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Abstract

In the context of gene signature identification from mi-
croarray data, a main problem is devising statistical and vi-
sual tools to interpret and understand the biological mean-
ing of the selected genes. Most available statistical tools
for gene signature extraction typically provide unstructured
list of genes and lack the capability of handling correlation
among genes. Recently an algorithm for feature selection,
namely elastic net, was proposed allowing to deal with cor-
related genes in a transparent way. In this work we exploit
the form of the output given by elastic net, as used in [3],
to obtain a structured gene signature where genes are dis-
posed in block of intra-correlated genes and the blocks are
ranked according to a measure of the block discrminative
power. After recalling how elastic net can be used to define
nested lists of increasingly intra-correlated genes, we pro-
pose an ad hoc agglomerative clustering technique able to
refine such a nested output by explicitly identifying modules
of correlated genes. We take advantage of such a structure
to visualize the correlation patterns underlying the data.
The proposed procedure is validated on both synthetic data
and applied to real gene expression datasets.

1 Introduction

The analysis of microarray gene expression data has
gained a central role in the process of understanding
biological processes. Many algorithms have been recently
proposed in order to deal with high-throughput data and
to select the genes most relevant to characterize a given

task. Indeed, genomics analysis has shifted from focusing
on one gene at a time to a more complex situation where
the action and interaction of many thousands of genes can
be measured simultaneously. In other words, techniques
such as microarrays are able to quantify the activity of
thousands of genes at once, generating a global picture
of the cellular function. In this context, one main goal of
data analysis is to provide reliable statistical tools, that
work in the typical -omics scenario of a small number of
samples represented in a high dimensional space and that
are able to capture the complex interactions among genes.
To this aim many techniques have been proposed, including
dimensionality reduction methods, projecting the data onto
lower-dimensional spaces. For instance, in the case of
Principal Component Analysis new linearly independent
and non-redundant features are defined in terms of the
original ones in a unsupervised way. This approach
has been proved useful in many studies [11, 9], but the
biological interpretation of the obtained meta-features is
a non-trivial task. On the other side, supervised feature
selection algorithms select a subset of the original variables
identifying the most relevant ones and assigning to each of
them a relative weigh. For example a common task is that
of determining a classification rule able to assign patients
to one among different disease sub-types. The variable
selection problem in this case corresponds to finding a
subset of genes relevant for sub-type classification. A
more precise definition of what relevant means leads to
defining different variable selection algorithms. A popular
class of techniques is that based on defining relevant genes
as those showing differential expression across classes
[5, 10]. Corrected hypothesis testing are the statistical core
of these methods. A second class of techniques is that



based on defining subsets of relevant genes as those having
discriminative power in terms of classification properties.
This latter class of methods also includes wrapper methods
and embedded methods, see [7] for references. Unlike
many other heuristically motivated schemes, recently a
class of theoretically founded embedded methods has been
proposed based on the concept of sparse regularization.
Most notable examples are probably the well-known Lasso
[13], (naı̈ve) elastic net [14] algorithms, and forward
stage-wise regression [8].

Despite the availability of feature selection techniques,
the biological interpretability of the selected gene lists is
often a major problem. This is mainly due to the lack of
structure in the selected gene signatures and of complemen-
tary visualization tools. Most feature selection algorithms
produce (sometimes ordered) lists of genes but are usually
unable to handle correlation among genes. Typically in a
group of intra-correlated genes only one representative is
selected unless ad hoc heuristics are considered. Recently
the so called elastic net regularization was proposed to deal
with correlation among genes and was shown to be able
to select all intra-correlated genes rather then only one.
A limitation of elastic net is that though we know that the
obtained list comprises groups of correlated genes such
groups are not explicitly given.

The main idea of our work is to take a step further
with respect to elastic net and propose a robust statistical
analysis framework able to extract gene signatures that are
structured in modules of correlated genes ranked according
to their discriminative power. The obtained signature can
be effectively visualized making the search of interesting
biological patterns easier.

The preliminary step to our procedure is based on
obtaining several raw gene signatures by means of the
elastic net regularization, originally proposed by [14]
and further studied and used in [2, 4, 3]. Elastic net
regularization has several interesting properties. It was
proved to be a consistent variable selection scheme [2]
(as the number of available training samples increases the
best possible estimator is eventually reached. Moreover it
takes into account the multivariate effect of many genes
together, and avoids discarding correlated variables. We
use the two-stage approach to elastic net regularization
presented in [3] as a supervised preprocessing of the data.
The appealing property of such an approach is that the
algorithm output is a one parameter family of nested lists
with equivalent prediction ability and increasing correlation
among genes.

Such a two-stage procedure, though, does not suggest

which are the blocks of intra correlated genes, and a second
step is thus needed. To this aim we apply a variation of
an agglomerative clustering technique that exploits the
nested output of the supervised preprocessing. We start
from the first list which is minimal, the least number of
discriminative genes is selected regardless of intra genes
correlation. Such genes are used as centroids. Considering
the subsequent lists with increasing size and comprising
correlated genes we grow clusters of correlated genes
around the obtained centroids. The main characteristic
is that, differently from usual clustering approaches, the
centroids (prototypes) are given and have a meaning in
terms of classification ability. In this way we can extract
and visualize a more structured genes signature, which
captures and make evident the correlation patterns in the
data. This provides a richer model that can be used to
gain a better understanding of the genes function, possibly
leading to new biological hypotheses.

The paper is organized as follows: in section 2 we briefly
review the problem of variable selection and illustrate elas-
tic net optimization and its two-stage approach; we then in-
troduce our proposal for determining the genes modules, for
ranking them in terms of their prediction power and for vi-
sualizing them. In section 3, the proposed methodology is
applied on synthetic data sets and real gene expression data.

2 Methods

In this section we start with a preliminary description of
how to use the elastic net algorithm in order to obtain the
nested lists of genes that are at the basis of the extraction of
structured signatures. We then show how to apply an appro-
priate ad hoc clustering technique to find a structure within
these gene lists and discuss how the obtained clusters can
be ranked according to their discriminative power. Finally
we present two customized visualization tools that allow to
better interpret and appreciate the results.

2.1 Gene Signature Extraction

Given a prediction (classification) task the problem of
variable selection amounts to detecting the factors deter-
mining good prediction. Indeed this problem, which is often
encountered in the context of gene-array analysis, is a clas-
sical problem in statistics but classical methods are usually
not tailored to the analysis of very high dimensional data,
when the number of variables (genes) d is much larger than
the available set of examples (patients) n.
To tackle the gene signature extraction, we adopt the elas-
tic net approach [14]. More specifically, given a response
vector Y = (y1, y2, ..., yn) of labels and a n × d gene ex-
pression matrix X, where each row x ∈ IRd is an exam-



ple (patient, cell line, treatment) and each column a gene,
we consider the linear classification rule sign(β · x) where
the coefficient vector β is unknown and assigns a weight to
each gene. The elastic net solution is obtained by minimiz-
ing w.r.t. β the following functional:

Φλ,ε(β) = ‖Y −Xβ‖2 + λ(
d∑
j=1

|βj |+ ε

d∑
j=1

|βj |2). (1)

The above functional was introduced to overcome some
drawbacks of the Lasso approach [13] which solution is
obtained by minimizing Φλ,0. Indeed the lasso penalty∑d
j=1 |βj |, namely the `1-norm of β, favors gene selection

by setting most coefficients on β to zero but has short-
comings in the presence of correlated genes. Classification
performance does not change if we select one or more rel-
evant but correlated genes. On the other hand, adding the
`2 penalty

∑d
j=1 |βj |2 can be shown to enforce correlated

genes to have similar weights, so that a whole genes group
is either discarded or selected. The parameter ε > 0 is a
threshold determining the correlation level above which
genes are to be considered as belonging to the same group.

While in [14] the two parameters λ and ε are chosen via
cross-validation, hence selecting only one list of significant
variables, we follow the two stage procedure described in
[3], where the tuning of the ε parameter allows to get an
output with more structure than a simple list of genes. Here
we briefly recall the main concepts of this procedure. In
stage I, the optimal λ in (1) is chosen via cross validation,
[1]. In stage II, the algorithm is ran with the same value of
λ for increasing values of ε = ε1, . . . , εmax, and for each
value of ε a different set of weights β is obtained. The first
set of selected genes (ε = 0) is minimal, most coefficients
are set to zero and no correlation is considered. Increasing
ε causes correlated genes to be selected (they are assigned
non zero weights). As the output of the procedure we have
several genes lists of increasing size with genes ranked ac-
cording to their weights. Though we know that genes are
correlated, the algorithm does not give an explicit grouping.
In the next section we discuss a simple way to extract such
groups from the output of elastic net.

2.2 Structured clustering of two-stage
elastic net output

The two stage approach described above has proved
to be an efficient technique for gene selection [3, 1].
Moreover, the nested structure of the selected gene lists
allows to choose the desired level of complexity to be
used in the biological investigation of the underlying
phenomenon. In other words, we can choose how many

genes we want to consider for further studies, maintaining
all the information extracted from the data. For example,
when interested in finding a set of biomarkers to be used
on large scale diagnostic tests, one might prefer a small
panel of significant genes due to time, cost and resource
limitations. On the other hand, when the main goal is the
comprehension of the entire cell response to an external
factor, such as a particular drug treatment, the maximal list
(ε max) is preferable.

Despite this appealing property, the raw structure of the
gene lists does not provide any understanding on how to
group correlated genes. All we have is a set of lists ordered
according to their size. Starting from the first minimal list
of genes the following lists include more correlated genes.
The main contribution of the present work is to proceed one
step further towards the biological interpretability of the se-
lected gene signatures. The idea is to build blocks of corre-
lated genes using a variation of well known agglomerative
clustering techniques. The technique is based on the Pear-
son distance:

d(Xj1 , Xj2) =
corr(Xj1 , Xj2)√
var(Xj1)var(Xj2)

evaluating the (normalized) correlation between the j1-th
and the j2-th columns (gene expressions) of the data matrix
X.

The B genes in the minimal list can be assumed to be
independent. Therefore the structured gene signature will
be constitued by B blocks. Each gene pb in the minimal
list will be used as a prototype for the b-th block. For each
gene in the maximal list, correlation is calculated with each
prototype and hence the gene is assigned to the block (pro-
totype) associated to higher correlation. In this way we pop-
ulate the blocks corresponding to the prototype genes in the
minimal list with all the genes coming from the maximal
list and encompassing all its sublists. Within each block we
sort its genes according to the order of appearance while
performing the two stage elastic net selection, for increas-
ing ε = ε1, . . . , εmax. In block b, the prototype pb, selected
for ε1, will be ranked first, its correlated genes appearing at
ε2 will be ranked second (with ties) and so on.

2.3 Our Ranking Criterion

We now propose a criterion for ranking the gene blocks
according to their prediction power with respect to the su-
pervised problem under study. Since the estimator y ∼
f(x) is a weighted sum of the genes expressions, f(x) =∑d
j=1Xjβj , we can define the score, sb for block b as the

contribution given to f(x) by the prototype of block b:

sb =
∥∥∥X(1)

b β
(1)
b

∥∥∥



where X(1) is the gene expression matrix resctricted to the
genes selected with the lowest value of ε, and β(1) is the
corresponding optimal weight vector.

2.4 Output Visualization

Biological data analysis and visualisation have tra-
ditionally been approached as independent problems.
Relatively little attention has been given to the integration
and visualisation of information and models. However,
the integration of these areas facilitates a deeper un-
derstanding of problems at a systemic level. In order
to interpret and appreciate the results obtained with
the agglomerative clustering technique proposed in Sub-
section 2.2, we implemented two simple visualization tools.

In the first method, we first restrict the gene expression
matrix to the probe sets belonging to the blocks union. We
then rearrange its columns in order to emphasize both the
blocks and the layered structure, and display its correlation
matrix as an image: genes belonging to the same groups
are drawn close to each other, and thick lines separate each
block; in addition, within each module, the gene in the
upper left corner has to be identified with the prototype or
first layer gene, whereas the genes selected with increasing
value of ε follow, separated by a thinner line.

In the second visualization, we project the genes appear-
ing in the blocks union on the most representative meta-
patient. Such meta-patient is identified with the 3D space
spanned by the first three left eigenvectors of the normalized
expression matrix Xij restricted to the genes which belong
to the blocks union. Clearly highly corelated genes cluster
together in the 3-dimensional space, while collinear genes
present perfect overlap.

3 Results and Discussion

3.1 Toy Data

In order to test our approach in a controlled setting, we
applied the two stage elastic net regularization, followed by
the nesting-clustering technique on a toy example, where
we exactly know which are the relevant or correlated fea-
tures. The proposed toy problems are close to real data con-
ditions, e. g. dependence on more than one variable and
correlation, though in a lower dimensional setting. A set of
n = 30 toy-patients are drawn from IRd with d = 50 in the
following way:
x1, x11, x21, x31, . . . , x50 i.i.d. from {−0.5, 0.5},
x1+i ∼ si · x1 + σ1ε for i = 1, . . . , 9,
x11+i ∼ si · x11 + σ2ε for i = 1, . . . , 9,
x21+i ∼ si · x21 + σ3ε for i = 1, . . . , 9.

where ε ∼ N(0, 1). A combination of features x1, x11 and
x21 separates the toy-patients in two classes (multivariate
model) according to the rule:

P [ y = sign(Xβ + ε)] = p

P [ y = −sign(Xβ + ε)] = 1− p

where β = (1, 1, 1, 0, . . . , 0).

The family of toy problems described above considers
three discriminating groups each containing 10 correlated
features, while features x31, . . . , x50 are uninformative. By
applying our technique we aim at selecting and cluster-
ing such relevant blocks. We now examine the perfor-
mance of our technique on three toy problems which dif-
fer in the correlation parameters σ1, σ2, σ3, scaling factors
si, i = 1 . . . , 9 and Bayes risk p. We state beforehand that
the selection step allows to achieve optimal prediction per-
formance on all toy problems taken under consideration.
Being interested in the second step, in the following we an-
alyze in details the results on clustering and visualization.

3.1.1 Toy Problem 1

In this toy problem, genes belonging to the same block, have
comparable expressions (si = 1, i = 1 . . . , 9), and high
correlation with either x1, x11 or x21 (σ1 = σ2 = σ3 ∼
0.1). The two classes are perfectly separated (p = 0).

As shown in Figure 1(top), the first stage of the elas-
tic net algorithm selects 4 minimal features instead of 3:
3, 19, 26 and 24. Note that the last two features belong to the
same block and therefore are highly correlated; however,
due to the non-perfect correlation, they are both selected at
the first stage. By increasing the `2 parameter all features
from block 1 and 2 and 6 of the 10 features from block 3
are subsequently selected. Clearly from Figure 1(top), the
nesting-clustering technique succeeds in correctly assigning
each feature to its corresponding block. According to the
data creation rule, Figure 1(bottom) shows that the clusters
1, 2 and 3 are far apart when projected on the 3D meta-
patients, whereas block 4 clearly overlaps block 3.

3.1.2 Toy Problem 2

We now add a small amount of noise to the classification
problem by raising the error probability, p, to 0.01. The
other parameters are left unchanged as in Toy problem 1.

As in the previous case the first stage of the elastic net
algorithm selects 4 minimal features instead of 3: 14, 7, 29
and 23, where, again features 29 and 23 are correlated. With
higher ε almost all the features from the relevant blocks are
recovered, and again the nesting-clustering technique suc-
cedes in correctly grouping the features. In Figure 2 the
same behavior as in Toy Problem 1 is shown .



Figure 1. Correlation and Clustering in Toy
Problem 1 .

3.1.3 Toy Problem 3

In the last toy problem, features in the three relevant blocks
are rescaled replicates (σ1 = σ2 = σ3 = 0) of ei-
ther x1, x11 or x21; this makes the features in the same
block exactly correlated however the non-unit scaling fac-
tors (si = 1 − i/10, i = 1 . . . , 9), make their expression
values non comparable. As in the first problem, classes are
perfectly separated (σ0 = 0).

In this case, all the correlated features belonging to the
same block bring the same amount of information, being
their correlation equal to 1. In fact, the family of solutions

{
30∑
j=1

xjβjs.t.β1 +
9∑
j=1

β1+jsj = β∗1 ,

β11 +
9∑
j=1

β11+jsj = β∗2 ,

β21 +
9∑
j=1

β21+jsj = β∗3}

are exactly equivalent in terms of prediction performance.
As a consequence, being |si| < 1, the `1 penalty favours
solution x1β

∗
1 + x11β

∗
2 + x21β

∗
3 , as the one having lowest

Figure 2. Correlation and Clustering in Toy
Problem 2.

Figure 3. Correlation on replicated Toy Prob-
lem 3

`1 norm. The trade-off between the `1 and `2 norms, has the
effect of recovering more and more features, by increasing
the `2 parameter. As shown in Figure 3, at stage I the al-
gorithm selects the 3 relevant features with highest expres-
sion, 1, 11 and 21, and two noisy features, 36, 37. The sec-



ond stage progressively includes almost all the correlated
features according to their scaling factor, and the clustering
algorithm correctly groups them.

3.2 Real data

We now analyze three well known microarray data sets.

Prostate A set of 51 normal prostate and 51 prostate can-
cer microarrays are represented in this dataset, pro-
posed in [12]. Gene expressions are measured on the
Affymetrix platform HU95, for a total of 12533 probe
sets.

Lung There are 181 tissue samples among which 31 sam-
ples belong to Malignant pleural mesothelioma and
150 belong to lung adenocarcinoma. Each sample
is described by 12533 genes. The used platform is
Affymetrix U95A [6].

Leukemia In this experiment we used the well-known
Leukemia dataset [5]. It consists of 72 gene expres-
sion microarrays of acute myeloid leukemia (AML)
and acute lymphoblastic leukemia (ALL), on platform
Affymetrix HuGeneFL, comprising the expression of
7129 probe sets.

We observe that the selection-classification step reaches
100% prediction accuracy on the Leukemia task, 99% on
Lung cancer, data set and 96% on Prostate Cancer. Note
that our performances are at least as good as and often bet-
ter than those reported in the papers in which the data sets
were introduced. As for the toy problems, we visualized our
results with the tools described in Subsection 2.4. The well
defined color patches in Figure 4, 5, 6 (top) and the clusters
plotted in Figure 4, 5, 6 (bottom) clearly indicate that the
proposed technique does detect a strong correlation pattern.
Moreover in Table 1, 2, 3 we reported the number of genes

present at the different ε-layers of the top 10 modules.

3.3 Conclusion

In this paper we have proposed an effective methodol-
ogy for identifying structured modules of correlated genes
from the nested gene lists returned by the two-stage elastic
net selection algorithm. The procedure has been success-
fully validated on synthetic data, and subsequently applied
to benchmark microarray data sets. On toy problems, be-
sides optimal classification performance, we identified the
artificially generated patterns with high accuracy. On real
data, while the obtained prediction performance is consis-
tent with state-of-the-art results, the relevance of the lay-
ered clusters provided by our technique cannot be directly
assessed. In fact, in unsupervised cluster analysis, despite a
large number of heuristically motivated methods, there are

Figure 4. Correlation and Clustering in
Prostate data.

no theoretically founded approaches capable to assess the
goodness of the clusters. In order to accomplish such val-
idation task in a indirect way, we have proposed two vi-
sualization tools which qualitatively confirm the methodol-
ogy effectiveness also in the real data application. Conclud-
ing, the methodology we propose can be seen as a step fur-
ther towards understanding the complex interactions among
genes which are at the basis of system biology.
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