Pattern Recogn. Lett., 29(15), 2008.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

M. Van Der Laan, K. Pollard, and J. Bryan. A new partitioning around
medoids algorithm. Journal of Statistical Computation and Simulation 73,
(8):575-584, 2003.

M. Vlachos, D. Gunopoulos, and G. Kollios. Discovering similar multidi-
mensional trajectories. In ICDE ’02: Proceedings of the 18th International
Conference on Data Engineering, page 673, Washington, DC, USA, 2002.
IEEE Computer Society.

S. V. Vishwanathan, A.J. Smola, and R. Vidal. Binet-cauchy kernels on
dynamical systems and its application to the analysis of dynamic scenes.

Int. J. Comput. Vision, 73(1):95-119, 2007.

C. R. Wren, A. Azarbayejiani, T. Darrell, and A. Pentland. Pfinder: Real-
time tracking of the human body. In IEEE Trans. on Pattern Analysis and
Machine Intelligence, IEEE Computer Society Press, volume 19(7), 1997.

G. Wahba. Spline models for observational data, volume 59. STAM, Philadel-
phia, PA, 1990.

G. Welch and G. Bishop. An introduction to the kalman filter.
hitp://www.cs.unc.edu/ welch/kalman/kalmanintro. html.

H. Wang and M. Brady. Real-time corner detection algorithm for motion

estimation. IVC, 13(9):695-703, 1995.

139

[WE00]

[WVDMOO]

(WWO3]

[XGO05)

XY04]

[YDDO5]

[YFO5]

[YL92]

ZJ05)]

[ZSV04]

[ZYS09]

W. Wong and A. Fu. Incremental document clustering for web page classifi-
cation, 2000.

E. A. Wan and R. Van Der Merwe. The unscented kalman filter for nonlinear
estimation. Adaptive Systems for Signal Processing, Communications, and
Control Symposium 2000. AS-SPCC. The IEEE 2000, pages 153-158, 2000.

D. Wagner and F. Wagner. Between min cut and graph bisection. In 18th In-
ternational Symposium on Mathematical Foundations of Computer Science,
pages 744-750. London Springer, 1993.

T. Xiang and S.G. Gong. Video behaviour profiling and abnormality detec-
tion without manual labelling. In ICCV05, pages 11: 1238-1245, 2005.

Y. Xiong and D. Yeung. Time series clustering with arma mixtures. Pattern
Recognition, 37(8):1675 — 1689, 2004.

C. Yang, Ramani D.; and L. Davis. Efficient mean-shift tracking via a new
similarity measure. In CVPR, volume 1, pages 176-183. IEEE Computer
Society, 2005.

W. Yan and D. A. Forsyth. Learning the behavior of users in a public space
through video tracking. In WACV-MOTION ’05: Proceedings of the Seventh
IEEE Workshops on Application of Computer Vision (WACV/MOTION’05)
- Volume 1, pages 370-377. IEEE Computer Society, 2005.

Y.H. Yang and M.D. Levine. The background primal sketch: An approach
for tracking moving objects. MVA, 5:17-34, 1992.

Y. Zhang and Q. Ji. Active and dynamic information fusion for facial expres-
sion understanding from image sequences. IEEE Trans. on PAMI, 27(5):699—
714, 2005.

H. Zhong, J.B. Shi, and M. Visontai. Detecting unusual activity in video. In
CVPRO04, pages 11: 819-826, 2004.

H. Zhou, Y. Yuan, and C. Shi. Object tracking using sift features and mean
shift. Comput. Vis. Image Underst., 113(3):345-352, 2009.

140

