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Hypoxia is a condition of low oxygen tension occurring in the tumor and negatively correlated with the progression of the disease.
We studied the gene expression profiles of nine neuroblastoma cell lines grown under hypoxic conditions to define gene signatures
that characterize hypoxic neuroblastoma. The l1-l2 regularization applied to the entire transcriptome identified a single signature of
11 probesets discriminating the hypoxic state. We demonstrate that new hypoxia signatures, with similar discriminatory power, can
be generated by a prior knowledge-based filtering in which a much smaller number of probesets, characterizing hypoxia-related
biochemical pathways, are analyzed. l1-l2 regularization identified novel and robust hypoxia signatures within apoptosis, glycolysis,
and oxidative phosphorylation Gene Ontology classes. We conclude that the filtering approach overcomes the noisy nature of the
microarray data and allows generating robust signatures suitable for biomarker discovery and patients risk assessment in a fraction
of computer time.

1. Background

Neuroblastoma is the most common pediatric solid tumor,
deriving from immature or precursor cells of the ganglionic
lineage of the sympathetic nervous system [1, 2] endowed
with remarkable heterogeneity with regard to histology
and clinical behavior [3, 4]. The neuroblastoma cell lines
derived from the fresh tumors show various degrees of
differentiation, chromosomal alterations, and morphology
and consequently, a great variability in the gene expression
profile. We studied the transcriptional response of neurob-
lastoma cell lines to hypoxia by microarray analysis [5].

Hypoxia is a condition of low oxygen tension that
characterizes many pathological tissues and that is a critical
determinant of tumor cell growth, susceptibility to apoptosis,
and resistance to radio and chemotherapy [6–8]. The general
response to hypoxia involves activation of biochemical
pathways leading to alternative ways to generate energy that
becomes scant in low oxygen [9]. Hypoxia modulates gene

expression through the activation of several transcription
factors, among which the hypoxia-inducible transcription
factor-1α (HIF-1α) [7, 10], and -2α (HIF-2α) [11] are the
most studied. Rapidly expanding neuroblastoma tumors
present areas of hypoxia [12] and it has been reported that
HIF-2α expression correlates with poor prognosis [13, 14]
suggesting a central role of hypoxia in tumor progression.
HIFs transactivate the hypoxia-responsive element (HRE)
present in the promoter or enhancer elements of many
genes encoding angiogenic, metabolic, and metastatic factors
[8, 15, 16]. However, neuroblastoma cell lines respond
differently to hypoxia and the nature of the modulated genes
depends strongly on the type and genetic makeup of the
cell [17]. Furthermore, amplification and/or overexpression
of MYCN oncogene, occurring in poor prognosis tumors,
influence the transcriptional response to hypoxia of neurob-
lastoma cell lines [5].

The identification of molecular markers capable of
discriminating the hypoxic status of the tumor may result in
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the discovery of new risk factors for neuroblastoma patients’
stratification and potential targets for tumor therapy. To this
end, we were interested in identifying hypoxia signatures that
discriminate the hypoxia status of neuroblastoma cell lines.
Unsupervised analysis of gene expression profile could not
be applied to this system because the overwhelming effect
of MYCN amplification on the transcriptome masked the
response to hypoxia [5]. The application of a supervised
approach represented by regularization with double opti-
mization on microarray data, an embedded feature selection
technique proposed by Zou and Hastie [18] and studied
by De Mol et al. [19], identified 11 probesets capable of
reliably subdividing hypoxic and normoxic cell lines [5].
These results raise the question as to whether this signature
is the only possible outcome of the l1-l2 regularization
algorithm, and hence the only source of neuroblastoma
hypoxia markers, or whether additional signatures, with
similar characteristics of performances and robustness can
be derived from the experimental data set. Hypoxia induces
massive transcriptional changes in the cell [20–22] and it is
possible that additional signatures may be found by the l1-l2
algorithm under appropriate conditions.

The l1-l2 regularization algorithm has to deal with
heterogeneity of the response of each cell line and with the
background noise that is enhanced by the high dimension-
ality of the system composed by a low number of samples
(n = 18 in this work) relative to the large number of the
expression values for each sample (p = 54, 613). The n! p
scenario is a common issue in signal processing and machine
learning [23, 24]. Furthermore, the strong response of each
cell line to alteration of the genetic makeup (e.g., MYCN
rearrangement) tends to overcame and mask the response
to hypoxia. Here, we explore the possibility that l1-l2 feature
selection algorithm may generate new hypoxia signatures
following prior knowledge-based data filtering techniques as
a preprocessing step to feature selection.

Most dimensionality reduction methods, such as PCA
and other unsupervised learning methods [25], rely only
on the input data and may be driven by strong concurrent
signals which are unrelated with, and somehow hide, the
problem under study. Alternative strategies of data filtering
are based on some form of prior knowledge of the biology
of the system. The information collected by Gene Ontology
(GO), a project having the aim of classifying gene products
in terms of their associated biological processes, cellular
and molecular components [26] can help identifying the
pathways related to hypoxia and restricts the analysis to
smaller sets of data.

In this paper, we demonstrate that l1-l2 regularization
applied separately to probesets representing genes belonging
to selected GO ontologies has the capability to generate
robust hypoxia signatures, equivalent to that generated by the
whole data set yielding biologically relevant information in a
fraction of computer time.

2. Materials and Methods

2.1. Microarray Experiments. Microarray data were down-
loaded from the Gene Expression Omnibus public repository

at National Center for Biotechnology Information database
(accession number GSE15583). These data represent the
gene expression profile of nine neuroblastoma cell lines
cultured under normoxic (20% O2) or hypoxic (1% O2)
conditions for 18 hours as detailed in [5], to obtain a total
of 18 samples. Affymetrix HG-U133 Plus 2.0 GeneChip
(Affymetrix, SantaClara, CA) were used for this study.
Gene expressions were then extracted from CEL files and
normalized using the Robust Multichip Average (RMA)
method [27] by running an R script using the Bioconductor
[28] package affy.

Comparative analysis of hypoxic relative to normoxic
expression profiles for each cell line was conducted on Gene-
Spring 7.3 software (Agilent Technologies). Gene expres-
sion data were normalized using “per chip normalization”
and “per gene normalization” algorithms implemented in
GeneSpring. First, each signal was normalized based upon
the median signal in that chip (“per chip normalization”).
We then performed a median centering using “per gene
normalization” function by which each normalized value
is corrected based upon the median of the measurements
for that gene in all samples. Finally, only genes that were
modulated by at least 2-fold between hypoxic and normoxic
cells were considered differentially expressed.

2.2. Gene Ontology. The biological groups were obtained
from the literature and they were divided into three main
categories depending on the biological characteristics of our
experimental system (see Table 2): (i) hypoxia related groups
[9, 17, 29]; (ii) MYCN related groups [30–32]; (iii) neurob-
lastoma related groups [31, 33, 34]. The selected functional
groups were then filtered to avoid overlapped or duplicated
categories and were defined according to predetermined
pathways and functional categories annotated by the Gene
Ontology project [26].

2.3. Supervised Methods for Gene Selection: l1-l2 Regulariza-
tion. The core of our approach is the l1-l2 regularization
originally presented in [18] and further developed and
studied in [35, 36]. To describe such method we first fix some
notation in the learning framework. Assume we are given
a collection of n examples/subjects, each represented by a
p-dimensional vector x of gene expressions. Each sample is
associated with a binary label Y, assigning it to a class (e.g.,
patient or control). The dataset is therefore represented by
a n × p matrix X, where p # n and Y is the n-dimensional
labels vector. We consider a linear model f (x) = 〈x,β〉. Note
that β = β1, . . ., βp is a vector of weight coefficients and
each probeset is associated to one coefficient. A classification
rule can be then defined taking sign ( f (x)) = sign(〈x,β〉).
If β is sparse, that is some of its entries are zero, then some
genes will not contribute in building the estimator. The
estimator defined by l1-l2 regularization solves the following
optimization problem:

βl1l2 = argmin
β

[∥∥Y − Xβ
∥∥2

2 + τ
[∥∥β

∥∥
1 + ε

∥∥β
∥∥2

2

]]
, (1)

where the least square error is penalized with the l1 and
l2 norm of the coefficient vector. The least square term
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ensures fitting of the data whereas adding the two penalties
allows avoiding overfitting. The relative weight of the two
terms is controlled by the parameter ε. The role of the two
penalties is different, the l1 term (sum of absolute values)
enforces the solution to be sparse while the l2 term (sum
of the squares) preserves correlation among the genes. This
approach guarantees consistency of the estimator [19] and
enforces the sparsity of the solution by the l1 term, while
preserving correlation among input variables with the l2
term. Differently to [18] we follow the approach proposed
in [36], where the solution βl1l2, computed through the
simple iterative soft thresholding, is followed by regularized
least squares (RLSs) to estimate the classifier on the selected
features. The parameter ε in the l1-l2 regularization is fixed a
priori and governs the amount of correlation. By tuning ε in
(0, +∞) we obtain a one-parameter family of solutions which
are all equivalent in terms of prediction accuracy, but differ
on the degree of correlation among the selected features. In
practice, ε has an upper bound, εmax, such that for ε > εmax

selection does not change, because all correlated features
were already selected with ε = εmax. By setting ε = 100, the
maximal value, the maximal gene list, which is correlation
aware, is obtained. Conversely, the minimal list is obtained
for values of ε equal to or lower than 1.

The training for selection and classification requires
the choice of the regularization parameters for both l1-l2
regularization and RLS denoted with λ∗ and τ∗, respec-
tively. Hence, statistical significance and model selection is
performed within double-selection bias-free cross-validation
loops (see [37] for details). The classification performance
of the system is measured by the leave-one-out error that
is the percentage of misclassified samples. In other words,
leave-one-out error is equal to one minus accuracy. In order
to assess a common list of probesets, it is necessary to
choose an appropriate criterion [38]. We based ours on the
frequency, that is, we decided to promote as relevant variables
the most stable probesets across the lists. The complete
validation framework comprising the l1-l2 regularization is
implemented in MATLAB code.

2.4. Correlation Analysis. The correlation among the probe-
sets selected by the l1-l2 algorithm was performed as previ-
ously described in [39]. Briefly, we build blocks of correlated
probesets using a variation of well-known agglomerative
clustering techniques based on Pearson distance. We first
examine the minimal list, which genes are clustered via
hierarchical clustering with correlation distance and average
linkage. Since no objective algorithm, other than heuristics,
is available for establishing the number of clusters, for each
GO class the cut of the hierarchical graph determining the
number of clusters is chosen following visual examination
of the graph. In particular we set the cut at 0.75 of the
maximum linkage value in the dendrogram. For each GO
class the cut of the hierarchical graph determining the
number of clusters is chosen following visual examination
of the graph. Each probeset in the maximal list is then
assigned to the cluster which average correlation with the
given probeset is the highest. In this way we populate the
clusters built from the minimal list with all the probesets

coming from the maximal list. The correlation analysis was
performed using MATLAB Statistic Toolbox.

2.5. HRE Analysis. We mapped the HRE elements in the
promoter regions of the genes represented in the Affymetrix
HG-U133 Plus 2.0 GeneChip. We downloaded the anno-
tation file for the HG-U133 Plus 2.0 from NetAffx Anal-
ysis Center (http://www.affymetrix.com/) and the dataset
was restricted to the known mRNA sequences listed in
the Ensembl database V56 [40]. The regulatory regions
were retrieved from Ensembl database using Ensembl Perl
APIs. We operationally defined as “promoter” the first
2,000 base pairs upstream the transcription initiation site
and generated a dataset containing the promoters of the
genes coding for the mRNAs spotted on the chip. The
HRE matrix has been obtained from 69 experimental
validated human HRE sequences [41] with MatDefine
tool (Genomatix Software GmbH). HRE consensus ele-
ments [(G|C|A|T) (C|G|T|A) (G|C|A|T) (T|G|C|A) (A|G)
(CGTG) (C|G|T|A) (G|C|A|T) (G|C|T|A) (C|G|T|A)] were
searched in the promoter sequences with MatInspector soft-
ware (Genomatix) with core similarity = 1 and optimized
matrix similarity. About 33% of the promoters contain at
least one HRE consensus element. χ2 was used to evaluate the
significance of the HRE frequency in the promoter regions
of genes belonging to the different signatures. P < .01 was
considered significant

3. Results and Discussion

We studied nine neuroblastoma cell lines [2] heterogeneous
with respect to MYCN amplification and morphology
(Table 1). The cell lines were cultured under normoxic and
hypoxic conditions for 18 hours and the total RNA was
tested for gene expression profiling using the Affymetrix
HG-U133 Plus 2.0 platform. The response to hypoxia of
each individual cell line was first analyzed by measuring
the fold change as the ratio of the expression level between
hypoxic and normoxic samples. We found that the response
of each neuroblastoma cell line to hypoxia is characterized
by a high number of modulated genes ranging from 855
to 1609 for the upregulated and from 758 to 1317 for the
downregulated probesets (Table 1). However, the modulated
genes changed from cell line to cell line (data not shown) and
only the application of a strong feature selection technique,
represented by the l1-l2 regularization, allowed to identify
a single signature of 11 probesets (All-chip signature)
discriminating the normoxic and the hypoxic status [5].

The large amount of hypoxia-modulated genes suggests
that additional hypoxia signatures may be identified if we
reduce the background noise of the system. To this end, we
applied a data filtering strategy based on prior knowledge.
We restricted our analysis to the genes known to be involved
in the hypoxic response on the bases of our reading of
the literature and comprised in the biological processes
according to the Gene Ontology (GO) classification [13].
The selection of the GO classes was based on the reports of
hypoxia modulated genes without attempting to distinguish
the various cell types under investigation. 13 biological
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Table 1: Modulation of gene expression by hypoxia in neuroblastoma cell lines.

cell line gene expression(1)

name Morphology(2) MYCN amplification(3) up-regulated down-regulated

ACN neuroblast (N) − 1400 1317
SHEP-2 epithelial (S) − 1609 1043
GI-ME-N neuroblast (N) − 762 881
SK-N-F1 epithelial (S) − 1206 1051
SK-N-SH neuroblast/epithelial (I) − 922 758
SK-N-BE(2)c neuroblast/epithelial (I) + 855 1273
IMR-32 neuroblast (N) + 1000 1077
LAN-1 neuroblast (N) + 1061 1016
GI-LI-N neuroblast (N) + 1516 1002

(1)
Number of modulated probesets by hypoxia (1%O2 for 18 hours). (2)N: neuroblast; S: substrate adherent; I: intermediate [2]. (3)For reference see [2].

processes that are involved in hypoxia response were selected
(Table 2). We reasoned that this approach would restrict
the analysis to the probesets that have a high impact on
the hypoxic response while potentially eliminating the noisy
features. To explore the potential interference from MYCN
status in the classification process, we selected and tested 7
biological processes involved in MYCN activity (Table 2).
Finally, we selected a third group of GO processes related
to the neuroblastoma biology as a control. For each of the
38 classes shown in Table 2, the l1-l2 algorithm selected a
list of hypoxia discriminating probesets and calculated the
corresponding classification leave-one-out error. The output
of the l1-l2 regularization algorithm depends on the parame-
ter ε that governs the amount of correlation allowed among
the probesets. We set ε = 100, the maximal value, to obtain
the most comprehensive signature maximizing the number
of correlated probesets to be included in the output [5].

The validation has been performed by leave-one-out
cross-validation on the 18 samples. The 18 cross-validation
loops produced 18 lists of probesets. Then, a unique list is
obtained as the union of the probesets included in the 18
lists, with a frequency score calculated as the frequency of
each probeset in the 18 lists generated by the cross validation
loops. Stable probesets were defined as those characterized
by a frequency score equal to, or higher than, 50% as
previously reported in [5]. The use of cross validation allows
the selection protocol to generate an unbiased and objective
output [42] beyond the theoretical results that guarantee the
robustness of the core algorithm [19]. The discriminatory
power of the probeset lists is represented by the classification
performance. A leave-one-out error of 20% was chosen as
the cutoff level for the classification performance. The leave-
one-out error of the All-chip signature is 17% [5].

The only classes characterized by a list of selected
probesets capable of generating a leave one-out error lower
than the 20% cutoff were apoptosis (17%), glycolysis (11%),
and oxidative phosphorylation (11%) (Table 2), all of them
belonging to the hypoxia biological group. These results
demonstrate that, within each of the above classes, there is
a list of probesets capable of discriminating the condition
of the cell lines thereby defining three new neuroblastoma
hypoxia signatures, named apoptosis signature, glycolisis

signature, and oxidative phosphorylation signature. As
expected, there were no GO classes belonging to the MYCN
or neuroblastoma biological groups that generated hypoxia
signatures, supporting the validity of our choice of hypoxia-
related GO functional classes. Although MYCN represents
a strong signal that drives major transcriptome difference
in neuroblastoma cell lines [5], our results show that there
are no enough discriminatory genes in the MYCN-related
processes. These results demonstrate that the feature selec-
tion method applied is capable of revealing the differences
occurring among hypoxic and normoxic neuroblastoma cell
lines by filtering out strong competing signals, such as MYCN
amplification status.

The list of the probesets comprising the 11 probesets
(All-chip signature) [5] and the newly identified signatures
is shown in Table 3 and consists of 10 probesets for apoptosis
signature, 3 for glycolysis-signature, and 32 for the oxidative
phosphorylation signature. The new signatures highlight 41
probesets that were not previously included in the All-chip
signature and contribute to the discrimination of the hypoxic
status. Furthermore, the 32 probesets of the oxidative
phosphorylation signature does not overlap with the All-chip
signature, demonstrating that the increased resolution gener-
ated by data filtering allows the identification of previously
discarded relevant GO processes. The hypoxia signatures
present in the literature show different sizes and gene
composition [9, 43–46]. Since different cell types respond
heterogeneously to hypoxia by modulating different set of
genes, we decided to compare our results with the published
hypoxic gene signatures obtained from neuroblastoma cell
lines [47] (Table 4). In order to make the comparison
feasible, the probesets constituting our signatures have
been collapsed to gene symbol. The overlapping genes are
underlined in bold in Table 4. While important differences
among the signatures exist, the comparison highlights a
general consistency. In fact, an overlap is present in All-
chip (3/8 genes), apoptosis (2/4 genes), and glycolysis (2/2
genes) signatures. Interestingly, there is no overlap (0/24
genes) among the results published by Jögi et al. [47] and
the oxidative phosphorylation signature.

About 33% of the genes spotted on the chip present
a HRE sequence in the promoter region. We investigated
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Table 2: Functional gene classes.

Biological group(1) Functional class(2) GO number(3) no. of probesets(4) error(%)(5)

Hypoxia

Angiogenesis GO: 1525 257 39
Apoptosis∗ GO: 6915 1366 17∗

Cell proliferation GO: 8283 1406 28
DNA repair GO: 6281 567 44
Glucose import GO: 46323 10 89
Glucose Transport GO: 15758 48 33
Glycolysis∗ GO: 6096 128 11∗

Iron ion homeostasis GO: 6879 65 39
Notch signaling pathway GO: 7219 134 44
Oxidative phosphorylation∗ GO: 6119 154 11∗

Oxygen transport GO: 15671 38 28
Regulation of pH GO: 6885 41 72
Response to hypoxia GO: 1666 32 28

MYCN

G1-S transition of mitotic cell cycle GO: 82 62 50
Proteasomal ubiquitin-dependent protein catabolism GO: 43161 33 50
Protein folding GO: 6457 601 22
Ribosome biogenesis and assembly GO: 42254 170 28
Structural constituent of ribosome GO: 3735 549 44
Translational elongation GO: 6414 56 56
Translational initiation GO: 6413 173 44

Neuroblastoma

Axon guidance GO: 7411 109 50
Axonal fasciculation GO: 7412 4 100
Cell cycle arrest GO: 7050 210 39
Dendrite morphogenesis GO: 16358 12 72
Glial cell migration GO: 8347 2 100
Inactivation of MAPK activity GO: 188 50 44
Nervous system development GO: 7399 1284 22
Neuron migration GO: 1764 7 94
Positive regulation of neuron differentiation GO: 45666 6 100
Regulation of axon extension GO: 30516 14 100
Regulation of G-protein coupled receptor protein signaling pathway GO: 8277 88 39
Regulation of neuronal synaptic plasticity GO: 48168 8 100
Regulation of neurotransmitter secretion GO: 46928 11 61
Synaptic vesicle transporter GO: 48489 36 72
Vesicle organization and biogenesis GO: 16050 6 44

(1)
Functional classes were clustered into three main biological groups depending on the characteristic of the experimental system and accordingly to the

literature. (2)Defined according to the predetermined pathways and functional categories annotated by the Gene Ontology project [26]. (3) Gene Ontology
ID [26]. (4)Number of probesets present in Affymetrix HG-U133 Plus 2.0 GeneChip belonging to the selected classes. (5)Leave-one-out error, as calculated by
l1-l2 regularization by setting ε = 100 and frequency score = 50. ∗Functional classes with leave-one-out error <20%.

whether there was enrichment in HRE containing promoter
in the genes composing our signatures. We found that
all the signatures are significantly enriched (P < .01) in
genes containing HRE (Table 4). In particular, all the genes
included in All-chip, apoptosis, and glycolysis signatures
contain at least one HRE, while HRE containing genes
constitute 91% of the oxidative phosphorylation signature.
These results support the idea that our signatures are
associated with the hypoxia status.

The whole signature, rather than individual genes, is
important for discriminating the hypoxic status. For exam-
ple, VEGF is a gene whose expression is strongly related to

hypoxia [45] and is part of the apoptosis and angiogenesis
classes, both of which are part of the hypoxia biological
group. However, the contribution of VEGF probesets is not
sufficient to reach the discriminatory power required to
generate a significant signature out of the angiogenesis class
as opposed to the apoptosis class.

The strong discriminatory power of the signatures can
be visualized by a 3-dimensional representation of the
probesets projected on their 3 principal components. l1-l2
algorithm produces a multigene model but the multidi-
mensional representation can be well approximated by the
tridimensional picture when the number of probesets is
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Table 3: Hypoxia signatures generated after data filtering.

Signatures
Probeset(1) Gene Name GeneBank(2) Apo(3) Gly(3) OxP(3) All(3)

201848 s at BNIP3 U15174 100 — — 100
201849 at BNIP3 NM 004052 83 — — 100
210512 s at VEGF AF022375 78 — — 100
211527 x at VEGF M27281 61 — — —
212171 x at VEGF H95344 61 — — —
219232 s at EGLN3 NM 022073 61 — — —
210513 s at VEGF AF091352 56 — — —
221478 at BNIP3L AL132665 56 — — —
221479 s at BNIP3L AF060922 56 — — —
222847 s at EGLN3 AI378406 56 — — —
202022 at ALDOC NM 005165 — 100 — 100
1558365 at PGK1 AK055928 — 72 — —
228483 s at PGK1 BE856250 — 72 — —
208972 s at ATP5G1 AF100741 — — 100 —
222270 at SMEK2 BF509069 — — 100 —
1554847 at ATP6V1B1 AY039759 — — 94 —
218201 at NDUFB2 NM 004546 — — 94 —
203189 s at NDUFS8 NM 005006 — — 89 —
203371 s at NDUFB3 NM 002496 — — 89 —
218200 s at NDUFB2 NM 013387 — — 89 —
203606 at NDUFS6 NM 002494 — — 83 —
204125 at NDUFAF1 NM 001687 — — 83 —
214241 at NDUFB8 BE043477 — — 78 —
230598 at KIAA1387 AI742966 — — 78 —
203190 at NDUFS8 NM 002496 — — 72 —
207335 x at ATP5I NM 006294 — — 72 —
208745 at ATP5L AF092131 — — 72 —
203039 s at NDUFS1 NM 021074 — — 67 —
203613 s at NDUFB6 NM 004553 — — 67 —
208746 x at ATP5L AA917672 — — 67 —
210453 x at ATP5L U33833 — — 67 —
211752 s at NDUFS7 AL050277 — — 67 —
228816 at ATP6AP1L AU153583 — — 67 —
207573 x at ATP5L NM 005176 — — 61 —
226616 s at NDUFV3 AW241758 — — 61 —
200096 s at ATP6V0E BC005876 — — 56 —
214923 at ATP6V1D AV717561 — — 56 —
226209 at NDUFV3 BC006215 — — 56 —
200078 s at ATP6V0B BC035703 — — 50 —
210206 s at DDX11 AF061735 — — 50 —
213378 s at DDX11 AV711183 — — 50 —
214244 s at ATP6V0E AA723057 — — 50 —
218190 s at UCRC NM 004549 — — 50 —
241755 at UQCRC2 BE467348 — — 50 —
243498 at ATP5J BG010493 — — 50 —
202887 s at DDIT4 NM 019058 — — — 94
223193 x at E2IG5 AF201944 — — — 94
224345 x at E2IG5 AF107495 — — — 89
225342 at AK3L1 AK026966 — — — 78
226452 at PDK1 AU146532 — — — 78
236180 at — W57613 — — — 61
235850 at WDR5B BF434228 — — — 50

(1)
Probeset ID according to Affymetrix HG-U133 Plus 2.0 GeneChip. (2)GenBank mRNA accession number. (3)Frequency score as calculated by l1-l2

regularization for the selected probesets in the hypoxia signatures compared to the All-Chip signature. Apo: apoptosis; Gly: glycolisis; OxP: oxidative
phosphorylation; All: All-chip.
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Table 4: Hypoxia gene signatures overlap and HRE analysis.

Signature(1) Gene Name(2) HRE(3)

Apoptosis

BNIP3 9
BNIP3L 5
EGLN3 3
VEGF 4

Glycolysis
ALDOC 3

PGK1 1

Oxydative Phosphorylation

ATP5G1 2
ATP5I 5
ATP5L 0

ATP6V0B 6
ATP6V0E 2
ATP6V0E 2

ATP6V1B1 0
ATP6V1D 1

DDX11 1
LOC92270 3
NDUFAF1 1
NDUFB2 1
NDUFB3 1
NDUFB6 1
NDUFB8 2
NDUFS1 3
NDUFS6 9
NDUFS7 2
NDUFS8 3
NDUFS8 3
NDUFV3 7
SMEK2 3
UCRC 2

UQCRC2 3

All-chip

AK3L1 4
ALDOC 3
BNIP3 9
DDIT4 1
E2IG5 5
PDK1 4
VEGF 4

WDR5B 3
(1)

Hypoxia gene signatures. (2)Multiple probesets were collapsed to single genes. The genes overlapping with Jögi et al. hypoxia signature are underlined in
bold. (3)Number of HRE sequences found in the promoter region.

not too large. Figure 1 depicts the separation of probesets
belonging to the glycolysis and shows that the two classes of
normoxic and hypoxic cell lines are clearly separated in the
multidimensional space.

In conclusion, we demonstrate that, upon data reduction
the l1-l2 algorithm can identify new hypoxia signatures
that have equivalent discriminatory power relative to that
obtained by the analysis of the whole transcriptome. From
the computational stand point, this process allows to reduce
the computer time by approximately 10 times, from days to

hours with an average machine, facilitating the analysis of
the data. Finally, it is important to highlight the possibility
of applying our method to different experimental settings by
choosing appropriate selection of GO processes.

Our prior knowledge-based method produces nested lists
of relevant probesets but does not highlight the correla-
tion among them [39], and it should be completed by a
postprocessing step depicting the correlation structure. The
correlation within the oxidative phosphorylation signature is
shown in Figure 2. We computed a distance matrix based
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of the dataset restricted to the selected probesets projected on their 3 principal components. Red squares (H) represent the cell lines in
hypoxic status and the blue circles (N) the corresponding cell lines in normoxic status. The numbers indicate the cell lines.
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Figure 2: Symmetrical heatmap of the correlation analysis for oxidative phosphorylation-signature probesets. The correlation values among
the 32 probesets selected by l1-l2 algorithm (ε = 100) for oxidative phosphorylation process are reported. The probesets, named accordingly
to Affymetrix HG-U133 Plus 2.0 GeneChip platform, have been subdivided into 8 clusters according to the similarity among their correlation
profiles by hierarchical clustering. Cluster ID is indicated at the top of the figure and correlation scale is reported on the right side.
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Table 5: Tuning the oxidative phosphorylation signature by changing the ε parameter.

Cluster(1) Probeset(2) Gene Name ε = 1(3) ε = 100(4)

1

203189 s at NDUFS8 89 89

203190 at NDUFS8 56 72

214241 at NDUFB8 94 78

210206 s at DDX11 — 50

211752 s at NDUFS7 — 67

213378 s at DDX11 — 50

226616 s at NDUFV3 — 61

241755 at UQCRC2 — 50

243498 at ATP5J — 50

2

203371 s at NDUFB3 56 89

218200 s at NDUFB2 72 89

218201 at NDUFB2 89 94

203606 at NDUFS6 — 83

218190 s at UCRC — 50

226209 at NDUFV3 — 56

3 1554847 at ATP6V1B1 100 94

4

200096 s at ATP6V0E 50 56

214244 s at ATP6V0E 72 50

214923 at ATP6V1D — 56

228816 at ATP6AP1L — 67

5 230598 at SMEK2 72 78

207335 x at ATP5I — 72

6
204125 at NDUFAF1 67 83

222270 at SMEK2 100 100

200078 s at ATP6V0B — 50

7

208745 at ATP5L 89 72

208746 x at ATP5L 72 67

210453 x at ATP5L 50 67

203039 s at NDUFS1 — 67

203613 s at NDUFB6 — 67

207573 x at ATP5L — 61

8 208972 s at ATP5G1 100 100
(1)

Cluster number according to Figure 2. (2)Probeset ID according to Affymetrix HG-U133 Plus 2.0 GeneChip. (3)Frequency score (%) as calculated by l1-l2
regularization for the selected probesets by setting ε = 1. (4)Frequency score (%) as calculated by l1-l2 regularization for the selected probesets by setting ε =
100.

on the expression values of the probesets and subdivided
it into 8 modules by hierarchical clustering. These modules
represent subgroups of correlated probesets that are posi-
tively or negatively associated to the hypoxic status. This
information is important to pick the correct probesets in
order to assess the expression of these markers in the in
vivo setting. Furthermore, these data lend themselves to the
tuning of the ε parameter that is part of the l1-l2 algorithm.

The output of the l1-l2 regularization algorithm depends
on the free parameter ε that governs the amount of correla-
tion allowed among the probesets and selects the amount of
probesets to be included in the signature. By setting ε = 100,
the maximal value, we can obtain a comprehensive signature
more descriptive of the biology of the system. By setting
ε = 1, we can obtain an equally discriminating signature

with fewer genes thereby more effective in identifying critical
biomarkers for diagnostic applications [5]. We analyzed
the effects of tuning ε on the oxidative phosphorylation
signature. The results are shown in Table 5, where the
probesets selected by l1-l2 regularization with both ε = 1 and
ε = 100 for oxidative phosphorylation are listed. The results
demonstrated that the reduction in ε is associated with a
smaller signature (from 32 to 16 probesets) as expected by
the fact that correlated probesets tend to be discarded.

4. Conclusions

The identification of signatures discriminating the hypoxic
status of the tumor cell may be important for our under-
standing of the biology of neuroblastoma tumors and for
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the stratification of the patients in risk groups. One way
to generate a robust and reliable hypoxic signature is
the application of a supervised approach represented by
l1-l2 regularization that generates an 11 probesets signature
discriminating the hypoxic status of our panel of nine
neuroblastoma cell lines.

Here, we demonstrate that l1-l2 feature selection algo-
rithm generates new and robust hypoxia signatures following
prior knowledge-based data filtering techniques as a prepro-
cessing to feature selection. These new signatures have the
same discriminatory power as that generated by the whole
data set and yield biologically relevant information in a
fraction of computer time.

The data filtering is based upon the use of the prior
information contained in GO and the literature, and it
allows restricting the analysis to smaller data sets. This
process filters out not only many noisy probesets but also
the probesets selected from the all-chip analysis whose
strong relation with hypoxia hid some weaker but important
genes. l1-l2 regularization algorithm following data filtering
selects probesets that were not the first chosen when all
the probesets were considered. The prior knowledge utilized
in setting up the filter, comes from the current literature
from which we derived the molecular pathways that are
important for the response of the cell to the hypoxic
environment. These pathways were gathered in the hypoxia
biological group. Interestingly, the new signatures were
found only in this group and not in other collections of
GO pathways like those related to the effects of the MYCN
oncogene or to the neuroblastoma biology. In general, the
identification of the GO classes related to the phenomenon
under investigation may be an empirical, but effective way to
target the potential source of signatures to be fed to the l1-l2
regularization. We speculate that this approach could be used
to address questions that go beyond the hypoxic status and
may find signatures characterizing other pathophysiological
situations provided that there is a relevant cellular model
and there are sufficient insights in the underlying molecular
mechanisms.

The nested structure of the selected gene lists allows
the choice of the desired level of complexity, which is the
magnitude of signature, maintaining all the information
extracted from the data. For example, the minimal list may be
preferable when interested in finding biomarkers to be used
on large-scale diagnostic tests due to potential constrains on
time, cost, and resources.

Finally, working on a limited number of probesets has
a major impact on the computational time required for the
analysis that changes from days to hours, thereby allowing
more leeway to the study of the dataset.
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[47] A. Jögi, J. Vallon-Christersson, L. Holmquist, H. Axelson, Å.
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