Mourrain: Proving Cardinal's Conjecture

Let us use the same notation as in the last sections; in particular we have #math771##tex2html_wrap_inline13422# : = {a1,…, aδ}, #math772##tex2html_wrap_inline13424# : = {b1,…, bδ} #math773#A = #tex2html_wrap_inline13426#(#tex2html_wrap_inline13427#), #math774#B = #tex2html_wrap_inline13429#(#tex2html_wrap_inline13430#) and we set #math775##tex2html_wrap_inline13432# : = M0-1Mp : = #tex2html_wrap_inline13433#mji(p)#tex2html_wrap_inline13434#.


#Proposition4294#


#proof4340#


#Corollary4411#

With a slight abuse of notation we will also denote #math776##tex2html_wrap_inline13436# the map

#math777#

#tex2html_wrap_indisplay13438# : AA, ai #tex2html_wrap_indisplay13439# #tex2html_wrap_indisplay13440#mml(p)al

which corresponds to the multiplication by Xp modulo #math778##tex2html_wrap_inline13443#.

Since these operations commute, for each #math779#f (X1,…, Xn)∈#tex2html_wrap_inline13445#P we define

#math780#

f (#tex2html_wrap_indisplay13447#) : = f (#tex2html_wrap_indisplay13448#,…,#tex2html_wrap_indisplay13449#) : AA

and #math781#N(f )= f (#tex2html_wrap_inline13451#)(1) so that N is a map #math782#N : #tex2html_wrap_inline13454#PA.


#Proposition4428#


#proof4438#


#Proposition4455#


#proof4467#


#Theorem4527#


#proof4536#