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Abstract

Let I be an ideal of the polynomial ring A[x] = A[x1, . . . , xn] over
the commutative, noetherian ring A. Geometrically I defines a family of
affine schemes over Spec(A): For p ∈ Spec(A), the fibre over p is the closed
subscheme of affine space over the residue field k(p), which is determined
by the extension of I under the canonical map σp : A[x] → k(p)[x]. If
I is homogeneous there is an analogous projective setting, but again the
ideal defining the fibre is 〈σp(I)〉. For a chosen term order this ideal has
a unique reduced Gröbner basis which is known to contain considerable
geometric information about the fibre. We study the behavior of this basis
for varying p and prove the existence of a canonical decomposition of the
base space Spec(A) into finitely many, locally closed subsets over which
the reduced Gröbner bases of the fibres can be parameterized in a suitable
way.

Introduction

Let A be a commutative, noetherian ring with identity and A[x] = A[x1, . . . , xn]
the polynomial ring in the variables x1, . . . , xn over A. We denote the residue
field at p ∈ Spec(A) by k(p). Geometrically an ideal I ⊂ A[x] defines a family
of affine schemes over Spec(A): The canonical map A → A[x]/I gives rise to a
morphism of affine schemes

ϕ : Spec(A[x]/I) → Spec(A).

For p ∈ Spec(A) the fibre ϕ−1(p) is the closed subscheme of An
k(p) = Spec(k(p)[x])

determined by 〈σp(I)〉 where σp : A[x] → k(p)[x] denotes the trivial extension
of the canonical map A → k(p).

If I is a homogeneous ideal we analogously obtain a family of projective
schemes from

ϕ : Proj(A[x]/I) → Spec(A).

The fibre ϕ−1(p) is the closed subscheme of Pn
k(p) = Proj(k(p)[x]) again deter-

mined by 〈σp(I)〉.
For a chosen term order we wish to study – simultaneously for all p ∈ Spec(A)

– the unique reduced Gröbner basis of 〈σp(I)〉. It is well known that such a
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Gröbner basis grants “easy access” to geometric information about the fibre
ϕ−1(p). It also seems reasonable to compare two fibres by “comparing” the
corresponding Gröbner bases. Well, of course we can compare the leading terms
but it is not quite clear what comparing the Gröbner bases should mean. We
will make precise this notion by introducing parametric sets. Rather vaguely a
parametric set w.r.t. I is a locally closed subset Y of Spec(A) such that over
Y the reduced Gröbner bases of the fibres can be parameterized in a suitable
way. The main result of this article is to establish existence and uniqueness of a
canonical decomposition of the base space Spec(A) into finitely many parametric
sets.

Many concrete mathematical problems can be stated in the above described
framework of families of affine or projective schemes and knowing the Gröbner
basis structure of the fibres may be the first step to their solution, if not yet
the solution itself. For example if A is a polynomial ring over some field, then
we obtain the case of algebraic systems with parameters, which is important for
many “real life” applications such as robotics or electrical engineering (see e.g.
[6] chapter 6 and [16]). From a more theoretical point of view parametric sets
are a tool to explore the geometry of families of affine or projective schemes.
Related theoretical applications range from efficient Gröbner basis computation
(see e.g. [2] and [17]) to cohomology (see [18]).

The naive hope that for a Gröbner basis G of I the specialized Gröbner
basis σp(G) is a Gröbner basis of the specialized ideal 〈σp(I)〉 is in general not
fulfilled. The behavior of Gröbner bases under specialization (or extension of
scalars) has actually been studied by many authors, e.g. [5], [12], [3], [4], [8].
In [3] the case of standard bases in the ring of formal power series is treated.
Relations to flatness are explored in [4] and also in [5]. Articles focusing more
on the fibres are [19], [20], [15] and [14]. These last articles were written from
a more computational point of view which led to a rather rash use of the word
“canonical”. So one main objective of the present article is to establish a proper
theoretical foundation for the underlying ideas of these articles.

The outline of the article is the following: Section 1 (Parametric sets) introduces
the fundamental notion of parametric sets and their basic properties. The main
theorem of section 2 (Lucky primes and pseudo division) is a characterization
of parametric sets in terms of lucky primes (see [9]). This theorem can also be
understood as giving the geometric meaning of luckiness. Finally in section 3
(Gröbner covers) we achieve the main objective of the article by proving exis-
tence and uniqueness of a canonical finite covering of Spec(A) with parametric
subsets.

Preliminaries and notation

A parametric subset Y of Spec(A) allows for an object which parameterizes the
reduced Gröbner bases of 〈σp(I)〉 for p ∈ Y . To assure uniqueness of this object,
which will be called the reduced Gröbner basis of I over Y we have to work with
reduced schemes (Y,OY ). In particular we would like to assume that our base
ring A is reduced. This can be done without loss of generality, so to speak:

Let Nil(A) denote the nilradical of A and define A′ = A/ Nil(A) then there
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is a natural homeomorphism

Spec(A) → Spec(A′)
p 7→ p′

and k(p) = k(p′). Moreover if I ′ ⊂ A′[x] denotes the extension of I under the
canonical map A[x] → A′[x] then 〈σp(I)〉 = 〈σp′(I ′)〉 for all p ∈ Spec(A).

Throughout A denotes a commutative, noetherian, reduced ring with iden-
tity and I an ideal of the polynomial ring A[x] = A[x1, . . . , xn]. We only consider
reduced subschemes of Spec(A). So by a subscheme of Spec(A) we mean a lo-
cally closed subset Y of Spec(A) with the induced reduced subscheme structure
OY . a denotes a radical ideal of A – typically with Y = V(a). (As usual
V(a) ⊂ Spec(A) denotes the closed set of all prime ideals containing a.) We
will continuously identify Spec(A/a) with V(a) ⊂ Spec(A). For an A-module
M the localization at p ∈ Spec(A) is denoted by Mp and k(p) = Ap/pp is the
residue field at p. σp : A[x] → k(p)[x] denotes the coefficientwise extension of
the canonical map A → k(p).

The set of terms (i.e. powerproducts) is denoted by T = T (x1, . . . , xn).
Throughout we fix a term order < on T . For a non zero polynomial P =∑

t∈T att ∈ A[x] we define

• the coefficient of P at t by coef(P, t) = at,

• the support of P by supp(P ) = {t ∈ T ; at 6= 0},
• the leading term lt(P ) of P to be the maximal element of supp(P ),

• the leading coefficient of P by lc(P ) = coef(P, lt(P )) and

• the leading monomial of P by lm(P ) = lc(P ) lt(P ).

For G ⊂ A[x] we set lt(G) = {lt(P ); P ∈ G r {0}} and similarly lm(G) =
{lm(P ); P ∈ Gr {0}}. A finite subset G of I is called a Gröbner basis of I if
〈lm(G)〉 = 〈lm(I)〉. For t ∈ T we define the ideal of leading coefficients at t by

lc(I, t) = {lc(P ); P ∈ I with lt(P ) = t}.

Note that lc(I, t) can conveniently be read of from a Gröbner basis G of I. In
fact lc(I, t) is generated by {lc(g); g ∈ G with lt(g) divides t}. For a general
reference for Gröbner bases over rings see [1].

Before really getting started we do two warmup examples:

Example 1. Let k be a field and A = k[u1, u2] the polynomial ring in the two
parameters u1, u2. Consider the ideal

I =
〈
(u2

1 − u2)x, (u2 − 1)y2 + u1x
〉 ⊂ A[x, y].

When faced with the task to describe the Gröbner basis structure of the fibres I
guess most mathematicians would come up with the following pictures:
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term order with y2 > x:

u1

x, y2

u2

x, y2

x

x, y2

x

y2 +
u1

u2−1 x

x

y2 +
u1

u2−1 x

x x

x, y2

term order with x > y2:

x, y2

u2

u1

x, y2

y2

x +
u2−1

u1
y2

x, y2 x, y2

xx x xx

x +
u2−1

u1
y2

The above pictures illustrate a decomposition of the base space A2
k = Spec(A)

into locally closed subsets. In short the objective of this article is to find this
decomposition in general.

Example 2. Let k be an algebraically closed field and A = k[u1, u2, u3, u4] the
polynomial ring in the parameters u1, u2, u3, u4. We consider the ideal

I = 〈u2u3 − u4u1, u1x + u2, u3x + u4〉 ⊂ A[x].
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(Here x denotes just one variable.) Let v = (v1, v2, v3, v4) ∈ k4 and

pv = 〈u1 − v1, u2 − v2, u3 − v3, u4 − v4〉.

If v2v3 − v4v1 is non zero then the reduced Gröbner basis of 〈σpv
(I)〉 is 1. If

v1 and v3 are zero and one of v2, v4 is non zero then the reduced Gröbner basis
of 〈σpv (I)〉 is also 1. (In particular the set of all v ∈ k4 such that the reduced
Gröbner basis of 〈σpv

(I)〉 is 1 is not locally closed.) If v lies in the quasi-affine
variety Y = V(〈u2u3 − u4u1〉) r V(〈u1, u3〉) then the reduced Gröbner bases of
〈σpv

(I)〉 is given by x + f(v) where f denotes the regular function on Y defined
by

f(v) =

{
v2
v1

if v1 6= 0
v4
v3

if v3 6= 0.

The above example illustrates the “local nature” of the problem and suggests to
work with sheaves and not just with polynomials in I, as was common practice
in [20] or [14].

1 Parametric sets

The idea of “parameterizing Gröbner bases” can nicely be captured using sheaves.
For every subscheme Y of Spec(A) we will define a quasi-coherent sheaf IY on
Y which intuitively might be thought of as the restriction of I to Y .

Let Y be a locally closed subset of Spec(A) and a ⊂ A the radical ideal such
that Y = V(a) and let I denote the extension of I in (A/a)[x]. We define IY to
be the restriction of the quasi-coherent sheaf associated to the A/a -module I
on Spec(A/a) = V(a) to Y . That is

IY = Ĩ
∣∣∣
Y

.

More explicitly for an open subset U of Y the OY (U)-module IY (U) consists
of all functions g from U into the disjoint union

∐
p∈U Ip which are locally

fractions, i.e. for every p ∈ U there exists an open neighborhood U ′ of p in U
such that for all q ∈ U ′ we have g(q) = P

s ∈ Iq, where P ∈ I and s ∈ (A/a)r q
for all q ∈ U ′.

Since A is noetherian, Spec(A) is a noetherian topological space and thus
every open subset U of Y is quasi-compact. This implies that we can consider
IY (U) as an ideal of the polynomial ring OY (U)[x]. (If U was not quasi-compact
we could not be sure that an element of IY (U) has finite support.)

Note that for p ∈ Y the stalk IY,p = Ip is just the extension of I under
A[x] → (A/a)p[x]. Let mp denote the unique maximal ideal of OY,p = (A/a)p,
then in analogy to the sequence

A → OY (Y ) → OY,p → OY,p/mp = k(p)

of natural maps we obtain natural maps

I → IY (Y ) → IY,p → 〈σp(I)〉.

For g ∈ IY (Y ) the image of g in 〈σp(I)〉 is denoted by gp.
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Now we are prepared to give precise meaning to the intuitive idea of pa-
rameterizing Gröbner bases: We are looking for subschemes Y of Spec(A) with
the property that there exist global sections g1, . . . , gm ∈ IY (Y ) such that for
all p ∈ Y their images g1

p, . . . , gm
p are the unique reduced Gröbner basis of

〈σp(I)〉. We will need the following easy lemma.

Lemma 1. Let Y be a subscheme of Spec(A) and g, f ∈ IY (Y ). Then the set
{

p ∈ Y ; gp = f
p
}

is a closed subset of Y and gp = f
p

for all p ∈ Y implies g = f .

Proof: It suffices to treat the case f = 0. We can cover Y with open sets Ui

such that
g(p) =

P

s
∈ Ip

for P ∈ I ⊂ (A/a)[x] and s ∈ (A/a)r p for all p ∈ Ui. We have

{p ∈ Y ; gp = 0} ∩ Ui = {p ∈ Ui; coef(P, t) ∈ p for all t ∈ supp(P )}

which is a closed subset of Ui. Hence {p ∈ Y ; gp = 0} is closed.
If we interpret g as a polynomial with coefficients ct in OY (Y ), then gp = 0 is

equivalent to saying that for all t ∈ T the image of ct in the stalk OY,p = (A/a)p

lies in the maximal ideal mp of OY,p. Since this holds for all p ∈ Y and Y is a
reduced scheme we obtain ct = 0 ∈ OY (Y ). Hence g = 0.

Theorem 1. If Y is a connected subscheme of Spec(A) and there exists a finite
subset G of IY (Y ) such that for all p ∈ Y the set G

p
= {gp; g ∈ G} is the

reduced Gröbner basis of 〈σp(I)〉, then G is uniquely determined and for each
g ∈ G the function p 7→ lt(gp) is constant on Y . In particular the function
p 7→ lt(〈σp(I)〉) is constant on Y .

Proof: First we will show that for g ∈ G and t ∈ T the set

W (t) = {p ∈ Y ; lt(gp) = t}

is a closed subset of Y . We can cover Y with open sets Ui such that

g(p) =
P

s
∈ Ip for all p ∈ Ui.

Here P ∈ I ⊂ (A/a)[x] and s ∈ (A/a)r p for all p ∈ Ui.
Let p ∈ Y and φ : (A/a)p → (A/a)p/mp = k(p) the canonical map. We

will need that φ( c
s ) = 1 implies c − s ∈ p for c ∈ A/a and s ∈ (A/a) r p. But

φ( c
s ) = 1 is equivalent to saying that there exists c′ ∈ p and s′ ∈ (A/a)r p such

that
c

s
= 1 +

c′

s′
=

s′ + c′

s′
.

This implies the existence of an s′′ ∈ (A/a)r p such that

(cs′ − s(s′ + c′))s′′ = 0 ∈ p.

Hence cs′ − ss′ ∈ p and therefore c− s ∈ p.
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Using the above result we see that for p ∈ Ui we have lt(gp) = t if and only
if p contains coef(P, t′) for t′ > t and coef(P, t) − s (Use that gp is monic).
Therefore W (t) ∩ Ui is a closed subset of Ui and thus W (t) ⊂ Y is closed.

Since Spec(A) is a noetherian topological space, a finite number of the Ui’s
will do and therefore the function p 7→ lt(gp) takes only finitely many values
on Y . Consequently Y is the disjoint union of finitely many W (t)’s. By the
connectedness assumption on Y we can conclude that the function p 7→ lt(gp)
is constant on Y .

Assume that for F ⊂ IY (Y ) it also holds that F
p

is the reduced Gröbner
basis of 〈σp(I)〉 for every p ∈ Y . Then for f ∈ F and a chosen p ∈ Y there
exists a g ∈ G such that f

p
= gp. Since the leading term of f

p
respectively gp

is independent of p this implies lt(f
p
) = lt(gp) for all p ∈ Y , but as F

p
= G

p
is

the reduced Gröbner basis we can conclude f
p

= gp for all p ∈ Y and therefore
f = g ∈ G by lemma 1.

The following example shows that both assertions of the above theorem may
be violated if Y is not connected.

Example 3. Let Y = {p1, p2} where p1 and p2 are two distinct, closed points
of Spec(A). Note that OY (Y ) is just k(p1)× k(p2). For j = 1, 2 let Gj denote
the reduced Gröbner bases of 〈σpj (I)〉. Then for any subset G of

G1 ×G2 ⊂ 〈σp1(I)〉 × 〈σp2(I)〉 = IY (Y )

with the property that the projections G → Gi are surjective we have that G
p

is
the reduced Gröbner basis of 〈σp(I)〉 for every p ∈ Y .

As we wish to have a definition suitable for all (not necessarily connected)
subschemes of Spec(A) we simply demand what we want.

Definition 1. A locally closed subset Y of Spec(A) is called parametric for
Gröbner bases w.r.t. I (and <) if there exist a finite subset G of IY (Y ) with
the following properties:

(1) G
p

is the reduced Gröbner bases of 〈σp(I)〉 for every p ∈ Y .

(2) For each g ∈ G the function p 7→ lt(gp) is constant on Y .

Since I is clear from the context we usually omit the reference to I and
simply talk about parametric subschemes.

Theorem 2. Let Y ⊂ Spec(A) be parametric and G a finite subset of IY (Y )
satisfying the two conditions of the above definition, then G is uniquely deter-
mined and the function p 7→ lt(〈σp(I)〉) is constant on Y . Furthermore every
g ∈ G is monic with lt(g) = lt(gp) for every p ∈ Y .

Proof: Because of condition (2) we can repeat the uniqueness prove as in the
last paragraph of the proof of theorem 1.

To show that every g ∈ G is monic with lt(g) = lt(gp) observe that the
coefficients of g are just elements of OY (Y ). Since (Y,OY ) is a reduced scheme
every element of OY (Y ) is uniquely determined by its images in k(p) where p
ranges over all of Y .
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Definition 2. Let Y ⊂ Spec(A) be parametric, then the uniquely determined
subset G = GY of IY (Y ) of the above theorem is called the reduced Gröbner
bases of I over Y .

To give the reader some idea where the journey is going we give the following
definition at this early stage although we won’t need it before section 3.

Definition 3. A Gröbner cover of Spec(A) w.r.t. I (and < ) is a finite set G
consisting of pairs (Y, GY ) with Y ⊂ Spec(A) parametric and GY the reduced
Gröbner basis of I over Y such that

⋃

(Y,GY )∈G
Y = Spec(A).

Parametric sets are well behaved with respect to inclusion:

Theorem 3. Let Y ⊂ Spec(A) be parametric, then every locally closed subset Y ′

of Y is parametric and the canonical map IY (Y ) → IY ′(Y ′) maps the reduced
Gröbner bases of I over Y to the reduced Gröbner bases of I over Y ′.

Proof: First of all let us construct the canonical map of the theorem: Assume
Y = V(a) and Y ′ = V(a′) for radical ideals a and a′ of A. Let I ⊂ (A/a)[x] and
I
′ ⊂ (A/a′)[x] denote the corresponding extensions of I. As Y ′ ⊂ Y we have

a ⊂ a′ and a canonical map A/a → A/a′ which extends to ϕ : I → I
′
. Then for

p ∈ Y ′ ⊂ Y we have a canonical map

ϕp : Ip → I
′
p.

Now an element g ∈ IY (Y ) gives rise to a function

g′ : Y ′ →
∏

p∈Y ′
I
′
p

by g′(p) = ϕp(g(p)). One easily verifies that IY (Y ) → IY ′(Y ′), g 7→ g′ is well
defined and a morphism. For p ∈ Y ′ the commutative diagram

Ip
- I

′
p

@
@

@
@

@R ª¡
¡

¡
¡

¡

〈σp(I)〉
gives rise to a commutative diagram

IY (Y ) - IY ′(Y ′)

@
@

@
@

@R ª¡
¡

¡
¡

¡

〈σp(I)〉
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From this the claim of the theorem follows.

Next we will give a characterization of parametric sets in terms of monic
ideals (see [17]).

Definition 4. An ideal I ⊂ A[x] is called monic if lc(I, t) ∈ {〈0〉, 〈1〉} for all
t ∈ T .

There are quite a few definitions of reduced Gröbner bases in the literature.
We will use the one strictly paralleling the field case.

Definition 5. A Gröbner basis G = {g1, . . . , gm} of I is called reduced if for
j = 1 . . . , m

• gj is monic and

• supp(gj) ∩ lt(I) = {lt(gj)}.
With this definition not every ideal has a reduced Gröbner basis, but as in the
field case one easily shows that if it exists, it is unique. Concerning existence
we have the following (cf. [17] and [3] theorem 2.11).

Theorem 4. Let I ⊂ A[x] be an ideal, then there exists a reduced Gröbner basis
of I if and only if I is monic.

Proof: If there exists a reduced Gröbner basis of I then clearly I is monic.
Conversely if I is monic then we can choose monic polynomials g1, . . . , gm ∈ I
such that lt(g1), . . . , lt(gm) is the unique minimal generating set of lt(I). Now if
we mutually reduce the gj ’s we end up with the desired reduced Gröbner basis
of I.

The connection to parametric subschemes is the following:

Theorem 5. A subscheme Y of Spec(A) is parametric if and only if IY (Y ) is
monic, and in this case the reduced Gröbner bases of I over Y is the reduced
Gröbner bases of IY (Y ) ⊂ OY (Y )[x]. In particular lt(IY (Y )) = lt(〈σp(I)〉) for
every p ∈ Y .

Proof: Suppose that Y is parametric and let G ⊂ IY (Y ) denote the reduced
Gröbner basis of I over Y . We will show that the leading term of every f ∈
IY (Y ) is divisible by lt(g) for some g ∈ G. Since (Y,OY ) is a reduced scheme
there exists a p ∈ Y such that the image of lc(f) ∈ OY (Y ) in k(p) is non zero.
For such a p we know that lt(f) = lt(f

p
) is divisible by lt(gp) = lt(g) for some

g ∈ G. Since the elements of G are monic this shows that IY (Y ) is monic.
Now suppose that IY (Y ) is monic and let G = {g1, . . . , gm} denote the re-

duced Gröbner basis of IY (Y ). For f ∈ IY (Y ) the usual division (or reduction)
algorithm shows that there exists a representation

f = f1g1 + · · ·+ fmgm

such that for i = 1, . . . , m we have lt(fi) lt(gi) ≤ lt(f) and

coef(fi, t) ∈
〈
coef(f, t′); t′ ≥ t lt(gi)

〉
for all t ∈ T .

This last condition implies that for p ∈ Y we have lt(fi
p
) lt(gi

p) ≤ lt(f
p
).

Because f
p

= f1
p
g1

p + · · ·+fm
p
gm

p this shows that lt(f
p
) is divisible by lt(gi

p)
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for some i ∈ {1, . . . , m}. Since every element of 〈σp(I)〉 is of the form λf
p

for
λ ∈ k(p) and f ∈ IY (Y ) we can conclude that G

p
is a Gröbner basis of 〈σp(I)〉

for every p ∈ Y . As g ∈ G is monic the function p 7→ lt(gp) is clearly constant
and since G is reduced also G

p
is reduced. Thus we have shown that Y is

parametric and that G is the reduced Gröbner basis of I over Y .

So the reduced Gröbner basis G of I over Y is indeed a Göbner basis. In fact
by theorem 3 G|U = {g|U ; g ∈ G} is the reduced Gröbner basis of IY (U) ⊂
OY (U)[x] for every open subset U of Y .

Corollary 1. Spec(A) is parametric w.r.t I if and only if I is monic and in
this case the reduced Gröbner basis of I over Spec(A) is the reduced Gröbner
basis of I.

Proof: This follows directly from the theorem because ISpec(A)(Spec(A)) = I
(see [11], chapter II, proposition 5.1).

2 Lucky primes and pseudo division

To proceed we will need the concept of pseudo division (cf. [6] and [15]). This
is basically just the usual division without fractions. The idea behind pseudo
division already appeared in the proof of theorem 5.

Definition 6. Let f, g1, . . . , gm ∈ A[x]. A representation

cf = f1g1 + · · ·+ fmgm + r

is called a pseudo division of f modulo g1, . . . , gm (w.r.t. <) if the following
assertions are satisfied:

• f1, . . . , fm, r ∈ A[x] and c ∈ A is a product of leading coefficients of the
gj’s.

• lt(fj) lt(gj) ≤ lt(f) for j = 1, . . . , m.

• No term in supp(r) is divisible by a leading term of the gj’s.

• coef(fj , t) ∈
〈
coef(f, t′); t′ ≥ lt(gj)t

〉
for all j ∈ {1, . . . ,m} and t ∈ T .

r is called a remainder of f after pseudo division modulo g1, . . . , gm. A pseudo
division of f modulo g1, . . . , gm can be obtained by successively applying pseudo
reduction steps:

If there exists a t ∈ supp(f) which is divisible by a leading term of any of
the gj ’s then choose t ∈ supp(f) which is maximal with this property. Then
t = t′ lt(gj) holds for some j ∈ {1, . . . ,m} and t′ ∈ T . Now substitute f by

lc(gj)f − coef(f, t)t′gj .

Iterating this process and keeping track of the monomials used, we obtain the
desired representation.

The nice thing about pseudo reductions is that they are stable under spe-
cialization in the sense that

lt(fj) lt(gj) ≤ lt(f)
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for j = 1, . . . ,m. Here g denotes the coefficient wise reduction of g ∈ A[x]
modulo some ideal of A. (This follows directly from the last assertion of the
definition.)

Definition 7. A prime ideal of A is called lucky for I if for every t ∈ lt(I) it
does not contain lc(I, t).

To my knowledge the expression lucky was coined by mathematicians work-
ing on modular algorithms to compute Gröbner bases over Q (see [2], [17], [9]).
Mod - p arithmetic avoids the phenomenon of coefficient growth but it is not
a priori clear which prime numbers p can be used for lifting a Gröbner basis
over Z/Zp to a Gröbner basis over Q. So mathematicians must have considered
themselves lucky if they picked a prime doing the job.

Let T be the unique minimal generating set of lt(I). Because lc(I, t) ⊂
lc(I, t′) if t divides t′ a prime p ∈ Spec(A) is lucky for I if and only if p does
not contain

∏
t∈T lc(I, t). In particular luckiness is an open condition.

Definition 8. The ideal

J = J(I) =
√∏

t∈T

lc(I, t) ⊂ A

is called the singular ideal of I (w.r.t. <).

So a prime p ∈ Spec(A) is unlucky (i.e. not lucky) for I if and only if it is
an element of the singular variety V(J).

In [20] Weispfenning introduced another discriminant ideal which however
can only be constructed if A is an integral domain. So for the time being assume
that A is an integral domain. In this case we can consider the reduced Gröbner
basis G of I over the quotient field of A. For g ∈ G the set

Jg = {a ∈ A; ag ∈ I}
clearly is an ideal of A and we can define Weispfenning’s discriminant ideal by

J ′ =
√∏

g∈G

Jg.

Clearly Jg ⊂ lc(I, lt(g)) always holds but the inclusion may be strict as
illustrated by the following example.

Example 4. Let k be a field and A = k[u1, u2] the polynomial ring in the
parameters u1, u2. We consider the ideal

I = 〈u1x + u2, u1y
2 − 1〉 ⊂ A[x, y].

With respect to any term order the reduced Gröbner basis of I over the quotient
field of A is

G =
{

x +
u2

u1
, y2 − 1

u1

}
.

But as u2y
2 +x = y2(u1x+u2)−x(u1y

2−1) ∈ I we have w.r.t. any term order
with y2 > x

Jy2− 1
u1

= 〈u1〉 $ 〈u1, u2〉 ⊂ lc(I, y2).
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However our discriminant ideal is not larger than Weispfenning’s, in fact
they are the same.

Theorem 6. In the above described situation we have J = J ′.

Proof: Let I ′ denote the extension of I in the polynomial ring over the quotient
field of A. First of all observe that lt(I) = lt(I ′): As I ⊂ I ′ the inclusion
lt(I) ⊂ lt(I ′) is clear. For the other inclusion it suffices to notice that every
P ∈ I ′ is of the form P = Q

a with Q ∈ I and a ∈ A.
Let G = {g1, . . . , gm} denote the unique reduced Gröbner basis of I ′ over

the quotient field of A. Then as lt(I) = lt(I ′) the unique minimal generating
set T of lt(I) equals {lt(g1), . . . , lt(gm)}. With the abbreviations tj = lt(gj) and
Jj = Jgj for j = 1, . . . , m we may assume t1 < · · · < tm. We have to show

V
(
lc(I, t1) · · · lc(I, tm)

)
= V(J1 · · · Jm).

As Jj ⊂ lc(I, tj) for j = 1, . . . ,m the inclusion “ ⊂ ” is clear. For the other
inclusion it will suffice to show that for j ∈ {1, . . . , m} and p ∈ Spec(A)

Jj ⊂ p ⇒ lc(I, t1) · · · lc(I, tj) ⊂ p.

We will prove this by contradiction. So assume lc(I, t1) · · · lc(I, tj) * p. Then
we can find f1, . . . , fj ∈ I with lt(fi) = ti and lc(fi) /∈ p for i = 1, . . . , j.
Pseudo reduction of fj modulo f1, . . . , fj−1 yields a polynomial g ∈ I with
lt(g) = tj , lc(g) /∈ p and no term in supp(g) divisible by any t1, . . . , tj−1.
So no term in the support of g − lc(g)gj ∈ I ′ is divisible by any t1, . . . , tm.
Hence lc(g)gj = g ∈ I and we conclude lc(g) ∈ Jj ⊂ p (in contradiction to
lc(g) /∈ p).

The above theorem asserts that the concept of (in)essential specializations as
introduced by Weispfenning in [20] is equivalent to the older concept of (un)lucky
prime ideals. The advantage of the idea of luckiness is of course that it works
for more general rings, i.e. not only for integral domains. Observe that it is
quite natural to work with rings which are not integral domains, because even
if you start with an integral domain (e.g. the polynomial ring over a field in
some parameters), the singular ideal J will typically not be prime and so A/J
will not be an integral domain. The relevance of this will become clear in due
time (We will see that the set of all lucky primes of A is parametric).

We will need the following two rather technical lemmas to proof the main
theorem of this section, which gives a characterization of parametric subsets in
terms of luckiness.

Lemma 2. Let Y ⊂ Spec(A) be parametric, a ⊂ A the radical ideal such that
Y = V(a) and I the extension of I in (A/a)[x]. Furthermore let p ∈ Y and
g ∈ IY (Y ) an element of the reduced Gröbner basis of I over Y . Then there
exists an open neighborhood U ⊂ Y of p, P ∈ I with lt(P ) = lt(g) and s ∈ A/a
such that s /∈ q and

g(q) =
P

s
∈ Iq for all q ∈ U.

Proof: By definition of IY there exists an open neighborhood U ′ ⊂ Y of p,
P ′ ∈ I and s′ ∈ A/a such that s′ /∈ q and g(q) = P ′

s′ ∈ Iq for all q ∈ U ′. Now let
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t ∈ supp(P ′) be maximal with the property that coef(P ′, t) /∈ p. (coef(P ′, t) ∈ p
for all t would yield gp = 0, which can not be an element of a reduced Gröbner
basis.) Then t = lt(gp) = lt(g). Since q 7→ lt(gq) is constant on U ′ we have

U ′ ⊂ V(〈coef(P ′, t′); t′ > t〉).

As a is assumed to be radical the zero ideal of A/a is radical and thus has a
unique primary decomposition

〈0〉 = p1 ∩ · · · ∩ pm.

We may assume that the prime ideals pi ∈ Spec(A/a) are numbered in such a
way that p1, . . . , pr ∈ U ′ and pr+1, . . . , pm /∈ U ′. This means that

V(p1 ∩ · · · ∩ pr) = V(p1) ∪ · · · ∪V(pr) ⊂ U ′ ⊂ V(〈coef(P ′, t′); t′ > t〉).

Hence coef(P ′, t′) ∈ p1 ∩ · · · ∩ pr for t′ > t. Note that pi /∈ U ′ is equivalent to
V (pi)∩U ′ = ∅, so pi * p for i = r + 1, . . . , m. This implies that we can find an
s′′ ∈ pr+1 ∩ · · · ∩ pm r p. Define U = {q ∈ U ′; s′′ /∈ q}, P = s′′P ′ and s = s′′s′,
then U is an open neighborhood of p in Y and for t′ > t we have

coef(P, t′) = s′′ coef(P ′, t′) ∈ p1 ∩ . . . ∩ pm = 〈0〉,

but coef(P, t) = s′′ coef(P ′, t) /∈ p. Hence lt(P ) = t = lt(g) and for all q ∈ U we
have g(q) = P ′

s′ = P
s ∈ Iq.

Lemma 3. Let Y ⊂ Spec(A) be parametric and a ⊂ A the radical ideal such that
Y = V(a). If I denotes the extension of I in (A/a)[x] then lt(IY (Y )) = lt(I).

Proof: From the above lemma 2 and theorem 5 we know lt(IY (Y )) ⊂ lt(I). For
the reverse inclusion it suffices to show that for P ∈ I the image of P in IY (Y )
has the same leading term as P . This is equivalent to saying that the image of
lc(P ) in OY (Y ) is non zero. So suppose the image of lc(P ) in OY (Y ) is zero.
Then lc(P ) ∈ p for all p ∈ Y and Y ⊂ {p ∈ V(a); lc(P ) ∈ p}. As the latter set
is closed we see that lc(P ) ∈ p for all p ∈ V(a). Since a is radical this yields the
contradiction lc(P ) = 0.

Now we are prepared to prove the main theorem of this section. This theorem
can also be interpreted as giving the “geometric meaning” of luckiness.

Theorem 7. Let Y be a locally closed subset of Spec(A) and a ⊂ A the radical
ideal such that Y = V(a). Denote by I the image of I in (A/a)[x]. Then Y is
parametric for Gröbner bases w.r.t. I if and only if

Y ∩V(J(I)) = ∅.

In other words: Y is parametric if and only if every p ∈ Y is lucky for I.

Proof: Assume Y is parametric and {g1, . . . , gm} ⊂ IY (Y ) is the reduced
Gröbner basis of I over Y . Then by lemma 3 and theorem 5 the minimal
generating set T of lt(I) equals {lt(g1), . . . , lt(gm)}. Let p ∈ Y , then by lemma
2 for i = 1, . . . ,m there exists Pi ∈ I with lt(Pi) = lt(gi) and si ∈ (A/a) r p
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such that gi(p) = Pi

si
∈ Ip. Because lt(Pi) = lt(gi) = lt(gi

p) we have lc(Pi) /∈ p,
i.e. lc(I, lt(Pi)) * p. Hence

J(I) =
∏

t∈T

lc(I, t) * p.

For the converse direction first fix a p ∈ Y and let T = {t1, . . . , tm} denote the
minimal generating set of lt(I). By assumption

m∏

i=1

lc(I, ti) * p.

Hence there exist polynomials P1, . . . , Pm ∈ I with lt(Pi) = ti and lc(Pi) /∈ p.
For i = 1, . . . , m let Qi ∈ I denote a remainder of Pi after pseudo division
modulo {P1, . . . , Pm} r {Pi}. Note that lt(Qi) = lt(Pi) = ti and lc(Qi) is a
product of leading coefficients of the Pj ’s. Define

U = {q ∈ Y ; lc(P1) · · · lc(Pm) /∈ q},

then U is an open neighborhood of p ∈ Y and Qi

lc(Qi)
defines an element of IY (U)

which by abuse of notation we again denote by Qi

lc(Qi)
.

We can repeat the above construction for any p′ ∈ Y to obtain U ′ and Q′
i

(analogously defined). To obtain global sections gi ∈ IY (Y ) we have to show
that

Qi

lc(Qi)

∣∣∣∣
U∩U ′

=
Q′i

lc(Q′
i)

∣∣∣∣
U∩U ′

.

The leading term of
lc(Q′i)Qi − lc(Qi)Q′i ∈ I

is strictly smaller than ti and by construction no term in the support of lc(Q′i)Qi−
lc(Qi)Q′i is divisible by an element of {t1, . . . , tm} r {ti}. Thus lc(Q′i)Qi −
lc(Qi)Q′i = 0 and we can glue together the sections Qi

lc(Qi)
∈ IY (U) to obtain

global sections gi ∈ IY (Y ).
To show that Y is parametric we will prove that G = {g1, . . . , gm} satisfies

the conditions of definition 1. Clearly lt(gi
p) = ti for every p ∈ Y . So it remains

to show that G
p

is the reduced Gröbner basis of 〈σp(I)〉 for every p ∈ Y . Let
p ∈ Y and P ∈ I. For a pseudo division (see definition 6)

cP = P1Q1 + · · ·+ PmQm + r

of P modulo Q1, . . . , Qm we have r ∈ I, but no term in the support of r is
divisible by an element of {lt(Q1), . . . , lt(Qm)} = T . Thus r = 0 and

cP = P1Q1 + · · ·+ PmQm.

Let φ : (A/a)[x] → k(p)[x] denote the natural map then

φ(c)φ(P ) = φ(P1)φ(Q1) + · · ·+ φ(Pm)φ(Qm)

and lt(φ(Pi)) lt(φ(Qi)) ≤ lt(φ(P )). Since lc(Qi) /∈ p and c is a product of
leading coefficients of the Qi’s we know that φ(c), φ(lc(Q1)), . . . , φ(lc(Qm)) are
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all non zero. Consequently lt(φ(P )) is divisible by lt(φ(Qi)) = ti for some
i ∈ {1, . . . ,m}. Since every element of 〈σp(I)〉 is of the form λf for λ ∈ k(p)
and f ∈ φ(I) = σp(I) this shows that lt(〈σp(I)〉) is generated by T and so indeed
G

p
is a Gröbner basis of 〈σp(I)〉. gi

p is clearly monic and by construction of the
Qi’s no term in the support of gi

p is divisible by an element of T r {ti}. Thus
G

p
is the reduced Gröbner basis of 〈σp(I)〉 and we are done.

Definition 9. Let Z be a closed subset of Spec(A) and a ⊂ A the radical ideal
such that Z = V(a). Let furthermore I denote the extension of I in (A/a)[x],
then we define

Zgen = Z rV(J(I)).

Theorem 8. Let Z ⊂ Spec(A) be closed, a ⊂ A the radical ideal such that
Z = V(a) and I the extension of I in (A/a)[x]. Then Zgen is parametric with
lt(IZgen(Zgen)) = lt(I). Furthermore if Y is an open subset of Z such that Y is
parametric with lt(IY (Y )) = lt(I) then Y ⊂ Zgen.

In other words: Zgen is the largest open parametric subset of Z with the
same leading terms as I.

Proof: To show that Zgen is parametric with the same leading terms as I, just
repeat the second part of the proof of theorem 7 (with Zgen instead of Y ) and
use that IZ(Zgen) is canonically isomorphic to IZgen(Zgen).

Now let Y be an open and parametric subset of Z with lt(IY (Y )) = lt(I)
and assume Y * Zgen. Then there exist a p ∈ Y r Zgen. Let T denote the
minimal generating set of lt(I). Since p /∈ Zgen = Z r V(J(I)) there exists a
t ∈ T such that lc(I, t) ⊂ p.

Let a′ ⊂ A be the radical ideal such that Y = V(a′) then a ⊂ a′ and we have
a canonical map φ : (A/a)[x] → (A/a′)[x]. Let I

′
denote the extension of I in

(A/a′)[x] then φ(I) = I
′
. Since lt(IY (Y )) = lt(I) there exist a g ∈ GY with

lt(g) = t. By lemma 2 there exist a Q ∈ I
′
with lt(Q) = t and s ∈ A/a′rp such

that
g(p) =

Q

s
∈ I

′
p.

Let a = p1 ∩ · · · ∩ pm be the unique minimal primary decomposition of a and
P ∈ I such that φ(P ) = Q. Since lc(Q) 6∈ p we know that coef(P, t) /∈ p and
that coef(P, t′) lies in the extension of a′ in A/a for t′ > t. We may assume that
the pi’s are numbered in such a way that p1, . . . , pr ∈ Y and pr+1, . . . , pm /∈ Y .
Note that pi /∈ Y implies V(pi) ∩ Y = ∅ because Y is an open subset of Z.
So in particular pi * p for i = r + 1, . . . ,m. This implies that there exists
an s′ ∈ pr+1 ∩ · · · ∩ pm r p. For 1 ≤ i ≤ r we have V(pi) ⊂ Y = V(a′) and
thus a′ ⊂ pi. Let s′′ denote the image of s′ in A/a, then for t′ > t we have
coef(s′′P, t′) = 0 since coef(s′′P, t′) is contained in every pi for i = 1, . . . , m. On
the other side coef(s′′P, t) /∈ p, thus lt(s′′P ) = t and lc(s′′P ) /∈ p in contradiction
to lc(I, t) ⊂ p.

If we take Z = Spec(A) in the above theorem, then we see that the set of all
lucky primes of A (= Spec(A)rV(J(I))) is the largest open parametric subset
of Spec(A) with the same leading terms as I. This more or less comes down to
saying that J is the optimal discriminant ideal.
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Caution: It is not true that p ∈ Spec(A) is lucky for I if and only if lt(I) =
lt(〈σp(I)〉). We have seen above that the “only if” direction is correct but
the following example illustrates the failure of the “if” direction. In fact this
example illustrates that knowing lt(〈σp(I)〉) for every p ∈ Spec(A) is completely
insufficient to understand the Gröbner basis structure of the fibres.

Example 5. Let k be a field and A = k[u1, u2] the polynomial ring in the two
parameters u1, u2. Consider the ideal

I =
〈
u1(u1x + 1), (u1x + 1)x

〉 ⊂ A[x].

(In this example x denotes just one variable.) lt(〈σp(I)〉) is generated by x for
every p ∈ Spec(A) but clearly Spec(A) is not parametric. The corresponding
picture picture would be:

x + 1
u1

x + 1
u1

x + 1
u1

u1

u2

x + 1
u1

x

x

x

x

x

The following simple example illustrates that Zgen may well be the empty set.

Example 6. Assume that A is not an integral domain, then there exist a, b ∈
Ar {0} such that ab = 0. If we take I to be the ideal of A[x1, x2] generated by
ax1 and bx2 then (w.r.t. any term order) J(I) = 〈0〉 and so Spec(A)gen = ∅.

However this can not happen if Z is irreducible, because then Z = V(a) for
some prime ideal a of A and since A/a is an integral domain J(I) is not the zero
ideal and thus Zgen is non empty. In particular Zgen is dense in Z and contains
the generic point of Z.

The following examples have been included to convince the reader that the
singular ideal J is quite a reasonable object.

Example 7. Let I ⊂ A[x] be the ideal generated by a square linear system

P1 = b11x1 + b12x2 + · · ·+b1nxn − c1

...
...

...
Pn = bn1x1 + bn2x2+ · · ·+bnnxn − cn

and let
B =

(
bij

)
1≤i,j≤n

∈ An×n
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denote the matrix of the system. Suppose det = det(B) ∈ A is not a zero divisor,
then the singular ideal J of I is independent of the chosen term order and V(J)
equals V(det). In other words J =

√
〈det〉.

Proof: Let B′ ∈ An×n denote the adjoint matrix of B. A classical linear algebra
theorem (see e.g. [13], chapter 8, § 4, proposition 8) asserts that

B′B = BB′ = det ·I, (1)

where I denotes the n× n identity matrix.
First we show that 1 /∈ lt(I). Suppose the contrary. Let A′ denote the total

ring of fractions of A, i.e. the localization at the multiplicative subset of all non
zero divisors, then we may regard A as a subring of A′. With the abbreviations

c =




c1

...
cn


 and ξ =

1
det

·B′c

identity (1) shows that ξ is a solution to our linear system. Now 1 ∈ lt(I) simply
means that there exist an a ∈ Ar {0} and Q1, . . . , Qn ∈ A[x] such that

Q1P1 + · · ·+ QnPn = a.

Evaluation at ξ yields the contradiction a = 0.
Identity (1) also shows that det lies in lc(I, xi) for i = 1, . . . , m. Therefore

det ∈ J and V(J) ⊂ V(det). Now for the reverse inclusion assume p ∈ V(det),
i.e. det ∈ p. From theorem 8 we know that for every q ∈ Spec(A) r V(J) the
leading terms of 〈σq(I)〉 are generated by x1, . . . , xn. But det ∈ p implies that
lt(〈σp(I)〉) is not generated by x1, . . . , xn and consequently p ∈ V(J).

Example 8. Let k be a field and I ′ ⊂ k[x] = k[x1, . . . , xn] a (homogeneous)
ideal. For 1 ≤ i, j ≤ n let uij be additional indeterminates and abbreviate

ux = (u11x1 + · · ·+ un1xn, . . . . . . , u1nx1 + · · ·+ unnxn).

Let A be the polynomial ring over k in the uij’s and define

I = 〈P (ux); P ∈ I ′〉 ⊂ A[x].

Then for p ∈ Spec(A)gen the ideal of k[x] generated by lt(〈σp(I)〉) is the generic
initial ideal of I ′ usually denoted by Gin(I ′) (see e.g. [7] or [10]).

Example 9. Suppose that < is a graded order and A is an integral domain, i.e.
Spec(A) is irreducible, then Spec(A)gen is a non empty, open (and thus dense)
subset of Spec(A) such that the function

p 7→ affine Hilbert function of 〈σp(I)〉

is constant on Spec(A)gen. This is clear because the affine Hilbert function of
〈σp(I)〉 is determined by lt(〈σp(I)〉) (see [6], chapter 9, § 3, proposition 4). Of
course there is an analogous “projective” statement.
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3 Gröbner covers

Now that we have (at least to some extend) explored the nature of parametric
sets, it is time to see the complete picture.

Definition 10. Let L be a locally closed subset of Spec(A). A finite set G
consisting of pairs (Y, GY ) with Y ⊂ Spec(A) parametric and GY the reduced
Gröbner bases of I over Y is called a Gröbner cover of L w.r.t. I (and <) if

L =
⋃

Y ∈G
Y.

A Gröbner cover G is called irreducible if every Y ∈ G is irreducible.
A Gröbner cover G of L is called locally maximal if for every Y ∈ G the

following holds: If Y ′ ⊂ Spec(A) is parametric with Y ′ ⊂ L and Y ⊂ Y ′ ⊂ Y
then Y = Y ′.

A Gröbner cover G is called small if for every Y ∈ G we have

Y r
⋃

Y ′∈Gr{Y }
Y ′ = Y .

As already in the above definition we write Y ∈ G instead of unhandy (Y, GY ) ∈ G
and refer to Y as an element of G. To say that a Gröbner cover is small basically
means that its elements are not unnecessarily large. Our main interest of course
is in Gröbner covers of Spec(A) but (with a view towards applications) it seems
reasonable to also treat the relative case.

Definition 11. Let L be a locally closed subset of Spec(A) and G a finite
subset of I. G is called a comprehensive Gröbner basis of I w.r.t. L (and <) if
σp(G) = {σp(g); g ∈ G} is a Gröbner basis of 〈σp(I)〉 for every p ∈ L.

Comprehensive Gröbner bases were introduced by Weispfenning in [19] and
advanced in [20]. There is a rather obvious connection between Gröbner covers
of L and comprehensive Gröbner bases of I w.r.t. L which we will now describe.

Let G be a Gröbner cover of L. Choose a Y ∈ G and let a ⊂ A be the radical
ideal such that Y = V(a), furthermore let I denote the image of I in (A/a)[x].
Since Spec(A) is a noetherian topological space Y is quasi-compact and so for
every g ∈ GY we can find finitely many open subsets Ui of Y which cover Y
and have the following property: There exists a P ∈ I and s ∈ A/a such that

g(p) =
P

s
∈ Ip for every p ∈ Ui.

Here P denotes the image of P in I ⊂ (A/a)[x]. Now taking together all such
P ’s (for all Ui’s, all g ∈ GY and all Y ∈ G) we end up with a finite subset of I
which clearly is a comprehensive Gröbner basis of I w.r.t. L.

The main theorem of this section asserts that for every locally closed subset L
of Spec(A), there exists a unique irreducible, small and locally maximal Gröbner
cover of L. For the proof we will need a few basic facts about constructible sets
(cf. [11]).
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Definition 12. Let X be a topological space. A constructible subset of X is a
subset which belongs to the smallest family F of subsets such that

(1) every open subset is in F,

(2) a finite intersection of elements in F is in F, and

(3) the complement of an element in F is in F.

One easily shows that the constructible sets of a topological space are exactly
the finite unions of locally closed sets.

Lemma 4. Let C be a constructible subset of Spec(A) and

C = Z1 ∪ · · · ∪ Zm

the unique minimal decomposition of C into irreducible and closed sets. Then
for j = 1, . . . ,m there exists a non empty open subset of Zj contained in C.

Proof: A constructible set C can be written as a finite union

C = L1 ∪ · · · ∪ Lm′

of non empty, locally closed and irreducible sets Li.

Z1 ∪ · · · ∪ Zm = C = L1 ∪ · · · ∪ Lm′

Fix a j ∈ {1, . . . , m}. As Zj is irreducible there exists an i ∈ {1, . . . , m′} such
that Zj ⊂ Li. Similarly, as Li is irreducible there exist a j′ ∈ {1, . . . , m} such
that Li ⊂ Zj′ . Hence

Zj ⊂ Li ⊂ Zj′ .

This yields j = j′ and Zj = Li. So Li is a non empty open subset of Zj

contained in C.

Lemma 5. Let L be a locally closed and irreducible subset of Spec(A). For a
constructible subset C of Spec(A) which is contained in L we have C = L if and
only if C contains the generic point of L.

Proof: If C contains the generic point p of L we have L = {p} ⊂ C. Hence by
assumption L = C.

Conversely if C = L by Lemma 4 we know that there exists a nonempty
open subset U of L contained in C. As U ∩ L is a non empty open subset of L
we have

p ∈ U ∩ L ⊂ C.

Theorem 9. Let L ⊂ Spec(A) be a locally closed set and G an irreducible
Gröbner cover of L. The following are equivalent:

(1) G is small.

(2) Every Y ∈ G is the only element of G containing the generic point of Y .

(3) For Y, Y ′ ∈ G with Y 6= Y ′ and Y ⊂ Y ′ we have Y ∩ Y ′ = ∅.
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Proof: The equivalence of (1) and (2) follows from lemma 5.
For two distinct, locally closed and irreducible subsets Y and Y ′ of Spec(A)

the generic point of Y is contained in Y ′ if and only if Y ⊂ Y ′ and Y ∩ Y ′ 6= ∅.
Therefore (3) is equivalent to (2).

Now we are prepared to prove the main theorem.

Theorem 10. Let L be a locally closed subset of Spec(A). Then there exists
exactly one irreducible, small and locally maximal Gröbner cover of L.

Proof: First we will construct a Gröbner cover G of L and prove that it has the
desired properties. Then we will prove uniqueness. We construct G recursively:

Set C1 = L and i = 1.
(?) Let

Ci = Zi1 ∪ · · · ∪ Zimi

be the unique minimal decomposition of Ci into irreducible and
closed sets. For j = 1, . . . , mi define

Yij = Zij,gen ∩
(
union of all open subsets of Zij contained in L

)

and
Ci+1 = Ci r (Yi1 ∪ · · · ∪ Yimi).

If Ci+1 6= ∅ substitute i by i + 1 and go to (?).

This yields a sequence of constructible sets Ci with

L = C1 ⊃ C2 ⊃ · · · .

To prove termination we will show that the sequence

C1 ⊃ C2 ⊃ · · ·

is strictly decreasing. For i ≥ 1 and j = 1, . . . , mi by lemma 4 there exists a
non empty open subset of Zij contained in Ci ⊂ L. Hence Yij is a non empty
open subset of Zij contained in L.

Ci+1 = Ci r (Yi1 ∪ · · · ∪ Yimi) ⊂ Zi1 ∪ · · · ∪ Zimi r Yi1 ∪ · · · ∪ Yimi

⊂ (Zi1 r Yi1) ∪ · · · ∪ (Zimi r Yimi) = (Zi1 r Yi1) ∪ · · · ∪ (Zimi r Yimi)

$ Zi1 ∪ · · · ∪ Zimi = Ci

This shows that there exists a (minimal) r ∈ N such that Cr+1 = ∅. Hence

∅ = Cr+1 = Cr r (Yr1 ∪ · · · ∪ Yrmr )
= Cr−1 r (Yr−1,1 ∪ · · · ∪ Yr−1,mr−1 ∪ Yr1 ∪ · · · ∪ Yrmr ) = · · ·
= C1 r (Y11 ∪ · · · ∪ Y1m ∪ · · · ∪ Yr1 ∪ · · · ∪ Yrmr ).

So we obtain

L = C1 = Y11 ∪ · · · ∪ Y1m ∪ · · · ∪ Yr1 ∪ · · · ∪ Yrmr .
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As the Yij ’s are parametric by construction this shows that

G =
{
(Yij , GYij ) ; 1 ≤ i ≤ r, 1 ≤ j ≤ mi

}

is a Gröbner cover of L. It is clearly irreducible. Next we will show that G is
locally maximal. So let Y ⊂ L be parametric with

Yij ⊂ Y ⊂ Yij = Zij .

Then Y is an open parametric subset of Zij and so by theorem 8 we have
Y ⊂ Zij,gen. From the definition of Yij we obtain Y ⊂ Yij and thus Y = Yij .

Now we will show that G is small. Let Yij , Yi′j′ ∈ G with (i, j) 6= (i′, j′).

We want to show that for i ≤ i′ we have Yij * Yi′j′ . Assume the contrary.
Then

Yi′j′ = Zi′j′ ⊂ Ci′ ⊂ Ci = Zi1 ∪ · · · ∪ Zimi .

Consequently there exists an l ∈ {1, . . . ,mi} such that Zi′j′ ⊂ Zil. This yields

Zij = Yij ⊂ Yi′j′ = Zi′j′ ⊂ Zil.

Therefore j = l and Zij = Zi′j′ . For i = i′ this directly gives the contradiction
j = j′. For i < i′ we have

Zij = Zi′j′ ⊂ Ci′ ⊂ Ci+1 ⊂ (Zi1 r Yi1) ∪ · · · ∪ (Zimi r Yimi).

Consequently Zij ⊂ Zij r Yij and we obtain the contradiction Yij = ∅.
Now to prove that G is small by theorem 9 it suffices to show that for i > i′

and Yij ⊂ Yi′j′ we have Yij ∩ Yi′j′ = ∅. Note that Yij ⊂ Yi′j′ implies that
Zij r Yi′j′ is a closed subset of Spec(A). By construction we have

Ci = Ci′ r
(
Yi′1 ∪ · · · ∪ Yi′mi′ ∪ · · · ∪ Yi−1,1 ∪ · · · ∪ Yi−1,mi−1

)
. (2)

For subsets B, C, D of an arbitrary topological space with D ⊂ C there is the
trivial identity

B r C rD = B r C.

Together with (2) this yields

Ci = Ci r Yi′j′ = Zi1 ∪ · · · ∪ Zimi r Yi′j′ ⊂ Zi1 ∪ · · · ∪ (Zij r Yi′j′) ∪ · · · ∪ Zimi

= Zi1 ∪ · · · ∪ (Zij r Yi′j′) ∪ · · · ∪ Zimi ⊂ Zi1 ∪ · · · ∪ Zimi = Ci.

Therefore

Zi1 ∪ · · · ∪ Zimi = Zi1 ∪ · · · ∪ (Zij r Yi′j′) ∪ · · · ∪ Zimi

and Zij ⊂ Zij r Yi′j′ . Thus Yij ∩ Yi′j′ = ∅.
So far we have shown that G is an irreducible, small and locally maxi-

mal Gröbner cover of L. It remains to prove uniqueness. Assume G′ is an-
other irreducible, small and locally maximal Gröbner cover of L. First we will
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show G ⊂ G′. More precisely by induction on i = 1, . . . , r we will show that
Yi1, . . . , Yimi

∈ G′. We denote the generic point of Yij by pij .

First assume i = 1. Let j ∈ {1, . . . , m1}. As
⋃

Y ∈G
Y = L =

⋃

Y ′∈G′
Y ′

there exists a Y ′
1j ∈ G′ such that p1j ∈ Y ′

1j . We want to show Y1j = Y ′
1j . As

Y ′
1j is irreducible and Y ′

1j ⊂ L = Z11 ∪ · · · ∪Z1m1 there exist a j′ ∈ {1, . . . , m1}
such that Y ′

1j ⊂ Z1j′ . Together with p1j ∈ Y ′
1j this gives

Z1j ⊂ Y ′
1j ⊂ Z1j′ .

Therefore j = j′ and Y ′
1j = Z1j . Thus Y ′

1j is an open subset of Z1j contained in
L and by theorem 8 Y ′

1j ⊂ Z1j,gen. So by definition of Y1j we have Y ′
1j ⊂ Y1j .

Since G′ is locally maximal we obtain Y1j = Y ′
1j ∈ G′.

Now we do the induction step. Suppose

Y11, . . . , Y1m1 , . . . , Yi−1,1, . . . , Yi−1,mi−1 ∈ G′.

We have to show Yi1, . . . , Yimi ∈ G′. For j ∈ {1, . . . , mi} there exists a Y ′
ij ∈ G′

such that pij ∈ Y ′
ij . Using that G′ is small and the induction hypothesis we

obtain

Y ′
ij = Y ′

ij r
⋃

Y ′∈G′r{Y ′ij}
Y ′ ⊂ Lr

⋃
1≤i′≤i−1
1≤j′≤m

i′

Yi′j′ = Ci = Zi1 ∪ · · · ∪ Zimi .

Hence there exists a j′ ∈ {1, . . . ,mi} such that Y ′
ij ⊂ Zij′ . Together with

pij ∈ Y ′
ij this gives

Zij ⊂ Y ′
ij ⊂ Zij′ .

Therefore j = j′ and Y ′
ij = Zij . Now using that G′ is locally maximal, a similar

argument as for the case i = 1 above, proves Yij = Y ′
ij ∈ G′. Thus we have

shown G ⊂ G′.
Assume this is a proper inclusion. Then there exist a Y ′ ∈ G′ such that

Y ′ /∈ G and therefore

Y ′ = Y ′ r
⋃

Y ∈G′r{Y ′}
Y ⊂ Y ′ r

⋃

Y ∈G
Y = Y ′ r L = ∅.

This is a contradiction as by definition the empty set is not irreducible.

Definition 13. Let L be a locally closed subset of Spec(A). The uniquely de-
termined irreducible, small and locally maximal Gröbner cover of L is called the
canonical irreducible Gröbner cover of L (w.r.t. I and <).

In [20] Weispfenning gave a rather ad hoc kind of construction for what he
called canonical Gröbner systems. This construction bears some analogy with
the existence proof of the above theorem, however there are some differences
between the concept of canonical Gröbner systems and the concept of canonical
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irreducible Gröbner covers. For example the canonical Gröbner system may
contain redundant elements. The persistent reader is invited to verify this with
the example A = k[u1, u2] and I = 〈u1u2, u1x

2 + x〉. (The point is simply that
if Spec(A) = Z1 ∪ · · · ∪ Zm is the decomposition of Spec(A) into irreducible
closed sets, then it may happen that the singular part of Zi (= Zi r Zi,gen) is
contained in some Zj,gen.)

Note that theorem 10 implies that the equivalence relation on Spec(A), given
by comparing the leading terms of 〈σp(I)〉, has only finitely many equivalence
classes and that every equivalence class is a constructible set. Indeed the next
example shows that these equivalence classes are only constructible and not
locally closed. The following example also illustrates that the canonical irre-
ducible Gröbner cover may not be of minimal cardinality compared to all other
irreducible Gröbner covers.

Example 10. Let k be a field and A = k[u1, u2] the polynomial ring in the two
parameters u1, u2. We consider the ideal

I = 〈u1x, (u2
2 − 1)x2 + x〉 ⊂ A[x].

(Here x denotes just one variable.) Obviously J = J(I) = 〈u1〉 and the affine
plane without the u2-axis has generic Gröbner basis x, i.e. Y1 = A2

gen =
Spec(A) r V(u1) and x ∈ IY1(Y1) = Iu1 (= localization of I at {1, u1, u

2
1, . . .})

is the reduced Gröbner basis of I over Y1. By factoring mod J = 〈u1〉 and
identifying A/J with k[u2] we obtain

I = 〈(u2
2 − 1)x2 + x〉 ⊂ k[u2][x].

On the u2-axis the generic Gröbner basis is x2 + 1
u2

2−1
x, i.e.

J(I) = 〈u2
2 − 1〉 = 〈u2 + 1〉 ∩ 〈u2 − 1〉,

Y2 = V(u1)gen = V(u1) r V(u2
2 − 1) and x2 + 1

u2
2−1

x ∈ IY2(Y2) = Iu2
2−1 is

the reduced Gröbner bases of I over Y2. Finally over the two closed points
Y3 = 〈u1, u2 − 1〉 and Y4 = 〈u1, u2 + 1〉 we have the reduced Gröbner basis x
again. To summarize

G =
{
(Y1, {x}), (Y2, {x2 + 1

u2
2−1

x}), (Y3, {x}), (Y4, {x})
}

is the canonical irreducible Gröbner cover of A2 = Spec(A).
Let f ∈ k[u1, u2] be an irreducible polynomial such that f(0, u2) = u2

2−1 (e.g.
f = u1 +u2

2−1). Then there exist h ∈ A = k[u1, u2] such that f = hu1 +u2
2−1,

thus fx2 + x = (hx)(u1x) + (u2
2 − 1)x2 + x ∈ I. Therefore the extension of I

in (A/〈f〉)[x] is just 〈x〉 and V(f) is parametric with reduced Gröbner basis x.
Consequently

G′ = {(Y1, {x}), (Y2, {x2 + 1
u2

2−1
x}), (V(f), x)}

is an irreducible Gröbner cover of A2 with smaller cardinality then the canonical
irreducible Gröbner cover. However choosing an irreducible Gröbner cover of
Spec(A) with minimal cardinality in a canonical way, is as impossible as choos-
ing a curve which meets the u2-axes only in (0,−1) and (0, 1) in a canonical
way.
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The above example also can be used to show that a parametric subset of Spec(A)
need not be contained in a maximal parametric subset.

Conclusion and open questions

We have introduced two concepts for studying the geometry of fibres: parametric
sets and Gröbner covers. It seems possible to generalize these notions to more
general (i.e. not necessarily affine) bases schemes.

One of the main reasons for the success of Gröbner bases in the last decade
clearly was the fact, that in many cases they actually could be computed. The
focus of this article was not on algorithms but of course an efficient implemen-
tation of an algorithm to compute Gröbner covers is desirable. The existence
proof for the canonical irreducible Gröbner cover is in principle constructive,
but an algorithm for the computation of the canonical irreducible Gröbner cover
would necessarily involve successive primary decompositions and thus would be
of modest practical value. The obvious solution is to skip irreducibility.

The problem of determining the Gröbner basis structure of the fibres has
already been considered from an algorithmic point of view (see [14], [15], [20],
[19]). Most notably Antonio Montes released an implementation in Maple (see
http://www-ma2.upc.edu/∼montes) for the important case where A is the
polynomial ring over Q. In fact the output of his algorithm BUILDTREE can
be interpreted as a Gröbner cover, but the problem is that you can not say a
priori which Gröbner cover the algorithm will compute, furthermore the result
depends on a term order on the parameters. The most desirable thing of course
would be to establish a canonical (not necessarily irreducible) Gröbner cover
and then to compute it.
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