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Abstract
Background: Gene expression signatures are clusters of genes discriminating different statuses of the
cells and their definition is critical for understanding the molecular bases of diseases. The identification of
a gene signature is complicated by the high dimensional nature of the data and by the genetic heterogeneity
of the responding cells. The l1-l2 regularization is an embedded feature selection technique that fulfills all
the desirable properties of a variable selection algorithm and has the potential to generate a specific
signature even in biologically complex settings. We studied the application of this algorithm to detect the
signature characterizing the transcriptional response of neuroblastoma tumor cell lines to hypoxia, a
condition of low oxygen tension that occurs in the tumor microenvironment.

Results: We determined the gene expression profile of 9 neuroblastoma cell lines cultured under
normoxic and hypoxic conditions. We studied a heterogeneous set of neuroblastoma cell lines to mimic
the in vivo situation and to test the robustness and validity of the l1-l2 regularization with double
optimization. Analysis by hierarchical, spectral, and k-means clustering or supervised approach based on
t-test analysis divided the cell lines on the bases of genetic differences. However, the disturbance of this
strong transcriptional response completely masked the detection of the more subtle response to hypoxia.
Different results were obtained when we applied the l1-l2 regularization framework. The algorithm
distinguished the normoxic and hypoxic statuses defining signatures comprising 3 to 38 probesets, with a
leave-one-out error of 17%. A consensus hypoxia signature was established setting the frequency score at
50% and the correlation parameter ! equal to 100. This signature is composed by 11 probesets
representing 8 well characterized genes known to be modulated by hypoxia.

Conclusion: We demonstrate that l1-l2 regularization outperforms more conventional approaches
allowing the identification and definition of a gene expression signature under complex experimental
conditions. The l1-l2 regularization and the cross validation generates an unbiased and objective output with
a low classification error. We feel that the application of this algorithm to tumor biology will be
instrumental to analyze gene expression signatures hidden in the transcriptome that, like hypoxia, may be
major determinant of the course of the disease.
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Background
Clues to the prognosis of cancer are reflected at the time
of surgical removal in the pattern of gene expression in the
primary tumor. The ultimate goal is to identify specific
"gene expression signatures" that define subsets of tumors
and that will ultimately allow to predict the clinical
course. Unsupervised analysis of the gene expression pat-
tern has led to the definition of "gene expression signa-
tures" that add independent prognostic information to
that provided by a risk assessment based solely on clini-
cal-pathologic factors. One limitation of the unsupervised
cluster analysis is the lack of appreciation of the tumor
pathology, which makes these signatures difficult to inter-
pret with respect to the underlying cancer biology which
comprises the intrinsic properties of the cancer cell, such
as activation of transforming genes, and the response to
signals generated within the tissue microenvironment,
such as the hypoxic situation occurring in poorly vascular-
ized or necrotic areas of the tumor. Ultimately, finding
gene signatures that can be linked to the molecular mech-
anisms of cancer development is critical for translating
these markers into the clinic. Alternative strategies to com-
bine the prognostic value and biologic knowledge are
being developed. Specifically, gene expression signatures
are derived from in vitro studies on the pathophysiology
of the disease. This is a novel approach standing on the
concept that the tumor biology will give us the clues to
characterize the outcome of the disease.

In this manuscript, we address the above-mentioned
issues by developing a novel approach to identify the sig-
nature of low oxygen tension (hypoxia) in a set of neurob-
lastoma cell lines. Oxygen is essential for aerobic
metabolism in all mammalian cells. To maintain function
and homeostasis, cells have to be able to sense and
respond to inadequate oxygen levels. The O2 levels within
the neoplastic lesion are an important factor in determin-
ing the tumor phenotype [1] and hypoxia is associated
with metastatic spread, resistance to radio- and chemo-
therapy and poor prognosis [1-3]. The cellular response to
hypoxia is caused by changes in gene expression [4-6]
through the activation of several transcription factors
among which the hypoxia-inducible transcription factor-
1" (HIF-1") [1,7], and -2" (HIF-2") [8] are those taken as
indicators of a hypoxic status of the cell. HIFs transactivate
the hypoxia-responsive element (HRE) present in the pro-
moter or enhancer elements of many genes encoding ang-
iogenic, metabolic and metastatic factors [3,9,10].
Although hypoxia responses are thought to be evolution-
arily conserved in all mammalian cells [11,12] not every
cell responds to hypoxia in an identical fashion. Although
certain biochemical pathways are common hypoxia tar-
gets, the specific genes modulated by hypoxia within each
pathways will depend heavily on the nature, type and
genetic makeup of the responding cell [5,6,13]. In other

words, hypoxia-induced common biochemical pathways
may utilize different genes depending on the cell type.

Neuroblastoma is the most common pediatric solid
tumor, deriving from immature or precursor cells of the
ganglionic lineage of the sympathetic nervous system
(SNS) [14,15]. Neuroblastoma shows notable heteroge-
neity, with regard to both histology and clinical behavior
[16]. The outcome of the disease ranges from rapid pro-
gression and poor clinical outcome, to spontaneous
regression into benign ganglioneuroma [17]. The hetero-
geneity of neuroblastoma (NB) cells is found also in the
cell lines derived from the fresh tumors which manifest
various degree of differentiation and chromosomal alter-
ation. For example, the amplification and/or expression
of MYCN oncogene is a relatively frequent event, that is
indicative of poor prognosis in fresh tumors and is present
in several cell lines which share an aggressive behavior
[18]. Recent data of microarray analysis confirm the exist-
ence of different patterns of gene expression profile
among different NB cell lines [13]. The heterogeneity of
the NB cell transcriptome complicates the identification
of specific gene expression signatures associated to
defined biological responses such as environmental stim-
ulation that, albeit biologically very important, may be
overshadowed by major genetic alterations as those
caused by oncogenes which impact on several aspects of
cell physiology. This problem is of major concern when
several different NB cell lines have to be compared in in
vitro studies.

The problem of identifying a gene signature, namely a sig-
nificant group of variables, is aggravated by the typical
high dimensional nature of the data. Complexity grows
even more when the heterogeneity of the cells must be fac-
tored in. Several feature selection techniques have been
proposed to deal with these problems (for review see
[19]). The number of data available for a single study is
usually small with respect to the number of variables, and
it is crucial to adopt sound methodologies and strict
experimental protocols to ensure statistical robustness
[20]. Cross validation loops are valid approaches to avoid
selection bias [21] and to separate training and test
phases. The standard categorization proposed by Blum et
al. [22] groups variable selection techniques in three main
classes: filters, wrappers and embedded. Filters [23-25] are
mostly based on ranking criteria where the features are
ordered and then selected or discarded according to a
fixed threshold. These methods are broadly employed due
to their simplicity and fast computation, despite the lack
of guarantee that the selection is optimal with respect to
the class discrimination. In wrapper methods [26-28] the
relevance of a feature subset is determined according to
prediction performance of the learning algorithm itself,
though variable selection and training are two separate
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processes. In contrast, embedded methods [29-34] have
the advantage of incorporating feature selection within
the construction of the classifier or regression model, i.e.
as part of the training phase. We applied the embedded
feature selection technique l1-l2 regularization with dou-
ble optimization to the analysis of gene expression pro-
file. This technique is based on the optimization
presented by Zou et al. [35]. Theoretical studies [36] and
empirical experiments [37,38] showed that such tech-
nique fulfills all the desirable properties of a variable
selection algorithm. Indeed, the use of regularization
allows performing embedded feature selection in the
supervised learning framework, since the particular type
of penalty used in l1-l2 regularization forces the classifier
or the regression model to depend on a small number of
selected features. Another asset of l1-l2 regularization is
that it is multivariate by design since its solution is a clas-
sification or regression model that takes into account the
combined effect of multiple features, and the set of rele-
vant features is selected while looking at all the features at
the same time. A strong advantage of l1-l2 regularization
over other embedded methods is also its ability to take
into account correlation among variables. In other words,
when one variable is considered relevant to the problem,
its correlated variables are considered relevant as well.
While most feature selection techniques are based on heu-
ristics, l1-l2 regularization is asymptotically consistent
from the statistical viewpoint, i.e. theoretical results [36]
guarantee that the best possible estimator is found as the
number of training samples increases. Finally, the use of
the double optimization allows to identify the relevant
genes and to provide accurate discrimination. This
approach was successfully applied in different contexts
ranging from computer vision [37] to computational biol-
ogy [38].

In this study we demonstrate that the application of l1-l2
regularization allows to model the effect of low oxygen

tension, which was not detectable by supervised
approaches, and to find a cluster of genes discriminating
the normoxic and the hypoxic statuses of neuroblastoma
cell lines.

Results
Experimental model
We generated an experimental model consisting of 9 dif-
ferent neuroblastoma cell lines that were cultured in a
normoxic or hypoxic environment for 18 hrs. Table 1
shows the characteristics of the cell lines used. Each cell
line was derived from a different patient and displayed a
somewhat different phenotype. Four out of nine lines had
MYCN amplification according to the literature [15]. We
tested each cell line for MYCN mRNA expression and we
found association between MYCN amplification and
expression with the exception of SK-N-SH cell line in
which there was expression without amplification (Table
1). To establish whether each cell line was sensitive to
hypoxia, we measured by western blot analysis the induc-
tion of HIF-1" protein, a reliable indicator of cell exposed
to low oxygen tension. The results (Figure 1) demonstrate
that every cell line responded to hypoxia with a strong
induction of HIF-1" protein, providing the biological val-
idation of the model system. RNA was then extracted,
processed and the gene expression profile was determined
using the Affymetrix HG-U133 Plus 2.0 GeneChips. Thus,
the dataset is represented by a n × p matrix, where n = 18
is the number of samples represented by normoxic or
hypoxic neuroblastoma cell lines and p = 54613 is the
number of probesets of the Affymetrix GeneChip.

Unsupervised clustering analysis
The purpose of our analysis was to determine the hypoxia
signature by utilizing a strategy based on discriminative
rules to detect the hypoxic status that does not depend on
the specific cell line. We applied unsupervised analysis to
the data set in order to determine whether the clustering

Table 1: NB cell lines used and the relative characteristics

Cell line MYCN Patienta) Tumor characteristicsa)

name Morphologyb) amplification Expressionc) Aged) sex primary site metastatic sitee)

ACN neuroblast (N) - - 3.3 M abdomen BM, bone
SHEP-2 epithelial (S) - - 4 F thorax BM

GI-ME-N neuroblast (N) - - 2 F adrenal LN, BM
SK-N-F1 epithelial (S) - - 11 M unknown BM
SK-N-SH neuroblast/epithelial (I) - + 4 F thorax BM

SK-N-BE(2)c neuroblast/epithelial (I) + + 2.2 M unknown BM
IMR-32 neuroblast (N) + + 1.1 M abdomen unknown
LAN-1 neuroblast (N) + + 2 M unknown BM, bone, LN
GI-LI-N neuroblast (N) + + 1.11 F adrenal BM

a)For references on specific items see [15]. b)N = neuroblastic; S = substrate adherant; I = intermediate. c)Measured by northern blotting. (-) = 
below detection; (+) = higly expressed (see materials and methods). d)Expressed as years.month. e)BM = bone marrow; LN = lymphnode
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discriminated between normoxic and hypoxic status. We
first used hierarchical clustering with correlation distance
as similarity measure (complete linkage). The dendro-
gram (Figure 2) shows that the cell lines cluster into two
main groups. One cluster comprises ACN N/H, SHEP-2
N/H, and GI-ME-N N/H, whereas the second comprises
SK-N-BE(2)C N/H, IMR-32 N/H, SK-N-F1 N/H, LAN-1 N/
H, and SK-N-SH N/H cell lines. The hierarchical clustering
demonstrated the existence of at least two groups of cell
lines but did not separate the hypoxic from the normoxic
transcriptome. Each cell line in normoxic status pairs with
the corresponding hypoxic one because the distance
between the two statuses of the same cell line is smaller
than that between cell lines. We tested whether other
unsupervised analysis techniques could distinguish the
hypoxic status. We used spectral clustering and k-means
techniques that may have a different performance. We
found that the pattern of results was exactly the same
across the various tests and clustered the cell lines, but not
the hypoxic status, into two groups as it can be seen in Fig-
ure 3 where we projected each cell line on the three direc-
tions defined by Principal Component Analysis (PCA),
and visualized them in the corresponding 3D-space. Clus-
tering techniques are not endowed with a natural statisti-
cal score to asses the significance of the results and the
reliability of the test is based on the comparison of the
results obtained with different clustering techniques. The
absolute concordance that we observed using three tech-
niques argues for a good reliability of the results. We con-
clude that hypoxia unrelated responses associated with
the nature of the cell lines mask the changes in gene
expression associated with the transition to a hypoxic sta-
tus. Visual inspection of the characteristics of the cell lines
depicted in Table 1 indicated that MYCN expression/
amplification could be one factor dichotomizing the cell
lines. Major transcriptional changes in response to genes
of the MYC family were described [39]. The highest corre-
lation (correlation index of 0.89) was found between the
obtained clusters and MYCN expression. SK-N-F1 repre-

sents the only exception because it does not express
MYCN but it clusters with the MYCN positive cell lines.

In conclusion, the unsupervised approaches detected
major transcriptome differences among the cell lines
driven in part by the cascade of events triggered by MYCN
expression. However, the disturbance generated by this
transcriptional pattern was such that the detection of
more subtle changes induced by hypoxia was completely
masked.

Supervised univariate analysis hypothesis test
In order to identify the hypoxia signature of the neurob-
lastoma cell lines, we attempted the classic approach of
searching for probesets having different expression levels
in the cells following exposure to low oxygen. We applied
a t-test analysis with Benjamini-Hochberg correction [40]
for multiple testing (p-value < 0.01). However, we did not
identify any differentially expressed probesets between
the two groups (Figure 4). Since the clusters identified by
the unsupervised procedures are highly correlated with
MYCN expression, we also applied a t-test analysis when
the cell lines are divided into two classes based on MYCN
expression (see Table 1). We found 4246 differentially
expressed probesets comparing MYCN positive and nega-
tive cell samples and 65 differentially expressed probesets
comparing normal and MYCN amplified samples (Figure
4). We conclude that the differential gene expression asso-
ciated with hypoxia can not be brought out from the noise
of other signals such as MYCN, with a classic supervised
approach.

Supervised multivariate l1-l2 regularization analysis
The impossibility to obtain a robust hypoxia signature by
the previously described approaches prompted us to con-
sider different algorithms based on a robust supervised
variable selection technique, capable of detecting the
hypoxia-induced transcriptome even in the presence of
the disturbance of a strong competing signal. Toward this
aim, we utilized the l1-l2 regularization algorithm accord-

Induction of HIF-1" by hypoxia in NB cell linesFigure 1
Induction of HIF-1" by hypoxia in NB cell lines. Western blot analysis of HIF-1" levels at normoxia (N) and hypoxia (H) 
in the 9 cell lines listed on top of the blot. Cells were cultured under normoxic or hypoxic (1%O2) condition for 18 hrs. Total 
protein lysates were analyzed by western blot using a mAb specific for human HIF-1". A protein marker was run as a molecu-
lar-sized standard. The blot was rehybridized with anti-#-actin mAb to control for protein loading.
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ing to the experimental protocol previously described
[41]. The output depends on one free parameter ! that
governs the amount of correlation allowed among the
selected variables; the higher the !, the more probesets are
taken into account. We worked at the definition of a sig-
nature analyzing simultaneously all the probesets on the
chip, thereby dealing with 54613-dim vectors. The system
is characterized by a leave-one-out error of 3 out of 18
(17%) and it performed the validation loop producing 18
lists for each ! value. A common list was obtained as the
union of the 18 lists, with a frequency score counting how
many times each probeset was selected by the algorithm
in the 18 cross validation loops. The results are shown in

Figure 5, where the number of selected probesets is plot-
ted against their frequency, for two values, 1 and 100, of
the correlation parameter !. The algorithm was able to
identify a list of probesets that discriminated normoxic
and hypoxic neuroblastoma cell lines despite the afore-
mentioned disturbance in gene expression. Depending on
the frequency score, the algorithm defined signatures
comprising a number of probesets ranging from a maxi-
mum of 38 to a minimum of 3. The definition of one con-
sensus hypoxia signature can be obtained setting the
frequency threshold based on the behavior of each !
curve. The minimal list is obtained for values of ! equal to
or lower than 1, whereas the largest list, which is correla-

Hierarchical clustering dendrogramFigure 2
Hierarchical clustering dendrogram. Hierarchical clustering analysis of the 18 samples, listed at the bottom of the figure, 
representing the 9 cell lines in normoxic (N) or hypoxic (H) conditions using gene expression data of 54613 probesets. We 
used the correlation distance as similarity measure and complete linkage as cluster distance. Lines represent the probesets' 
expression and columns represent the samples. The correlation is shown above the dendrogram.

N H N H N H N H N H N H N H N H N H

GI-LI-N SK-N-SH IMR-32ACN SHEP-2 GI-ME-N SK-N-BE2(C)SK-N-F1 LAN-1
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tion aware, is obtained for ! equal to 100. Due to the noisy
nature of the dataset the system produced many unstable
probesets whose relative frequency was lower than 30%.
By observing the frequency curves in Figure 5, it can be
noted that a plateau is present between 30% and 70% and
we set the frequency threshold at the intermediate fre-
quency of 50% (9/18). We set ! equal to 100 because we
wanted to include every probesets concurring in the iden-
tification of the hypoxia status. The resultant consensus
hypoxia signature is composed by the 11 probesets shown
in Table 2 where they are sorted according to their selec-
tion frequency. These probesets represent 8 well character-
ized genes related to angiogenesis, apoptosis, glycolysis,
and metabolism that are known to be induced by hypoxia
in cells of different lineage (see references in Table 2).

W57613 transcript, whose function is still unclear, was
not previously known to be inducible by hypoxia.

The expression levels of the selected probesets in the 18
samples are represented as a heatmap (Figure 6) which
show a unequivocal partition of expression between nor-
moxic and hypoxic cell lines. The actual levels of expres-
sion of the 11 probesets in the hypoxic and normoxic
samples are shown in Figure 7 as a univariate representa-
tion in the log-scale expression. Although the normoxic
and hypoxia statuses of each cell line are separated by the
probesets expression, the gap is not equally large for all
probesets and some overlapping in the selected cell lines
is noticeable. The observation that, by projecting on the
single probeset, the two statuses are only approximately

3D Visualization of unsupervised analysisFigure 3
3D Visualization of unsupervised analysis. 3D projection via principal component analysis (PCA) of the clusters obtained 
with three clustering techniques (K-means, hierarchical clustering, and spectral clustering) applied to the 18 samples represent-
ing the 9 cell lines in normoxic (N) or hypoxic (H) conditions using gene expression data of 54613 probesets. The cell lines 
belonging to the cluster 1 (ACN N/H, SHEP-2 N/H, and GI-ME-N N/H) are represented by yellow stars while the cell lines 
belonging to the cluster 2 (SK-N-BE(2)C N/H, IMR-32 N/H, SK-N-F1 N/H, LAN-1 N/H, and SK-N-SH N/H) are represented 
by green triangles.



BMC Genomics 2009, 10:474 http://www.biomedcentral.com/1471-2164/10/474

Page 7 of 16
(page number not for citation purposes)

separated may be attributed to the heterogeneity of the
response of cell lines to hypoxia. The latter would cause
differential modulation of probesets in the various cell
lines, and individual probesets may not be perfectly split
between the two statuses. However, these considerations
do not impact on the strength of the consensus hypoxia
signature that owes its robustness to its multivariate
nature. The strong discriminative power of the consensus
signature by a multivariate representation of the 11
probesets is shown in Figure 8. In order to obtain a 3D
representation, the data submatrix is projected on its 3
principal components, i.e. the components of maximum

variance. It is evident that two classes of normoxic and
hypoxic statuses are clearly separated in the multidimen-
sional space. This is due to the fact that l1-l2 regularization
produces a multi-gene model and only the multidimen-
sional representation can correctly visualize its strong dis-
criminative power.

We conclude that l1-l2 regularization algorithm was able
to identify 11 stable probesets that clearly separated the
hypoxic from normoxic cell lines even in the case of the
disturbance generated by the genetic alterations of the cell
lines. Therefore, this cluster represents the consensus

T-test analysisFigure 4
T-test analysis. Number of probesets differentially expressed (Y-axis) according to the t-test analysis with Benjamini-Hoch-
berg multiple testing correction (p-value < 0.01). The analysis was performed searching for differentially expressed probesets 
between MYCN expressing vs. MYCN not expressing cell lines (MYCN expression); MYCN amplified vs. MYCN not amplified 
cell lines (MYCN amplification); normoxic vs. hypoxic cell lines (hypoxia).
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Table 2: Hypoxia signature

probeset1) Gene Name GenBank2) f%3) Description References4)

201848_s_at BNIP3 U15174 100 BCL2/adenovirus E1B 19 kDa interacting protein 3 [49]
202887_s_at DDIT4 NM_019058 100 DNA-damage-inducible transcript 4 [49]
226452_at PDK1 AU146532 100 pyruvate dehydrogenase kinase; isoenzyme 1 [63]
236180_at - W57613 100 Transcribed locus, hypothetical protein FLJ11267 -

223193_x_at E2IG5 AF201944 94 growth and transformation-dependent protein [50]
225342_at AK3L1 AK026966 94 adenylate kinase 3-like 1 [4]

224345_x_at E2IG5 AF107495 89 growth and transformation-dependent protein [50]
202022_at ALDOC NM_005165 78 aldolase C; fructose-bisphosphate [63]

210512_s_at VEGF AF022375 78 vascular endothelial growth factor [4,63]
201849_at BNIP3 NM_004052 61 BCL2/adenovirus E1B 19 kDa interacting protein 3 [49]
235850_at WDR5B BF434228 50 WD repeat domain 5B [64]

a)Probesets selected for frequency = 50% and ! = 100. b)GenBank accession number. c)Selection frequency in leave-one-out cross-validation. 
d)Representative references describing the induction of the correspondent gene by hypoxia

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=U15174
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_019058
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AU146532
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=W57613
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF201944
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AK026966
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF107495
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_005165
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF022375
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_004052
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BF434228
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hypoxia signature hidden in the neuroblastoma cells tran-
scriptome that we wanted to sort out.

Finally, we tested the ability of our signature to discrimi-
nate the hypoxic status in an out-of-sample schema. We
considered two public datasets consisting of the gene
expression profiles of primary cultures of immature den-
dritic cells [6] and of human astrocytes in response to
hypoxia [42]. In both cases, we restricted the expression
matrices to the 11 probesets and then applied regularized
least squares in a leave-one-out cross validation loop, esti-
mating the corresponding generalization error (see Table
3). In the astrocytes dataset, we assessed a cross validation
error of 17%, comparable to that of the neuroblastoma
cell lines. Gene Set Enrichment Analysis (GSEA) of our 11
probesets against neuroblastoma and astrocytes datasets
also showed a significant enrichment in the hypoxic phe-
notype. In contrast, our 11 probesets signature showed a
higher cross validation error when applied to dendritic
cells (33%) and was not significantly enriched in the
hypoxic phenotype (Table 3). These results indicate that
our signature can be applied successfully to hypoxic sys-
tems, other than neuroblastoma, depending on the line-
age/differentiation of the responding cell type.

Discussion and Conclusion
We have analyzed the gene expression profile of 9 cell
lines cultured in a normoxic or hypoxic environment in
order to identify the hypoxia signature. We demonstrated
that, differently from unsupervised approaches, l1-l2 regu-
larization with double optimization identified a cluster of
11 stable probesets separating hypoxic from normoxic cell
lines even when hidden in the neuroblastoma cells tran-
scriptome characterized by the high disturbance of genetic
alterations. Biological signatures can be derived from cell
lines based datasets using many different informatics
approaches (for review see [19]). This is the first report
describing the use of the l1-l2 regularization with double
optimization protocol described in [38] to distinguish
datasets based on the biological status of the cells.

The first attempts to identify the hypoxia signature relied
on three different unsupervised clustering analyses. These
approaches detected major differences among the tran-
scriptome of the cell lines driven by the characteristics of
the cell lines themselves of which the cascade of events
triggered by MYCN expression was a major component.
However, the disturbance generated by these transcrip-
tional patterns was such that the detection of more subtle
changes induced by hypoxia was completely masked. This
conclusion is supported by the results obtained with the
supervised univariate analysis t-test which was able to
identify a strong response associated to MYCN expression
and, to a lesser extent to MYCN amplification, but not the
hypoxia dependent response. The heterogeneity of neu-
roblastoma and neuroblastoma cell lines has been previ-
ously observed [43].

The impossibility to obtain a hypoxia signature by unsu-
pervised approaches prompted us to consider different
algorithms based on a robust supervised variable selection
technique, capable of detecting the hypoxia-induced tran-
scriptome even in the presence of the disturbance of a
strong competing signal. The l1-l2 regularization allowed
us to build a powerful discriminative rule and to define a
signature of probesets also taking into account the pres-
ence of variables (probesets) correlated (collinear) with
each other. The use of cross validation allows the selection
protocol to generate an unbiased and objective output
[21] beyond the theoretical results that guarantee the
robustness of the core algorithm [36]. The strong discrim-
inative power is proven by the 17% classification error
that is a very low value when dealing with 18 samples and
nearly 50 thousands variables.

We adopted a validation framework based on a double
loop of leave-one-out cross-validation in order to extract
unbiased estimates of the classification error. The outer
loop produces 18 lists of relevant variables, from which
we extract a common list by setting a frequency threshold.

Relative frequency in the 18 lists of the cross-validation loopFigure 5
Relative frequency in the 18 lists of the cross-valida-
tion loop. Relative frequency of the selected probesets for ! 
= 1 and ! = 100 when l1-l2 regularization is applied to the 
54613 probesets. The blue line indicates ! = 1 (minimal list). 
The green line indicates ! = 100 (correlation aware list). The 
graph shows the number of probesets selected by the algo-
rithm for the two ! (Y-axis) at increasing frequency (X-axis). 
When we consider a threshold on the frequency at 50% we 
select 11 probesets with ! = 100 and 9 with ! = 1 (vertical 
red dashed line).
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It can be appreciated from visual inspection of the fre-
quency distribution that, for values lower than 30%, a
large number of probesets is included, which are
extremely unstable. For frequency above 70%, the
number of selected probesets slowly decreases, and a pla-
teau is present between 30 and 70%. Therefore, we set our
frequency threshold to 50% that is the intermediate value
of such a frequency plateau. The correlation parameter !
can be potentially tuned between 0 and +$ in order to
extract lists of probesets with different correlation degree.
However, values of ! equal to or smaller than 1 provide
the same minimal list which comprises 9 probesets. This

list is minimal in that it does not include correlated
probesets, and it can be viewed as the smallest set of vari-
ables needed to predict the hypoxic status without any
prior information. Conversely, by increasing the correla-
tion parameter ! we are able to expand the list to 11
probesets, which is obtained for ! % 100. Since we are
interested in all genes involved in the hypoxic condition,
we define such a correlation-aware list as our hypoxia sig-
nature in neuroblastoma cell lines. This signature identi-
fies also hypoxic status in astrocyte cell lines. We
estimated a similar low cross validation error demonstrat-
ing that its application goes beyond the neuroblastoma

Heatmap for the ! = 100 signature with frequency cut at 50%Figure 6
Heatmap for the ! = 100 signature with frequency cut at 50%. Normalized expressions for the 11 selected probesets 
in the 18 samples, listed at the bottom of the figure, representing the 9 cell lines in normoxic (N) or hypoxic (H) conditions. 
Red hues correspond to high expression, while blue indicates low expression values.
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lineage and providing an additional proof of its discrimi-
natory power on out-of-set data. However, the neuroblas-
toma hypoxia signature is less efficient in discriminating
hypoxic dendritic cells indicating the existence of a lim-
ited spectrum of hypoxic cell types that can be identified
by this signature. Dendritic cells are terminally differenti-
ated mononuclear phagocytes, biologically very far from
the other cell types, deriving from hematopoietic precur-
sors, short lived and programmed to serve as immu-
nomodulatory cells [44]. This conclusion supports the
concept of the heterogeneity of the response to hypoxia in
different cell types [13,42,43]. The enrichment of the 11
probeset signature in the hypoxic phenotype of neurob-
lastoma cells and astrocytes provides biological validation
of our approach by establishing a clear link between our
signature and the hypoxic microenvironment.

The 11 probesets represents 8 genes all of which are
known from the literature to be modulated by hypoxia in

different cell types and to be part of key biological proc-
esses associated with the response to hypoxia, indicating,
once more, the biological roots of our signature. ALDOC
and PDK1 belong to the glycolytic pathway and are
known to be up regulated by hypoxia in neuroblastoma
[45]. Potentiating of the oxygen-independent glycolytic
pathway to comply with the energy demand, is one of the
major cellular response to hypoxia [46]. The energetic bal-
ance in cell metabolism has to be controlled by different
mechanisms. For example, AK3L1 is known to be modu-
lated by hypoxia and catalyzes the interconversion of ade-
nine nucleotides playing an important role in cellular
energy homeostasis in mitochondria [47]. DDIT4,
induced by hypoxic stimulus, is an inhibitor of the mTOR
signalling pathway, that results in inhibition of protein
synthesis which, in turn, may affect the cellular tolerance
to hypoxia by promoting energy homeostasis [48]. VEGF,
a direct target of HIF-1, is secreted by a large variety of dif-
ferent hypoxic cells and promotes angiogenesis thereby

Univariate representation of the cell lines based on the correlation aware listFigure 7
Univariate representation of the cell lines based on the correlation aware list. The graph shows the log-scale 
expression (Y-axis) for each of the 11 probesets selected in the signature measured on the NB cell lines (X-axis). The red 
square represents the cell line in hypoxic status, whereas the blue circle indicates the cell line in normoxic status.
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favouring tumor growth and metastasis [4]. BNIP3 and
E2IG5 are two genes promoting hypoxia-induced apopto-
sis observed mainly at very low oxygen concentrations
[49]. E2IG5 is localized to mitochondria and facilitates
apoptotic cell death via permeability transition, cyto-
chrome c release, and caspase 9 activation [50]. Hypoxia
is also known to increase histone H3 methylation through
histone methyltransferase G9a [51]. WDR5B encodes for
a protein that is the core component of histone methyla-
tion complexes, which are essential for histone H3 meth-
ylation. Thus, hypoxia might regulate chromatin
organization and gene transcription by modulating
WDR5B. Finally, the GenBank entry W57613 is part of the
signature it is associated with a transcribed hypothetical

3D projection of the cell linesFigure 8
3D projection of the cell lines. This figure illustrates a 3-dimensional visualization of the data set restricted to the 11 
selected probesets. The 3D representation is obtained by projecting the data submatrix onto its 3 principal components i.e. 
the components of maximum variance. Red squares, from 1H to 9H, represent the cell lines in hypoxic status and the blue cir-
cles, from 1N to 9N the corresponding cell lines in normoxia.

Table 3: Out-of-sample validation

Cross validation GSEA analysis

Cell type errora) NESb) p-Valuec) FDRd)

neuroblastoma 17% 1.89 <0.01 0
astrocyte 17% 1.60 <0.01 0.045

dendritic cell 33% 1.19 0.21 0.869

a)Leave-one-out cross validation error estimated with regularized 
least squares. b)GSEA normalized enrichment score for the hypoxia 
signature gene set. c)Statistical significance of the enrichment score for 
the gene set. d)q-Value of the false discovery rate. Values < 0.25 are 
considered acceptable.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=W57613


BMC Genomics 2009, 10:474 http://www.biomedcentral.com/1471-2164/10/474

Page 12 of 16
(page number not for citation purposes)

protein FLJ11267 and was not previously known to be
induced by hypoxia.

The novelty of our work is to introduce a rigorous and
robust feature selection technique that can be exported to
other experimental models and that is able to identify dis-
criminative genes even in an adverse setting where the cell
lines express great heterogeneity. The hypoxia signatures
present in the literature show different sizes and composi-
tion [4,42,52-54]. The MSigDB [55] represents a valuable
source of gene sets associated to the response to hypoxia.
A first attempt to discuss our 11 selected probesets within
the contest of 9 hypoxia signatures contained in the
MSigDB is based on the analysis of the overlap among sig-
natures (Table 4). One limitation of this comparison is
that it must be based on gene names rather than
probesets, because of the heterogeneity of the platforms.
All the genes of our hypoxia signature, but one, are repre-
sented at least once in the 9 signatures. DDIT4 is the only
hypoxia inducible gene that is included only in our signa-
ture. This comparison lends further support to the conclu-
sion that the l1-l2 algorithm selected biologically relevant
genes that have been included in other hypoxia signa-
tures. There are at least three major reasons for the varia-
bility among the hypoxia signatures. The first is the
diversity of the cell types as shown by Chi et al. [13] and
Mense et al. [42] and supported by the observations on
the heterogeneity among neuroblastoma cell lines by
Fredlund et al. [43] and ourselves in this paper. Each cell
responds to hypoxia on the bases of its own genetic make
up, epigenetic constrains and differentiation stage. In fact,
we show that our signature does not apply to dendritic
cells, that are biologically very different from astrocytes
and neuroblastoma. The second reason is the difference in
the experimental setting and gene expression platforms.
The need to collapse the microarray probes to gene names
for comparisons is a direct consequence of this problem.
The third, and more important issue, is the criterion used
for assembling the signature. The majority of the signa-
tures described so far, are based upon the representation
of hypoxia associated biochemical pathways or the inclu-
sion of differentially expressed genes rather than the
essentiality and the discriminating power that we have
chosen. Having defined the hypoxia signature as the min-
imal number of probesets capable of distinguishing nor-
moxic and hypoxic gene expression profiles, our list is
relatively short, not specific for a biochemical pathway,
not relying on prior biological knowledge, but endowed
with high discriminating power.

The classification performance of our signature is evident
in representations that indicate as first approximation the
up-regulation of the signature in hypoxic condition. How-
ever, the multidimensional visualization is needed to
fully appreciate the strong discriminative power of our sig-

nature because it takes into account its multivariate
nature. In fact, when projecting over the individual
probesets of the signature, the two classes are only approx-
imately separated, since they appear either partially over-
lapping or very close. Indeed, since the l1-l2 regularization
is a multivariate method, there is no need to expect a sin-
gle probeset to have perfect discriminatory power on the
classes, but one has to take into account the 11-dimen-
sional model. While the normoxic cell lines are highly
grouped and close to low expression values, the hypoxic
lines are well spread over the multidimensional space,
though well separated by the normoxic ones. Again, this
behavior can be detected only by means of a multivariate
analysis, since the analysis of individually regulated genes
allows detecting only those probesets which multidimen-
sional representation would see the hypoxic cell lines very
well lumped together.

The advances in genome biology provide a growing and
impressive amount of data. The challenge is to unmask
specific, biologically relevant gene clusters that may be
hidden by the disturbance of changes in an overwhelming
number of unrelated genes. Our study demonstrated that
the l1-l2 regularization framework is able to discriminate
between two statuses of a cell that, albeit biologically very
different, does not elicit a modulation of gene expression
comparable in magnitude to that induced, for example,
by genetic alterations. This scenario mimics the situation
occurring in the tumor mass in which the signal will be
perceived by cell differing in their genetic makeup, differ-
entiation and progression in the cell cycle. The strategy
described here can be readily applied to the detection of
the response to other environmental signals such as small
metabolites or pH changes to allow the creation of a data-
base of tissue environment related variables that will ulti-
mately be a great asset in unraveling the biology of the
tumor and the possibly the description of better prognos-
tic signatures.

Table 4: Hypoxia gene signatures overlapping

Gene Name Overlap frequencya)

DDIT4 0/9
PDK1 1/9

WDR5B 1/9
AK3L1 2/9
E2IG5 2/9

ALDOC 3/9
VEGF 4/9
BNIP3 5/9

a)Frequency of appearance of the genes in the 9 hypoxia signatures 
obtained from MsigDB (HYPOXIA_RCC_UP, 
MANALO_HYPOXIA_UP, 
MENSE_HYPOXIA_APOPTOSIS_GENES, HYPOXIA_FIBRO_UP, 
MENSE_HYPOXIA_TRANSPORTER_GENES, 
HYPOXIA_RCC_NOVHL_UP, HYPOXIA_REVIEW, 
MENSE_HYPOXIA_UP, HYPOXIA_NORMAL_UP).
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Methods
Cells and culture conditions
The human neuroblastoma cell lines GI-LI-N, ACN, GI-
ME-N, IMR-32, LAN-1, SK-N-BE(2)C, SK-N-F1, and SK-N-
SH were purchased from the Interlab Cell Line Collection
and SHEP-2 was kindly provided by Dr. Schwab (Division
of Tumour Genetics, German Cancer Research Centre,
Heidelberg, Germany). The cell lines were cultured in
RPMI 16140 (Euroclone Ltd., Celbio, Milan, Italy), sup-
plemented with 10% heat-inactivated fetal bovine serum
(Sigma, Milan Italy), 2 mmol/L L-glutamine, 10 mM
Hepes, 100 units/mL penicillin, and 100 &g/mL strepto-
mycin (Euroclone Ltd), at 37°C in a humidified incubator
containing 20% O2, 5% CO2, and 75% N2. Hypoxic con-
ditions (1% O2) were achieved by culturing the cells in an
anaerobic workstation incubator (BUG BOX, Jouan, ALC
International S.r.l., Cologno Monzese, Milano, Italy)
flushed with a gas mixture containing 1% O2, 5% CO2,
and balanced N2 at 37°C in a humidified atmosphere.
Oxygen tension in the medium was measured with a port-
able, trace oxygen analyzer (Oxi 315i/set, WTW; VWR
International, Milano, Italy).

Western blotting
Western blot analysis was done as detailed in [56]. Briefly,
total cell lysates (100 &g) were electrophoresed on a 8%
SDS-PAGE and electroblotted to Immobilon-P nitrocellu-
lose membranes (Millipore, Billerica, MA). Immunoblot-
ting was done with anti-HIF-1" mouse monoclonal
antibody (BD Biosciences, San Jose, CA). An anti-#-actin
mAb (Sigma) was used as an internal control for loading.
Detection was carried out by enhanced chemilumines-
cence (Pierce, Rockford, IL) with peroxidase-conjugated
goat anti-mouse or anti-rabbit antibodies (Sigma). Quan-
titative assessment of band intensities was carried out
with the VersaDoc Image Analyzer (Bio-Rad, Hercules,
CA).

RNA extraction and northern blotting
Total RNA was extracted from cell lines using Trizol (Inv-
itrogen Life technologies, Irvine, CA) according to the
manufacturer's instructions. RNA was resuspended in die-
thyl pyrocarbonate-treated H2O (DEPC water), the phys-
ical quality control of RNA integrity was carried out by
electrophoresis using Agilent Bioanalyzer 2100 (Agilent
Technologies Waldbronn, Germany) and quantified by
NanoDrop (NanoDrop Technologies Wilmington, Del-
awere USA). 2 &g of total RNA from each sample were
electrophoresed under denaturing conditions on a 1.2%
agarose gel containing 2.2 mol/L formaldehyde and trans-
ferred to Nytran membranes. A RNA marker was run in
parallel as a molecular-sized standard. Filter hybridization
was done with 2 × 106 cpm/mL of 5'-["32P]dCTP-labeled
human MYCN cDNA, in Hybrisol I hybridization solu-
tion (Oncor, Gaithersburg, MD) as described previously

[57]. Blots were autoradiographed with Kodak XAR-5 film
(Eastman Kodak, Rochester, NY), and quantitative assess-
ment of the band intensities was carried out with the Ver-
saDoc Image Analyzer (Bio-Rad Laboratories, Hercules,
CA).

Microarray experiments
Total RNA from neuroblastoma cell lines in normoxic and
hypoxic conditions was reverse transcribed into cDNA
and biotin labeled according to the Affymetrix instruc-
tions (Affymetrix, SantaClara, CA). Biotin-labeled cRNA
was cleaned up with the Qiagen RNeasy Mini kit and eth-
anol precipitation, checked for quality with Agilent Bioan-
alyzer 2100, and fragmented by incubation at 94°C for 35
min in 40 mmol/L Tris-acetate (pH 8.1), 100 mmol/L
potassium acetate, and 30 mmol/L magnesium acetate.
Fragmented cRNA was used for hybridization to Affyme-
trix HG-U133 Plus 2.0 arrays. GeneChips were scanned
using an Affymetrix GeneChip Scanner 3000. All microar-
rays were examined for surface defects, grid placement,
background intensity, housekeeping gene expression, and
a 3':5' ratio of probe sets from genes of various lengths.
Gene expressions were then extracted from CEL files and
normalized using the Robust Multichip Average (RMA)
method [58] by running a R script using the Bioconductor
[59] package affy [60].

The complete data set for each microarray experiments
(accession number GSE15583) was uploaded in the Gene
Expression Omnibus public repository at National Center
for Biotechnology Information.

Unsupervised methods
We adopted three clustering methods, k-means, hierarchi-
cal clustering and spectral clustering [61]. K-means and
hierarchical clustering require defining a similarity meas-
ure (or a distance) between points and a corresponding
distance between a point and a cluster. K-means proce-
dure follows a simple and easy way to classify a given data
set through a certain number of clusters (assuming k clus-
ters) fixed a priori. The main idea is to define k centroids,
one for each cluster. These centroids should be placed in
a cunning way because of different location causes differ-
ent results. Hierarchical clustering proceeds by agglomer-
ating into clusters points that are similar to each other or
similar to a previously found group of points. The algo-
rithm stops when all the points and the clusters collapse
in a single cluster. The user is asked to decide when to stop
the procedure hence defining the number of clusters to be
found. The results of the clustering procedure can be visu-
alized using the so called dendrogram. We used correla-
tion distance as a similarity measure among points and
complete linkage as clusters distance. Spectral clustering is
based on the idea of recursively dividing the data into
homogenous clusters. As the number of data increases the
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obtained clusters converge to an ideal/optimal clustering.
The algorithm requires defining a similarity among the
examples in the data set. Such a similarity function is used
to build the so called Graph Laplacian. If we denote with
W the n × n similarity matrix among the examples in the
data set and D the diagonal matrix whose entries are the
sum of the rows in W, then the Graph Laplacian is defined
as L = I-W/D. This latter is a n × n matrix whose eigenvec-
tors have special meaning. The second eigenvector in fact
allows partitioning the data in two disjoint sets. Each
entry of the vector is associated to an example. Examples
corresponding to positive entries are assigned to a cluster
and examples corresponding to negative entries are
assigned to another cluster. More clusters are defined
looking at the following eigenvectors (multiway spectral
clustering) or recursively applying the procedure on each
cluster separately. The eigenvectors of the Graph Lapla-
cian has a further property. Similarly to principal compo-
nents analysis (PCA) they can be used to perform
dimensionality reduction. The corresponding procedure
is known as Laplacian-eigenmaps. Differently to PCA
where the data are projected on the directions of maximal
variance, in Laplacian-eigenmaps the first eigenvectors
entail the direction preserving the distance among the
examples. This last property makes Laplacian-eigenmap
an ideal tool for data visualization. In spectral clustering,
for each sample we evaluate the average of the distances
with its 5 nearest neighbors and select ' as the average
over all the considered samples

Supervised methods for gene selection - l1-l2 regularization
Our approach to feature selection is the l1-l2 regularization
with double optimization described in [38]. The method
is based on the optimization principle presented in [35]
and further developed and studied in [36]. To illustrate
such method we first fix some notation in the learning
framework. Assume we are given a collection of n exam-
ples/subjects, each represented by a p-dimensional vector
x of gene expressions. Each sample is associated with a
binary label Y, assigning it to a class (e.g. patient or con-
trol). The dataset is therefore represented by a n × p matrix
X, where p >> n and Y is the n-dimensional labels vector.
We consider a linear model f(x) = !x,#". Note that # =
#1,...,#p is a vector of weight coefficients and each gene is
associated to one coefficient. A classification rule can be
then defined taking sign(f(x)) = sign(!x,#"). If # is sparse,
that is some of its entries are zero, then some genes will
not contribute in building the estimator. The estimator
defined by l1-l2 regularization solves the following optimi-
zation problem:

where the least square error is penalized with the l1 and l2
norm of the coefficient vector. The least square term

ensures fitting of the data whereas adding the two penal-
ties allows to avoid over-fitting. The relative weight of the
two terms is controlled by the parameter !. The role of the
two penalties is different, the l1 term (sum of absolute val-
ues) enforces the solution to be sparse, the l2 term (sum of
the squares) preserves correlation among the genes. This
approach guarantees consistency of the estimator [36] and
enforces the sparsity of the solution by the l1term, while
preserving correlation among input variables with the l2
term. Differently to [35] we follow the approach proposed
in [38], where the solution #l1l2, computed through the
simple iterative soft-thresholding, is followed by a second
optimization, namely regularized least squares (RLS), to
estimate the classifier on the selected features. The param-
eter ! in the l1-l2 regularization is fixed a priori and governs
the amount of correlation. By tuning ! we obtain a one-
parameter family of solutions which are all equivalent in
terms of prediction accuracy, but differ on the degree of
correlation among the selected features. The training for
selection and classification requires the choice of the reg-
ularization parameters for both l1-l2 regularization and
RLS denoted with (* and )*, respectively. Hence, statisti-
cal significance and model selection is performed within
double selection bias free cross validation loops (see [41]
for details). In order to assess a common list of probesets,
it is necessary to choose an appropriate criterion [62]. We
based ours on the frequency, i.e. we decided to promote as
relevant variables the most stable probesets across the
lists. The complete validation framework comprising the
l1-l2 regularization is implemented in MATLAB code
(available at http://slipguru.disi.unige.it)

Univariate analysis via hypotheses test
We test the hypothesis of equal distribution of the
probesets in the two different statuses by means of t-statis-
tic. We correct for multiple hypothesis testing with Ben-
jamini and Hochberg method for controlling the False
Discovery Rate [40].

Out-of-sample analysis
To assess the generalization properties of the signature, we
used the publicly available gene expression profile data-
sets of immature dendritic cells (GEO accession number:
GSE6863) and astrocytes (GSE3045) cultured under nor-
moxic and hypoxic conditions. Both datasets consist of 6
samples (3 hypoxic and 3 normoxic cell lines) and are
measured on the Affymetrix HG-U133 Plus 2.0 Gene-
Chip. The dendritic cells dataset was normalized with the
RMA method, similarly to the neuroblastoma cell lines.
We could not repeat the same procedure for the astrocytes
data, since the .CEL files were not available. We therefore
had to use the previously normalized intensities pub-
lished on the Gene Expression Omnibus. As a measure of
relevance of our signature we used its prediction accuracy
on out-of-sample data. For each dataset, we restricted the
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expression matrix to a submatrix of the 11 variables of the
inferred signature and we estimated the generalization
error of a Regularized Least Squares classifier in a leave-
one-out cross-validation loop.

Gene Set Enrichment Analysis (GSEA) [55] was used to
determine if the members of our hypoxia gene signature
were generally associated with hypoxic status, and was
therefore performed on all probesets on the HG-U133
Plus 2.0 GeneChip. A normalized enrichment score (NES)
was calculated for the gene set and the statistical signifi-
cance of the NES was estimated by an empirical permuta-
tion test using 1.000 gene permutations to obtain the
nominal p-value and a false discovery rate.
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