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Setting

1. Let k be an infinite, perfect field, where, if p := char(k) # 0, it is possible
to extract pth roots and let k be the algebraic closure of k and §2(k) the
universal field over k.

Let us fix an integer value n and consider the polynomial ring

P=k[Xq,...,X,)]
and its k-basis
T ={X" - X :(a1,...,a,) € N"}.
For each d € N we will also set Ty := {t € T : deg(t) = d}.

2. We also fix an integer value » < n, set d := n — r and consider

the field K := k(V4,..., V),

its algebraic closure K and its universal field 2(K) = 2(k);

the polynomial ring Q := K[Z1,...,Z,] and

its K-basis W :={Z*---Z2 : (a1,...,a,) € N"}.
All the notation introduced will be applied also in this setting, just substi-
tuting everywhere n, k, P, T with, respectively r, K, Q, W.

3. Each polynomial f € k[X1,...,X,] is a unique linear combination
F=>clf0n
teT

of the terms ¢t € T with coefficients ¢(f,t) in k and can be uniquely decom-
posed, by setting

fs = Z c(f,t)t, for each 6 € N,

teTs

as f = Zgzo fs where each fs5 is homogeneous, deg(fs) = 0, and fq # 0 so
that d = deg(f).
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4. Since, for each i,1 <i <n,
P=k[X1,. . ., X1, Xir1,..., X0][X0],

each polynomial f € P can be uniquely expressed as

D

f= Zhj(Xh---,Xi—1,Xi+1,---7Xn)X;-jahD # 0,
=0

and
degy, (f) := deg;(f) :== D
denotes its degree in the variable Xj.
In particular (i = n)

D
F=Y " hi(X1,.., Xn1)X], hp # 0, D = deg,, (f);
§=0
the leading polynomial of f is Lp(f) := hp, its trailing polynomial is Tp(f) :=
ho.
5. Given a finite basis F := {f1,..., fu} C P, we denote
I(F) := (F) := {Zhifi thi € P} cP
i=1
the ideal generated by F' and
Z(F):={aek™: f(a)=0,for all f € F} Ck™
the algebraic variety consisting of each common root of all polynomials in F'.

6. The support
supp(f) :=={t € T : c(f,t) # 0}

of f being finite, once a term ordering! < on 7T is fixed, f has a unique
representation as an ordered linear combination of terms:

= clfti)ticc(fits) €RNOE € Tty > - >t
i=1
The mazimal term of f is T(f) := t1, its leading cofficient is le(f) := e(f, 1)
and its mazimal monomial is M(f) := ¢(f,t1)t1.
7. For any set F' C P we denote

o TAF}:={T(f): feF}

1A well-ordering < on T will be called a term ordering if it is a semigroup ordering.
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o T (F):={rT(f):7€T,feF}
e N(F):=T\T«(F);
e k[N (F)] := Span, (N (F))

and we will usually omit the dependence on < if there is no ambiguity.

8. Let < be a term ordering on 7, | C P an ideal, and A := P/I.
Since A = k[N ()], b for each f € P, a unique

g = Can(f,],<) = Z v(f,t, <)t,

teN< (1)
the canonical form, such that
g€e€kN()] and f—g €l

9. For an ideal | C P,
| = ﬁ§:1qi

denotes an irredundant primary representation in P; d := dim(l) its dimen-
sion and r := r(l) :== n — d its rank; for each ¢, p; := /q; is the associated
prime.

10. For such ideal | we will re-enumerate and re-label the variables as
{Xla"'7Xn} = {‘/13-"7VdaZ15"'aZ7‘}a

so that
N /C[Vl, .. .,Vd] = (0),d = dim(l),

and we will wlog assume that the primaries are ordedered so that, for a
suitable value 1 <r <'t,

q;: NkVi,..., Vgl =(0),dim(q;) =d < i <r

so that the ideal
J=1k(W,..., Vi) Z1,....Z, ) =1Q
is zero dimensional and has, in Q, the irredundant primary representation
J:=N;_19:9
11. In general, when dealing witha 0-dimensional ideal, instead of
| CP=kKT]=EkX1,..., X5

we preferably use the notation

JCQ=KW|=K[Z,...,Z]
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12. For such 0-dimensional ideal J, with a slite abuse of notation, we still
set A := Q/J and denote q; its primary components in Q; we also assume

s :=deg(J) = dim(A)

and we denote, for each f € Q, [f] € A its residue class modulo J and @ the
endomorphism
P A=A gl = [fgl

13. In terms of a K-basis q = {[q1],...,[¢s]} of A so that A = Spang(q),
for each g € Q, the Grébner description of g is the unique (row) vector

Rep(g.q) := (v(9,q1,9),---,7(g9.4s,9)) € K*°

which satisfies

lg] = Zv(g,qj,q)[qj]-

14. A Grébner representation of J is the assignement of
e a K-linearly independent set q = {[¢q1],.. -, [gs]},
e the set M = M(q) := {(al(;l)) €EKY 1<h< r} of r square matrices
e 53 values 'yi(;) eK
which satisfy

(1) Q/1= SpanK(Q)),

(2) [Znar) = X2, ay[gj], for each 1,j,h,1 <1,j <s,1<h<r,

(3) [aig5] = 3, 7. lar] for each 1, h,1 < i, 4,1 < s.

A Grobner representation is called a linear representation iff ¢ = N (J)
wrt a term ordering <.

15. For the O-dimensional ideal J C Q with the irredundant primary repre-
sentation J = ﬂ;zl q; in Q, we set, for each i, 1 <i <rr,

m; = ,/q;, the associated maximal prime,

K; = Q/mz, K CK; CK,

Qi = Ki[Zl, ey ZT],

the irredundant primary representations q; = N’_,q;; and m; = N7, m;;
in Q;,

the roots b;j := (b7, ..., 0"y e KT c K", 1< j <,

o d;; = mult(b;;,J) = deg(q;;) for each j, 1 < j <y,

which satisfy:

(1) my = (Z1 =67, ... Z, — (D),

the b;;s, 1 < 5 < r;, are K-conjugate for each 1,
2) the bys, 1 <j K jugate fi h ¢
(3) up to a renumeration, ,/q;; = m;;,
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)
) 4i =di; N Q,

) for each 4, 1,1 < 4,1 <y, dij = dy =: d;,

) r, = deg(mz) = [Kz : K],

) deg(q;) = dir,

) J = ni_y NIy aig, V3=, ML, mi; are the irredundant primary
representations in K[Z1,..., Z,],

(11) Z;:l dﬂ’i = S.

16. With the notation above the ideal J has s := >_!_, r; roots which we
will also denote as

Z(J):{alv'-'vas}CKr, O[i:(agi)7._' a(z))

»r
For each such root «; we set

o m, = (7 — agi),...,ZT —aﬁi)),

e (; the m,,-primary component of J, so that J =M}_;q; in K®g Q;
e s; := mult(ay, J) = deg(q;) the multiplicity in J of o; so that s = ;_, s;.

17. A linear form Y := 22:1 cnZp, is said an allgemeine coordinate for the
0-dimensional ideal J iff

(a) there are polynomials g; € K[Y],0 < i < n, go monic, deg(g;) < deg(go),
such that

G:=(90Y),Z1—9:1(Y), Z2 = 92(Y),..., Zr — 9:(Y))

is the reduced Grobner basis of the ideal

Jt=14 (YZchZh> CK[Y,Zi,..., 2]
h

w.r.t. the lex ordering induced by Y < Z; < ... < Z,;

with the present notation, this condition implies, among the others, that
(Corollary 34.4.6)

(b) /)= K[Y]/g0(Y) _

(c) for each 4,1 <i<s, B;:=>,_, chagf) is a root of gop with multiplicity
s; and

(d) agl) = g;(B;) for each i,1 <i <s, and each j,1 < j <,

(€) go(Y) = [Timy (Y = Bi)*;

(f) fed <= Rem(f(g:1(Y),-.,9,(Y)) 90(Y)) = 0.

Moreover, there is a Zarisky open set U C K™ such that Y := " _, ¢, 2y, is
an allgemeine coordinate for J iff (¢q,...,¢,) € U.
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18. Given the polynomial ring P := k[X7, ..., X,] and its monomial k-basis
T we introduce n futher variables Y7,...,Y,, and we denote

e Py :=k[Y1,...,Y,] and Ty its corresponding monomial k-basis;

e Py =P®RQ=FKX,...,X,,Y1,...,Y,], and Tg its corresponding mono-
mial k-basis Tg == {7 Qw:7 € T,w € Ty };

e for each 7,0 < i < n, we use the notation h(X;) to denote the polynomial

h(Xz) = h(Yl,. .. ,}/i,XiJrl,. ,Xn) for each h(Xl,. . ,Xn) S 7),

in particular h(Xo) = h(X1,...,X,) and h(X,) = h(Y1,...,Y,).

e for anideal | =1(f1,..., fs) C P with a slight abuse of notation we denote
| also the ideal in Py generated by {f1(Y1,...,Yn), ..., fa(Y1,...,Y,)} and
A := Py /I; thus we have also

A®kA:P®/]I(f’L(X177Xn>af’b(Y175Yn)71§Z§n)7

e finally we denote |x :=1® Py C Pg and ly :=P ®| C Pg.



39. Trinks

The first paper applying Buchberger’s Algorithm being Trinks proposal of an
algorithm for solving polynomial equations systems, Trinks’ Algorithm is the
natural choice for opening this section on algebraic solving.

Trinks’ Algorithm essentially is an effective reformulation of Grébner’s
proof of Hilbert’s Nullstellensatz: given a 0-dimensional ideal J C Q :=
K|Zy,...,Z,], iteratively Trinks’ Algorithm, for each roots a € K=! of
JNK[Zy,...,Z;—1], computes and solves ged(h(o, Z;) : h € G;) € K[Z]
where G; denotes a basis of the ideal JN K[Z1,..., Z;]; the role of Grobner
bases consits in allowing to compute such basis of the elimination ideals.

The main improvement to Trinks’ Algorithm, a part from the use of
FGLM in order to efficiently deduce the needed lex Grobner basis of J, is
Gianni—Kalkbrener’s proposal of using their Theorem; the evaluation at o of
all polynomials in G; and the computation of their ged is thus reduced to the
evaluation at « of the leading polynomials of some elements in G; and of the
first element whose leading polynomial is not vanishing at «.

After recalling the basic tools provided by Grobner bases w.r.t. solving
(Section 39.1) I present Trinks’ (Section 39.2) and Gianni-Kalkbrener’s Al-
gorithm (Section 39.3) concluding with some comments which aim to read
these algorithms in the setting of Kronecker—Duval Philosophy (Section 39.4).
Finally (Section 39.5) I discuss a solver dated 1913 which already explicitly
applies the main property of the lex term ordering and anticipates Macaulay’s
Lemma.

39.1 Recalling Grobner

Let us consider

an infinite, perfect! field k, where, if p := char(k) # 0, it is possible to
extract pth roots,

the algebraic closure k of k,

the universal field £2(k) over k (Definition 9.4.1);

! While the techniques discussed here apply in this general setting we are mainly
thinking of the case k = Q, k := C; on the other side technically we need to (and
we can) solve over Q(V1, ..., Vq).
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the polynomial ring P := k[ X1, ..., X,],

its k-basis T := {X{*--- X% : (aq,...,a,) € N"};

an ideal® | := (F) :=I(F) := {}_;" | hifi : hi € P} C P given by
a finite basis F':= {f1,..., fu} C P,

the algebraic affine variety

Z(l):={aek™: f(a) =0, for each f € F} C k™

Each polynomial f € k[X7, ..., X,,] is therefore a unique linear combination
f=> ettt
teT

of the terms t € T with coefficients ¢(f,t) in k; the support
supp(f) :={t € T : c(f, 1) # 0}

of f being finite, once a term ordering® < on 7T is fixed, f has a unique
representation as an ordered linear combination of terms:

=Y clftitice(fit:) €RNO L € Tty >+ >ty
=1

the mazimal term of f is T(f) := t1, its leading coefficient is le(f) := c(f,t1)
and its mazimal monomial is M(f) := c(f, t1)t1.
For any set F' C P we denote

T AF}:={T(f): f€F}

T (F)={rT(f):7€T,feF}
N (F) =T\ T<(F);

k[N<(F)] := Span, (N (F))

and we will usually omit the dependence on < if there is no ambiguity. Recall
that

Definition 39.1.1 (Buchberger). A subset G C | will be called a Grébner
basis of | w.r.t. < if T(G) = T{l}, id est T{G} generates the monomial ideal
T(I) = T{I}.

For each f € P the canonical form of f w.r.t. | is the unique polynomial

g:=Can(f,1,<) = > y(f,t,<)t € k[N(I)]

teN(l)

such that f —g € l.

2 All over the book I will use the notation I(F)) C R in order to denote the ideal
generated by the basis F' in the ring R; when there is no ambiguity R will be
not specified.

3 Recall that (cf. Definition 22.1.2) a well-ordering < on 7 will be called a term
ordering if it is a semigroup ordering, id est

t1 < ta = tt1 < tto, for each t,t1,t2 € T.
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Let us fix any term-ordering < on 7 and let us compute a Grobner basis
G Cloflwr.t. <.
Then it holds (cf. Remark 27.12.4)

e ZN =0 < lel < 1eG;

e Z(l) is infinite iff N(I) is an infinite dimensional k-vector space iff there
exists i such that for each d € N: X ¢ T(G) = T(I);

e Z(I) is finite iff N(I) is finite iff for each i there exists d; € N : X% ¢
T(G) C T(l); moreover, in this case and under the assumption that | is
radical, we have #Z(l) = #N(I).

Kredel-Weispfenning algorithm (cf. Corollary 27.11.9) allows to deduce
from T(I) the dimension d := dim(l), the rank r :=n —d := r(l) of | and a
maximal set of independent variables (cf. Definition 27.11.4) {X;,,...,X;,}
so that |NE[X;,,..., X;,] = (0).

Then, we can re-enumerate and re-label the variables as

{X1,...,. X} ={,.... Vo, Z1, ..., Zp}, {Xiy, o, Xi} ={V4,..., Va},
so that
INkVL, ..., V4] = (0)
and consider

the field K = k(V4, ..., Vy),

its algebraic closure K

and its universal field 2(K) = 2(k);

the polynomial ring Q := K[Z1,...,Z,],

its K-basis W :={Z*---Z% : (a1,...,a,) € N'};
the zero-dimensional ideal J := 1°:= |K[Z1, ..., Z,]
and the unmixed ideal J¢ :=JNP.

Then, if | = Nf_, q; denotes any irredundant primary representation in P,
and we wlog assume that the primaries are ordedered so that, for a suitable
value 1 <r <t,

{X;
then Corollary 27.5.19 grants that

Je=10=af=[aQ
i=1 i=1

is an irredundant primary representation in @ and

X, } is a maximal set of independent variables for q; <= i <rr,

172

JC::I“:hquP
=1

is an irredundant primary representation.
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Moreover, the (GTZ, ARGH, CCC)-schemes (Chapter 35) allow to com-
pute unmixed ideals a; C P giving a decomposition

A= (e

Thus solving the ideal | C P is reduced, via Grobner technique, to solving
each unmixed (GTZ, ARGH, CCC)-component and solving each such com-
ponent is reduced to solving the related zero-dimensional extension ideal.

39.2 Trinks’ Algorithm

Thus we are reduced to consider a zero-dimensional ideal
JCQ:=K[Z,...,Z]

which we assume to be given via a Grobner basis G« w.r.t. the lexicographical
ordering < induced on W by Z1 < Zs < --- < Z,:

Z9 . 7% < 20 2% = exists j:a; < b;j and a; = b; for i > j.
Then, if we denote, for i,1 <i < r,

Ji Z:JQK[Zl,...,Zi],
7; : K — K¢ the canonical projection m;(a1,...,a,) = (a1,...,a;),
Gi 5:G< ﬂK[Zl,...,ZZ'],

we have, for each i

(1) Z2(J;) =m(Z21) ={(a1,...,a;) : (a1,...,a,) € Z(J)},
(2) G; is the reduced lexicographical Grobner basis of J; (Corollary 26.2.4).

In particular, there is a unique polynomial f(Z;) € K[Z;], such that
Ji=(f) and {f} = GL N K[Z].

For each a := (ay,...,a;—1) € K71, denote &, : K[Z1,...,Z;] — K[T]
the projection defined by

@a(f) = f(al, .. .,ai_l,T) for each f S K[Zl, .. 7Zz]

Theorem 39.2.1 (Trinks). Let o := (a1,...,a;—1) € Z(J;—1) and let [ €
KI[T] be a generator of the principal ideal $o,(J;) C K[T). Then, for each b € K

(al,. .. ,aifl,b) € Z(Jz) — f(b) = 0.



39.2 Trinks’ Algorithm
Proof. Let h(Z,...,Z;) € J; be any polynomial such that
f(T)=®4(h) =h(ay,...,a;—1,T).
Then
(a1,...,a;-1,b) € Z(J;) = f() = h(a1,...,ai—1,b) =0.
Conversely for any g(Z1,...,2Z;) € Ji, Po(g) € Pu(Ji), so that
glai,...,a;-1,b) = D,(g)(b) = 0 for each g € J;

and (a1,...,a;—1,b) € Z(J;).

15

O

Algorithm 39.2.2 (Trinks). Trinks’ Algorithm (Figure 39.1) for ’solving’ a
zero-dimensional ideal is based on the Theorem above and consists in iter-
atively computing Z(J;) by ’solving’, for each a € Z(J;_1), the univariate

polynomial generating the principal ideal @, (J;).

Fig. 39.1. Trinks’ Algorithm

Z := Solve(F, L)
where
F = (f174447fu) C Q:= I([ZMHWZT]7
L D K is a field extension of K,
J C Q is the zero-dimensional ideal generated by F,
Z:={a,...,as}=ZJ)NL".
Compute the reduced lexicographical Grébner basis G of (fi,..., fu)-
Let p(Z1) be the unique element in G N K[Z,],
Z;:={a € L:p(a) =0}
For i =2..r do
Z; = 0;
For each (ai,...,a;—1) € Z;—1 do

H = {g(ahA . .,ai_hZ,') g c G, \Gi_1}7

p = ged(H),

Z:={a€ L:p(a) =0},

Z; = ZZU{(al,...,aFl,a) ra € Z}
Z:=17,

Ezample 39.2.3. To illustrate Trinks’ Algorithm let us consider the zero-
dimensional ideal J C Q[Z1, Z2, Z3] discussed in Example 33.2.6 whose lex
Grobner basis? is G := {g;, 1 < < 7}, where (Examples 33.5.1 and 33.5.2)

* The leading polynomial (page 15) Lp(g;) is indicated in bold.
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9
g2
g3
94
gs
Jge
gr
gs

and whose roots are Z(J) = {b;,1 < j < 9} where
)

39. Trinks

17} — 373 + 27,

(Zi -

ZI)ZQ;

2123 — 71\ Zs,
173 — 373 + 27,

(zi -

371 +2)73 — 373 — 67971+ 97y — Z7 + 32, — 2

(Zo +Zn — 2)Z3+ 323 + ZoZy —TZs — 227 +37Z1 + 2,
(Zy —2)Z3 — AZ371 + 875 — 1525 — 30227, + 4575 + 371 — 6,

173

— 372 + 3737, — 473 — 373 — 67971 + 975 — 37, + 6,

by = (0,0,1) by = (0,1,-2) by = (2,0,2)
by = (0,2,-2) bs = (1,0,3) bs = (1,1,3)
b; = (1,1,1) bs = (2,0,1) by = (2,0,0).

Then we have:

= (Oa 1)

= (Oa 2)

p(Z1) = g1,Z1 :={0,1,2};

Do (g2) = Palgs) = 0;Pu(ga) = T° — 3T% + 2T;
Z:={0,1,2},Z5 == {(0,0),(0,1),(0,2)};

D (92) = 0;Pu(g ):TQ—T@ (g4) = T3 — 3T% + 2T},
ged(Pa(g3), Palga)) = T? —

Z:= A0, 1} Zz = {(0,0), (0, ) (0,2),(1,0), (1, 1)};
Do(g2) = 2T Do(g3) = 2T sz,qsa( 4) = T3 — 372 + 2T;
ged(Pa(gi),2 <i<4) =

Z := {0}, Z, := {(0,0), (o, 1),(0,2),(1,0), (1,1),(2,0)};
Po(g5) = 2T — 2;Pa(gs) = —2T + 2;

Po(g7) = =217 + 8T — 6; Do (gs) = T° — 3T% — 4T + 6;
ged(Pa(g;), 5 <i<8) =T —1;
Z:={1},Z5:={(0,0,1)};

Bolgs) = 2T + 4; Do (g6) = —T — 2;

Do (g7) = —2T% + 8T + 24;Do(gs) = T° — 3T — AT + 12;
ged(Du(gi),5<i<8) =T +2;
Z:={-2},Z5:=2Z,0{(0,1,-2)};

Do (g5) = 2T + 4; D (g6) = —T — 2;

Do (g7) = —2T% + 8T + 24; D, (gs) = T® — 3T? — 4T +12;
ged(Du(gi),5<i<8) =T +2;
Z:={-2},Z5:=2Z,U{(0,2,-2)};
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a=(1L0) : Pa(gs) =0;Palgs) = —T'+3;
Da(gr) = —T° +4T — 3;Da(gs) =T° = 31% =T +3;
ged(Pa(g:),6 <i<8) =T —3;
Z:={3},Zo:=Z U{(1,0,3)};

a=(1,1) : Pa(gs) = 0;Pa(gs) = 0;
Bo(gr) = —T% + AT — 3: P, (gs) = T% — 372 — T + 3;
ged(P(g:),7 < i < 8)=T? — 4T +3;
Z:={1,3},Zy:= Z, U{(1,1,3), (1,1, 1)};

a=(2,0) : D4(g5) = Pulgs) = Palg7) = 0;Po(gg) = T% — 3T — T + 3;
ged(Po(g;),7<i<8)=T%—3T%—T+3;
Z:=1{0,1,2},Zs := Z, U {(2,0,0),(2,0,1),(2,0,2)}.

39.3 Gianni—Kalkbrener Algorithm

A part from the FGLM-proposal of indirectly producing the needed lexico-
graphical Grobner basis via linear algebra from the Grobner bases wrt an
easier-to-compute termordering, the most relevant improvement on Trinks’
Algorithm is based on the deeper analysis performed by Gianni and Kalk-
brener on the structure of the lexicographical Grobner basis of a zero-
dimensional ideal.

Remarking that each polynomial f € K[Zy,...,Z;] can be uniquely ex-
pressed as

D
f = Zh’](zlv e 'aZifl)Zi]ahD 7& 05
j=0

we recall that the degree of f in the variable Z; is denoted

degy, (f) = deg,(f) := D

and that Lp(f) := hg is named the leading polynomial of f and we observe

that, for the lexicographical ordering <, we have T(f) = T(Lp(f))Zidegi(f).
We also denote, for each i,1 <i<r,§ €N,

Gi§ = {g S Gag S K[Zlv" aZ’L]adegz(g) S 5}

and remark that each G5 is a section of both G541 and G; and that hold
the obvious inclusions

Gi1CG2C...CG1C...CGi1C...CGsC G411 C...CG; C ...
For each i,1 <i<r,d € N, and each F C Q, we also denote

Lp;s(F) :={Lp(9),9 € FNK[Z1,...,Z;],deg;(g9) < 0}
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Theorem 39.3.1 (Gianni—Kalkbrener). Let J C Q be an ideal, < be the
lexicographical ordering induced by Z1 < --- < Z,.

Let G := {g1,...,90} be a Grébner basis of J w.r.t. <, enumerated in
such a way that

T(g91) < T(g2) < ... < T(go_1) < T(gy).

Then with the notation above:

(1) for each i,i <r, G; is a Grébner basis of J;;
(2) for each i,1 <i<r, § €N, Lp;s(G) is a Grébner basis of Lp,5(J);
(3) for each i,1 <i <r and each o := (by,...,b;—1) € Z(J;_1), denoting
o the minimal value such that @,(Lp(gs)) # 0 and
4,0 the value such that

9o =Lp(9e)Zt + -+ € K[Z1,..., i)\ K[Z1,..., Zj1]

it holds

(a) j =1,

(b) for eachgeGl 1,Pa(g) =0,

(c) for each g € Gis,Pu(g) =0,

(d) Pa(gs) = ged (Palg) : g € Gi) € K[T],
(e) for each b € K,

(bl, ey biq, b) S Z(JZ) <~ @a(gg)(b) =0.
Proof. cf. Section 26.2 and 34.6. a

Algorithm 39.3.2 (Gianni—Kalkbrener). Gianni-Kalkbrener improvement to
Trinks” Algorithm allows to avoid, for each « := (ay,...,a;—1) € Z;—1, both
the complete evaluation @,(g) of all g € G; \ G;—1 and the computation of
their ged, reducing this step to the evaluation of the leading polynomials of
a suitable subset of such elements (Figure 39.2).

Example 89.5.3. In Example 39.2.3, Gianni-Kalkbrener Algorithm computes

AR {0, 1,2};
a=(0) : Pa(Lp(g2)) = Pa(Lp(gs)) = 0,Pa(Lp(g4)) = 1;

Do (gs) = T3 — 3T% 4+ 2T}

Z:=1{0,1,2},Z5 := {(0,0), (0,1), (0,2)};
a=(1) : Da(Lp(g2)) =0;Pa(Lp(gs)) = L;

Po(g3) =T? - T;

Z:={0,1},Z5 == {(0,0), (0,1), (0,2), (1,0), (1,1)};
a=(2) : Pu(Lp(g2)) = 2,P0a(g2) = 2T}

Z := {0}, Z5 := {(0,0),(0,1),(0,2), (1,0), (1,1), (2,0)};
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Fig. 39.2. Trink’s Algorithm; Gianni—Kalkbrener improvement

Z := Solve(F, L)
where
F = (f174447fu) C Q:= I([ZMHWZT]7
L D K is a field extension of K,
J C Q is the zero-dimensional ideal generated by F,
Z:={a,...,as}=ZJ)NL".
Compute the reduced lexicographical Grébner basis G of (fi,..., fu)-
Sort G := {g1,...,9v»} by increasing maximal terms.
Z,:={a€L:g(a)=0},
%% g1 is the unique element in G N K[Z1].
For i =2..r do
Z; =0
g:=min(g € G; \ Gi—1).
For each (ai,...,ai—1) € Z;—1 do
h:=g,
Whlle Lp(h)(ai,...,ai—1) = 0 do h := Next(h,G),
= h(ah . 7ai_17Zi),
%% =gcd(H) for H := {g(a1,...,ai—1,7;) : g € G; \ Gi_1},
VA _{aeL:p(a)ZO}7
Z; =7Z;U {(al, .. .,al;l,a) ra € Z}

a=(0,0) : Pa(Lp(gs)) =2,%algs) = 2T — 2;
Zy :={(0,0,1)};

a=(0,1) : P,(Lp(gs)) =2,Pu(g5) = 2T + 4;
Z:={1},Z2:=7Z,U{(0,1,-2)};

a=(0,2) : Pa(Lp(gs)) =2,Palgs) =21 +4;
Z:={-2},Z5:=7Z,U{(0,2,-2)};

a=(1,0) : Pa(Lp(gs)) =0,2a(Lp(gs)) = —1,Palgs) = =T + 3;
Z:={3},Z2:=2,U{(1,0,3)};

a=(L1) : Pa(Lp(gs)) = Pa(Lp(gs)) = 0; Pa(Lp(gr)) = —1,

a(g7) = =T? +4T — 3;
Z:= {1 3}722 = Z2U{(17153)7(15171)}a

a=(2,0) : Pa(Lp(gs)) = Pa(Lp(gs)) = Pa(Lp(g7)) = 0; Pa(Lp(gs)) = 1;
Do (gs) =T% - 37% -~ T +3;
Z:={0,1,2},Z5:=Z5U{(2,0,0),(2,0,1),(2,0,2)}.

Remark 39.3.4. Cerlienco-Mureddu Correspondence and Algorithm (Chap-

ter 33) can give some hint in the structure of Gianni—Kalkbrener Algorithm.

Our informal discussion assumes that J is radical but holds in general. Gianni—

Kalkbrener Algorithm, for any root a := (ay,...,a;—1) € Z;_1, considers the
first Grobner basis element

h=Lph)Z ™ +--- € K[Z,...

S

JZi\K|[Z1,...,Z;i-1]
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whose leading polynomial Lp(h) does not vanish at .
In the same mood, Cerlienco-Mureddu considers a new point

x:=(a1,...,ai-1,b) ¢ Z(J;)

and the first Grobner basis element which does not vanish at it. Clearly both
algorithms are choosing the same polynomial: in fact

d+1=4#{y€Z() :ma(y) =a=m_1(x)}=d
Then
o &,(h) | Palg), for each g € G; \ G541 because
6ly) =0, for each y € Z(J;) : mi1(y) = o,
e Lp(g)(a) =0 for each g € G5, because there is y € Z(J;) such that
mi—1(y) = a=mi-1(x)

whence g(y) = 0 and 0 = Lp(g)(m—1(y)) = Lp(g)().

In order to conclude our argument, we need to dispose of the elements
g € Gis1 \ Gis id est of the Grobner basis element

g=Lp(@)Z "+
to do so, we have just to remark that
e g(a) and h(a) are associate if T(g) > T(h), because
g(y) =0, for each y € Z(J;) : mi—1(y) = o,
e and Lp(g)(a) =0 if T(g) < T(h), because there is y € Z(J;) such that
mi—1(y) = @ =mi—1(x)

whence g(y) = 0 and 0 = Lp(g)(m—1(y)) = Lp(g)(«).

39.4 An Ecumenic Notion of Solving

As the decomposition algorithms (Chapter 35) were reducing primary de-
composition of multivariate ideals to factorization of univariate polynomials,
Trinks’ Algorithm (as most other solving algorithms) reduces multivariate
zero-dimensional ideal solving, to univariate polynomial solving.

Most of these algorithms are ’ecumenic’, in the sense that they can be ap-
plied to any computational model of L which allows, in endlichvielen Schrit-
ten,

e to computationally perform the four operations in L,
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e and, for each univariate polynomial p(T') € L[T], to ’solve’ it, id est to
produce the set {a € L : p(a) = 0} of all the roots of p living in L,

and use these tools, given F', to ’solve’ the zero-dimensional ideal J generated
by F, id est to produce the set Z(J)NL" of all the roots of J with coordinates
in L.

Trink’s Algorithm (Figure 39.2) is a perfect instance of such ‘ecumenic’
algorithms: for instance, setting L := R, it can be wverbatim applied to a
numerical analysis solver®, or adapted in order to make use of Sturm Repre-
sentation and Thom Codification of Algebraic Reals®.

In the same way, Trink’s Algorithm can be easily adapted in order to
make use of Kronecker’s (and Duval’s) Model; obviously the resulting algo-
rithm (Figure 39.3) is a verbatim reformulation of the Zero-dimensional Prime
Decomposition Algorithm discussed in Section 35.2. Such strict relation be-
tween ’solving’” and decomposing, which was already stressed in Section 34.5,
is just a simple consequence of Kronecker—Duval Philosophy.

All over this Part we will preserve this ‘ecumenic’ approach to the notion
of 'solving’, as much as the persented solvers will allow to do so; naturally, the
most strict solver presented here is an integralist version of Kronecker—Duval
Phylosophy.

39.5 *Delassus—Gunther Solver

Historical Remark 39.5.1. Trinks’ paper, dated 1978, is the first published
application of Grobner bases, except Buchberger’s thesis and paper. His re-
sult is an efficient adaptation and improvement of the proof of Hilbert’s Null-
stellensatz given by Grébuner (Section 20.3).

Grobner’s argument, when restricted to the zero-dimensional case, essen-
tially computes iteratively the roots of each elimination ideal J; by

e producing (via a suitable generic change of coordinates) a polynomial

d;—1
fi(Zla---aZi) = cZZd" -+ Z hj(Zly---;Zi—l)Zg S Ji,C7é 0,

§=0
e solving the univariate polynomials
fi(al, ce, A1, Zz) € K[Zz] for each (al, . ,az;l) € Z(Jifl)

5 Of course, such a statement must be taken cum grano salis: it forgets the ill-
conditioning problem, which requires at least some suitable pre-processing before
applying the Algorithm.

6 Chapter 13 dicusses both such representations and the techniques needed in order
to solve the required polynomials

p(Zi) :=h(a1,...,ai-1,Z;),h € Q[Z1,...,Zi],

where each a; € R is given by such representation.
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Fig. 39.3. Trinks’ Algorithm in Kronecker’s Model

Z := Solve(F)
where
F:=(fi,...,fu) CQ:=K|Z1,...,Z:],
J C Q is the zero-dimensional ideal generated by F,
Z:= {(flwﬁlv Oé1), ceey (f57 -ﬁa Oés)}
where
f; = (fj1,...,fjr) is an admissible sequence (Definition 8.2.2) in

K(Z,...,Z:],
R =Kl[Z1,...,Z:]/(fj1,---, fir), K C R; C Kis the finite extension
explicitly given by f;,
aj € .ﬁ;
ZJ):={a1,...,as} CK"
Compute the reduced lexicographical Grobner basis G of (fi,..., fu);
Sort G :={g1,...,9gv} by increasing maximal terms.
Let g1 = H;;l q;j be the factorization of g; over K,

Forj=1...0let
f; .= (),
Rj = K[Z1]/q;,
7j : K[Z1] — R; be the canonical projection,
aj = 1;(2Z1) € Ry,
Zl = {(f17ﬁ17a1)74447(f07ﬁ0’70{0)}
Fori=2...r do
Zi = @7
g:=min(g € G; \ Gi—1)
For each (f,8,a) € Zi—1, £ = (f1,..., fi-1) , a = (a1,...,a,-1) do
h:=g,
While Lp(h)(ai,...,ai—1) =0 do h := Next(h,G)
p(Zl) = h(al, .. ._,aifl,Zi)
Let p = H;:1 q;J be the factorization of p over R,
For j=2...0let
fj = (flw "7fi—17qj)7
ﬁj = ﬁ[Zl]/qJ = K[Zl7 . -7Zi]/(f17 . -7fi*17qj)
m; : &[Zi] — R; be the canonical projection,
aj = (a174447a,’_1771'j(Zi)) S ﬁ37
Z;:=27;U {(flvﬁly al): RN} (f07ﬁ0'7a0')}
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e and including in Z(J;) those roots (ay,...,a;—1,b) which are annihilating
not only f; but also a given basis of J;.

Trinks proposal makes effective the ability of producing the required basis
of each J; and allows to produce univariate polynomials to be solved without
performing changes of coordinates.

Grobner’s argument, in turn, was an adapatation of the argument and
solver by Kronecker (Section 20.4) which, in the zero-dimensional case”, again
consists into

e producing (via a suitable generic change of coordinates) polynomials

difl
filZy,. o Zi) o= cZ8 4 Y hi(Za, .. Zi)Z € iy e # 0,

§=0
e solving the univariate polynomials
fi(al, R 7 Zz) € K[Zz] for each (al, e ,az;l) € Z(lzfl)

e and including in Z(l;) those roots (a1, ...,a;—1,b) which are annihilating
not only f; but also a given basis of |;,

where each ideal |;_; is obtained from |; (I, := J) via a suitable resultant
computation.
Resultant is instead just a theoretical tool used in proving an interesting
8

solver which anticipates some ideas by Macaulay: the original version® was
proposed by Delassus in 1987 but was flawed by the wrong assumption that
the generic initial ideal (Definition 37.1.5) of a homogeneous ideal w.r.t. the
lex ordering < induced by X,, < ... < X; consists of the last terms w.r.t. <
while it is just Borel (Definition 37.2.7, Corollary 37.2.8); the flaw was found
(by Gunther and Robinson?) and fixed (by Gunther!®) in 1913. o

7 Unlike Grébner’s argument which was not intended as an effictive solver and was
turn into such by Trinks, Kronecker’s argument was an effective solver.

The restriction to the zero-dimensional case is done here to simplify the ar-
gument but is not required by Kronecker’s solver which in fact applies also to
non-unmixed ideals.

The details on the general case are discussed in Sections 20.3 and 20.4.
Delassus E., Sur les systéemes algébriques et leurs relations avec certains systémes
d’equations auz dérivées partielles. Ann. Ec. Norm. 3¢ série 14 (1897) 21-44
Gunther, N. Sur les caractéristiques des systémes d’equations aux dérivées par-
tialles, C.R. Acad. Sci. Paris 156 (1913), 1147-1150 and Robinson, L.B. Sur les
systémes d’équations aux dérivées partialles C.R. Acad. Sci. Paris 157 (1913),
106-108
Gunther, N. Sur la forme canonique des systémes d’équations homogénes (in
russian) [Journal de I'Institut des Ponts et Chaussées de Russie] Izdanie Inst.
Inz. Putej Soobscenija Imp. Al. 1. 84 (1913) and Gunther, N. Sur la forme
canonique des équations algébriques, C.R. Acad. Sci. Paris 157 (1913), 577-80 .

10
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In order to present the solver proposed by Delassus—Gunther we must
slightly adapt the notation used; we assume J C Q = K[Z3,...,Z,] to be
homogeneous and we denote, for each d € N,

Wy = {1 € W,deg(7) = d} and'! J; := J N Span, (Wy).

We assume to have performed a generic change of coordinates and we consider
the (deg)-revlex ordering < induced by Z; < Z3 < ... < Z, and for each
(homogeneous) polynomial f =3, c(f,t)t € Q we denote

L (f):= m<in(t EW:e(f,t)#£0)
and, for each (homogeneous) set F C Q,
LAF} :={L(f): feF}and Lo (F):={7L(f): f € F,7 € W}.
Remark 39.5.2.

(1) if < denotes the (deg)-lex ordering induced by Z; > Zs = ... = Z, we
have T<(f) = L<(f) for each (homogeneous) polynomial f € Q and
T<(F) = L(F) for each (homogeneous) set F' C Q;

(2) for the homogeneous ideal J and each d € N, we have

Lc(J)a = Le{J}a = L{Ja};
(3) there is a (minimal) value'? D € N which satisfies, for each d € N,
L(Spang{wf :w eWy, f € Ip}) ={wL(f) :w e Wy, f € Ip};
(4) each set L-{J4},d > D, satisfies'® for each £,¢/,1 <0 < (' <,

Zih.,,Z;zTE]'_K{Jd} — Zin...de-i-l.“ZZg/fl,..Zgr€L<{Jd};

' the notation Jg denotes here the set of the homogeneous members of J of degree
d and must not be indentify with the previous notation where J; denotes the
members of J depending only on the first j variables.
We can set D := max{deg(g) : g € G} where G is a Grobner basis of J wrt <
but the existence can be easily derived (as for the finiteness of Grébner bases)
by Hilbert’s Nullstellensatz and this is the approach used by Gunther.
13 This is a direct consequence of Corollary 37.2.8 applied to the set T<(f) = L<(f)
and to the (deg)-lex ordering < induced by Z, < ... < Z2 < Z1.
Delassus’ mistake is to assume that T+ (Jq) = L<(Jq) is the set L(d) consists of
the first #L« (Jq) terms w.r.t. the (deg)-revlex < induced by Z1 < Z2 < ... < Z,
which tantamount to the last #T<(Jq) terms w.r.t. the (deg)-lex ordering <
induced by Z, < ... < Z2 < Z1.
In its Lemma (cf. Section 23.3) Macaulay was considering the same set
L(d), #L(d) = #L<(Ja) as Delassus and presented it, as Delassus, in terms of
the (deg)-revlex ordering < and not in terms of the (deg)-lex ordering <.

12
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(5) Denoting, for each d, N(Jg) := Wy \ L{Ja}, for each 7 € L{J4}, we
have Can(r, J, <) € Spang (N(J4)) and we can set

gr :=7 — Can(r,J, <) € Spang (N(Jg)) and Gg := {g- : 7 € L{Ja}}

having 7 = L<(g7) = T<(g7) and Lo{Ga} = L {Ja}.
6) 2(J) ={(a1,...,ar) €K": g(as,...,a,) =0 for each g € Gp}. 0

Theorem 39.5.3 (Delassus—Gunther). With the present notation and as-
sumptions, let y1,...,v € N,>.7_ v = D, be the values such that

0= 77 277 27 = max(Le{Jp}) = max(L{Cp}) = min(T_ {Jp})
Then

(1) if y1 =0 then ged(Gp) = 1;
(2) if y1 # 0 then

(a) h:= ng(GD) 7é 17'

(b) L (h) = 7

(c) for each d € N it holds

L(Spang{wg: w € Wy,g € Gp}) = {wL(g) : w € Wy,g € Gp};
(3) max-{L(g/h): g€ Gp}y=2Z3*--- 21" Z)r;

T

(4) if v1 =0 the set H := Gp N K|[Za,...,Z,| satisfies, for each d € N,
L(Spang{wf:w e Uy, f € H}) = {wL(f) :w e Uy, f € H},

where we have set Uy := WaN K[ Za,...,Z;];
(5) ify1 =0 and

(az,...,a;) € Z(H) = {(az,...,a,) € K" ' :g(as,...,a,) =0,9 € H},

then 1 # h(Z1, a9, ...,a,) = ged(g(Z1,az,...,a.) 1 g € Gp) € K[Z1];
(6) moreover h(Zy,az,...,a.) = (Z1 — a1)%89) for some a; € K.

Proof.
(1) Remark that the first element, w.r.t. < in Lo {Jp} is Z and that
ZP — Can(ZP,),<) € Gp
so that
h:=ged(Gp) #1 = gcd(Gp) € K[Zs,...Z,)[Z1|\ K| Zs, ... Z,].
Ify1=0,2¢€K|[Zs,...Z,) and g € K|Zs,...Z.]'* so that
h=gcd(Gp € K[Zs,...Z,]).
Thus ged(Gp) = 1.

14 As a consequence of the elimination property of the lex ordering < which is
explicitly stated by Gunther.
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(2) Assume now that v, # 0.
(a) Let us consider variables U,, W,, T € L.{Jp}, and the polynomials

()

fi= Y Ugrog:= Y Wigr € K[Un,Wr, Zo,... Z ][ Z1];
TEL<{JD} TEL<{JD}

Sylvester resultant grants (Proposition 6.6.7) the existence of poly-
nomials p,q € KU, W;, Zs, ... Z,|[Z1] such that

Res(f,g) :=pf + qg € K[U;, W, Za,...Z,];

moreover Res(f,g) is necessarily linear and homogeneous in terms
of members of the set F' := {wg,,7 € Lo{Jp},w € Wy} where
d := deg(p) = deg(q). By Remarks 39.5.2.(3) and (5),

Rz =z ..z zr = max(L{F}).

As a consequence, since 1 # 0, there are elements f' € F, for in-
stance f' = Z%gq, for which

L (f)e KU, Wr, Za, ... Z)[Z1)\ K[Ur, Wy, Za,. .. Z,]

thus getting a contradiction unless Res(f,g) = 0 and f,g have a
common factor in K[U,, W, Zs,...Z,][Z1].

Such factor is necessarily a member of K[Zs, ... Z,|[Z1], thus proving
that h := ged(Gp) # 1.

We necessarily have L. (h) = Z] for some v € N. Also

max{L<(g/h): g € Gp} = 2" " 23% - 21 2

and, setting F’ := {wg/h : g € Gp,w € Wy}, we have (again by
Remarks 39.5.2.(3) and (5))

max{Lo(f : f € F) = 202 2007 20+,
Since clearly ged(F’) = 1 we conclude by (1) and (2.a) above that
y1—v =0 1id est y1 = .
is trivial.

(3) is a trivial consequence of (2).
(4) If 1 =0, then H := Gp NK|[Zs,...,Z,] # 0 and®®

H={9-€Gp:71e WNK|[Zy,...Z]}.

The claim then is a direct application of Remark 39.5.2.(3).

15 Again a consequence of the elimination property of the lex ordering < explicitly
stated by Gunther.
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(5) Let us again consider the resultant
Res(f,g) == pf + qg € K[U,,W;, Zo,... Z,]

of f := ZT€L<{JD} U.,g; and g := ZreL<{JD} Wrgr; since ged(Gp) = 1
we have ged(f, g) =1 and Res(f, g) # 0.

Denoting V the set of the terms in the variables {U;, W, 7 € Lo{Jp}}
we therefore have Res(f,g) = > .y, cyv.

Each ¢, depends linearly on the elements in

F:={wg,, 7 € L{Jp},w € Wy},

where d := deg(p) = deg(q), and is independent on Z1: ¢, € K[Zs,...Z,].
Therefore each ¢, depends linearly on the elements in

F':={wg,g€ Hw e WsNK|Zs,...Z.]}

and we have ¢, (ag,...,a,) =0, Res(f, g)(U,, W;, az,...,a,) = 0 for each
(ag,...,a,) € Z(H), so that

ged (F(U-, Wi, ag,...ar, Z1),g6(Ur, Wryag,...ar,Z1)) # 1

id est 1 # h(Z1,a2,...,a,) := ged(g(Z1, a2, ... ,ar) : g € Gp) € K[Z1].
(6) Since this is Grobmer’s Allgemeine Nulldimensional Basissatz (Theo-

rem 34.2.4) I can skip the interesting, but not immediate, proof proposed

by Gunther!6. a

16 1t begins by considering a substitution
Zv=U1,Z2 =AU + Uz, Z3 =Us, ..., Z, = U,,

where A is a variable, and the corresponding equations in K[A][Uq, ..., Uy] which
sont de fonction holomorphes de A dans la voisinage de A = 0.
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40. Stetter

The crucial improvement by Gianni and Kalkbener of Trinks’ Algorithm is
dated 1987; the next year, Auzinger and Stetter proposed an alternative al-
gorithm for solving a radical 0-dimensional ideal which was later generalized
by Stetter and Moller to the general setting; the original proposal made no
reference to Grobner techniques' being based on Numerical Analysis tech-
niques: given a zero dimensional ideal J C Q, Auzinger—Stetter’s Theorem
states that, for each f € A := Q/J, the linear form &; : A — A describing
the multiplication by f in A has the evaluation of f at the roots of J as its
eigenvalues with the proper multiplicity; moreover, if we fix a K-basis of A
b = {b1,...,bs} and we denote Ay the matrix representing @ w.r.t. such
basis, then (by(a),...,bs(a))” is an eigenvector for f(a) for each a € Z(J).

Thus, provided that A is non-derogatory, id est its Jordan form has a
single Jordan block associated with each eigenvalue, it is sufficient to choose
as b a basis which includes the linear basis of the subspace of A consisting of
all its linear forms and use linear dependency to express each variable Z; in
terms of such linear basis.

After setting the proper notation (Section 40.1) we present Auzinger—
Stetter’s Theorem (Section 40.2) and discuss how to apply it for solving a
0-dimensional radical ideal (Section 40.3). The extension to the general case
being based on duality, I preliminarily discuss the relation between duality
and Auzinger—Stetter’s technique (Section 40.4) before presenting Moller—
Stetter’s extension of Auzinger—Stetter’s Theorem (Section 40.5).

After specializing this result to the univariate case, thus obtaining the
expected statement (Section 40.6) and discussing derogatoriness (Section 40.7
and 40.10), I finally present how Stetter’s Algorithm can be performed using
Grobner basis techniques (Section 40.8 and 40.9).

! While, the presentation here is centered around the notion of Grébner repre-
sentation, one must remark that such notion was introduced later in order to
provide a convenient frame to present Auzinger—Stetter’s Algorithm.
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40.1 Endomorphisms of an Algebra

Let Q := K[Z1,...,Z.], W its monomial K-basis and K the algebraic closure
of K. In order to simplify the notation let us wlog assume K = K to be
algebraically closed.

Let J C Q be a zero-dimensional ideal, deg(J) = s, and A := Q/J the
corresponding quotient algebra, which satisfies dimg (A) = s.

For any f € Q, we will denote [f] € A its residue class modulo J and @
the endomorphism @ : A — A defined by

Py([g]) = [fg] for each [g] € A.

Clearly @ = @y, iff [f] = [h].

If we fix any K-basis b = {[b1],..., [bs]} of A so that A = Spany (b), then
for each g € Q, there is a unique (row) vector, the Grobner description of g
(Definition 29.3.3),

Rep(g’b) = (7(97 b17b)7 R ’V(Q’bs’b)) G KS

which satisfies

9] = _ (g, b;,b)[b;]
J
and the endomorphism & is naturally represented by the square matrix

M([f],b) = (7(fbi,bj, b)) : P (bi) = [fbi] = Zv(fbi,bj,b)[bj]-

Recall that a Grébner representation (Definition 29.3.3) of J is the as-
signement of

e a K-basis b = {[b1],...,[bs]} C A and
e the square matrices Ay := (az(-?)) = M([Z}),b) for each h,1 < h <s,

and that a Grobner representation is called a linear representation (Defini-
tion 29.3.3) iff b = {[1],[72],...,[7s]} = N<(J) wrt a term ordering < and
remark that, for each f(Z,...,7Z,) € Q, M([f],b) = f(A1,..., A}).

An alternative way of representing a zero-dimensional ideal J C Q and
the related quotient algebra A is via its dual space (Section 28.1)

L£()):={¢e Q" :4(9) =0 for each g € J} C Q"

where Q" := Homg (Q, K) is the K-vectorspace consisting of all K-linear
functionals ¢ : Q — K.

Clearly we have dimg (£(J)) = s and to each K-basis L := {\y,---, As} of
£(J) is associated a Lagrange K -basis q = {[q1],. .., [qs]} which is biorthogo-
1 ifi=
0 ifi#j.

In particular, since, for each ¢, j, h,

nal to L id est \i(q;) = i =



40.1 Endomorphisms of an Algebra 31

)\ thZ = (Zal ql> Za’zl ql (;1)7

to each basis L := {A1,- -+, As} of £(J) is associated the Grobner representa-
tion

o g={[@];---,lgs]} T A:Xi(g;) =i for each i, 7,
L4 Qh = ()\](thl))w
Ezample 40.1.1. Set Q := C[Z;, Z5] and
V= (2} = 23,7170 — Z1 — Za + 1, Z3 + Z7 — 1)

which is a Grobner basis wrt the degree compatible ordering induced by
71 < Zs.

As a consequence we can choose as Grobner representation the linear
representation b = {1, Z1, Z», Z%, 72},

0 1 0 0 O 0O 01 0 O
0 0 0 1 0 -1 1 1 0 O
A= =11 100, 4= 0 00 0 1
0O 0 0 1 0 -1 0 1 1 0
-1 1 0 0 1 1 00 -1 0
It is easy to verify that £(J) = Spang (L), L := {\1,..., A5} with

Ai(p) = p(0,1), Az(p) = 621 -(0,1), )
A3(p) = p(1,0), Mi(p) = 5%(1,0), As(p) = 35%2(1,0)

whose associated Grébuer representation is q = {q¢1, g2, g3, g4, g5 } with

Gw=-Zi+1, q@=-Z}+7,

q3:Z125 Q42212+Z2—1, q5:Z12+222_1a
01 0 0 O 1 0 0 0 O
0 00 0 O 01 0 0 O
=001 00], @=|00010
000 10 0 0 0 0 1
0 0 0 01 00 0 0 O

Between the two bases b and q there are the basis transformations
Myq == (v(bi, qj,q)) and Mg := (v(gi, bj, b))

so that, for each 1,

:Z'Y(bi,Qj, [g;] and [g;] 27 gi,bj,b)[b
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L and

naturally, we have My, = M(;b

M([f],b) = MpgM ([f],a)Mq» = MygM([f], @) My,

so that M([f],q) and M([f],b) are similar and share the same eigenvalues
and Jordan normal form.

Ezample 40.1.2. Continuing Example 40.1.1 we have

1 01 0 0 1 00 -1 0

0 1. 100 0 1 0 -1 0
My=11 0 0 1 0 |, Mg= 0o 00 1 0],

0 01 0O -1 0 1 1 0

10 0 0 1 -1 0 0 1 1

and it is easy to check the relations My, = M;,)l, Mypg@Q1 = A1 My, MygQ2 =
A Myq. Setting

0 1 1

J1: 1 5 :]2: 0

we have, for ¢ = 1,2, My,J; = A;Myq, and hence J; = Q;.

From MyyJ; = AiMyq, we obtain Mg, A; = J; Mg, and AZ-TMqu = Mg;)JZ—T =
M g;,QiT, thus allowing to easily deduce eigenvalues and Jordan normal forms
also for AT.

-1 -1 0 0 1
0O 0 0 1 0
In fact we have My, J; = AT My with My = 0 1 0 0 0
1 1 1 -1 -1
1 0 0 0 0
1 0 1
1 0 1
S = 1 and Jp = 0
0 1 1
" 1

Remark 40.1.3. Denote P the s-square backward identity matriz

o 1 ifi+j=s+1
P.—(ng)7 pl]_{o 1f1+3#8+1

which satisfy P~1 = P.
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From a relation M J = AM where A is an s-square matrix, M is invertible,
N := M~! and J is the Jordan matrix of A, we obtain JN = NA and

AT(NTP)=NTJTP = (NTP)(PJ'P)

so that PJT P is the Jordan matrix of A7 — whose eigenvalues thus are the
same (with the same multiplicity) as the ones of A — and N := NTP its
eigenspace matrix.

Given a square matrix N = (n;;), the matrix N = NTP = (7;;) can be
obtained from N by, equivalently, either

e writing from the right to the left the columns of N7,
e clock-right F-rotating N or
e setting 7;; = ns—; 4, foreach 1 < 4,5 < s. O

40.2 Toward Auzinger—Stetter’s Theorem

With the same notation as in the previous section let us fix

e a Grobner representation
b= {[b1],...,[bs]} CA Ap:= (aﬁj?’) = M([Z4],b),1 <h <7

e a basis L := {A1, -, As} of £(J);
e the conjugate Grobner representation

a={lal],-- - [a]} CAQn = (Xj(Zna));; »
where q is the Lagrange basis satisfying A;(g;) = d;; for each 1, j,
and let us denote
o My, = (v(bi,gj,d)) and My = (v(gi,b;,b)) the basis transformation

matrices;

e Mgy, the matrix obtained from Mg, according the construction described
in Remark 40.1.3;

e J, and Jy,1 < h < r the Jordan normal form matrices for Aj, and A{;

e foreach f € Q/J=A

Ag = M([f],b) = (7(fbi, bj, b)) : D5 (bi) = [fbi] = Z’Y(fbi,bjab)[bj];

e J; and J ¢ the Jordan normal form matrices for Ay and A?.

Let us also consider the set

ZJ):={a e K": f(a) =0 for each f € J}.
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Lemma 40.2.1 (Auzinger—Stetter). With the present notation it holds

Proof. For each f € A, 3. v(f,q5,Q)lg;] = f=>; A\ ()lg)-

The first equality follows from the definition of =, the second from the
property of the Lagrange basis. The claim then follows by the linear inde-
pendency of q. a

Corollary 40.2.2. Each it" row of My, is the vector (\1(b;), ..., As(bi)) of
the evaluation of the basis element b; at the functional basis L.

Each j' column of My, is the vector (\;(b1),. .., )\j(bs))T of the evalua-
tion of the basis b at the functional ;. a

Lemma 40.2.3 (Auzinger—Stetter). For each o € Z(J) the vector
(bi(a), ..., bs(a))T
is an eigenvector of the matriz Ay for the eigenvalue f(a).

Proof. For each i,1 <1 < s, we have [fb;] = @¢([bi]) = >_; v(fbi, bj, b)[bs] so
that f(a)bi(e) =3, v(fbi,bj, b)bj(c). Thus the claim follows trivially. O

Lemma 40.2.4 (Méller). The following holds:

(1) for any A € K, X is an eigenvalue for Oy iff J: (f — A) # J;
(2) the corresponding eigenspace is the set {[h] : h € J: (f —\)};

3) [hl = X2 Bilbi] € = (f = A) iff (Br,-..,Bs)T is an eigenvector of A}
for \.

Proof. For each [h] =", Bi[b;] € A we have

Br(H) = B (by)

= YA b bR

3

> | 22 Biv(fby,bisb) | [bi]

so that, for v := (B1,...,8s)T we have

ARl = @p([h]) <= A=Y Biv(fbj,bi,b)Vi <= v = AT,
J

For any h ¢ J we have the obvious equivalences
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AlR] = @4([n]) <= AR =[fh]
— O-IMH=0
— MA=flhel
<~ hel:(f-N)
whence the claim. O

Definition 40.2.5. A matriz is called non-derogatory if, equivalently,

all its eigenspaces have dimension 1;
its Jordan form has a single Jordan block associated with each eigenvalue.
O

Theorem 40.2.6 (Auzinger—Stetter). The set {f(«) : « € Z(J)} is the
set of eigenvalues of Ay. If Ay is non-derogatory, each eigenspace of Ay for
f(a) is spanned by (by(c),...,bs(a))T.

Proof. A direct consequence of Lemmata 40.2.3 and 40.2.4. ]

Corollary 40.2.7. The set {f(a) : a € Z(J)} is the set of eigenvalues of
A?. If A is non-derogatory, such is also A? and, for each 1,

1) the eigenspace of AT for f(oy) is spanned by
f

(’Y(q“ bla b)a e 77((11'7 bva)))T'

(2) J:(f = flaw)) = I+ (@)
O

Ezample 40.2.8. Continuing Example 40.1.1, the eigenspace of A; (respec-

tively: Ag) for the eigenvalue 0 is spanned by (1,0,1,0,1)T (respectively:

(1,1,0,1,0)T) while (1,1,0,1,0)T (respectively: (1,0,1,0,1)T) are just eigen-

vectors for the eigenvalue 1 whose eigenspace has dimension 3 (respectively:

2). The eigenspaces for 0 have dimension 1 for both A; and Az, those for 1

have dimension respectively 3 and 2; thus neither matrix is non-derogatory.
We also have:

e J: 71 =(Zy—Z%) +Jand (0,1,0,—1,0)T spans the eigenspace of AT for
0;
o J:(Zy—1)=(Z% 73— 1)+ J and the eigenspace of A7 for 1 is spanned
by
{(-1,0,0,1,1)",(~1,0,1,1,0)",(0,0,0,1,0)"}
= {(Oa Oa _17 0) 1)Ta (_15 07 1) 07 O)Ta (Oa Oa 0) 17 O)T}7

o J:Zy=(Z2+ Z% — 1) + J and the eigenspace of AL for 0 is spanned by
{(=1,0,0,1,1)"}.
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e J:(Zy—1)=(Z; — 1)+ J and the eigenspace of AL for 1 is spanned by

{(0,1,0,-1,0)%,(1,0,0,-1,0)"} = {(1,-1,0,0,0), (0,1,0, -1,0)T}.
O

The relevant aspect of Auzinger—Stetter’s Theorem 40.2.6 is that while
both eigenvalues and eigenvectors of Ay intrinsecally depend on the roots of
J their actual values are precise functions of the choice of the matrix Ay and
of the basis b; one can therefore expects that for a proper choice of f and b
an eigenvalue computation can allow to deduce the roots of J.

40.3 Auzinger—Stetter: The Radical case

Let us preliminarly assume that J is radical and see whether the remark above
leads to something.
The radicality assumption implies that J has s = deg(J) different roots in
K" ) _
ZJ)={a,...,as} CK", «a; = (agj), ,a¥).

T

Thus we can wlog identify each functional A; with the evaluation at the
root a;:

N Q= Kp(Zh,..., Z) = A\(p) = plal,. .. ald)

and q is the corresponding Lagrange basis.

A matrix Ay is non-derogratory if and only if f(«;) # f(o ) for each
i # j. Clearly for a generic linear form Y = )", ¢, Zp, Ay is non-derogatory.
Thus if we choose a linear form which separates Z(J) id est it satisfies the
condition

(AS.1) Y = >, cnZy is such that §; := ), chagf) > chagj) =: f; for
each i # j

then Ay and AL are non-derogatory and have s distinct eigenvalues
By = chf),l <j<s
h

whose associated eigenspaces are generated respectively by

(bl(aj)a s abS(aj))T and (’7(%) bla b)a T a'Y(qj’ bsab))T'

In order to deduce the a;s from these eigenvectors, the trick consists in a
clever choice of the basis b. The efficient choice is the original one proposed
by Auzinger—Stetter: let us denote V' the K-vectorspace

V= Spang {[1], [Z1], ... [Z]}

and let ¢ := dimg (V) < s; then, up to reenumerating the variables, we can
wlog assume that
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o V = Spang{[1],[Z1],...[Zs-1]}
o {[1],[Z1],...[Zs-1]} is a K-basis of V,
e there are ¢;; € K,0 <1 < § < i <r such that [Z;] = ¢;o + Z?;ll culZi.

Moreover, the knowledge of the matrices A, allows to deduce, by easy
linear algebra, both § and the c¢;s.
We can therefore choose a basis b which satisfies the condition

(AS.2) b = ([bi], ..., [bs]) is such that
by =1,b;=Z;_1,1 <i<6=dimg(V)
so that
V= Spang {[1],[Z1],...[Z]} = Spang{[1],[Z1],...[Zs_1]}
= Spang{[bi], ..., [bs]};

thus the eigenvectors corresponding to a; = (a(j), . ,agj)) are

(1,a,..., a9 bsia(ay), ... bs(o))T

and the other coordinates of o; can be deduced from al(.j ) = cz-oJrZ?:_ll cila

In conclusion

(4)
b

Theorem 40.3.1 (Auzinger—Stetter). With the present notation and un-
der the assumption that J is radical, then it holds

1) each j*™ column (bi(a;),...,bs(a;))T of My, is an eigenvector of each
j j q
Ays, f € Q, for the eigenvalue f(cy);
2) each j*" row (v(g;,b1,b), -, 7v(q;, bs, DT of My is an eigenvector of
G5 j q
each A?, f € Q, for the eigenvalue f(cy);
(3) for each f € Q, it holds
(a) the eigenvalues of Ay and AT are {f(a;): 1< j <s};
(b) the eigenspace of Ay for A € K is

Span{(bi(;), ..., bs(a;))T 1 flaj) = A}
(c) the eigenspace of A? for A€ K is

Spang{((qj,b1,b), -+, (qj,bs, b)T) : fo) = A}

(d) [g5]f () = [fas] for each j;
(e) foreach A€ K, J: (f =) =J iff A\ ¢ {f(a):1<i<s};
(f) foreach Ae K J: (f —A)=J+{q;: flaj) = A}.

If, moreover, Y =%, c¢nZy satisfies condition (AS.1) then:
(4) the j* column (bi(j),...,bs(a;))T of My, is the eigenvector for B =
>on cha,(f) of Ay ;
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(5) the jt" row (y(qi,b1,b), -+, v(q;,bs,b))T of My, is the eigenvector for
Bj =Yy enay’ of AT;
(6) J: (Y —B85) =3+ {q;} for each j.

If further b = {[1],[Z1],...[Zs-1], [bs+1], - -, bs]} satisfies condition (AS.2)
then:

(7) denoting {(dj1,...,d;s)T,1 < j < s} the eigenvectors of Ay and

5—1 6—1
L —1 —1 —1 —1
Qj 1= <dj1 djg, S ’djl djg, cso + E CSldjl djl, .o, Cpo T+ E Cnldjl djl>
=1 =1

for each j, then Z(J) = {a;,1 < j < s}.

Proof. (1), (3)(a-b) are a direct consequence of Lemma 40.2.3, (2), (3)(c-f)
of Lemma 40.2.4.

For the non-derogatory case, (4) is Theorem 40.2.6 and (5-6) Corol-
lary 40.2.7.

(7) is a direct reformulation of (1) applied to the basis satisfying condition
(AS.2). O

Ezample 40.3.2. If we consider the ideal J C C[Z;, Za, Z5] discussed in Ex-

ample 39.2.3, since we completely know both the roots and the Grobner

structure all we need to do is to verify Auzinger—Stetter’s Theorem on it.
The natural choices for B and L are (compare Examples 33.2.5 and 33.2.6)

B:= {15 Zl; ZQ; Z33Z12; ZIZQaZQQ’ZIZ3, Zg}

and \;(p) := p(b;) for all i; under this choice

1 1 1 1 11111
00 2 0 111 2 2
01 0 2 01100
1 -2 2 =2 331 10

My=]0 0 4 0 1 1 1 4 4 [;
00 0 0 01100
01 0 4 01100
0 0 4 0 33120
1 4 4 4 99110

and the matrices related to the Grobner representation are (compare Exam-
ples 33.5.1 and 33.5.2)



0 1 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
A= 0 =2 0 0 3
0 0 0 0 0
0 0 0 0 0
2 -3 -9 -2 1
6 -3 —45 -8 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
-2 -3 7T 2 2
Ay = 0 0 0 0 0
0 0 0 0 0
0 0 -2 0 0
-2 =3 9 2 2
-8 —12 40 8 8
0 0 0 1 0
0 0 0 0 0
-2 -3 7 2 2
0 0 0 0 0
As=| 2 -3 —9 -2 1
-2 -3 9 2 2
-2 -3 9 2 2
6 -3 —45 -8 0
-6 3 -9 4 0
They satisfy
AiMy, =
A2Mbq =
AsMy, =

40.3 Auzinger—Stetter: The Radical case

0 0 0O

0 0 0O

1 0 0 O

0 0 1 0

0 0 0O

1 0 00

1 0 00

6 3 3 0

30 15 4 2
0 0 0 0
1 0 0 0
0 1 0 O
-1 -3 -1 0
1 0 0 0
1 0 0 0
0 3 0 0
-3 -3 -1 0
-19 -12 -4 0
0 0 0 0
0 0 1 0
-1 -3 -1 0
0 0 0 1
6 3 3 0
-3 -3 -1 0
-1 -5 -1 0
30 15 4 2
6 3 -3 3

My, diag(0,0,2,0,1,1,1,2,2)
My, diag(0,1,0,2,0,1,1,0,0)
My, diag(1,-2,2,-2,3,3,1,1,0)

and none is non-derogatory. Instead the matrix

Ay =

0
0
—6
-2
6
—6
—6
10
—44

-3
0
-9
-3
-3
-9
-9
-3
6

1
0
21
7
—27
27
25
-99
148

3
0
6
2

—6
6
6

—16

44

0

-3

6
2

—6

6
6

-1

8

0 0 0
1 0 3
-6 -8 =3
-1 -3 -4
19 9 9
-1 -9 =3
-6 -12 -3
69 33 2
—91 —-48 -25

WOH O OO WO oo

39
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related to the linear form Y = —37;+ Z5+ 373 is non-derogatory and satisfies
AyMbq = Mbq diag(?), 75, 0, 74, 6, 7, 1, *3, *6)

40.4 *Moller: Endomorphisms and dual space

If J is radical, setting b := q and recalling that q is the Lagrange basis for
the functionals \; representing the evaluation at «;,

1 ifi=j
Ailg) = 04 = {0 ifz';é;.

we can reformulate Lemma 40.2.3 as

Corollary 40.4.1. For each A\; € L the vector
(a1(j); - as(ay)” = (155 -+, 855)" = (0,...,0,1,0,...,0)"
is an eigenvector of the matriz Qs for the eigenvalue f(a;).

Proof. For each j,1 <1i < s, we have
0 = @4(lar) = Y (e e (10.)

In the particular case of a radical ideal, where each \; is an evaluation at the
point «; we further have

N0 = AN a5) = flasdagte) = { 50 110

so that [fq;] = ¢ ([g;]) = 22, Mi(fa)las] = fley)lgs]- =

In order to extend the argument above to the general case, one needs to
expand Equation (40.1) to a generic dual basis I and to its corresponding
Lagrange basis q.

The natural choice is to take as I a Macaulay representation®. Following
the notation of Chapter 31, for each 7 = Z7' --- Z&t~ € W, we consider the
functionals

M(r): Q= K, f=Y_c(f,t)t = c(f,7)
tew
and we restrict ourselves to the set of Noetherian equations Spany (M) C Q*
where Ml = {M (1) : 7 € W}.

2 Compare Section 32.1, Corollary 32.3.3, and Definition 33.2.2.
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For any term-ordering <, for each £ =3, ., c({,t)M(t) we set T({) :=
min{t: ¢({,t) # 0}, Lo (f) := max{t: c(¢,t) # 0} and we denote T (L) =
{T<(¢): L e L)yand L (L) = {L<(¢) : £ € L) for each subset L C Spanj (M).

We define, for each 7 € W, the linear map
M) fw=71v

or : Spang (M) — Spang, (M) : M (w) — {0 if 7§ w:

and, by linearity, for each f = 3", c(f,t)t € Q the linear map

of : Spang (M) — Span (M), £+ op(6) = Y e(f,t)oe(0).
tew

We recall that a subspace L C M is called stable (Definition 31.2.2) iff for
eachleL,feQ, or({)€lL.

Recall that, for each primary ideal ¢ C P at the origin, the corresponding
dual space £(q) C Q* is a stable subset of Spany (M) (Corollary 31.3.3,
Proposition 31.3.5) and satisfies T« (£(q)) = N<(q) (Corollary 32.1.4); both
T.(£(q)) and L.(£(q)) are ordered ideals.

Moreover it holds Leibnitz Formula

Lemma 40.4.2. For any f,g € Q and any ¢ € Spany (M) we have
(fg) =D M(1)(£)o-(0)g).
TEW

Proof. Compare Corollary 31.4.2. ]

An alternative description of the dual space of a primary is in terms of
differential functions (Section 31.5): we denote, for each 7 = Zf* --- ZZ~ € W,
by D(7) : @ — Q the differential operator

1 pertter
ell...e ) 0Z7 ... 0Z

and we consider the subset Spang (D) C Hom(Q, Q) , D = {D(7) : 7 € W}.
There is an obvious identification

D(r):=

ev : Spang (D) — Spang (M) : D(7) — M(7),
which satisfies, for each 0 := )7, ) ¢(0,)D(t) € Spang (D)

ev(8)() = 8()(0,...,00 = > e(8,)M(t)() (40.2)

tew

under which we can impose on D the same term-ordering < as induced on
M so that D(7) < D(w) <= M(1) < Mw) <= 7 < w and we
can set T<(8) := T<(ev(d)), L<(§) := L (ev(d)) for each § € Spany (D)
and To(D) = T<(ev(D))), Lo(D) = Lc(ev(D))) for each subset D C
Span (D).

T
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Under this identification we can naturally define the anti-differential op-

erators
o(D(w)) = {(?(“) i o

and 07(0) = D e c(fit)oi(0) for each f = >, c(f,t)t € Q6 €
Spang (D); a subspace D C D is called stable (Definition 31.5.3) iff o(8) € D
foreach 6 € D, f € Q.

For each a = (ay,...a,) € K" denoting m, = (21 — a1,...,Z, — a,) the
maximal ideal at o and

A : Q= (N =fZi+a1,....Z +a,)

so that Ao (my) = m = (Z4,...,Z,) is the maximal at the origin, then we
have

for each 7,w € W

(O())(@) = (6(f))(a1, .. ar) = 6(Xa(f))(0,...,0) = ev(8)(Aa(f))
for each 6 € Spang (D) and f € Q; thus for each m,-primary q, if we denote
D (Ga) := {6 € Spany (D) : §(f)(a) = 0 for each f € qo} C Spang (D)

then we have ev(®Dm, (94)) = £(Aa(ga)) and D, (qe) is stable (under anti-
differentiation).
Under this notation Leibnitz Formula becomes

Corollary 40.4.3. For any f,g € Q and any ¢ € Spang (D) we have

8(fg) =Y D()(f)o-(8)(9).

TEW

We have now the tools needed to describe the dual basis L := {A1,..., As}
of J and the matrices Q¢ describing the effect of each endomorphism @, in
terms of its corresponding Lagrange basis q: using a notation similar to the
one used in Section 33.2 we set

e < any term-ordering,
e Z(J)) :={a1,...,as} CK", ;= (agi), . .,a&i)), s < s,
e foreachi, 1 <i<s
— ¢; the m,,-primary component of J, so that J = N3_, q;;
— s; = deg(q;) so that > ;_, s; = s,
~ L= £\, (1)) C Span (M),
— for each v € Nc(Aq, (9:))

Lo, = M(v) + Z (T, bya;, )M (1) € L;
TEW

the unique element (Definition 32.1.3) for which
o 7€ Nc(Ay,; (9:) =T (Li) = ¢(7,0ya,;) =0 and
] T< (Evai) =v
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so that
o (in particular) £1,, = M (1) and
o {lya; : v € Nc(An,(q:))} is the Macaulay basis of

L = Spang{lya, : v € Ne(Aa, (i) }s

L= {\,.. ., A} = {loa,da; 1 U € Nc(Aa,(94)),1 < ¢ < s} ordered so
that for Ay := £y a,, A, , Ay = Evyaiy )‘aiy holds

iy <1ty Or

T<y {zmzy and v, < vy;

N;:={h: )\, = Emi)\a_i} = {n4,...,mip1 — 1} for each 4,1 <14 <'s, where
nyi=1ni1 =148, npp1 =1+s;

a={q,...,qs} the set biorthoginal to L so that \;(g;) = d;j;

for each h, §, € D the element such that A, = ev(dp)Aa,;, h € N;.

We recall that, under these assumptions

[p] = 3=; Ai(p)lgi] for each p € Q;

e ={f€Q:X(f)=0,1<i< o} is an ideal for each o < s, and
1D J2 DD Js (cf. Corollary 32.3.3);

by definition, for each i and each f € Q,

Cia; A (f) = M(1D) Ao, (f) = A, (£)(0,...,0) = f(au).
Lemma 40.4.4 (Mdller). For each \j = lya, Ao, € L, denoting
Tj == {1 € Ne(Aa,(g5)) : 7 < v} \ {1}
the following holds:

(1) for each f,g € Q, it holds
Ni(f9) = 6;(fg)ai) = flai)di(g)ai) + Y D(7)(f)or(8;)(9) (i)
TET)
= flai)Aj(g) + Z M(7)(f)or(bua,)Aa, (9)

TET;

= fle)Xi(9) + Y cadalg)

r=n;

= T @)+ Y eada(g)(an)

r=n;

for suitable ¢, € K;
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(2) If f = Z,, for each g € Q
N(Z.9) = 65(Z.g) (i) = al6;(g)(ew) + 027,(5;)(g)(v)
agi))‘j (g) +oz, (gvai )‘ozi (g)

(3) If X € L; is such that \(Z,g9) = aEi))\(g), for each g € Q and each
1,1 <o <r, then A = Ag, .

Proof.

(1) A direct consequence of Leibnitz Formula (Lemma 40.4.2 and Corol-
lary 40.4.3) and of the remark that

0r(lya;) € Spang{lcqa, : deg(s) < deg(v)} for each 7,v.

@)D@xz)MbNZJ{é gi;éﬂ

(3) For X\ = LAy, £ = > c(r, €)M (1) € Spang (M), the assumption is
equivalent to oz, (£) = 0 for each ¢ and, in turn, to

e(r,l) #0 = Z, {7 for each ¢
id est £ = M(1) = {1q,- O
Corollary 40.4.5 (Méller). For Ay = M([f],b), we have
(1) for each 1,1 <1<s,i,1<i<s,je€N;, \j:="Llya,Aa, satisfies

Jj—1

ApXi(b) = Apd;(b)(ai) = f(0a)d;(bi) () + Y ca(br)(ci)

j—1
= flaa)A;(br) + Z caAa(br)

for suitable ¢, € K.
(2) In particular, for each i,

Af/\ni (bl> = Af(snl (bl>(a1> = f(az)(snl (bl)(ai) = f(a1>>‘n1 (bl>a 1<i<s.

(3) On the other side for each i,1 < i <'s, and each j € N;,j # n;, there is
at least an 1,1 <1< s, and a 1,1 <1 <r, for which

AN (by) # a DN (by).

Proof. (1) follow by applying A; to each equation ) .~(fbi,b;,b)[b;]
Asbi] = [fbi] and expanding A;(fb;) via Lemma 40.4.4.(1).

(2) is the special case j = n; in which the summation is empty.

(3) follow directly from Lemma 40.4.4.(3). O
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Denote, for each p € N,
V, := Spany (M(7),deg(r) < p) and A, := Spany (D(r),deg(r) < p)

and set V := V1 \ Vo = Spang (M(Z),1 <h <r), and

A = Spang (D(Zp),1 < h <r) = Spang (8%’ 1<h< r) .
h

Proposition 40.4.6 (Moller—Stetter). The following holds

(1) foréd =3, ah% € A and each linear form g = >, _,bpZ, € Q it
holds 6(g) = ev(8)(g) = Y., anbn and ev(8) =, _, anM(Z;) € V;
(2) for eachi,1<i<s, teL;NV,d=ev(l), g€ Q, it holds

Aplra,(9) = Apd(g)(ai) = flai)lra,(9) + o, (f)g(cu)
= flai)d(g)(i) + 0(f)(ci)g(e);

(3) for eachi,1 < i <s, if dim(L, NV) > 1 there are £ € L;,d =ev({) € A
which satisfiy, for each g € Q,

Aplha,(g9) = Apd(g)(u) = fou)lra, (9) = f()d(g)(ai);

(4) for each i,1 < i <'s, if dim(L; N V) = 1, then 0n,4+; € A; for each
31 <7 <si;

(5) for each i,1 < i <'s, and each j,1 < j < s; , if dim(L; NV) = 1 and
deg(7) =z, then 0+ (0p;+5) = Ons+j—z-

Proof.

(1) trivial.

(2) A direct application of Lemma 40.4.4.(2).

(3) Let us consider two linearly independent elements ¢1,¢> € L; and set
b, := LA, (f),0 € {1,2} If b, = 0 then ¢, satisfies the required formula.
If by % 0 # bo then £ := byl — by {5 satisfies

i (f) = balida, (f) — b1l ), (f) =0

hence AflAq,(9) = f(as)lAa,(g) for each g € Q.
(4) Let < be any degree-compatible term-ordering. Then for each ¢ €
SpanK (M)v
e A\ Ay = deg(L<(0)) = p.

Since L (L;) is an ordered ideal if, for some p € N, dim(L; NV,) > 1
then dim(L; N V) > 1.
(5) is a direct consequence of (4). O
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Corollary 40.4.7 (Méller—Stetter). For each i,1 < i <s,j,1 < j <s;
and each f,g € Q, if dim(L; N V) =1, it holds

)‘nr‘rj(fg) = 6n1+j(fg)(ai)

= f( z m-i—] +Z)\m+J —z m-i-z(g)

= fla)on,+;(g)(cs) + Z Oni+j—a () (@) 0n, +2(9)().

Proof. Tt is a reformulation of Lemma 40.4.4.(1) via Proposition 40.4.6(5).
O

40.5 Moller—Stetter: the general case

Let us now consider the general case in which J is not radical and some roots
are not simple.
With the notation of Sections 40.2 and 40.4 let us now also set

e Z(J) :={ag,...,as} C K", ai:(agi),.. (Z) s < s;
. foreachi 1<e <,
- : @ — Q the translation A\, (Z;) = Z; +a() for each j,

- My, = (21 — all), oy Dy — i)), the maximal ideal at a;,

— q; the m,,-primary component of J, so that J = M3_,qs;

— s; = mult(ay,J) = deg(q;) = dimg(L;) the multiplicity in J of a; so
that s = > 7_| si,

= L := £(Aa,; (q:)) C Span (M),

— nip1 =1+ > ,_, s so that ny =1 and n, 41 = s+ 1;
- Ny ={ng...,nip1 — 1};

e L := {)\,..., s} the basis biorthogonal to q defined in Section 40.4 so
that, in particular, for each 4, L; = Spang{\; : j € N;}, Ay, is the evalua-
tion at oy and X;(g;) = 0;; for each i, j;

e for each i and each h € N;, dp, € D the element such that Ap(-) = dn(-)(a);

o () 1= () = 6 (br)(a).1 < 1 < 5,5 € Vi

* vj(b) = ()\ (1), -5 A (b)) = (85(b1)(e), -, 05 (bi) ()T, 1 < j < s, €
Ni;

e U(b) the square s x s matrix U := (v;(b)).

Proposition 40.5.1 (Moller—Stetter). Under this notation it holds

(1) U(b) = Myy;
(2) each matriz Ay = M([f],b) satisfies the relation AyU(b) = U(b)Qy;
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(3) each matriz Qy = M([f],a) = (q;) is a block diagonal matric where
the it" diagonal block, 1 < i <'s, is an upper-triangular s; x s; square
matriz U; whose diagonal entries are f(«;) and which covers the rows
and columns indexed by N; := {n;,...,njp1 — 1} for each i,1 <i <s.

(4) In particulal, under the assumption dim(L; N'V) = 1, it holds

_ {&_ﬁ(f)(ai) if ni <t <K< nipr
ql/ﬁ? - .
0 otherwise.
(5) For each i, 1 <i<s,

U, (@) = (O1nyy - - 0sm,))% = (0,...,0,1,0,...,0)"

is an eigenvector for f(oy) of Qy for each f € Q.
(6) For eachi, 1 <i<s,

V. (b) = (ba(ei), .., bs(as))”
is an eigenvector of Ay for f(a) for each f € Q.

(7) Forb={[1],[Z1],...[Zs-1], [bs+1], -, [bs]} satisfying condition (AS.2)
and ¢, € K,0 <1 <6 <t <r are such that [Z,] = ¢,0 + Z?:_ll culZi),
then for each i, 1 <i <'s, if (d;1,...,dis)T is an eigenvectors for f(a;)

of a non-derogatory matriz Ay, f € Q, then

6—1 6—1
—1 —1 —1 —1
Q1= (dzl di2; ceey dil di&; cso + g CSld“ dil7 <oy Cpo Tt § Cnldil dzl) .
=1 =1

(8) lan)f () = [fan,] for each i, 1 <i <s;
(9) foreach f € QandANe K, J: (f =N =Jiff A ¢ {f(a):1<1i<s};
(10) for each f € Q if Ay is non-derogatory then J: (f — f(ou)) = J + {qn, }
for each i, 1 <i<s.

Proof. (1) and (2) are trivial; (3) is a direct consequence of Corollary 40.4.5
and (4) of Corollary 40.4.7; (5) and (6) are trivial consequences of (3); (7) is
a direct reformulation of (6) applied to the basis satisfying condition (AS.2);
(8-10) is Lemma 40.2.4. 0

Corollary 40.5.2. It holds

the trace of Ay is Tr(Ay) = > 1_, sif(u);

the determinant of Ay is det(Ay) == [[i_, f(au)*;

the characteristic polynomial of Ay is xy(T):=[[i=, (T — f(eu))*

the minimal polynomial of Ay is my(T) = [[;_, (T — f())”" where p;
denotes the characteristic number of q;.

Proof. All the claims are triviall except the one related to the minimal polyno-
mial which is a consequence of the facts that q; D mf, <= £(\a,(qi)) € 4,,
the multiplicity p of the eigenvalue f(«;) in the minimal polynomial is the
minimal value for which U; = ker (¥ — f(;))" = 0 and of Lemma 40.4.4.(1).

O
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Remark 40.5.8 (Monico). For simplicity we have assumed K = K throughout
this chapter but the construction and the stated results hold also if K ; K;
in this case, clearly conjugate roots have the same multiplicity both in xy
and in my.

Moreover, as a direct application of the Chinese Remainder Theorem, if
xf =1, pif(T)" is an irreducible factorization in KT, then

r

J=J U+ i)

i=1

is an irreducible primary decomposition in K[Z1,..., Z,].

Of course if f is an allgemeine coordinate the corresponding primary de-
composition algorithm is the one proposed by Alonso—Raimondo and reported
in Section 35.5.1. ]

40.6 The Univariate case

As a short intermezzo before discussing derogatoriness, let us briefly show
how Auzinger—Stetter reformulates the classical elementary linear algebra
results for a univariate polynomial.

For a polynomial

s—1 s s
f ZXS-FZaiXi = Z(X—Ei)si,szzsi,
1=0 =1 =1

the linear representation of J = (g) is the assignement of the normal basis
N(J):={1,X,...,X*" !} and of the Frobenoius companion matrix

0 1 o - 0
0 0 r ... 0
Ar = : : : " :
0 0 o - 1
—Gp —ai1 —az -+ —Gs—1

whose characteristic matrix of course is f so that eigenvalues of A; coincide
(up to multiplicity) with the roots of f.
Recalling that &; is a root of f of multiplicity s; iff fU) (&) = 0 for 0 <
J < i, the natural choice for the dual space L. = {\1,..., A5} is
B p(j)(&)

)‘"z(p) = p(gi)a )‘nrl‘j(p) = j' 1< <s;,1<i<s,

where we have set n;4; =1+ Zli:1 s1,0 <4 < s and the bihortogonal dual
basis q is the associated Lagrange basis.
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If f is squarefree then My, is the Vandermonde matrix

&1 S &
qu = . . . : ;
571 571 . €:_1

in general, each block of the so called generalized Vandermonde matriz My,
has the shape

1 0 0 0 0
& 1 0 0 0
& 2¢; 1 0 0
& 3¢? 3¢&; 0 0
¢ et o@er 1

7o (s=ngT e e (CoDgT e (e

and is related to the it diagonal block of @1 which is a classical Jordan block

&1 0
&1
1
0 &
Ezample 40.6.1. For
f o= X3 - X"-X043X54+9X%-3X3—7X24+X+2
(X —2)(X + D)X —1)3
we have
0 1 00 0 0 00
0O 0 10 0 0 00
0O 0 01 0 0 00
4| 0 000 1 0 00
=1 o o 00 0 1 00
0O 0 00 0 0 10
0O 0 00 0 0 0
-2 -1 7 3 -9 -3 5

= = =

whose eigenvalues are 2 (simple), -1 (with mulitiplicity 4) and 1 (with muli-

tiplicity 3) the generalized Vandermonde matrix is
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1 1 0 0 0 1 0 0
2 | -1 1 0 0 1 1 0
4 1 -2 1 0 1 2 1
8 | -1 3 -3 1 1 3 3
Mp=1 1611 -4 6 —4|1 4 6
32 |1-1 5 —-10 10 {1 5 10
64 1 -6 15 —-20|1 6 15
1280—-1 7 =21 35 |1 7 21
related to the Jordan matrix
2
-1 1
-1 1
-1 1
Ji1 = 1
1 1
1 1
1

Moreover we have
q = (qu AR )qS)T = M(ﬁ)l(17X7 AR )Xs_l)T

thus allowing to deduce the Lagrange basis by inverting Mg,.
Moreover J; = Q1 = M([X],q) is the multiplication matrix of K[X]/J

w.r.t. Lagrange basis q.

FErample 40.6.2. The Example above is to hard to deal by hand, so let us
restrict ourselvs to the easier case f = X® — X% = X3(X + 1)(X — 1) where
we have

01000 1 0 0] 1|1
00100 01 0|-1]1
A;=] 00010 | ,Mp=|00 1]1]1
00001 00 0|-1]1
00010 000 1]1
0 1 100 0 -1
0 1 010 -1 0
Ji = 0 Myt=fo0 01 0 -1 |;
—1 000—%%
1 000 % 3

In M q_bl on reads, along the rows, the Lagrange basis

1 1
{1-x4X X3 X% - X4 —§(X3 - X1, 5(X3 + XN}
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Finally for ¢ € K[X], the i*" diagonal block of @, related to the root &;
is
@) (¢, (si=1) (g,
a&) aV(g) T

a(6)  aV(E)

@ (&)
2

: q(l)(&)
0 q(&)
Ezample 40.6.3. In Example 40.6.2 for ¢ := 14+ X? we have A, My, = My,Q,
with

10100 10 1
01010 10
A= 0010 1 |,Q= 1
000 20 2
0000 2 2

40.7 Derogatoriness

The crucial assumption in Theorem 40.5.1 and Proposition 40.5.1 that ®; is
non-derogatory, while it is easily met by a generic linear form in the radical
case, is more involved in the general case.

Ezxample 40.7.1. Continuing Example 40.1.1 we remark that neither Z; non
Z5 while, being allgemeine coordinates, have a non-derogatory matrix.
On the otherside f = Z; — Z5 is non-derogatory; in fact with

0 1 -1 0 0 -1 1
1 -1 -1 1 0 -1
A= -1 1 1 0 -1 and J := 1 -1
1 0 -1 0 O 1 -1
-2 1 0 1 1 1

we have MyqJ = Ay My,.
Why f is a good choice will be explained in Corollary 40.10.6 below. O

In general however, the commuting family {A; : f € Q} does not possess
any non-derogatory matrix as it can be seen in the following, trivial, examples:

Ezxample 40.7.2. Let us consider the ideal

1=(21,2:)* = (Z3,2,Z5,22) € K|Z1, Zs].
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For the generic [f] := [a + bZy + ¢Zs], the matrix @ is represented, via the

a b c
basis {1, Z1,Z2},asPy = 0 a 0 |;it has the single eigenevalue a with
0 0 a
multiplicity 3 and the eigenspace Span{(1,0,0)T,(0,¢,—b)T} except in the
trivial case b=c =0 . O

Ezxample 40.7.3. In order to dispell the wrong impression that the bad be-
haviour of the example above could be justified by the reducibility of J, we
repeat the same argument for the irreducible primary ideal

1=(Z%,72) € K|Zy, Zs).

For the generic [f] := [a 4+ bZ1 + ¢Z2 + dZ1Z5), the matrix @ is repre-

a b ¢ d
. . 0 a 0 c .
sented, via the basis {1, Z1, Z2, Z1Z>}, as &y = 00 a b | the single
0 0 0 a
eigenevalue is ¢ with multiplicity 4 and
if b2 + ¢ # 0 the eigenspace is Span{(1,0,0,0)T, (0,¢, —b,0)T};
if b=0 = c¢,d # 0 the eigenspace is
Span{(1,0,0,0)",(0,1,0,0)", (0,0,1,0)"}.
O

Remark that in both examples all eigenspaces share the same joint eigen-
vector — (1,0,0)T and (1,0,0,0)T respectively.

Ezample 40.7.4. The same can be said for Example 40.1.1 where (1,0, 1,0,1)7
is an eigenvector of A; for 0 and of Ay for 1 while (1,1,0,1,0)7 is an eigen-
vector of A; for 1 and of As for 0; more in general it is easy to verify that, for
each f € Q,(1,0,1,0,1)7 is an eigenvector of Ay for f(0,1) and (1,1,0,1,0)T
is an eigenvector of Ay for f(1,0). O

The fact that the whole families share at least the eigenvectors
{vn,(b),1<i<r}

is already granted by Proposition 40.5.1(5). But there is something more: the
set {A4;,1 < i < n} and so a fortiori {As, f € Q} cannot share any further
eigenvector as a consequence of Corollary 40.4.5(3).

In other words in all these examples, each non trivial common eigenspace
for the whole family has dimension 1.
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Definition 40.7.5. A commuting familty of matrices 2 is called non-dero-
gatory if each joint eigenspace has dimension at most 1:

dimg{v € K*: Av = X, Bv = pv} <1 for each \,p € K, A, B € QL.

A zero-dimensional ideal J C Q is called a non-derogatory ideal if there is
an endomorphism @y : A — A for which the matriz Ay is non-derogatory. O

Corollary 40.7.6. The family {®, : 1 < < n} is non-derogatory and

Un, (b) := (by(a), ..., bs(a))" i=1.r

are joined eigenvectors of all the matrices M ([f],b), with associated eigen-
value f(a;).

Proof. A direct consequence of Corollary 40.4.5(3). O

As a consequence, once the eigenspaces of a matrix Ay,Y = Z;:1 ¢ Zj,
is obtained, if some eigenspaces have dimension greater than 1% one performs
the same computation for different matrices Ay,,Y; = Z;:1 cijZj,1 = 2..n,
being linearly independent forms, and repeatedly applies the eigenspace in-
tersection method, based on a direct application of Lemma 40.7.7 below, to
repeatedly compute eigenspace intersections until each eigenspace has dimen-
sion 1.

Lemma 40.7.7. Let M, N be two s-square matrices; A an eigenvalue of M
with associated eigenspace U; {u1,...,w;} an orthonormal basis of U.
Define, for eachi,j, 1 <i,j <1, a;j :=ul Nu; and set A := (a;;).
If (dy,...,d)T is any eigenvector of A for u, then u = Zj dju; is a
simultaneous eigenvector of M for A\ and of N for u.

Proof. We have

3 The possible reasons are two:

(1) either Y is not sufficiently generic and does not satisfy condition (AS.1); in the
next steps the variables Y; will separate the roots via eigenspace intersection
method;

(2) the ideal is not radical and, even if Y satisfies condition (AS.1), the eigenspace

to Z;Zl cjagl) for Ay has dimension greater then 1.
The eigenspace intersection method covers also this case thanks of Corol-
lary 40.4.5. However, alternatively, the multiplicity of the roots can be decrased
by a proper application of Gianni’s Algorithm (Proposition 35.6.1), e.g. enlarg-
ing the ideal J to J+ (4/g(Y)) where g(Ay) is the characteristic polynomial of
Ay (see Remark 40.8.1).
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u is an eigenvector to u for IV

<= uZdjuj:uu:Nu:NZdjuj:ZdjNuj

J J J

= pd; = UZT/LZ dju; = ZdjuiTNuj = Z a;;d; for each %
J J J

— (dy,...,d;))" is an eigenvector to p for A.

40.8 Stetter Algorithm via Grobnerian Technology

We can assume that the zero-dimensional ideal J is given by means of the
Grobner basis* wrt an ordering <, thus obtaining also the linear representa-
tion

N<(J) ={m, ..., 7}, M([Zn], N<(J))

thus allowing to compute, with good complexity, the corresponding Grobner
description (cf. Definition 29.3.3)

Rep(g,N(J)) = (v(9,71,N<(J)),...,7(9,7s,N(J))) € K*:
9] = Zv(gvTj,N<(J))[Tj]

for each g € Q.

Remark 40.8.1. Since Stetter Algorithm is improved if J is radical and the
matrix Ay is given wrt a linear form Y satisfying condition (AS.1), these
results can be efficiently — O(n?s®) — granted by giving an FGLM-like
linear algebra version of Gianni’s Proposition 35.6.1 obtained merging the
algorithms by Alonso-Raimondo (Algorithm 35.7.1) and Traverso (Algo-
rithm 29.3.8): we choose a linear form Y = ", a;Z; and

(1) by linear algebra on the Grobner descriptions of
AL YL IY2],. . Y]

compute the minimal polynomial f[T] € K[T] such that

f(T)yelt =+ <Tzaizi> ;

4 An alternative Grébner-free approach with good complexity for affine complete
intersection ideals which gives both a Groébner representation of J and the cor-
responding Grobner description of g, will be discussed in Section 41.15.

The discussion of this section does not require that the obtained representation
is linear: Algorithm 35.7.1 equally applies to the data of Section 41.15.
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(2) if f is not squarefree, set f := \/f;
(3) if f is squarefree and d := deg(f) < deg(J) then set j =1 and
(a) while j < n, verify, by linear algebra on the Grébner descrip-
tions of [f'(Y)Z;],[1],[Y],[Y?],...,[Y?!], whether exists a relation
f(T)Z; — g;(T) € J*, deg(gy) < d&;
(b) if such a relation exists set j := j + 1 and go to (3.a);
(c) if such relation does not exist
1. set

J=J+(f)+ (V)2 - q(Y),1 <1 <)) CQ

ii. compute, by linear algebra via Traverso’s Algorithm, the Grébner
basis of J, and deduce the corresponding linear representation
and Grobner descriptions and the value deg J =: s;
ili. set Y:=Y +c¢Zj,a; :==a; + c and go to (1)
(4) if f is squarefree and deg(f) = deg(J), then
e J is radical,
e Y satisfies condition (AS.1)
o Zil=[g;(Y)]forj=1...,n.
O

We can therefore assume of having a linear form Y = )", a;Z; satisfying
condition (AS.1) and a radical® zero-dimensional ideal J, which is given by
means of the Grobner basis wrt <, and via the linear representation

N<(J) ={m, ..., 7}, M([Zn], N<(J))

thus allowing to compute the Grébner description Rep(g, N<(J)) for each
g € Q. Thus, by linear algebra on the Grébner representations of

[1]’ [Zl]a B [ZT]a

one can obtain with complexity O(ns?), both the K-basis {[1], [Z1], ... [Zs-1]}
of V and the linear representations [Z;] = ¢;jp + 2?2—11 cilZi],i > §; further
linear algebra on Grobner representation extends this set to a basis

b:{13Z13"'aZ(5—1ab(5+la"'abs}:{bla"-;bs}

satisfying condition (AS.2).
If we denote now L := {{1,...,4s} the functionals ¢;(-) := (-, b;, b) so
that

9] = 1(9) + D (@) Zia] + Y tilg)lbi), Vg € Q

i=2 i=6+1

5 Notwithstanding these assumptions Ay is not necessarily non-derogatory; as it
is shown by Examples 40.7.2 and 40.7.3 and explained by Corollary 40.10.6 this
requires that each primary q; of J has a good shape.
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then L is biorthogonal to b; therefore it is sufficient to simply adapt the
Enhanced Moller Algorithm (Figure 29.4) to obtain, among the other infor-
mations provided by that algorithm, also the matrices M ([Z;],b), 1 < i < n.
This is all one needs to obtain the matrix M([Y],b) = 3", a;M([Z;],b).

Once M([Y],b) is obtained, eigenvalue and eigenspace computation is
dealt by Numerical Analysis and the joint eigenvectors are obtained, if
needed, via the eigenspace intersection method (Lemma 40.7.7).

40.9 Stetter Algorithm

The numerical analysis aspects on the efficiency of the solution of the eigen-
problem are out of mine competence® , so I limit myself to note that such
efficiency is misured by the condition number

K(Mag) = || Mg ||y, | = [|Magl[| Mo

and is therefore influenced by the arbitrary choise of the basis b; in general
becomes large if the column vectors v;(b) = (Aj(b1),...,A;(bs))? are nearly
linearly dependent (nearly linearly dependency of rows has naturally the same
effect).

It is interesting to remark that for the choice b := N (J) wrt a suitable
termordering <, not surprisingly, the choice of a degree-compatible ordering
gives a better condition number than lexicographical orderings.

40.10 Derogatoriness and Allgemeine Coordinates

With the same notation as in Section 40.5, we recall that a linear form

Y = i ChZh
h=1

is said an allgemeine coordinate (Definition 34.4.7) for the zero-dimensional
ideal J = NM3_;q; iff

(a) there are polynomials g; € K[Y],0 < i < n, go monic, deg(g;) < deg(go),
such that

G:=(90Y)Z1—qn(Y), Zo—92Y),..., Z — g-(Y))
is the reduced Grobner basis of the ideal

JJF :J+ (Y—ZChZh) CK[szla"‘7Z7‘]
h

w.r.t. the lex ordering induced by ¥ < Z; < ... < Z,
6 For that, compare Stetter H., Numerical Polynomial Algebra, STAM (2004).
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and that this condition implies, among the others, that (Corollary 34.4.6)

(b) @/ =K[Y]/g0(Y) ,

(c) for each i,1 <i <s, B; := >, _, chagf) is a root of gy with multiplicity
s; and

(d) agl) = g;(B;) for each i,1 <i <s, and each j,1 < j <,

(€) go(Y) =TL (Y — B:)™;

f) feld < Rem(f(¢1(YV),...,9-(Y)),9(Y)) =0.

Moreover, there is a Zarisky open set U C K™ such that Y := 22:1 chZp 18

an allgemeine coordinate for J iff (¢1,...,¢.) € U.

For each f =",y c(f,t)t: f(0,...,0) = 0 denote

T

lin(f) =Y e(f, Z:) 2

h=1

and, for each primary ideal q at the origin, let
lin{q} :={lin(f): f € q} and A1(q) :={€ € V1:£(g) =0,g € lin{q}}
where V7 denotes V; := Spang (M(Z;),1 < h <r).

Proposition 40.10.1. For each primary ideal q C Q,deg(q) = s, at the
origin the following conditions are equivalent

(1) there is an allgemeine coordinate for q;

(2) dimg(lin{q}) =r —1;

(3) dimg (A1(q)) = 1;

(4) dimg (lin{q}) = r — 1 and for each linear form

T

Y1 = ZchZh ¢ lin{q}

h=1

and each basis (Ya,...,Y;) oflin{q} there are polynomials g,, € K[Y1],2 <
Kk <r, such that

q:(Y1875/2_927"'75/7‘_g7‘)CK[YVD'--;YF]:K[Zla"'7ZT];

(5) dimg (A1(q)) = 1 and for each linear form Yy ==, _, cnZp, ¢ lin{q} and
each basis (Ya,...,Y;) of lin{q} there are polynomials g, € K[Y1],2 <
Kk <r, such that

(-1
L(q) ={q,1<1<s}, a(f) = %JSZSS

where = : @ — Spang{1,Y1,..., Y7 '} denotes the projection

f(, Y2, V) = fi=Rem(f(Y1,92(Y1),...,9,(Y1)), Y?);
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(6) dimg (lin{q}) =r—1 and for each linear form'Y := 3, | cxZy ¢ lin{q}
there are polynomials g, = le;ll caY! € K[Y],1 < k < n, such that
q= (YS’Zl — g1,y Zr _gr);

(7) dimg(A1(q)) = 1 and for each linear form'Y := Y, _, cnZy ¢ lin{q}
there are polynomials g, € K[Y],1 < k <r, such that denoting

Q- K[Y)/(Y®): f(Z4,...,Z) = fi=Rem(q1(Y),...,9.(Y)),Y?)

we have £(q) = {0;,1 <1 < s}, 0141(f) == f”l)!(0)70 <l<s.

Proof. The scheme of the proof is

(1)
v AN
2) < 4 = (6
I ! 7
(3) (5) (7)

The implications (2) < (3), (4) <= (5), (6) <= (1), 4) = (2)
and (6) = (1) hold trivially.

If Y is an allgemeine coordinate for q and g, = le:—f apYL,1<h<r
are such that

G:=(90Y), Z1—91(Y), Z2 — g2(Y), ..., Zr — g(Y))

is the reduced Grobner basis of the ideal

™

q"=q+ (YZcm)) CK[Y,Zy,..., 2]

h=1

w.r.t. the lex ordering induced by ¥ < Z; < ... < Z, then

Y ¢ lin{q"} = Spanj ({Y — ichZh} U{Zx —a1:nY),1 <k < n})

h=1

so that dimg (lin{q}) = dimg(lin{q*}) =1l and Y = >, _, cxZs ¢ lin{q}.
Thus we have (1) = (2).

Moreover for Y1,Ya,...,Y, as in (4), the Grobner basis wrt the lex or-
dering induced by Y1 < Y2 < ... < Y, of ¢’ := qK]|[Y1,...,Y;] necessarily
satisfies deg(q’) = deg(q) = s and T(q’) = (Y, Ya,..., Y.} thus giving also
(2) = (4).

We are therefore left to prove (4) = (6).

Let us consider lin{q} C K[Z1,..., Z;]. There are two cases: either

(1) hn{q} = SpanK{Zg - d2Z1, ey ZT — dTZl} or
(ii) there is an Z;, wlog say Zi, such that lin{q} = Spany{Z»,...,Z,}.

In case
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(i) we set Yy, := Z, — d..Z1,2 < £ < r. By (4) we know that there are
polynomials ¢, = le;ll cY'! € K[Y],2 < k < n such that

s—1

Y= gu(Y)=Ze—duZi —caY + Y _caY' €q
=2

and Z, —d.,Z; — c1Y € lin{q}.
Since

(Cl + Z C,.id,.i> 71+ Z Yy = Z cnZp =Y ¢ lin{q},
k=2 r=2 h=1

then ¢ :=c1 + Y. _,cedy # 0 and, setting g1 := ¢~ 'Y — > _, ¢ tenge
we have

co(Zy—q1)=cZ1 -Y + ZCKYK =0 (modq)and Z; —g1 €q;

K=2

(ii) weset Y, := Z,,2 < rk < r and by (4) we know that there are polynomials
s = ls:—11 cY'! € K[Y],2 < K < r such that
s—1
Yi—9s(Y) =2y —caY + chlyl €qand Z; — ¢aY € lin{q}.
=2

Since Y = 121+ Y., ¢ Zy ¢ lin{q}, then ¢; # 0 and ¢,y = 0 for each
Kk > 1; setting g1 == ¢ 'Y — 3" _, ¢7 ' cugs we have

alZi—g1)=aZ,—Y + z:c,gy,.i =0 (mod q)and Z; — g1 € q.

K=2
O

Example 40.10.2. Let q := (23,71 — Z3) C K[Z1, Z5] which is a Grobner
basis for the lex ordering indiced by Zs < Z;. Thus

0
deg(q) =5, A1{q} = Spang { =—— ¢ and lin{q} = Z;.
075
For Yy := aZy + Zy,Ys = Z; we have q' = (Y}?, Yo — Y7).
Instead, Z; is not an allgemeine coordinate since, for the lex ordering
indiced by Z; < Za, we have q = (2%, 2123,73 — Z1) 0
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Remark 40.10.3. As a direct application of Corollary 40.4.7, we have that
the functionals §;11(f) := I )(0) ,0 <1 < s satisfy

di1(f9) (i) = flei)dira(g)(ai +Z51+z «(f)(@i)d142(g) ().

Thus we have the related matrix

flai)  02(f))(ei)  03(f)(cwi) Or+1(f)(ev)
flei)  02(f)) (i) d5(f)(c) '

Qr=

d3(f)(as)

d2(f))(cvi)
0 flaw)

(40.3)
O

Definition 40.10.4. A primary ideal q C Q at the origin which satisfies the

equivalent conditions of Proposition 40.10.1 is called a curvilinear primary
with derivative d(f) := f(0). O

For a = (ay,...a,) € K", denote
A : Q= (N =fZ1+a1,....Z- +a,)
and m,, = (Z1 — a1, ..., Z, — a,) the maximal ideal at a.

Theorem 40.10.5. Let J be a zero-dimensional ideal. .
Denote Z(J) :={a1,...,as} C K", and, for each i, a; = (agZ ,...,agf)),
q; the mg,-primary component of J, s; := mult(ey,l) = deg(q:), so that
J=n_,q; and deg(J) = > 5_, s; :=s.
A linear form'Y := >, _, chZh is an allegemeine coordinate for J if and
only if, denoting B; :== ; _, chah , the following conditions hold
(1) each primary component q; of J either
(a) is simple so that q; = m,, and s; =1
(b) or the primary ideal q := As,(q;) at the origin is curvilinear and
Y ¢ linfa
(2) Bi #B; if i # J.

Proof. Assumption (1) implies that for each primary component g; of J, the

ideal
af =+ (Y— Zch2h> CK[Y, Zy,..., 2]
h=1

has a basis
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(a) (Y — 8i, 21 — agi), iy — agi)) if g; is maximal; in this case we set
fin(Z1) :=0 for each h,1 < h <r;

(b) ((Y — Bi)%, 71 — a?) —fm)...Z, - agi) - fm(Y)) if g; is multiple,
with fin,(Y) := gn(Y) where g, (Y) are the polynomials whose existence
is implied in Proposition 40.10.1(6).

Since, by assumption (2), the ;s are all different, J N K[Y] is generated
by go(Y) = [[;(Y = 8;)*".

By the Chinese Remainder Theorem there is then for each h < 1 a unique
polynomial g, (Y), deg(gn) < s = deg(go) such that

gn = aﬁj) + fin mod (Y — ;)% for each i.

Then (90(Y), Z1 — q1(Y), ..., Zy — g-(Y)) is the required Grobner basis
of JT =J+ (Y =3, enZp,) implying that Y is an allgemeine coordinate for
J.

Conversely if J¥ has a basis (go(Y), Z1 — ¢1, ..., Zr — gr), then for each
primary component q;, of J, qf has a basis (f(Y), Z1 — fa, ..., Z, — f») where
f runs among the irreducible-power factors of go and f, = Rem(gp, f) for
each h. Thus each component which is not simple has Y as an allgemeine
coordinate. a

A finer description of derogatoriness of @ is the following

Corollary 40.10.6 (Moller—Stetter). Let J be a zero-dimensional ideal
and let f € Q. With the notation of Theorem 40.10.5, @5 is non-derogatory
if and only if the following conditions hold:

(1) Flow) # flog) if i # 4,
(2) each primary component q; of J either
(a) is simple so that q; = Mg,
(b) orthe primary ideal Ay, (q;) at the origin is curvilinear with derivative
2
(3) for each multiple component q;, £;(f) # 0.

Proof. Assume that @ is non-derogatory. Then:

(1) for a; # a; we have vy,,(b) # vy, (b); thus necessarily f(a;) # f(o; )
otherwise the two vectors are independent eigenvectors for f(a;) = f(a;).

(2) For a multiple component q;, Proposition 40.4.6(3) implies that if L; N
V = A1(Aa;(q;)) has dimension > 1, then there is an eigenvector for
f(c;) linearly independent with vy, (b); thus q; must be curvilinear.

(3) If instead L; NV = A1(Aqy, (q;)) has dimension 1, Corollary 40.4.7 shows
that if 4;(f) = 0 then vy, +1(b) is a further eigenvector for f(a;).

Conversely, by (2) the matrix Qs has s blocks; the i*" one has Equa-
tion (40.3) as shape; thus, since, by (3), £;(f) = d2(f) (i) # 0, each block
contributes a single eigevector; finally (1) grants that different eigenvectors
correspond to different eigenvalues. a
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Remark 40.10.7 (Méller=Stetter). If do(f)(caw) = -+ = §;(f)(au) = 0 #
8;+1(f) () then the i*" block (40.3) contributes j linearly independent eigen-
vectors. O

Corollary 40.10.8. A zero-dimensional ideal is a non-derogatory ideal if
each multiple primary component is curvilear.

Proof. Each linear form Y = )", ¢, Z), is non-derogatory provided it satisfies
Y (i) # Y (a ) for each i # j and” 65(Y) # 0.
Both conditions define a Zarisky open set. a

7 Since both Y and 83 are linear, then &z (Y) is a constant.
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The device that follows [...] finally eliminates
from algebraic geometry the last traces of Elim-
ination Theory

A. Weil

Eliminate, eliminate, eliminate,
Eliminate the eliminators of elimination theory.
S.S. Abhyankar
After having discuss the two ‘standard’ recent algorithms for solving, this
chapter is devoted to the old fashoned tools of resultants and resolvants.
After recalling the notion and the main properties of resultants (Sec-
tion 41.1) we mainly discuss Macaulay’s approach! for computing it: Macaulay
defines the resultant as the gecd of all determinants of a matrix, Macaulay’s
matriz (Section 41.3) obtained by expanding a proper generating set which
can be deduced by a result of Bézout (Section 41.2) and proves that the re-
sultant is obtained by dividing out from any such determinant an extraneous
factor (Section 41.4) which he is able to precisely characterize; finally we are
able to prove that Macaulay’s definition is really the resultant (Section 41.5).
The knowledge of the resultant of a set of forms allows to compute the
roots of the ideal

JZ:H(fl,...,fr}CK[Zl,...,ZT]

by computing in K[Uy,...,U;][Z] the resultant (u-resultant) of the polyno-
mials f1,..., fr, fu, fu = Z—Y,_, UiZ; and factorizing it into linear factors
Z — Yi_, Usa;; each such linear factor returns a root (oq,...,a) € Z(J)
(Section 41.6).

! Where I mainly follows the original result

Macaulay F. S., Some Formulae in Elimination, Proc. London Math. Soc.
(1) 35 (1903), 3-27
supported by his book

Macaulay F. S. , The Algebraic Theory of Modular Systems, Cambridge
Univ. Press (1916)
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I next discuss? another Nineteenth Century solver, Kronecker’s resolvant

(Section 41.7); if given an ideal
V= 1(f1,. .., fs} C K[X1s. .., X

one computes the resolvant (u-resolvant) in k[Aq, ..., A,][X1, ..., Xn-1][X]
of the polynomials

n—1
AeE £y (Xl, oy X1 A7 (X -3 Am)) 1<i<s;
1=1

and factorizes it into linear factors
X — Ale — = Aulevfl - AU&V — = Anfn,

each factor for which each &; is independent of the As corresponds to an
£2(k)-prime component of dimension v — 1 (Section 41.8).

Notwithstanding Macaulay strongly criticizes Kronecker’s resolvant for
its being doubly exponential in comparison with the simply exponential
resultant, Kronecker’s approach provided (in the Nineteenth Century!) a
parametrization®

q(Xl,...,Xl,_l,U) = 0,
X, = g"(xla"'axu—laU)
P4 (X1 Xy_1,U)
e ' (41.1)

X _ wn,(Xl,...,Xl,,l,U)
n 29 (X1, Xp—1,U)

of a radical equidimensional ideal (Section 41.9) which is at the core of the
most efficient to-day solvers: Rouillier’ s Rational Univariate Representation
(Section 42.9) and TERA’s Kronecker Package (Chapter 44).

After an intermezzo where I cover the history of the resultants from

Bézout to the English algebra school (Section 41.10) and, in particular, I
report Cayley’s interpretation of the resultant of two polynomials

U(X),V(X) € k[X],deg(U) =deg(V) =n

as the determinant of the matrix (o, ) defined by the relation

n—1ln—1

UX)V(Y) -UX)V(X) n—p—lyrn—o—1

X_V =D D X Y
p=0 0=0

I briefly discuss a different representation of the resultant due to Dixon which

extended Cayley’s interpretation to more than 2 polynomials (Section 41.11).

2 Still following the guideline provided by Macualay’s book
3 See F. S. Macaulay, The Algebraic Theory op. cit., ppg. 27-28
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Dixon’s resultant was recently revised and reproposed by Kapur et al.; at
the same time, also Cardinal considered Cayley’s formula and Dixon’s matrix
(Section 41.12) and proposed an algorithm (Section 41.13) which performed a
series of transformations on the Dixon’s matriices defined by the polynomials

fla"'afnaXialgiSnafl ek/’[Xl,,XnL

he conjectured that, if f1,..., f, is a complete intersection the output of his
algorithm is a Grobner representation of the ideal

J:=1(f1,..., fa) C k[X1,..., Xn]-

Recently Mourrain proposed an improved version of Cardinal’s algorithm
and gave a complete proof of Cardinal’s conjecture for this abridged version
of the algorithm (Section 41.14).

The result, not only returns, with good complexity, a Grobner representa-
tion of the ideal J but, with the same complexity allows to test ideal member-
ship and for a polynomial f € J returns also a representation f = >"" | g; f;
(Section 41.15).

41.1 The resulatant of r forms in r variables

Let Q= K[Z1,...,Z; |, W :={Z*---Z% : (a1,...,a,) € N"} its monomial
K-basis and K the algebraic closure of K.
For each d € N we also set

Wy = {t € W:deg(t) =d} and W(d) := {t € W : deg(t) < d}.

Let us also set r integers dy, . .., d,. Our aim being considering r ’generic’
forms (homogeneous polynomials) fi,..., fr € Q, deg(f;) = d;, we apply the
same notation and approach of the English algebra school (cf. Sections 6.4-7).

Since each homogeneous polynomial f € P, deg(f) = d, can be uniquely
expressed as f = Erewd c(f, )7, we introduce indeterminate coefficients
a;r,1 <i<r,7 €Wy, and we consider

the domain D :=Za; -, 1 <@ <r,7 € Wy,],
its quotient field K := Q(a;-,1 <i <r,7 € Wy,), and
the ’generic’ forms F; = ZTEWd, a; 7,1 <i<r;

for any set £ := {f1,..., fr} of r concrete homogeneous forms
fi= Z c(fi,7)T
TEW,

of degree d; we denote Z¢ : D[Z1,...,Z,| = K[Z1,...,Z,] the ansatz
Z¢(a; ) =c(fi,7) foreach 1 <i <r 7€ Wy,

so that Z¢(F;) = f; for each i.
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Definition 41.1.1. A polynomial
Res := Res(dy,...,dy,) := Res(Fy,...,F,) €D

is called the resultant of Fi,..., F,. if for any set £ := {f1,..., fr} of r ho-
mogeneous forms f; of degree d;

Zr(Res) =0 <= emistsa € P""H(K): fi(a) = = f.(a) = 0.
O

Fix a variable, say Z,, and define a weight on the variables a; , by setting
wt(a; ) = deg, (1) id est wt(a; ) = a, for each 7 = Z7* --- Z2 .
Set D :=[[,_, di, D; := D/d; for each i and

i=1 i=1

Fact 41.1.2. With the present notations the following holds:

(1) For each r — 1 homogeneous polynomials f1,..., fr—1 € K[Z1,...,Z,]
which generate a homogeneous ideal J := (f1,..., fr—1) having only a
finite number of (projective) zeroes, we have #2Z(J) = D, = H:;ll d;.

(2) The resultant Res(F, ..., F,) is
(a) homogeneous of degree D; in the varaibles a; . for each i and
(b) idsobaric* of weight D.

Proof.

(1) Tt is trivial for » = 2 and is obtained, for r > 2, by considering the
polynomials f; as elements in K[Z1][Zs, Zs, . .., Z.]; thus (2) implies that
Res(f1,..., fr—1) € K[Z1] is a univariate polynomial of degree D,..

(2) For r = 2, it is a homogeneous reformulation of the description of the
structure of the Sylvester resultant: for

dy

F\(Zy, Z3) = ao H(Z1 — i Zs) = aoZ{ + a2 Zo + -+ aa, 25,
=1
do

Fy(Z1,Z2) =bo [ [(Z1 = B Z2) = bo Z{* + 01 2% Zy + -+ + b4, 257,
j=1

if we consider the F;s as elements of K[Z5][Z1], (a) comes from Proposi-
tion 6.6.8 and (b) from Proposition 6.7.1 which returns

* A function D € D is called isobaric iff all of its terms are of the same weight.
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Res(Fl,Fg)
dy do2 di do
= agby [T [1((i = 8))Z2) = ag2bg 25 [ [ [ (s = 8))
i=1j=1 i=1j=1

d1 dl
= agz HFQ(aiZQ) = ag2Zgl Hg(az) =
=1 =1

d2 d2
= (—)"Eag [] 18 22) = (=1) 2 %=05 52 T] £(8));

j=1 j=1
thus, Res(F1, Fr) = ZgldQ_Res(f, g) is obtained by substituting each in-
stance of a;, b; by Zia;, Z3b; respectively.
For r > 2, we obtain® (2) by applying (1) to the polynomials fi, ..., fr_1,
for each ansatz Z(F;) = f;,1 <1i < r: denoting

) r—1

LA, a1 <i <D, =[] di
i=1

their roots, let us then define R := HiD:Tl F.(1, )\gi), ce )\gi)) € D which
clearly satisfies R = Z'(Res(F1,..., F,)) and which is the numerator of
a symmetric function of the roots and thus can be expressed in terms

of the coeflicients of the f;s. Thus Res(Fy, ..., F,) is isobaric of degree
dyD, = D and is homogeneous of degree D, in the variables a, . O

41.2 Bézout’s Generating Set

Let us denote J := (Fi,...,F.) C D[Zy,..., Z,] the homogeneous ideal gen-
erated by the generic forms F; and for each § € N,

Js :==JNWs = {F € J homogeneous, deg(F) = ¢},
and let us remark that®
B:={wF,:w e Ws_4,1<i<r}

is a D-generating set of Js, so that, for each homogeneous polynomial F' € Js,
there are homogeneous polynomials

Si = Z c(Si,w)w € D[Zy, ..., Z,],deg(S;) = 6 — d; for each i

wEWs_a;

5 1 limit myself here to sketch Poisson’s proof of this result which is never used
in the argument which leeds to Theorem 41.5.3. For a proof of Fact 41.1.2(2) I
refer to Remark 41.5.1.

6 With a slight abuse of notations, W, = () for each z € Z, z < 0.
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such that F = >""_, S;F}; such representations are, of course, not unique.
Uniqueness can be however forced, restricting the spans of the F;s: let us
denote, for each i < r + 1,

ng) =A{Z1 20 € Ws_a, : aj < dj for each j < i}
so that

Wg(l) = Ws—dy;

W5(2) consists of all terms of degree § — ds which are not divisable by Z fl;

W(gg) consists of all terms of degree § — d3 which are not divisable by Zfll
nor by ZgZ;

Wa(i) consists of all terms 7 of degree § — d; such that 7 ¢ (2%, ..., Zidj"ll);
WéTH) ={Z{* - Z% € W5 :a; < dj for each j < r}.

Remark 41.2.1. For each § > d = 1+ >._,(d; — 1), we have W§r+1) =0

since for Z7*--- Z%r € W§T+1) we have the contradiction

1+Zai§1+i(di—1)=d§5=iai.
i i=1 i=1

O

Lemma 41.2.2. With the notation above, for any v < r, Ws has the parti-
tion

ws = {rzirew® o u{rzirew fuwity
= VU v ue v oty
where, for each i < r,
VO = (720 2% € W4, s ai > dy,a; < dj for each j < i}.
0

Theorem 41.2.3 (Bézout). For any v < r, each homogeneous polynomial
F eD[Zy,...,Z;] of degree § can be uniquely expressed as

AF =Y QiFi+ Qui
=1

where A €D, A=#0, and

Q; = Z (Qi,w)w € D[ Z1,...,7Z,] for each i.

weWéi)
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Proof. Let us begin by remarking that, by Lemma 41.2.2 above,

v+1 v
; ; 1
S0 = 3w = s
i=1 i=1
this counting argument can be also deduced by considering the polynomial
Z;’Zl QiZZ-di + @, +1 where each term of degree d comes in once and once only.

Equating, for each 7 € W;, the coefficient of 7 in F' with the one in
> QiF; + Quy1 we obtain #W;s equations in the Z;jill #ng) = #Ws
unknowns ¢(Q;,w),w € ng), 1<i<v+1.

The corresponding determinant A cannot vanish, otherwise we would ob-
tain a non trival solution of the equation Y ._; Q;F; + Q.41 = 0; it would
then be sufficient to make the ansatz F; := Zlfii, 1 <i < v, in order to deduce
a contraddictory identity Z;’Zl QiZfi 4+ @,+1 = 0 where some @); is not van-
ishing. Hence the theorem is proved. a

Remark 41.2.4. Denote S, the symmetric group of all the permutations 7 :
{1,...,7} = {1,...,r} over {1,...,r}.

The result of Theorem 41.2.3 being independent of the ordering chosen
by the variables, for each permutation 7 € S,., each homogeneous polyno-
mial ' € D[Zy,...,Z,] of degree § can be uniquely expressed as AF =
> QiFriy + Quyr where v <1, A e D, A #0, and Q; € SpanK(Wfrg))
where

WT(F%) = {Zill ~~~Z:N1T € W(;,dw(i) gy < dﬂ.(j) for each j < ’L}

41.3 Macaulay’s Matrix

Let us now represent the D-generating set
B:i={wF;, iweW;_41<i<r}

of Jg by a matrix, the Macaulay’s matriz whose columns are indexed by the
(d;'fz;l) terms 7 € Wy and each of whose rows is indexed by one of the
elements

Z c(wF;, 7)T =wF; € B

TEWy

Gip i T=0w

0 ifwtr as its T-entry.

and has c¢(wF;, 7) := {
Ezample 41.3.1. Let us set Q = K[z,y,2], di =ds = 2,d3 =1 and § = 3.
In Figure 41.1 we represent such matrix. Each 0 indicates that the entry is
0; each z indicates that the entry is a variable a;,. The elements a, ,4; are
represented X. "o
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Fig. 41.1. Macaulay’s Matrix

2 2y 2’z xy? ayz oz ¢ Pz oyt 2B
ok X T T T T T 0 0 0 0
yFy 0 X 0 z z 0 z z z 0
zF 0 0 0 T T 0 T T
ks T T T X T T 0 0 0 0
yFy 0 x 0 x x 0 X =z x 0
zFy 0 0 0 T T 0 T T
x¥F3 | x x X 0 0 0 0 O 0 0
zyFs | 0 T 0 T X 0 0 0 0 0
xzzF5 | 0 0 T 0 T X 0 0 0 0
v’Fs | 0 0 0 X 0 0 x X 0 0
yzF3 | 0 0 0 0 x 0 0 x X 0
Z2F3 | 0 0 0 0 0 z 0 0 z X

Definition 41.3.2 (Macaulay). The (Macaulay’s) resultant of Fi,..., F,
is the greatest common divisor of all the determinants of the above matrix.
O

Denoting
R:=R(dy,...,d;) :=R(F1,...,F.) €D

the Macaulay’s resultant of Fy, ..., F,., let us consider the determinant D of
the square matrix’ obtained by selecting the rows indexed by the polynomials
in the basis )

B::{wFZ-:wEWg),lSigr}

and let us study its properties:

Ezxample 41.3.5. In Figure 41.1 the two rows in sans serif (indexed by z%F3
and y?F3) are the ones to be removed in order to obtain the matrix D. O

Proposition 41.3.4 (Macaulay). Setting, for each i <r
Wj 1= @ pa;y G = g i = #Wc(li)

the following holds

(1) ¢(D,af* ---afir) = £1;

(2) Ze(ci) = Er (a4,20) = c(fi, Z2) = 0 for each i = Z¢(D) = 0;

(3) for each T € Wy, DT € J;

(4) pr = #W,") =112 di = Dy;

(5) D is homogeneous of degree D, in the coefficients of F, while

(6) D is homogeneous in the coefficients of F; with a degree > D; := in for
each v < r.

(7) D is isobaric with weight D := [];_, d;.

5
6

" The matrix is square as a consequence of Lemma 41.2.2 and Remark 41.2.1.
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Proof.

(1) Clearly in each row appears one and only one a;; in order to prove the

claim we must show that no two such a; can appear in the same column.

This is a trivial consequence of two remarks above, namely that WC(ITH) =
) and that, making in the expression Y ., Q:F; + Qr11 = Y., QiF;
the ansatz F; := aiZZ-di, 1 < i < r we obtain 2221 QiaiZZ-di where each
term of degree d comes in once and once only.

(2) The column indexed by Z2 contains all zeros excepts in the rows indexed

by Z2~4i F; where the value is ; ydi-

(3) Denoting D, ,, the subdeterminant obtained crossing the column indexed
by 7 and the row corresponding to the polynomial wF; we have

Z Dr = Z ZDiMC(u)Fi,T)T

TEW, TEW, 1w

= ZDWJ Z c(wF;, 7)T

TEWy
= ZDi’WWFi
= 0Omod J.
(4) deg(Q,) =d—d, =14+ (di —1) —d, = 32~/ (d; — 1) and the terms

of (), consist of the set of all terms in the expansion

r—1
I1 (Zfi’l v ZZ% 24y 7% Z;ii—l)
=1

whence p, = #(Wg)) = #supp(Q,) = [[/=, d; = D,.
(5) Is a trivial consequence of the resut above.
(6) In general, the terms 7 = wv of @), consist of the set of all terms w in

the expansion Hf;ll (1 +Zi+- -+ Zfli_l) each multiplied by a term
v =27 Z deg(v) = d — dj — deg(w) so that

pi = #WY) = #supp(Q:) > D; = [[ .
oy

(7) For any element

wF; = Z a; WU = Z c(wF;, )T € B

er((li)di TEW,
we have, for each ¢(wF;, 7) # 0,

wt(e(wF;, 7) = wt(a; ) = deg, v = deg, 7 — deg, w;
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hence, on expanding D the weight of each term is

Z dengfi Z deg, w;

TEW, i=1 ew
thus D is isobaric and, by (1), with weight
wt(ai* -+ ak") = p, wt(a,) = Dyd, = D.
O
Lemma 41.3.5 (Macaulay). Any other determinant D' of the above ma-

triz has a common factor with D which is homogeneous of degree D, in the
coefficients of F.

Proof. Let us denote H;,1 < j < (d‘:ifl) the polynomials corresponding to

the chosen rows of the above matrix; according Theorem 41.2.3, any arbi-
trarily K-linear combination

Ez:ajfﬁ':iii:/hla S SpanK(VWQ)

b =1

has a unique representation

i=1 i=1

There is therefore a matrix M € GL((djizl),K) such that Ddet(M) = D'.
We can now compute each @Q; € SpanK(Wéi)) and therefore the matrix M,
by the following recursive procedure:

e compute the polynomials (whose existence is implied by Theorem 41.2.3)

v") € Spang (Wéi_)m)a i <r, such that A, = Y77} V"V F; + v;{"); since

T r—1
ZAiFi = ZAiFi + A F,
i=1 i=1

r—1 r—1
= Y AFE+Y Y RE+YF,

=1 =1
r—1

= Y A+YR)E+YOF,
i=1

we can set @, 1= YT(T) and reduce the problem of solving the equation

i AF; = i Q:F;
i=1 i=1

to the one of solving Z:;ll (A; + Yi(T)FT)FZ- = Z:;ll Q;F;;
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e (Q,_1 is then obtained by computing the polynomials (whose existence is
implied by Theorem 41.2.3) ¥;" ™" € Spany (wyzdﬁ), i <r—1, such
that

r—2
A + YO R =3 YR 1YY,

i=1

allowing to obtain, setting Q,_1 := Yr(izl),

i A F;
i—1

r—1
= QF+> (A+YF)F,

=1

r—2 r—2
= Q,F, +Z(Ai +Yi(T)Fr)Fi +ZYi(T71)FiFr—1 “FY;(jIl)Fr—l

=1 =1
r—2 T
= YA+ R+Y VR R+ Y QiFy
=1 1=r—1

e inductively we assume to have

iAiFizg A+ i Yi(l)Fl F + i Qi F;
i=1 i=1 l=r—j+1 i=r—j+1

and we compute the polynomials Y;(T*j) € Spang (Wc(li)drij), i <r—j,
such that

T r—j—1
A+ Y YO R= Y YIRS

l=r—j+1 i=1

so that, setting Q,_; := Y(Z;j), we obtain

T

i: A F;

i=1
S (a4 Z VR | Fi+ Z Q:F;
j_

l=r—j+1 i=r—j+1

:ZAZ

i=1

r—j—1

= Z A+ i: Yi(l)Fz F;

i=1 I=r—j+1
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r—j—1 r
+ Y YRR YR+ Y Qi
i=1 i=r—j+1

A; + i Yi(l)Fl F; + i Qi F;

1 l=r—j i=r—7

-3

r—j—1
1=

e und so weiter.

The point is that in this procedure all the polynomials Yi(l) are completely
independent from the coefficients a, . of F,. and the same is true for det(M) €
K whence the claim. O

The choice of the determinant D being dependent on an ordering on the
variables, we can in fact choose r! diffierent determinants D,, m € S,., each
satisfying (cf. Remark 41.2.4) a proper reformulation of Theorem 41.2.3.

In particular

Corollary 41.3.6. It holds:

(1) for each i < r and each m € S, such that w(r) = i the determinant D, is
homogeneous of degree D; in the coefficients of F;;

(2) any other determinant D’ has a common factor with such determinant
which is homogeneous of degree D; in the coefficients of F;.

(3) R is homogeneous of degree D; = p; in the coefficients of F; for each i.

Ezample 41.3.7. In Example 41.3.1 if we consider the permutation (132) the
construction would return Figure 41.2 a

Fig. 41.2. Macaulay’s Matrix

3 2y

b—~

2)

N

zy®  xyz

[¥]
w
[V
[¥]
w

8
I\
8
I\
<
<
I\
<
I\
I\

xQPE
zyF3
xzlF3
Y F
yzF3
Z2F3
$F1
23
ZF1
bu
yFh
ZF2

x o8|[Xos oo@a OH

o) Moy gloory oy ©
X 8 8|Xx 8 8log o 8 o

coglooKooo cos
o] 8loxysloocoo or &
X OR8|x ©o8|8 oo Koo
oMolor ojcoog coo
x&ox&oo&ﬂoo@
X 8 O|x 8 ol o oo o
X OO|Xx ool oo oo o

Definition 41.3.8. The element A € D such that D = AR s called the
extraneous factor of D.
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Denoting x, : D[Z1,...,Z;] = D[Z1,..., Z,_1] the evaluation
F(Zl,...,ZT) — XV(F) = F(Zl,...,ZV_l,O,...,O),
we have:

Corollary 41.3.9. The following holds

(1) C(R’af)l T 'af)r) ==*1;

(2) R is homogeneous of degree D; in the coefficients of F; for each i;
(3) R is isobaric of degree D;

(4) A is isobaric of degree 0;

(5) ¢(A,a;7) =0 for each T €W : Z,. | 7;

(6) A is independent of the coefficients a,, of F;

(7) A depends only on the coefficients of the generic polynomials

XT(Fl)) ... )X’!‘(F’!‘—l) S Z[aiJ, 1<i<rTeE Wdi][zl, ey Zr—l];
(8) Ze(ci) = Zr (ai,24) = c(fi, Z22) = 0 for each i = Z¢(R) = 0.

Proof. (1) follows from Proposition 41.3.4(1) and from the equality D; = p;
for each i; (2) is a direct consequence of Corollary 41.3.6.

Ad (3): each factor of an isobaric function is isobaric too; the weight of R
is wt(a* .- aPr) = D.

(4) is a direct corollary of (3) and (5) o
end of the proof of Lemma 41.3.5 and (7) resumes (5-6).

(8) follows from Proposition 41.3.4(2), which implies Z¢(D) = 0 and on

(5) which implies that A is independent of each ¢; = a; za. O

f (4); (6) is the statement at the

41.4 The Extraneous Factor

In order to give an explicit and effective representation of the extraneous
factor A of D, Macaulay needed a deeper analysis and a convenient notation,
starting from Bézout’s formula (Theorem 41.2.3). Thus considering, for each
v < r and each § > min(dy,...,d,), the submatriz obtained by selecting the
columns indexed by the terms in

wa\wet = Lozt s e wP o u{rzir en}
and the rows indexed by the elements

whki = Z c(wF;, 7)T € B:={wF;:we W(gi),l <i<v}
TEW,

Macaulay denotes D(v, §) its determinant and®

8 In this construction the value v fixes the precise set {Z1,--+,Z,} of the first v
variables; therefore, in this setting Remark 41.2.4 is appliable to those variables
only.
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R(v,6) := ged(Dy(v,8) : m € S, }.
He also sets D(v,0) = R(v,§) = 1 for each § < min(dy,...,d,).

Remark 41.4.1. The following conditions are equivalent:

(2) Yi_, Qixu(fi) = Qu41 for suitable Q; = ZweWéi) (Qi,ww € Qi <
v+1.

Moreover, it is sufficient to repeat the same argument which led to the
proof of Corollary 41.3.6, in order to obtain that R(v, ) is homogeneous, for
each ¢ < v, in the coefficients of F; with degree

#{Z{" - Z}m € Ws_q, - aj < d; for each j # i}.

This notation allows to state

Theorem 41.4.2 (Macaulay). It holds

D(r—1,6 —j) =
D(r— 1,6 — j)|.
Ba \ [ 5| | T or-1o-

Proof. R(r,d) is a factor of D(r, §) and (Corollary 41.3.9(6)) the other factors
are independent of the coefficients of F..
Let us consider an arbitrary combination

zT:QiFi =0, Q= Y, 6 #(Qww1<i<r
i=1

weWéi)
in terms of the unknowns x(Q;,w), where
ng) =A{Z1 20 € Ws_a, : aj < dj for each j < i}

and denote a := Q,. zdr and w := #Wgr).

The element a appears w times in the matrix, namely in the positions
satisfying c(wF,,wZ¥) =a = a rzdr where w runs in the elements of W(T),
more precisely, for each such w, a appears in the position corresponding to
the column indexed by wZdr and the row representing wF:..

The columns where a does not appear are those indexed by the terms
{TZfl,T € ng)} {Terll,T € WéT_l)} .

Hence the coefficient of a® in the expansion of D(r,d) is the determinant
whose vanishing is the condition that the identity
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r—1
ZQiFi =Q, Q;i= Z 2(Qi,ww, 1 <i <7

i=1 wew

can be satisfied.
In order to evaluate such determinant, assume the identity is satisfied and
set Z,. = 0 obtaining the identity

i e (Qi)xr (Fi) = xr(Q1).

Therefore, for each f := {f1,..., f,}, either

e such identity is non-trivially satisfied, i.e. Z¢(D(r — 1,4)) =0, or
e »(Q1) =+ = x»(Qr) =0, which means that Z, | Q; for each i.

In the latter case we obtain a similar identity
r—1
Y Q=@ Q= > w(QiZww1<i<r
=1 wew®
Repeating the same argument we obtain that either Z¢(D(r—1,0—1)) = 0,
or there is an identity
r—1
YQRIL=Q! Q= Y #(Q,Zww1<i<r
=1 weWé?Q
Since we have only the limitation

max{aT HVARRRRALNS u;“;llwg“} =4

by iteration we deduce that the sought determinant is Hj;é D(r—1,6 —j)
so that

5—1
D(r,0) = HD(T—l,é—j) a’ + -
j=0

Let us therefore now evaluate the coefficient of a® in R(r, d); to do so we
consider another permutation, say the cyclic one, (i) =i —1 (mod r) and
the corresponding identity

QlFT+Q2F1+"'+QTFT—1:05 Qi: Z -T(Qiaw)walgigr
wEW_friS)

where W) := {281 ... Z0 € Ws_q
particular,

cy | An(j) < dr(y) for each j < i} and, in
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W7E'16) = {Zill .. .ZgT c W(S—dT D ay < dr}

The variable a := a appears s := #W}T? times in the positions

T,Zfr

satisfying c(wF,,wZ%") = a and corresponding to the column indexed by

wZ% and the row representing wF,, where w runs in the elements of Wﬁ?.
The remaining columns are those indexed by the terms

{TZfl,T € Wﬁ?} U---u {Tfoll,T € Wﬁ}_l)}

and the coefficient of a® in the expansion of D, (r, d) is the determinant whose
vanishing is the condition that the identity

n—1
Y QnFi=Q1 Qi= > #(Qww1<i<r
i=1 wewl

can be satisfied.

We can therefore reapply the same argument as above, setting Z, = 0
and obtaining that, for each f := {fi,..., f-}, either Z¢(Dr(r —1,d)) = 0 or
each ); is divisible by Z,.; however, since we have the stricter limitation

max{ar VAR AN u;“;fwg“} =d,
we obtain only

dr.—1
Dr(r,8) = | [I Dalr—1,6=4) | "+
j=0

Since the same argument can be applied for each permutation 7', 7/(1) = r,

we obtain
dp—1

R(r,d) = H Rr—1,6—5)|a®+---
3=0
Since R(r, ) is a factor of D(r,d) and the other factors are independent of
the coefficients of F,. we thus obtain the claim. O
Definition 41.4.3. A term Z7'--- Z% € W satisfying
a; < d; for each j € {i1,...,in} C{1,...,r}
is said to be reduced in {Z;,,...,Z;, }.

Let

S C W be the semigroup ideal generated by {Z%,1 <i <r};
S, C W be the semigroup ideal generated by {Zlfii ij, 1<i<j<rk
W, C W be the set of terms which is divisible by a single term Zfli;
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Wi ={Zr-Z% € Wéi) :a; < dj for each j > i}

U(;Z) ={Z7---Z% € Wéz) :exists h >4 :ap > dp}.
and set Ss := SN Ws, Wy := W, N Ws and S,s := Sx N Ws. Then
Lemma 41.4.4. It holds

)

) Wi \w““’ wﬂs u SH;,

) Ws = W,s U Sys, for each § > d;

) We =Ui_ {27 -+ Z8 e W\ Uy W(H_l) a; < dj for each j #i};

) W, is the set of all terms which are reduced in{Z;j,j # i} for some i but
are not reduced in {Z1,...,7Z.};

(7) WE? ={Z* - Z% € Ws_q, : a; < d; for each j # i} is the set of terms
of degree § — d; which are reduced in{Z1,...,Z;_ 1, Zitlyeoos Zrks

Z

(8) Wi := Was UWy™ = U Wi Wi =, Wy,
9) Wi =Wt uu;%
10) ug” (Z8 .. Z87 € Ws_g, 1 a; < d;¥j < i,3h>i:ap > dp);
r) .
1) W = Wi,
)
)

(
(
(12) for each T € Wi thereisi < r andw € W((;) such that c(wF;, 7) = a,
(

13) for each i <r andwEW*(?:c(wFi,T)fa oy = waZg € Wis.

i,Z°
k3
O

Definition 41.4.5. The extraneous factor of D(r, ), A(r,d), is the determi-
nant of the minor of D(r,d) obtained removing the columns indexed by the
terms in W,s and the rows indexed by the polynomials which contains the
elements a. 1 <1 <r, in the omitted columns, id est the rows indexed by

the set

Z’”’

{wF tweW) 1<i<r}.

Alternatively the surviving columns are the ones indexed by the terms
T € Sys and the surviving rows are the ones related to the elements in

{wF; :wEZ/lg),l <i<r}
O
Example 41.4.6. In Figures 41.1 and 41.2 the elements of the extraneous
factor are represented [ - ].

Note that in Figures 41.2 variables and polynomials are ordered as z, x,y
(respectivley Fj, Fy, Fy). O

Remark 41.4.7. Since, in the construction of D(v,d) and R(v,d), the value
v fixes the precise set {Z1, -, Z,} of the first v variables, the definition of
extraneous factor can be naturally extended to define A(v, d). O
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Theorem 41.4.8 (Macaulay). It holds:

(1) |AG0)| = |15 Al = 1,6 = 5)| - [TT0), DO = 1.6 - j)]

(2) D(2,0) = A(2,0)R(2,9);

(3) D(r,0) = A(r,0)R(r, 9).

Proof. Since (2) requires just a trivial verification and allows to deduce (3)

from (1), we just need to prove (1).
The vanishing of A(r,d) is the condition that the identity

r—1
D QF=Qn, Q=Y w(Quwwl<i<r, Q=Y z(Qrww,
=1

weuéi) weWs

can be solved in terms of the unknowns z(Q;,w).

The number of linear equations and unknown are equal and A(n, d) is not
zero since, for the ansatz Zz(F;) := Z%, in the polynomial Z:;ll QiZ% +Q,
each term in W;s occurs once and once only.

Assume, again, that the identity is satisfied, set Z, = 0 obtaining the
identity

ZXT‘(Qi)XT‘(Fi) = XT‘(QT))

and reapply the same argument as in Theorems 41.4.2, obtaining, for each
f:={f1,..., fr}, that either Z¢(A(r—1,6)) = 0 or each Q; is divisible by Z,;
repeating the same argument we can obtain that either Z¢(A(r — 1,0 —i)) =
0,0 <i < d, , or there is an identity Z:;ll Q! fi = Q" where

Q)= > 2(QiZrowl<i<r, Q= Y a2(QiZlww,

weugﬁdT weWs_a,
ilgizdr ={w:Z%we Ua(i)} and Ws_g, := {w: Z4w e Ws} = Wéi)dr.
We have a similar relation
uz(iildr ={w:ZFwe u(si)} = Wzg?dr
also for ¢ < r since
Z4w e W*(? ={Z" - Z} € Ws_q, :a; <dj foreach j #i} = i=r

whence

{w:Z%w e U(gi)}
fw: zlw e W\ Wi}
{w: Z%w e Wa(i)}
(#)
WsZ4, -

(@
uész
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Thus, we can conclude that either Z¢(A(r — 1,6 —i)) = 0,0 <i < d, , or
there is an identity

r—1
Zlefi =Qy, Q= Z 2(Qiy XIrw)w, 1 < i <,
=1

weWé?dr
id est (by Theorems 41.4.2) H?;;n Z¢(D(n -1, —5)) =0. O
Corollary 41.4.9. The extraneous factor A of D = D(n,d) satisfying A =
b- ggg;gg is A== A(n, d). O

41.5 Macaulay’s Resultant

Remark 41.5.1. 1f the resultant Res(f1,..., fr) vanish, then f = {f1,..., f+}
have a common root a € P*~1(K) and all polynomials in

Z¢(B) ={wfi:we Wy),l <i<n}

vanish when evaluated at such root; thus, setting x, := 7(a) for each 7 € W,
(xr : 7 € Wy) is a common root of the linear equations

Z Troe(fi,7) =0, weWP 1<i<n
TEW,

and Z¢(D,) = 0 for each 7 € S,..

Thus Res(ds,...,d,) divides each D, m € S, and hence divides R; since
both R (Corollary 41.3.9) and Res(ds, ..., d,) (Fact 41.1.2(2)) are isobaric of
weigt D, in principle, we can conclude that R is the sought-after resultent.
However, since we have not given a complete proof of Fact 41.1.2(2), we
prefer to explicitly proof that R is the resultent, and deduce Fact 41.1.2(2)
from Theorem 41.5.3 below. a

Lemma 41.5.2 (Macaulay). The coefficients of a generic member of Ja—1
satisfy one and only one identical linear relation.®

Proof. We need to prove that dimg(Jg—1) = #W4—1 — 1.
In fact the equation

D AF =Y QiF,Qi € Spang (W)
i=1 i=1

9 Both this result and the Theorem below requires d > 2 id est the existence of at
least a non-linear polynomial.
On the other side, if d; = 1 for each ¢ so that d = 1, this Lemma is empty but
the Theorem below claims that the determinant of a system of r linear equations
in r variables vanishes if and only if the system has a common root.
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can be solved by the method used in Lemma 41.3.5 for arbitary given poly-
nomials A;; thus dimg(J4—1) is less or equal on the number of coefficients in
the expression 22:1 QiZZ-d"' which is #W,;_1 — 1 since each term in #Wy_4
except 2 :=T]_, Zlel occurs once and only once in that expression.

In order to prove that this equality is strict, it is sufficient to show that
that it is satisfied by at least a specific ansatz . Macaulay consider’s the ansatz
Z1(F;) := fi, 1 <i <r where

fir=(Zi— Zip)ZE N1 <i<r,  foi=(Z — 20) 287

clearly 51(R) = 0 since the system f; = --- f. = 0 has the common root
1,1,...,1).

In order to prove that dimg(=Z1(J)a—1) = #W4—1 — 1, Macaulay shows
that for each term 7 := Z7* -+ - Z 7—02 € (f1,..., fn) = Z1(J) by proposing
an interesting rewriting procedure which is worthwhile to quote; given 7, set
¢ := 1 and repeatedly perform the following transformation:

: — _ . —d,+1 L. .
o ifa, >d, set 7= Z{ ...z Zzh 170 TOT T Zar which is equiv-
alent to transform 7 to

a a,—d,+1y_T
T_(ZLL_ZH-l )ZaL
L
_ a,—d,+1 a,—dA+1y\ zd,—1_T
= T (ZLL ‘ _ZL+1 )ZLL o
.

a,—d,+1 a,—d,+1
ZL - ZLJLrl ‘ T

= 7- Z, — Zy) 28t
ZL - ZL+1 ZZIL ( ’ L+1) t
- L —d, 41
I 7 N =1(1.)
ZL_ZL+1 thul ’
e ;:=(t+1modr
going round the cycle!® Z1, Z,,..., Z,,Z, as many time as needed until we
obtain the term (2. a

Theorem 41.5.3 (Macaulay). R = Res(F1,..., F,).

Proof. We have (Proposition 41.3.4(3)) ARZ? € J; setting Z, := 1 and ap-
plying Kronecker substitution which changes ¢; to ¢; — F;, 1 <4 <r, then A
is not changed (as a consequence of Proposition 41.3.4(5)) while R is changed
in R— !, A;F};; as a consequence R € (F,...,F., Z, —1).

Hence Z¢(R) = 0 if the equations f; = ... = f,, = 0 have a proper solution
(215 s 2r—1,1) € Pr7L(K).

10 For r =4 d; =4 and d — 1 = 12 we have e.g.

7173 - Z3737%° - Z3737s7% —
70737373 — Z3Z37s73 — Z37Z37373
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Let us assume that Z¢(R) = 0 is a relation among the coefficients of
1,--., fr so that there are less then #W; linearly independent members in
Z¢(B) i={wfi:we W(gz),l <i<ri.

Hence the coefficients x, of the generic element

Z TrT € Ef(J>d = (flv"'afn)d

TEW,

~

must satisfy a linear relation Zrewd rrcr = 0.
Moreover, by Lemma 41.5.2, also the generic element

fi= > wweZ(Naa=(f1, s fada

VEW 1
satisfies a linear relation Zvewd,l Ty Cy = 0.
Since each Z;f = Zvew,ifl ZpZiv € (f1,..., fn)d the unknowns z, must

satisfy the r equations

E TyCyz, =0

vEWg 1
which are necessarily equivalent so that for each v € Wy_; the continued
ratio cyz, : Cuz, ¢ -+ ! Cyz, is the same; denoting it a; : ag : -+ &, it
follows that for each 7 := Z{*--- Z% € Wy ¢, is proportional to af* ---af"
id est a := (aq,...,q,) € PP=Y(K) satisfies fi(a) = ... = fa(a) = 0. o

Corollary 41.5.4. With the notation of Corollary 41.3.9 and denoting

R, :=Res (Xp(F1),-- -, Xp(Fp-1))

also the following holds

c(R,ay ---a,._{ )=a., ",
0) (R, ap” - ay7i") = ab

(10) e(R,ap7) = R}l

(11) C(R, afﬁ .. -af’r) _ R;lp"'dr.

Proof. (9) is obvious and (11) is a repreated applications of (10).
Ad (10): if we consider an ansatz = : Z(a,;) = 0 for each 7 # ZJ", then
Z(F,) = Z% and Z(D) = al" R where R is the sub-determinant whose rows

correspond to the basis elements {wF; : w € Wéi), 1 <4 < r} and whose
columns are labelled by the terms

{TZ{II,T € Wél)} el {TZf:’ll,T € Wa(ril)} ;

the vanishing of such determinant under an ansatz = : Z(F,) = Z% is a
condition that the identity

r—1
ZQiE(Fi) =Q. 7% Q= Z 2(Qi,w)w,1 <i<r
i=1

weWéi)
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can be satisfied.
In order to evaluate such determinant, assume the identity is satisfied and
set Z,. = 0 obtaining the identity

> (@ (E) =0

thus R is necessarily a multiple of R%"; evaluating the weight gives that the
multiplicity is d,. a

Proposition 41.5.5. It holds

(1) Res(Fl, ey Frfl, FT/FT//) B Res(Fl, ey Frfl, FT/) Res(Fl, ey Frfl, FTN);
(2) Res(Fy, By, ..., F._1,F.) is irreducible.

Proof.

(1) Since for each ansatz

ReS(fl,.. '7fT—1af7/‘)ReS(f15' "7f7“—1af7/‘/)

vanishes if and only if f1 = fo = --- = f.f/ = 0 have a common root, we
obtain

Res(Fl, e ,Fr_l,F;F;/) | Res(Fl, .. .,FT_l,F;)ReS(Fl, e )F’I‘—lij;/);

equality is then obtained since both are isobaric of the same weight.

(2) By contradiction let d, be the least value for which Res(ds,...,d,) =
Res(Fi,..., F;) has a non trivial factorization Res(dy,...,d,) = RiRa.
Choose any two positive values d). and d such that d, = d. + d/'.
By the minimality of d, both Res(ds,...,d).) = Res(Fi,...,F}) and

Res(di,...,d!) = Res(Fy,..., F)) are irreducible. Denote a, := ¢(T, F}),

al = c(w, F!) and a := c(v, F") for each 7 € Wy ,w € Wy ,v € Wyr.
w r v T ~ ™ ™

From the ansatz
— _ ron
Z(a;) = E a0z

w€eT
dT‘

w|T

which implies Z(F,) = F/F! we have, by (1)
Z(R1)Z(Ry) = Res(F,...,F/F") =Res(F,...,F)Res(F,...,F);

the irreducibility of Ry, Rz, Res(F1,...,F!) and Res(Fi,...,F) which
is a consequence of the minimality of d, implies, say,

E(Rl) = Res(Fl, N ,F;), E(RQ) = Res(Fl, N ,F;/).

Since both R; and Ry depend on the a,s, Z(R1) = Res(F1,..., F}) depends
not only on a, but also on a!/. This clearly leads to a contradiction. O
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Remark 41.5.6 (Lazard). Given h > r ’generic’ forms
F17 o '7Fh € D[Zla e ZT]vdeg(Fz) = dia D:= Z[a’i,'rvl < { < th € Wdi]v

di >dy >+ >dp > >dp, d=1—r+Y_,d;, the construction of
Macaulay’s matrix M, discussed in page 67, can be generalized in order to
obtain h blocks, the i** block consisting of the (d_‘fj'f_l) rows related to the
K-generators wfi,w € Wa—_g,.

Consequently the notion of Macaulay’s resultant (Definition 41.3.2) gen-
eralizes naturally to this setting, still being the greatest common divisor of all
determinants of the (‘“:Il) X 2?21 (d_drijf _1) Macaulay’s matrix. It is clear
that such Macaulay’s resultant R := R(Fy,..., F}) is the greatest common
divisor of the (if) original Macaulay’s resultants R(Fj,, Fj,, ..., F},.) obtained
choosing any subset {j1,...,j-} C {1,...,h} of r indices.

Equally trivially, denoting, for each set of forms f := {f1,..., fn} € P, Z¢
the ansatz Z¢(F;) = fi, f has a common root if and only if Z¢(R) =0 . O

Remark 41.5.7. In the non-homogeneous setting!?

the resultant of n given non-homogeneous polynomials in n — 1 vari-
ables is the resultant of the corresponding homogeneous polynomials
of the same degree obtained by introducing a variable zy of homo-
geneity.

In other words, given h > r non-homogeneous polynomials

froo e € K[Zy, ..o, Zy), di o= deg(fi)

and introducing the homogenaizing variable Z, we consider the generic forms
E € ]D)[ZOv Z17 R Z’l“]a deg(E) = dl

and the ansatz
— — d Zl Z’!‘
= D[Zo, Zl, ey Zr] — K[Zo][Zl, ey Zr] : :(Fz) = Zofi(—, ceey —);
Zy Zy
more precisely, we consider the (df) X 2?21 (d_dj”) Macaulay’s matrix
whose columns are indexed by the set W(d) of all terms of degree bounded

by d and whose rows represent the polynomials

Z Zy )
wZef(ZE, 2D weW(d —d;), 1 <i<h,
Zo Zo
the corresponding resultant being an element of K[Z]. O

1 Macaulay’s statements consider only the case h = r but such result is already
implicit in the introduction of the determinants D(v,d) (page 73).
Moreover, the construction of the u-resultants, in the next Section, freely uses
these implicit definitions and constructions.
12 p. S. Macaulay, The Algebraic Theory of Modular Systems, Cambridge Univ.
Press (1916), pg. 3.
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41.6 Macaulay: The u-resultant.

Let us consider » < n homogeneous polynomials

o= {f1, ... fr} Cklz1,... ]

of degrees dy < --- < d,.
One can therefore expect that the ideal M := (f1,..., f-) has rank r, in
which case Macaulay considers!? its extension/contraction ideal

M o= Mk(Zrs1,. . xn)@1, . 2] DKL, . )

and is aware that, if a ’generic’ change of coordinates has been already
performed, each f; € M(") is homogeneous of degree d; in the variables'*
Z1,...,%, and the assumption on the rank is satisfied if and only if the resul-
tant of the r f;s w.r.t. the r—1 variables x1, ..., x,_1, Ff € k[xry1,. .., Tn][x,]
does not vanish, thus granting the existence of a root.

In this context and under these assumptions, adapting the notation of
Chapters 31-32 and 39 we set

klx1,...,xn] =k[Z1,..., Z:, V1, ..., Va] = klxrsa, . xnll2, .o 2],

denote'® 7 : klx1,...,zn] = K[VA,...,Vdl[Z1,..., Z] — K[Z1,...,Z,] the
projection defined by 7(F) = F(Z1,...,Z,,0,...,0], for each

F(wla---ax’rax’r-‘rla'--axn) :F(Zla-'wz’ra‘/la"'avd)a
K=k(V1,...,V4), R=K[W,..., V4], and consider
(fir-oos fr) = M CR[Zy,. .., 2],

remarking that with this new notation we have F; € R[Z,].
We begin by remarking that the polynomials

fi = fi(ZoVh, .., ZoVa, Z1y .o Znny ZoZr) € R Z0, Z0s s Zoe1, 2o,

are homogeneous in the variables Zi,...,Z,1,Zy and that Fy € R[Z,] is
the resultant Fr w.r.t. Z1,...,2Z,-1,Zp of f :== {f1,..., fr}; moreover F} is
a homogeneous polynomial in the variables Vi,...,Vy, Z, of degree D :=

[1;_, d; so that T(F;) = R,11Z” where (by the assumption on the rank)

Ryp1 = Res (n(f1), ..., 7(f)) # 0.

Instead of solving for one of the unknown variables Z;, we solve for their
Liouville substitution

13 Compare the discussion in Section 30.5.
1 g, being chosen as variable of homogeneity.
15 Compare Section 30.5, n. 48.
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Z=U01Z1+UsZy+---+ U, 2,

setting f, == Z — U127 — Uy Zy — --- — U, Z,., considering the polynomial
set fW = {f1,..., fr, fu} as a subset of R[U1,...,U,][Z, Z1,...,Z,] and
computing their resultant Ff(u) e R[Uy,...,U[Z] wrt. Z1,...,Z,.

Definition 41.6.1 (Macaulay). Ff(u) 1s called the u-resultant of f. a
With an argument similar to the one we gave for F}, setting

fi=fi(ZoVA, ... 2oV, 2, Ze), 1 < i <vand fo =202 = Y UiZi

i=1
and denoting
F(u) = {fla' "7f7“afu} C R[Ula' "aUT][ZOaZh" 'aZTvz]a

we have that Ff(u) is the resultant F?(u) of { wrt. Zy, ..., Zr, Zy and, being
homogeneous in the variables Vi,...,Vy, Z of degree D := H;Zl d;, we have
T(F") = Ry, 2P where R}, = Res (z(f1), ..., 7(fr),7(fu)) -

If we consider in the expansion of F?(u) the indeterminate coefficient a,
representing the coefieient ¢(Z, f,) of Z in f,, degree considerations allow to
deduce that a” | R, and R, ; = a” R, 1 whence R. ; = R, since the
ansatz evaluates a as ¢(Z, f,) = 1.

With the same kind of argument as in Theorem 41.5.3, we can deduce
that to each root o) of Ff corresponds a root (agj), . ,agj)) of f; there are
D solutions altogether all being "finite’® since R,y # 0. Similarly to each
of the D roots z(9) of Ff(u) corresponds a root (69), . ,ﬁﬁj),z(j)) of ?(“);
clearly, up to a reenumerating we have

(a:(lj)7""a$‘j)) = (/8§J)7"'7ﬂ7('j))

and since fu(ﬂgj), 2 2D) =0 we have z() =377, Uiozz(-j) so that

D T
i=1 i=1

In conclusion

Proposition 41.6.2 (Macaulay). The u-resultant Ff(u) is a product of D
factors which are linear in Z, Uy, ..., U, and the coefficients of Uy, ..., U, in
each factor supply a solution of the system f.

Also the number of solution is either D = []._, d; or infinite, the latter
being the case when F; vanishes identically. O
16 1d est affine points (agj), ce agj)) € K" corresponding to the projective point

(1,a?, ..., o) e P(K).
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Remark 41.6.8 (Macaulay). (1) Denoting D the determinant for the generic
forms 13‘1, ey FT, F, regarding Z1,...,Z,, Zy as variables and A its ex-
traneous factor, we have D = ARes(Fl, L E Fu) and, setting Zy = 0,
that (Corollary 41.3.9(7)) A depends only on the coefficients of the
generic polynomials x,+1(F1),..., Xr+1(F,). Hence A is independent of
Vl,...,Vd and Ul,...,UT.

(2) In case of non-homogeneous polynomials the preliminary generic change
of coordinates does not affect the homogeneity variable; thus it is possible
for R,41 to vanish identically. The consequence is a diminution in the
number of finite solutions for Z but not in the number of linear factors of
Fy; such factors have the shape >\, U;a; and correspond to an infinite
solution'™ in the ratio o : g @ -+ : Q. O

In the generalized setting of Remarks 41.5.6 and 41.5.7, Macaulay’s result
can be read as follows:

Proposition 41.6.4 (Lazard). Given h (non-homogeneous) polynomials

fla"'afh € Q;deg(fl) = diahzr;dl > d2 > Zdhad: 1 _r+zdia
i=1
and setting
° fh+1 = Uy + Z;ﬂ_l U, Z;,
e M € K[Zy,Uy,Us,...,U,] the Macaulay’s matriz constructed, according
to Remark 41.5.6 and 41.5.7, via f1,..., fn, fr+1,

e R the corresponding Macaulay’s resultant,
e G:=R(1,Uy,Un,...,U,) € K[Uy,Un,...,U,],

we have

(1) f1,..., fn have a finite number of common roots if and only if M has
rank (djr) id est G # 0;

(2) If G # 0, deg(G) is the number of common roots of f1,..., fn counting
multiplicity and zeros at infinitiy;

(3) G is homogeneous and, in K[Up,Ux,...,U,], is a product of lineear poly-
nomials;

(4) if apUp + an Uy + - - - + an Uy, is a linear factor of G, then
e if ag # 0 then (g—;, e 2—2) € k™ is a root of the f;s;

e ifag =0, (ag,01, -+, an) is a common zero at infinity. O

17 Id est a projective point (0, a1, az,- -, ).
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41.7 Kronecker’s Resolvent

Let us consider a finite set
Fn = {fl(n)a 7fs(:)} CcP= k[Xla" 7Xn] = k[Xla" 'aXn—l][Xn]

of non-homogeneous polynomials generating an ideal | := I(F,) which we
assume to be in sufficiently ’generic’ position, the variables having been sub-
jected to a change of coordinate beforehand. As a consequence, in particular,
each fi(") is regular in X, !8.

Also | is in allgemeine position (Definition 34.4.3) so that for each primary
component q of |, dim(q) = d, we have | N k[X1,...,X4] = (0) thus, the
construction of Chapter 39, page 11, can be compacted and extended: we
can introduce the fields Ky := k(X3,...,X4) and their algebraic closures
Ka C 2(k) knowing that to each primary component q of rank r = n — d the
corresponding roots have the shape (X1,..., X4, 01,...,06:), Bi € Kq.

We can iteratively, for v :=n,n —1,.., 1, compute'®:

D, = ged(F,) € k[X1,..., X,_1][X.);

g = 1D, € k[X1,..., X, 1][X,], 1 <i < s,

G, ={g" 1<i<s,}CklXy,.. . X,_1][X.];

o f:= > Uig" € kX1, ..., X, A)[U, Wi, ..., Us,, Ws, ][ X,);
=1

(2

gi= > Wig™ € kX1, ..., X, |[U1,W,...,Us,, Wy, ][X,];
=1

R, = Res(f, g) =: Z’UEU(SV) fv’U c k[Xl, . ,X,jfl][Ul, Wl, ceey Us,,awsy]
where, for each value j € N, we use the notation

U = {U{“~~~U;J‘Wfl..-w;’j (a, ... a;,b,....,bj) ENQJ};

o« F, ;= {f{”f”, o 55;1)} = {fo,v €U} CRIX1, .., Xyi]
and remark that

(1) 1 =gcd(G,) € k[X1,...,X,-1][X,], so that

(2) R, #0;

(3) each f) is regular in X, since we are assuming that each variable has
been subjected to a generic change of coordinate;

(4) each common root of F), is either a root of D, or a common root of G,
and

(5) each common root « of G, is a common root of F,_; since R, € I(f, g).

18 A polynomial f = Y reres. T € Prdeg(f) = d is regular in X; iff ¢(f, X3 #0.

19 Compare Section 20.4
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(6) On the other side if 8 := (X1,...,X,-1,61),581 € K,—1 is such that
D,/(Xl, e 7X1/—1a51) =0 then Ru+1(X1, e ;Xu—laﬁl) = 0,

Sv+41 Sv+4+1

fi= Z Uig" ™ (B1, X, 41) and g := Z Wigl" ™ (81, Xo41)

have a common root f2 € K,,_1 so that, for each i,1 <i < 5,11 we have

(U+1)(X13 .. 'aXu—1;61352) =0 a‘nd fi(y+1)(Xla v 7Xl/—1?51)/82) =0

(7) and, by iterating this argument, each root (Xi,...,X,_1,51) of D, lifts
to a root (of rank n — v 4+ 1 and dimension v — 1) of I.

Definition 41.7.1. The polynomial [[} D, is called the complete (total) re-
solvent of I(F,,); each factor D, is called the complete partial resolvent of
I(F,) of dimension v —1 and rank n —v + 1. O

Proposition 41.7.2. The complete resolvent of I(F,,) is a member of I(F},).
Proof. In fact, for each v there are

pllvq!/ G k[le . 'aXl/*l][Ula le sty US]/’ WSV][XU]

such that R, = p, (i Uiggl’)) +qu (i Wiggl’)) so that F,_1 C I(G,) and
i=1

i= i=1
D,F,_1 C I(F,) whence, by inductive argument F} szl D, C I(F,) where
either F; € kor s; > 1 and Fy = {f1,..., fs;} € k[X1] with ged(Fy) =1
so that there are polynomials ¢;(X1) € k[X1] such that 1 = >~ ¢;f; and

[L— Do =370 (@[ T—y Do) fi € I(Fy). 0
Remark 41.7.3 (Macaulay). (1) As a direct consequence we have Hilbert’s
Nullstellensatz: if J has no root, the complete resolvent is 1 so that 1 € I.
(2) Let us be given n forms f; in n variables each of degree I which have no
proper solution so that the complete resolvent is?° D; = X}'. Since the
elements of F, have all degree [, the elements of F;,,_; have all degree
52, those of F,,_5 degree (12)?; in general the terms of F, have all degree
(12”2 =12 so that p = 12"
We should arrive at a similar result if we change z; to z; + a;
(1t =1,2,...,n) beforehand, thus making the polynomials non-

n—1
homogeneous. The complete resolvent would be (2, + a,)"

The resultant would be (z,, + a,,)"". The difference in the two
results is explained by the fact that the resultant is obtained by a
process applying uniformly to all the variables, and the resolvent
by a process applied to the variables in succession.?!

O

20 The construction reads the forms as polynomials and the sought roots are con-
sidered affine so if there is no proper solution, the origin is to be considered a
root with a proper multiplicitly.

21 . S. Macaulay, The Algebraic Theory op. cit., ppg. 21-2.
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41.8 Kronecker: the u-resolvent

Given a basis F' := {f1,..., fs} C k[X1,...,X,], let us consider new variables
X, Aq,..., A, such that X stands for

X=X+ -+4,X,

and perform the Liouville substitution??

X X—A1X1+'A'+An71Xn,71 ifi=n
! X, otherwise;
thus obtaining
e the polynomials?3

X S Ax;
fl=ArF (Xl,...an, Zj—) .y :=deg, (F),

e the basis F' := {f{,..., fi} Ck[A1,..., ][ X4, ..., Xna][X],
o the ideal I’ := H(F’) C k[/ll, ey An][Xl, ey anl, X]
Clearly there is a one-to-one correspondence between

e the roots (&1,...,&,) € Z(F) and
e the roots (&1,...,&,-1,&) € Z(F)

the relation being given by & = A& + -+ - + A,.&,.

Definition 41.8.1. The complete resultant F, := [[| D, of I(F") is called
the complete u-resolvent of I(F).

We have F,(X1,...,Xn-1, 1 X1 + -+ + A4, X,,) € I(F) since (Proposi-
tion 41.7.2) F,, € I(F'); moreover F;, considered as a univariate polynomial,

Fu € kA, .., A[X1, ... Xuo1][X]

factors into linear factors, those of dimension v — 1, id est the factors of the
component D,,, having the shape

X—MXi— - —A, 1 Xy 14— A& — - — A8 (41.2)
22 Clearly

x:=Mx1+ -+ Az, € k(A1 An)[x1, ..., 0]
= k(A ..., An)[Xq, ..., Xa]/I(F)E

is a primitive element in k[z1,...,z,] := k[X1,..., X,]/I(F) for any ’generic’
evaluation of the A;s.
2 The multiplier Al
being introduced to make [f;] integral in [A,].
F. S. Macaulay, The Algebraic Theory op. cit., pg. 24.
id est to grant that each f; € k[A1,..., A,][ X1, ..., Xx].
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Remark 41.8.2. The linear factors (41.2) of the complete partial resolvent D,
is related to components of dimension d := v — 1 and rank r :=n — v + 1.
According our notation the irreducible components

RekAy,..., A[X1, ..., Xu1][X]

of D, should be read as elements R € k[A1,..., A,|[Vi,..., V4, Z1, ..., Z.][X]
and the linear factors (41.2) as

X -V = = Ay Vg = Agr&s — - — An&y.

According the notation introduced by Macaulay 24 and reported in Sec-
tion 30.5 and here in Section 41.6, R must be read as an element

Rek[Ar, ..., Ap][n, - oy Trga][@r, - oy 21][X]
and the linear factors (41.2) as

X —-MNzp — = Agxpi1 — Ag1& — - — Apéa.

41.9 Kronecker Parametrization

In general the splitting factorization of D, could contain linear factors (41.2)
where some §; depends on the As.

Definition 41.9.1. A linear factor (41.2) of D, where each &; is independent
of the As is called true?. a

Remark 41.9.2 (Macaulay). Kronecker stated, without proving it, that each
factor is true: “whether this is so or not must be considered doubtful.”26
It could however be proved that

e a solution supplied by a non-true factor is necessarily embedded;
e any irreducible component R of a partial resultant D, either factors in true
linear factors only or has no true factor. a

24 To be more precise, the Liouville substitution performed by Macaulay was

T=U1T1+ ...+ UnTn.

As we already pointed in 36.3, footnote 15, in order to adapt Macaulay’s
notation to the current usage of chosing the first variables as parameters, one
has to set z; ;= Xn—;

25 In this case, in relation wiith Remark 41.8.2, the &;s are elements, with our
notations of the algebraic closure of K = k(V4,..., Vy), with Macaualay’s of of
the algebrtaic closure of k(zn, ..., Tr41).

26 F. S. Macaulay, The Algebraic Theory op. cit., pg. 26.
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Historical Remark 41.9.3. Today the natural way for restricting ouselves to
true factors is to get rid of embedded components via a radical computation;
the more so since Macaulay already gave a procedure (Algorithm 30.7.3) for
recovering embedded components and their multiplicity.

But I guess that Seidenberg’s Algorithm (Corollary 35.2.3) is the first
procedure proposed for radical computation. O

So let us consider an irreducible component
R(X) € k[Ay, ..., A ][ X1, ..., Xua][X]
of the partial resultant D, having a linear factorization into true factors of

dimension d := v — 1 and rank r :=n — v + 1:

R(X) = (X —-MXi— = A Xy — A& — - — An6)

O

=1

J
= (X-AVi—- = A, 4 Vig—Agi&ij — - — Aggrlrj)
where &;; € K, _1, and let us evaluate it at
MXi+ -+ A Xy =4V 4+ + AgVa+ Ag1 Z1 + Agar Ze
obtaining

R = RWMVi+- 4+ AgVy+ Ags1Z1 + Nair Z)

5
= H (Agy1(Z1 — &g) + -+ Aari(Zi — &ij) + -+ An(Zr — &)
j=1

sothat R € k[Ay,...,An, Z1, ..., Z:| = k[Z1, ..., Z:)[As, ..., Ay).

To [R] corresponds what is called an irreducible spread, viz. the
spread of all points [&,, ..., & +1,&r, - - -, &1;] in which [&,, ..., & 4+1]
take all finite values, and [2i,;, ..., &1;] the [§] sets of values supplied
by the linear factors of [R] which vary as [&,,...,&+1] vary.

No linear factor of [R] can be repeated, unless [X,..., X, 1] are
given special values; for otherwise [R] and [g—g} would have an H.C.F.
involving [X], and [R] would be the product of two factors?”.

In other words, to the irreducible component R of the partial resultant
D, corresponds a prime component f := fg of I(F') and an associated variety
Z(R) := Z(fr) of dimension d := v — 1 and rank r :=n — d.

Moreover, in the expansion of R’ € k[Z1,...,Z,.|[A,,...,A,] the coeffi-
cient of each term in {A% --- A% : (a,,...,a,) € N"}

2T F. S. Macaulay, The Algebraic Theory op. cit., pg. 27.
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all vanish at every point of the spread [Z(R)] and do not all vanish
at any other point?8.
In particular the coefficient of

° Angl is q(‘/l, .. .,Vd,Zl) = Hj.:l(Zl — flj); S /C[Vl, .. .,Vd][Zl]
o Ngi A5 1<i<r, is

d+1
Zi — &ij
Vi,...,. Vg, Z - Y
q(V1 1); 76,
9q
= —W,...\Va, 21)Z; —wi(Vh, ..., Va, Z1),
074
where w;(V1,...,Va, Z1) = q(V1,..., Va, Z1) 3 Zf—ijiu';
moreover we also have
0
q(Vla"'7VdaZ1) — a7q(vla-'-7vdaZ1)Z1_wl(‘/la'-')vdazl)a
1
wl(Vl, .. .,Vd,Zl) == q(Vl, .. .,Vd,Zl)Z ZL
— 21— &1
Thus the roots (&1,...,&.) € Z(R) satisfy the parametrization?®
q(‘/l""7vd7T) = 07
Zl _ Tgl(th’Vd,T)
24.(wi,...,Va,T)
o (41.3)
Zr = g—%(th,quT)
Definition 41.9.4. A parametrization (41.3) of a prime ideal
| C P,dim(l) =v —1,
in ‘generic’ position is called a Kronecker parametrization of I. O

41.10 *Historical Intermezzo: from Bézout to Cayley

In connection to Sylvester’s resultant, both Sylvester and Cayley quote3®
Bézout’s abridged method to obtain the resultant or3' Bézout’s abbreviated

28 F. S. Macaulay, The Algebraic Theory op. cit., pg. 27.

29 Where we have simply substituted Z; with 7.

30 J.J. Sylvester On a theory of the syzygietic relations of two rational integral func-
tions, comprising an application to the theory of Sturm’s functions, and that of
the greatest algebraic common measure. Phil . Trans. Royal Soc. London CXLIII
(1853) pg. 407-548

31 A. Cayley, A fourth memory upon quantics Phil . Trans. Royal Soc. London
CXLVIII (1858) 415-427
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method of elimination. Without pretending to give a survey on Bézout’s re-
sult, I think helpful to give some pointers to it for the interested reader.

His method for computing resultants is preliminarly described by Bézout??
in the case of three homogeneous linear equations? ijl a;j X;,1 <i<3:

he considers the product szl X; and successively, for 7 = 1..3, substutes
each X; with a;; observing the signe rule.>* We thus obtain

a11X2X3Xy —a12X1X3Xy +a13X1XoXy —a14X1X2X3 =1

(a1yagz —agya12)X3Xy — (ayjaz3 —agra13)XoXy )
+  (a11024 —a21a14)X2X3 + (a12a23 — ag2a13) X1 Xy =2
—  (a12a24 — ag2a14)X1X3 + (a13a24 — a23a14) X1 X3

[(a11a22 — a21a12)a3z — (a11a23 — a21a13)az2 + (aj2a23 — azgaiz)azy] Xy
[(a11a22 — az1a12)a3g — (a11a24 — a21a14)a32 + (aj2a24 — a22a14)@31% X3
X2

1 X1

|+ 1

[(a11a23 — az1a13)agq — (a11024 — a21a14)a3z + (a13a24 — a23a14)a3zy =3
[(a12a23 — azza13)azg — (a12a24 — a22a14)azz + (a13a24 — agzaig)age
whence he deduces
X - X —[(a12a23—az2a13)azs—(a12a24—asza14)azz+(a13a24—az3a14)asz]
1 (a11a22—az21a12)a33—(a11a23 —az1a13)az2+(a12a23 —az2a13)asy
X _ [(a11a23—a21a13)asza—(ar1a24—a21a14)asz+(a13a24 —az3aisa)asi]
2 (ar1a22—az1a12)azz—(a11a23—az1a13)azz+(a12a23—azza13)as;
X; = X —[(a11a22—az1a12)aza—(a11a24—a21a14)a32+(a12a24—asza14)asi]

(a11a22—az21a12)a33—(a11a23 —az1a13)az2+(a12a23 —az2a13)ass

id est Cramer’s formula.
As Muir® put it

the unreal product szl X at the very outset must have been a sore
puzzle to students. [...]
To throw light upon the process, let us compare the above solution
of a set of three linear equations with the following solution, which
from one point of view may be looked upon as an improvement on
the ordinary determinantal modes of solution as presented to modern
readers.
[...] The numerators of the values of X7, X5, X3 and the common
denominator are [...] the coefficients of X1, X2, X3, X, in the deter-
minant
air a2 aiz aiq
Q21 Q22 A23 a4
az1 a3z a3z asq
X1 Xo X3 Xy

= [X1X2X3X4]

32 B. Bézout Théorie generale des équations algébriques (1771) Pierres, Paris, §200—
3 ppg.174-6.

33 1 consider more suitable not to follow the original notation but properly adapt
it.

34 The reference being to Cramer’s rule of signes.

35 7. Muir The Theory of Detirminants in the Historical Order of Development
MacMillan (1906) London, pg. 44
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More precisely, Muir explains, if we denote
ag2; G25 Q2hp

and [XZX]X}L] = as; ag; asp
Xi X; X

asi asj

[Xin] = X; X

we have (by developing along the first line)
a11 [XoX3X4] — ar2 [X1 X3X4] + a13 [X1 X2 X4] — a14 [X1 X2 X5]
and, developing, again along the first line, the four determinants [X;X; X},]

(a11a22 — az1a12) [X3X4] — (a11023 — a21a13)) [X2X4]
+  (a11624 — a21014)) [X2X3] + (a12a23 — a22a13)) [X1X4]

—  (a12024 — a2a14) [ X1 X3] + (13024 — a23a14) [X1X3]

and, finally, expanding the six determainants and recollecting the result

ail a2 ais ail a2 ai4
az1 age a3 | Xg4—| a1 azy azy | X3
asy asz2 ass asp azz2 as4
a1l a3 ai4 a12 a3 ai4

+ az1 a3 az4 |Xo—| azx a3z asz | Xi.
asr as3z as4 aszz a3z (a34

The same method, id est an expansion of proper determinants expressed
with a similar notation and process, is then applied by Bézout to resolve
different systems of polynomial equations, including® computing the resul-
tant in k[X;] of two polynomials in k[X7, X2] and then is specialized to the
computation of the resultant in k of two polynomials

36 Among the instances discussed, we can list the resultant

e in k[X] of a quadratic and a linear polynomial in k[X,Y] (§278-280, ppg. 215~
229);

e in k[X] of two polynomials XY —aX — bY — ¢ (§281-284, ppg. 230-5);

e in k[X] of two quadratic polynomials in k[X,Y] (§285-91, ppg. 235-43; 303-5,
ppg. 252-5);

e in k[X] of a quadratic and two linear polynomials in k[X,Y, Z] (§292, ppg. 244-5);

e in k[X] of three quadratic polynomials

aX? +bXY +cXZ+dX +eY 4+ fZ+g

in k[X,Y, Z] (§320, ppg. 269-71);

in k of three polynomials XY — aX — bY — ¢ (§373—4, ppg. 235-6);
in k of three quadratic polynomials in k[X,Y] (§375, ppg. 326-8);
in k of three quadratic polynomials in k[X] (§462, ppg. 389-90);

in k of three cubic polynomials in k[X] (§463-4, ppg. 390-2).
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¢i= a1 X" ¢ = al, X" € k[X].
i=0 i=0

The specialized method, which is the one the English School called the
Bézout’s abridged/abbreviated method, consists in

(1) multiplying ¢ and ¢’ respectively by the polynomials

v H
G:=> A X' and @ = Al XM
=0 =0

whose degree (actually we have p:=n —1 and v := m — 1) is deduced
by means of results similar to Theorem 41.2.337;

(2) summing such two product, considering the linear system whose equa-
tions are the coefficients of the resulting polynomial and whose unknowns
are the A;, Als and

(3) solving it by the method discussed above, id est via determinant expan-
sion.

Ezxample 41.10.1. Let us illustrate the easiest case of two quadratic univariate
polynomials
ar® + bx +c,dx® + 'z + ¢ € klx] :

multiplying them by (respectively) Az + B and A’z + B’ we obtain®®

une équation de cette forme
Aaz® + (Ab + Ba)z? + (Ac + Bb)x + Be = 0.

Egalant ¢ zero le coefficient total de x3, celui de x2, &c. je procéde
au calcul de AA’BB’, comme il suit:

Premiére ligne aA’ BB’

Seconde ligne (ab')BB’' —aA'aB’

Troisiéme ligne (ab’)bB’ — (ac’)aB’

en rejettant le terme ot resteroit A’ qui n’étant point dans la derniére
équation, ne peut plus influer sur l’equation finale.

Quatriéme ligne (ab')(bc') — (ac’)?.

On a donc pour équation finale (ab')(bc’) — (ac’)? = 0.3

37 The point is to reach a degree in which, equating the opportune coefficients of
the terms in the equation ¢® + ¢’® = 0, one obtains at least as many equations
as unknowns. If the difference is positive leaving some freedom alternatively one
can either equate some unknown to O or, in order to preserve symmetry, add
equations of the shape aiA;- — a;A; = 0 for convenient i,j (for an illustration
compare Example 41.10.2).

3 Remark that Bézout uses the shorthand (ab’) to denote the determinant

a b
a v

39 E. Bézout op. cit., §347 pg.300.
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If we expand Bézout’s computation using the same notation as above we
have

aA'BB' — Ad' BB/,

(ab — a’b)BB’ — aA’aB’ 4+ aA’Ba’ + Ad'aB’ — Ad’ Bd/,

(ab! — a'b)(bB’ — Bb') — (ac’ — ca’)(aB' — Ba') + (aA’ — Ad’)(ab’ — ba'),
(ab' — a'b)(bc’ — cb') — (ac’ — ca’)?,

which can be interpretated as the expansion of the determinant

a a 0 0
b vV a d
c ¢ b v
0 0 ¢ (¢
A A B B

corresponding to the linear system

Aa+ Ald =
Ab+ Ba+ A'Y + B'd’
Ac+ Bb+ A'd + B'Y
Be+ B'd =

I
coc oo

Remark that in the last expansion the terms A and A’ are substituted
by the corresponding coefficient 0 annihilating the last summand of the third
expansion, justifying Bézout’s comment that the terms containing A’ (and
A) can be removed, since in the fourth equations they don’t appear thus not
influiencing the expansion.

Finally remark that the matrix whose determinant has been computed is

a b ¢ 0

equivalent to Sylvester’s matrix 0, a boc a
a v Jd 0
0 da VvV

Example 41.10.2. Let us now consider the system?’

ax? +bxy +cy’ +drt+ey+f = 0
de+ey+f =0
d77$+e77y+f77 — 0

where the three equations are multiplied, respectively, by C, A’z + B’y + C’
and A"z + B”y + C”; considering, orderly, the coefficients of 22 and xy, the
équation arbitraire B'd’ + B”d” = 0, the coefficients of y2, x,y,1 we have 7
equations in connection with 7 variables and we thus obtain the resultant

40 . Bézout op. cit., §369 ppg.319-20.
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d & 0 0 a 0 0
e e d d b 0 0
0 0 d d 0 0 0
0 0 € € ¢ 0 0
P00 dd &
0 0 f /7 e € ¢
00 0 0 f f f

which Bézout presents as

(@) (eld )2 + (d'e)(de! ) = b{e! f)(d ) + ale'f)?)

d e f
where he uses the shorthand notation (de’f”)=1| d' € f' |. O
d” e/ f”

Historical Remark 41.10.3. A similar method is applied by Bézout also in
order to compute resultants in k[X] of two polynomials in k[X,Y].
The main differences are that

(2) the linear system is obtained considering only the coefficients divisible
by Y,

(3) the solution of the system returns the coefficients A;, A} as rational func-
tions in the a;s and als;

(4) the resolvent is obtained by setting, in the polynomial obtained in step
(2), Y =0, id est removing the coefficients used in step (3), and substi-
tuting each A;, A} with their expression in the a;;s and ajs.

O

Example 41.10.4. Let us illustrate Bézout’s approach by considering?' the
polynomials ax? + bxy + cy®> + dr + ey + f and d'z + €'y + f’ which are
respectively multiplied by F and D'z + E'y + F’ giving
(Fa+ D'd)a* + (Fb+ D'e’ + E'd)zy + (Fc+ E'e)y? (41.4)
+ (Fd+D'f'+Fd)x+ (Fe+Ef+Fe)y+ fF

We then consider the equations (connected with 32, zy and y)

Fc+FEe =
Fb+ D'+ E'd =
Fe+E'f'+Fe =

coco

and we expand the expression D' E'FF' obtaining*?

41 E. Bézout op. cit., §278 ppg.225-8.

0 e ¢ 0
’ /
42 Compare the corresponding matrix 8 j,l, 2 2,
D E F F
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_D'¢'FF + D'E'c¢F',
—e e FF' +D'ebF' + e E'cF' — D'd cF’,
—ee'eF +ee'Fe' —D'e'be’ + €' f'cF' — e E'ce’ + D'd'ce,
and the solution (sic!) D' = d'ce’ — e'be/, E' = —ece/, F = e'e’e’, F' =€’ f'c;
substituing it in (41.4) and setting y = 0 we obtain
(ee’e’a+dced)z® + (e'e'dd+dce' f' + e f'ed)x + fe'e'e
c bx+e ax® +dx + f
= é|e dz+f 0
0 ¢ dz+ f'

id est, up to the extraneous factor €’, the expected Sylvester resultant. O

The Sylvester resultant was, at least implicitly, introduced by Euler*®. His
approach is essentially a variation of the one illustrated in Example 41.10.1:
given

¢=> a1 (X)Y" ¢ = af,  (X)Y" € k(X)[Y]
=0 =0

he multiplies them, respectively, by

n—2 m—2
G=alY" '+ A V" and & = a YT 4 Y AL YR
=0 =0

and subtracts the result, obtaining a polynomial of degree m + n — 2
— the coefficient of Y™*"~! being 0; thus equating the coefficients of
Y, Y2 ... Y™ =2 we obtain m + n — 2 linear equations into (m — 1) +
(n — 1) variables; the solution is then substituted in the constant coefficient
Ap_10mi1 — Ay, _qay, 4 giving E(X) € k(X).
The equation system can be expressed as
M-(a’l,Al,...,An_l,al,All,... ! )T:(O,,O,E(X))T

yim—1

where M is the Sylvester matrix.

It is clear that the procedure proposed by Euler is equivalent to the com-
putation of the Sylvester resultant, so that E(X) = Res(¢, ¢') is the required
resultant.

In order to present the English School view of Bézout’s abridged method,
I refer to Salmon’s Higher Algebra**.

Given two polynomials of the same degree

43 L. Euler, Introductio in Analysin Infinitorum Tom. 2 (1748) Lausanne Chapter
XIX, §483-5

4 G. Salmon, Lessons introductory to the Modern Higher Algebra, Fifth Ed.,
Chelsea Pub. Co. (1885) New York, §84-6, ppg. 81-3.
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U := Zai+1Xm_i, S k[X]; V= Za/i+1Xn_iam =n
i=0 i=0

and denoting
P _ P _
V, = Za;_HXpﬂ, U, := ZaiHXpﬂ, for each p,0 < p < n,
i=0 i=0
we compute the n polynomials of degree bounded by m — 1

F, =V, U-U,_1V:= ZQPUX”%”J <p<nm

o=1

we thus obtain the square matrix (a,,) whose determinant is the required
resultant; in order to extend this construction of a square matrix when m > n,
we need to have e := m — n more polynomials of degree bounded by m — 1;
the choice is to take F, :== X"~?V,n < p < m so that the resultant*

is, therefore, as it ought to be, of the n!* degree in the coefficients of
[U], and of the m*" in those of [V].

Ezxample 41.10.5. 1t is sufficient to apply this recipe to the case of Exam-
ple 41.10.1 to realize the equivalence with Bézout’s result.
We have

F, = ald2® +Vz+)—d(ax® +bx+c)
(a,b" )z + (a,c’)
F, = (ar+0b)(dz*+Vx+)— (dz+b)(az? +bx +c)
= (a,d)x+ (b,c)

whence the required determinant is

(ab') (ad)
(ac’) (bc) ‘ =

The first which studied the bezoutic matriz B := («,,) was Jacobi*® which,
among other comments, remarked that

The method can be found in E. Bézout Recherches sur le degré des équations
résultantes de l’évanouissement des inconnues, et sur les moyens qu’il convient
d’employer pour trouver ses équations. Mém. Acad. Roy. Sci. Paris (1964) 288-
338.

I was unable to read this paper so I rely to the description by Salmon and by
H.K. Wimmer, On the History of the Bezoutian and the Resultant Matriz Linear
Algebra and its Application 128 (1990) 27-34

45 Salmon, op. cit., §86, pg.83
46 Jacobi, C.G.I., De eliminatione variabilis e duabus aequationibus algebraicas J.
Reine und Ang. Math. X'V (1836) 101-24.
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Y e XP0pe X7 = U(X) 20 — v (X) 20T (pg.103);
B is symmetric (pg.102) and

has no factore superfluo (pg.104);

if det(B) # 0 the inverse of B is a Hankel matrix*® (pg. 104);

if det(B) = 0 the common roots o of U and V are in relations with the

linear solutions (1,c,...,a" 1) of B (pg. 104).

Sylvester®® gave in 1842 a formula® to express the coefficients of the F),
(in case n = m) in terms of the determinants

(i,§) = (wia}) := Z, Zf 1<i<j<n+l1,
i Y

as follows:

[Conceive] a number of cubic blocks each of which has two numbers,
termed its characteristics, inscribed upon one of its faces, upon which
the values of such a block (itself called an element) depends.

For instance, the value of the element, whose characteristics are r, s,
is the difference between two products: the one of the coefficient rth
in order occurring in the polynomial U, by that which comes sth in
order of the polynomial V'; the other product is that of the coefficient
sth in order of the polynomials U, by that rth in order of V; so that

47 With the present notation, Jacobi remarked that

m m

m—p m—o
E E X Qpe X
p=1o0=1

_ iXm*pr

p=1
= <§:X’”‘p§a< X’H‘") U-— <§:X*’W§ ; X”_l_i> Vv
= i1 Qi1

p=1 i=0 p=1 i=0
m—1 m—1

= <Z(m i)a;+1XMi1> U - (Z(m i)a¢+1XMi1> 14
i=0 =0

_ V(X)) 9U(X)

= “ox YT ax v

48 4d est the matrix det(B) "*B™! := (a,.) satisfies, for each p, o, apo = Apto—2 for
suitable A;,0 <7 < 2n.

49 3.J. Sylvester Memoir on the dialytic method of elimination. Part I. Philosophical
Magazine XXXI (1842) 534-9

%0 Sylvester’s matrix was given two years before: J.J. Sylvester A method of de-
termining by mere inspection the derivatives from two equations of any degree.
Philosophical Magazine XVT (1840) 132-5
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if the degree of each equation be n, there will be altogether %n(n—i— 1)
such elements.

The blocks are formed into squares or flats (plafonds) of which the
number is § or "T'H, according as n is even or odd. The first of these
contains n blanks in a side, the next (n—2), the next (n—4), till finally
we reach a square of four blocks or of one, according as n is even or
odd. These flats are laid upon one another so as to form a regularly
ascending pyramid, of which the two diagonal planes are termed the
planes of separation and symmetry respectively. The former divides
the pyramid into two halves, such that no element on the one side of
it is the same as that of any block in the other. The plan of symmetry,
as the name denotes, divides the pyramid into two exactly similar
parts; it being a rule, that all elements lying in any given line of
a square (platfond) parallel to the plane of separation are identical,
moreover the sum of the characteristics is the same for all elements

lying anywhere in a plane parallel to that of separation.

The formula behind this rule is

n+1

Qpo = Qop = Z (@ptot1—j,aj). (41.5)
j=o+1

Ezxample 41.10.6. For n = 2 we have the same formula as the one produced
by Bézout (Example 41.10.1) (ab’ — a’b)(bc’ — cb') — (ac’ — ca’)?.
We illustrated Sylvester’s formula and construction for n = 3%!: we have

1,2 11,3 1,4
| 2,3 1,3[1,4]2,4
1,4 12,41 3,4
giving the determinant
I ! !
(aras) (‘11‘13) (ara})
! i ! !
(aray) (aray) + (azaz) (aza})
I I I
(a1a4) (a2a4) (a3a4)
ar  ag a]; as ay Qg
i I ! ! i I
ay Qg ay as ay ay
_ a1 as al aq as as as Qg
- i i i ! + ! i i i
a; as a; ay s as Qg Gy
ay aq4 a2 a4 ' as aq
i I ! ! I !
ay ay Ay a4 az Qg

51 The cases n =4, 5 can be found in Salmon op. cit. §84-5, ppg. 81-2; all cases up
to 6 in J.J. Sylvester Memoir op. cit.
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which is to be compared with Sylvester determinant

ar az az ag 0 O
0 ay; Qa2 as a4 0
0 0 ay; Qa2 as a4
ay ahy ah a, 0 O
0 a) ab, af aj) O
0

If m > n the same formula is applied simply by expressing V as

n m
Vi=>a X" = b X
i=0 i=0

“h b _ 0 0<i1<m-—-n
WD = Vel e, m—n<i<m.
In 1857 Cayley®? gave in Crelle

la forme la plus simple sous laquelle on peut présenter cette méthode.
Pour éliminer [xP3 entre deux équations du n**™€ degré

n n

» , »
g aip12" " =0, E a; 12" =0
i=0 i=0

on n'a qu’a former ’équation identique

n . n—i n / m—1i n / m—1i n . n—i
Zi:() @i41% 21:0 Pi41Y B 21:0 P41 ® 21:0 @i+1Y

r—Y
ne
ag,0 ai,0 an—1,0 x
ao,1 a1 an—1,1 n-
n—1 n—2
= (¥ Ly 1)
ag,n—1 Al,n-—1 cee Gp—1n-—1 1

o l’expression qui forme le second membre représente la fonction

sutvant
n—1 n—2 n—1
(ao,oz + a1,0T +- an71,0) Y

+ (ao,wn_1 + 111,1$n_2 +-+ anfl,l) Y

n—1 n—2 .
+ (ao,n—19€ + a1,n—1 + -+ an—l,n—l) ;

52 A. Cayley, Note sur la méthode d’élimination de Bezout J. Reine und Ang. Math.

LIII (1857) 366-7.
The result is however earlier. It is explicitly reported in 1853 by Sylvester in

On a theory op. cit. § 62.
%3 Cayley gives the formula for two homoigeneous forms; I adapt his formulas to the
non-homogeneous case and I use a modern notation instead of the one introduced

by him.
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le résultat de l’élimination sera

@0,0 a1,0 cee (n—1,0
ao,1 a1,1 e Gp—1,1
aon—-1 A1n—-1 ... Apn—-1n—-1

Ezxample 41.10.7. For n = 2 we have
(ax? + bz +c)(a'y? + by + ) — (a’z? + bz + ) (ay? + by + ¢)
r—=yYy
= (ab —ba")zy + (ac’ — ca' )z + (ac’ — ca’)y + (b’ — cb')

(ab') (ac') ) |

again returning the matrix ( (ac’) (b))

For n =3 and U(x) = (az® +bx? +cx+d),V(z) = (d2® + V2% +z+d)
we have
Ux)V(y) = V(x)U(y)
-y
= (ab)2?y? + (ad')(a®y + zy?) + (ad)z”
+ ((ad') + (b)) zy + (ad")y* + (bd')z + (bd')y + (cd')

(a,0')  (ac) (ad’)
giving the determinant | (ac’)  (ad') + (bd) (bd') |. 0
(ad’)  (bd') (cd’)

Sylvester®, in the case n = m, denotes the polynomials F,,1<p<n
the bezoutians of U and V and remarks that

The determinant formed by arranging in a square the n sets of co-
efficients of the n Bezoutians, and which I shall term the Bezoutian
matrix®®, gives, as is well known, the Resultant (meaning thereby
the Result in its simplest form of eliminating the variables out) of U
and V.

Eliminating dialytically, first X"~ between the first and the second,
then X~ and X" 2 between the first, second and the third, and

54 J.J. Sylvester On a theory op. cit. § 5.

55 But he also uses the term Bezoutic square. The term than stabilizies as be-
zoutic matriz (Compare Cayley’s entry Mathematics, recent terminology inin the
English Cyclopedia, vol. V (1860) pgg.534-42). In particular Cayley (A fourth
memory op.cit. § 83) labels the Bezoutic Emanant of U and V' the polynomial
w introduced by him.

The term bezoutiant in fact, as we will see below, has been already associated
to the quadratic function which (A. Cayley, A fourth memory op.cit. § 91)
Professor Sylvester forms with the matriz of the Bezoutic emanant.



106 41. Macaulay IV

so on, and finally, all the powers of X between the first, second,
third,. .. ,nth of these Bezoutians, and repeating the first of them, we
obtain a derived set of n equations, the right-hand members of which
I shall term the secondary Bezoutains to U and V.

The ’dialytical elimination’ performed by Sylvester on the expressions

Vp_lU— Up_lV = Fp,l S P S m

returns
%U - U()V == F1 = Bl
(Vo —a11tVi)U — (a21Up —a1Uh)V = aaFi —anF> =: Bs
S,U T,V — B,
Sp—1U — TV = B, _1.

where we have deg(S,) = deg(T,) = p — 1,deg(B,) = m — p; thus, assuming
U,V to be®

perfectly unrelated, and each the most general function that can be
formed of the same degree

and in case m = n°" then if we repeatedly perfom the Division Algorithm
and change the sign of each remainder, as in Section 13.3, we obtain the
polynomial sequence®® U,V,Rs,..., R, where each R; necessarily satisfies
deg(R;) = m — i+ 1. Thus, the®

56 J.J. Sylvester On a theory op. cit. §1
57 This argument and construction is in § 5. In the sequent § 6, Sylvester explains
how to extend it in the case m =n+e,e > 0.

He defines
P pte
V, = Za;HXp*Z, Upte := ZaiﬂX”“ﬂ, for each p,0 < p<n
i=0 i=0

and computes the n polynomials (all of degree bounded by m — 1)

F,:=V,_.U—-U,,V := Zangmfo, 1<p<m
o=1
next he introduces the e polynomials X*V,0 < u < e and, for p,1 < p < n,

using these e polynomials and the p polynomials F.;1 < r < p he produces a
relation

SpU =T,V = By, deg(Sp) = p — 1,deg(T,) = e+ p — 1,deg(B,) = m — p;

thus the argument given in case n = m applies verbatim.
38 which is the Sturm sequence (Definition 13.3.1) if V = U’.
59 J.J. Sylvester On a theory op. cit. §5
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n successive Secondary Bezoutians to the system U,V [...] will (sav-
ing at least a numerical factor of a magnitude and algebraic sign
to be determined, but which, when proper conventions are made,
will be subsequently proved to be +1) represent the simplified |...]
residue[s] to &.

id est B, = R, for each p.
Once obtained the Bezoutic square of two polynomials f, ¢ of the same
degree m, Sylvester remarks that®°

this square [...] is symmetrical about one of its diagonals, and cor-
responds therefore (as every symmetrical matrix must do) to a ho-
mogeneous quadratic function of m variables of which it expresses
the determinant. This quadratic function, which plays a great part
in [...] the theory of real roots, I term the Bezoutiant.

In Section V. Arts. 56.57, I show that the total number of effective
intercalations between the roots of two functions of the same degree
is given by the inertia of that quadratic form® which we agreed to
term the Bezoutiant to f and ¢; and in the following article (58) the
result is extended to embrace the case contemplated in M.Sturm’s
theorem; that is to say, I show, that on replacing the function of x

60 J.J. Sylvester On a theory op. cit. Introduction
61 Sylvester introduced the notion of inertia and proved its Law of Inertia in On a
theory op. cit. § 44-5.
Recall that given a quadratic form f(z1,...,2n) = >, Ej Bijxizy, Bij = Bjs
and denoting, for each two vectors u = (c1,...,¢n),v = (d1,...,dy) in k"

Flu,0) =" Bijeid;
i

then the vectorspace N := {w € k" : f(w,u) = 0 for each u € k"} is invariant
for linear transformation and such is also its dimension n — r.

Thus k™ has an orthogonal basis v1,...,Vr, Ur41,...,Un so that
0 i#

N = Span (vr41,...,v,) and f(vi,v;) =< v #0 i=j5<r

0 i=3>r

so that for each u = Ez civ; € k™ we have f(u,u) := E, c?%.

Sylvester’s Law of Inertia states that, if & = R, the 'number of integers in
the excess of positive over negative signs which adheres to a quadratic form
expressed as the sum of positive and negative squares’ (which Sylvester names
the inertia of the quadratic form) is 'unchangeable notwithstanding any real
linear transformation impressed upon such form’ id est the inertia is the invariant

#{v>01<i<r}—#{n<01<i<r}
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by a homogeneous function of z and y, the Bezoutiant of the two
functions, which are respectively the differential derivates of f with
respect to x and with respect to y, will serve to determine by its form
or inertia the total number of real roots and of equal roots in f(xz)%2.
The subject is pursued in the following Arts. 59,60. [...] In Arts. 61,
62, 63, it is proved that the Bezoutiant is an invariative function of
the functions from which it is derived; and in Art. 64 the important
remark is added, that it is an invariant of that particular class to
which I have given the name of Combinants, which have the property
of remaining unaltereted, not only for linear transformations of the
variables, but also for linear combinations of the functions containing
the variables®3, possessing thus a character of double invariability. In
Arts. 65, 66 I consider the relation of the Bezoutiant to the differential
determinant, so called by Jacoby, but which for greater brevity I call
the Jacobian. On proper substitutions being made in the Bezoutiant
for the m variables which it contains [...], the Bezoutiant becomes
identical with the Jacobian of f and .

To illustrate the ‘proper substitution to be done’ I give again the word to
Sylvesterf*

%2 In other words, Sylvester
e considers the polynomial f(z) ="
e performs Division Algorithm obtaining

a;x™ ™" and its derivate f'(z),

m

fiz) =mf(z)—af () = iai™

i=1

e computes the Bezoutian secondaries of f1 and f’, Bi,...,Bm—1 which in this
case are exactly the Sturm sequence and
e evaluates ’the number of pairs of imaginary roots in f(z)’ by counting ’the
number of wariations of sign betwen consecutive terms’ obtained evaluating
fl7 f/7 Bl, ey Bm—l at +o00.
Remark that, setting g(z,y) =

m

im0 a;z™ 'y’ we actually have

m

dg . | g
= i ) - 71
y = 2 ioa™ ) = )

justifying Sylvester’s reference to the derivate with respect to y.

53 Id est he considers the Bezoutiant of the functions kf + i¢ and k'f + ¢'¢ and
remarks that each entry on the Bezoutic matrix is multiplied by (ki’ — k') so
that the Bezoutiant (§64)

becomes increased in the ratio of (ki’ — ki)™, that is remains always unal-
terated in point of form and absolutely immutable, provided that ki’ — k’i
be taken, as we may always suppose to be the case, equal to 1.

64 J.J. Sylvester On a theory op. cit. § 65
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[The Bezoutiant] B(us,...,um,) being a covariant of the system f
and ¢ [...] on making uy, ..., um, equal to [x™~1 2™ 2y, ... y™m1]
B will become [...] what I am in the habit of calling the Jacobian
(after the name of the late but ever-illustrious Jacobi), a term capable
of application to any number of homogeneous functions of as many
variables. In the case before us, where we have two functions of two

variables, the Jacobian

)

| L A dfde df do
J(f,aﬁ)‘jd_z, g_% =y dyds

[...] So in the case of a single function F' of the degree m, the Be-
zoutoid, that is the Bezoutiant to ‘fl—i, ‘fl—g, on making the (m — 1)
variables which it contains identical with 2™ 2,2™ 3y, ..., y™ 2
spectively, becomes identical with the Jacobian to %, %, that is the

Hessian of F', namely

e-

&F  d°F
dz? dxdy
d’F  &F
dxdy’ dy?

As an example of this property of the Bezoutiant, suppose

f = ax®+ba’y + cay® + dy’,

¢ = az’+ B’y +yzy® + 6y,

The Bezoutiant matrix becomes

af — ba, ay — ca, ad — da,
ad — da

ay — ca, + , by—cpB,
by —cp

ad — da, by — ¢B, cd — dr.

The Bezoutiant accordingly will be the quadratic function
(aB — bajui + {(ad — da) + (by — cB)} u3 + (¢ — dvy)u3
+  2(ay — ca)uyuz + 2(ad — da)ugug + 2(by — ¢f)ugus,
which on making
up = 2%, ug = zy, uz = 3>

becomes

La* + Mz3y + Nzy? + Pxy® + Qu?,
where L, M, N, P, Q respectively will be the sum of the terms lying
in the successive bands drawn parallel to the sinister diagonal of the
Bezoutiant matrix, that is

109
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= (af - ba),

= 2(ay — ca),

3(ad — do) + (by — cf),
= 2(by —cp),

= (c6 —d).

Q% 2 &
I

The biquadratic function in  and yJ...] will be found on computa-
tion to be identical in point of form with the Jacobian to f,¢, namely

(3(112 + 2bxy + cy2)(ﬂ12 + 2vxy + 36y2) — (30@2 + 2Bxy + 'yy2)(b12 + 2cxy + 3dy2)
this latter being in fact
3Lz + 3M 23y + 3Nz%y? + 3Pzy® + 3Qy™.

and concludes commenting:

The remark is not without some interest, that in fact the Bezoutiant,
which is capable (as has been shown already) of being mechanically
constructed, gives the best and readiest means of calculating the
Jacobian; for in summing the sinister bands transverse to the axis of
symmmetry the only numerical operation to be performed is that of
addition of positive integers, whereas the direct method involves the
necessity of numerical subtractions as well as additions, inasmuch as
the same terms will be repeated with different signs.

and remarks, in a different example, that, unlike the computation via Be-
zoutiant, the direct evaluation requires to effectively employ also division
in order to reduce the Jacobian to its simplest form, being divisible by

deg(f) = deg(¢).

41.11 Dixon’s Resultant

The computation of a resultant of r forms in r variables was already solved
by Bézout as an instance of this general approach.

An alternative proposal was put forward by Cayley® based on what today
we could call a solution via linear syzygies.

He assumes to have my variables connected by ms linear equations, not
being all independent, but connected by ms linear equations, again not nec-

essarily linearly independent; we thus obtain s matrices M, = (ag)), the

ith matrix having m, columns and m,4; rows, the m,s being related by

1

2211(—1)‘77710 =0:

55 A. Cayley, On the theory of elimination Cambridge and Dublin Math. J. III
(1848) 116-20
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the number of quantities [m;] will be equal to the number of really
independent equations connecting them, and we may obtain by the
elimination of these quantities a result A = 0.

The approach, denoting p, := ZZJ:Q(*I)”*QmU = 0, consists in
e selecting ps41 = ms41 indexes Iy C {1,...,ms} and computing the deter-

minant Qs of the ps11—square minor of M, obtained by selecting the rows
indexed by Ig;

e selecting ps = my — psyq indexes Iy C {1,...,ms_1} and computing the
determinant QQs—1 of the pus—square minor of M,_; obtained by selecting
the rows indexed by I;_1 and the columns indexed by {1,...,ms} — I,

e selecting p1, = my— pip41 indexes I,_1 C {1,...,mp_1} and computing the
determinant ),—1 of the p,—square minor of M,_; obtained by selecting
the rows indexed by I,—; and the columns indexed by {1,...,m,} — I,

o selecting ps = mg — pg indexes Iy C {1,...,m2} and computing the deter-
minant @2 of the us—square minor of Ms obtained by selecting the rows
indexed by I and the columns indexed by {1,...,ms} — I3

e computing, on the basis of the remark that m; = pus = mgo — us, the
determinant @)1 of the ps—square minor of M; obtained by selecting the
columns indexed by {1,...,ma} — Io;

finally, if each @; is not zero, one obtaind A by computing
_ _ s _ o—1
A=1Q;'QsQr - =[5V .
o=1

The application considers a set of forms {f1,..., fu} and, fixed a proper
degree d € N intends to eliminate all terms of degree d among the equations
F = 0 where F runs among the forms in the set

Fi={7fi,1 <i<u,7€T,deg(rfi) = d};

it consists in computing a linear resolution of the elements in F and applying
on it the computation suggested above. Cayley however remarks that

I am not in possession of any method of arriving at once at the final
result in its more simplified form; my process, on the contrary, leads
me to a result encumbered by an extraneous factor, which is only got
rid of by a number of successive divisions.

The first solution, apart Bezout, for computing the resultant of more than
2 polynomials is due to A.L. Dixon®® which generalized Cayley’s interpreta-
tion of the Bezoutic/Bezoutian matrix in terms of the Bezoutic Emanant,

56 The eliminant of three quatics in two independent variables, Proc. London Math.
Soc. 7 (1908) 49-69
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proposing such Emanant for 3 polynomials in two variables and remarking
that the constuction easily generalizes to polynomials in any number of vari-
ables.

Given three polynomials

n

G(X1,X2) = > AXX3,

r=1s=1
(X1, X2) = > BpX[X3,
r=1s=1
X(X1,X2) = D ) ChX7X3
r=1s=1

Dixon considers the determinant
o(X1, X2) (X1, X2) x(X1,X2)
A= ¢(X1,Ys) P(X1,Y2) x(X1,Y2)
o(Y1,Y2)  p(Y1,Y2)  x(Y1,Y2)

and, remarking that it vanishes if we put X; = Y7 and also if we put X, = Y5,
and so it is divisible by (X7 — Y7)(X2 — Y2), he considers the polynomial
A(X1, X2, Y1, Y3)

D(X1,X2,Y1,Ys) =
( 1,A2,11, 2) (Xl—Yl)(XQ—}/Q)

2n—1 in X,y

L m—1 in Xy
which is of degree n_1 Y, so that

2m—1 inYs

equating to zero the cofficients of [Y7'Y5], for all values of r and s,
[D = 0] is equivalent to 2mn equations in [ X7, X5] and the number of
terms in these equations is also 2mn. Thus the eliminant®” can be at
once written down as a determinant of order 2mn, each constituent
of which is the sum of determinants of the third order of the type

qu Ars Atu
A:=| Bpy Bys DB
Cpq Crs Ctu
In other words, denoting a := {X[X5;r < 2n,s < m}, and b :=

{Y7Y5;r <n,s < 2m}, we have
D(XlaXQ;YI;YYQ) :ZZdTUTUa dTU S Z[qu;Brs;Ctu]-
TEAVED

Clearly the vanishing of the determinant of the matrix (d-,) is equivalent
of the existence of a common root of ¢, 1, x.
Finally Dixon remarks that such method is

67 Salmon used the term eliminant to denote what we call resultant.
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applicable to the problem of elimination when the number of vari-
ables is greater than two.

Denote, for each 7,0 <1 < n,
g(XZ) = g(Yl, o Y Xi-l—l; . 7Xn) for each g(Xl, Ceey Xn) eP,

so that, in particular g(Xo) = ¢(X71,...,X,) and g(X,) = g(Y1,...,Y,).
Given n + 1 polynomials f1,..., fnt1 € k[X1,...,X,] each of degree n;
in the variable X;, one can consider the determinant %2

fl(xo) fn+1(x0)
A s fan (X))
f1 (Xi) . an'(xZ.) (41.6)

fl(xn) fn+1(xn)
which is divisible by []\, (X; — Y;) giving a polynomial
D(leXQa' "7Xn;Y17" aYn)

of degree m; := (n+1—4)n; — 1 in X; and p; :=in; — 1 in Y; so that
D(X1, Xo,o o, X, Vi, Ya) = D0 Y drutv
TEAVED
where a := {X{" ... X2 :a; <my},and b:={Y" ... Y,* :a; < pu;} and

#a = #b = n!Hni = s.
i=1
Definition 41.11.1 (Kapur—Saxena—Yang). The polynomial D is called
the Dixon polynomial of f1,..., fnt+1-
The matriz D := (d;,) 4s called the Dixon matrix and its determinant the
Dixon resultant. O

Remark 41.11.2 (Kapur—Saxena—Yang). Let D := (¢r,,) be the Dixon matrix

of fi,..., fn+1 and let us enumerate the elements of a as
T =1,70:=X1,...,Tny1 = Xn, Tnt2, - -+, Ts-
If o := (a1,...,an) € Z(f1,..., fn+1) then
(Lay, ..., an, Tnyo(a), ..., 7s(a))
is a solution of the linear system D (71, ... ,TS)T O

8 Tt is Dixon himself which reversed the order in which the variables are trans-
formed from X to Y'; for two variables he transformed from right to left; in the
final remark he makes the example of four polynomials in three variables and
tranforms them from left to right.
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Remark 41.11.3. If n = 1 Dixon matrix and polynomial coincide with what
Sylvester and Cayley called the bezoutic (or bezoutian) matrix and bezoutic
eminent. O

Remark 41.11.4 (Kapur—Saxena—Yang). Dixon considered ’generic’ polyno-
mials all having the same degree in each variable; as a consequence the Dixon
matrix is square and one can speaks of determinant and introduce the Dixon
resultant.

In specific instances, the default approach is the classical one already
used by Sylvester and Cayley, namely assuming that the missing terms have
coefficient zero.

For an alternative solution based on restricting oneself to complete inter-
section ideals, see below. O

In a previous paper® Dixon gave another interesting computational ap-
proach to evaluate the resultant’™® in terms of Cayley’s formula: given two

polynomials of the same degree”

U= amnX" " ek[X],V:=) aj X",
i=0 =0

and denoting C(X,Y) := U(X)V(Q:‘;(X)U(Y) he states that
Lemma 41.11.5. It holds
din - din

Res(U,V) = A := : . :
dnl et dnn
where L
1 OHIC(X,Y)
AVIENGD. €10 ¢ X:Y:O'

iy =
Proof. One has
XPY4d _ YPX4
CX)Y) = Z(anprrla’;l—qJ,_l - a%_p+1anfq+1)ﬁ
p>q
p—q—1 _ _
= Z(an,erla;%qul — a;lprrlan,qul) ( Z Xplequz) :
p>q i=0
thus d; j, which is the coefficient of X*Y7 in C(X,Y) satisfies d; ; = o;; where
; is the result of Sylvester’s construction (41.5). O

9 Dixon, A.L. On a form of the eliminant of two quatics, Proc. London Math. Soc.
6 (1908) 468-78
" Which he called Bezout’s determinant.

"' A polynomial of lower degree is forced, as usual to reach the highest degree by
adding 0X™ " 4+ ... 4 0X™.
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He then fixes “two sets of arbitrary quantities” x1,...,2, and y1,...,yn
and states

Proposition 41.11.6 (Dixon). [t holds
Clxr,y1) - Clx1,9n)

Hi>l(zi — x5) Hi>l(yi —Yj)

Proof. If we expand each C(x;,y;)

Res(U,V) =

in ascending powers of (x; — X) by Taylor’s theorem

and the result in ascending powers of (y; —Y) we have

C(x1,91) s C(m1,yn)
Clansy1) o Clonsyn)
1o -Y) - (-t 1o(e1 = X) e (@ - X"
= ‘ ) LA
S R L L @n—X) o (en—xnl
= H(Ii*Ij)‘H(yi*yj)*RUS(U,V)
i>1 i>1
O
Ezxample 41.11.7. Let us consider
U=X-1DX(X—-a)and V:=(X +1)(X +2)(X —b)
and choose
501:17562:*1,1'3:72, y1:15y2:72;y3:2
so that
IC (i, y5)]
6(ab—a—b+1) —12(ab—a+2b—2) 12(ab—a—2b+2)
= 6(ab—a+b—1) 0 8(ab—2a+b—2)

24(ab—a+2b—2) —12(ab+2a+2b+4) 36(ab— 2a+ 2b— 4)

6a—1)(b-1) —12a+2)(b-1) 12(a-2)(b-1)
= 6(a+1)(b—1) 0 8(a+1)(b—2)
24(a+2)(b—1) —-12(a+2)(b+2) 36(a+2)(b—2)

= 203%(b— 1)b(a —b)(a+ 1)(a + 2).
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41.12 Toward Cardinal’s Conjecture

UX)V(Y)-V(X)U(Y)
X-Y

Cayley’s formulation of the bezoutic matrix in terms of

UX) V(X) ’
Y Y
which was interpreted by Dixon in matricial terms as Ul (;7;/) () has

been expressed by Cardinal in different (but equivalent) ways as:

UX)V(Y) - V(X)U(Y) | Y2200 )
X-y VRO y(y)

e U(X)’
V(X)) -V(Y
SR V)

In a similar way, given a set of n polynomials

.FZ: {fl,---,fn} Ek[Xl,...,Xn]
and denoting, for each polynomial g € k[X7, ..., X,]

e D(g,F) and D(g,F) respectively the Dixon polynomial and matrix of

fl)"')fn’g7
e gX)):=9g(W1,..., Y, Xiq1,..., X,), for each i, 0 < i < n,

° dig) = %, for each i and

e §;(g,h):= g(xi)h(xij{)i__};,(ixi)g(x”l), for each i and each h € k[X4,..., X,],

Cayley’s interpretation by Cardinal was extended by himself in order to give
an alternative representation of the Dixon polynomials D(1,F) and D(X;, F)

Lemma 41.12.1 (Cardinal). We have,

o1(f1) .. i(fn)
D(l,f):: : : :

5u(fr) . balfa)

and, for each i,1 <1i<n,

51(f1) 61(fn)

5¢71'(f1) 5i71i(fn)
D(X;, F) = 6:;(Xi, f1) ... (X5, fn)

Siv1(f1) oo Gita((fn)

Proof. If, in (41.6), we set fn41 = 1, we subtract the (5)*" row to the j + 1"
row and divide it by X; —Y; for each j,1 < j < n, we obtain
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filXe,.. ., Xn) o0 fu(Xy, X)) 1
01(f1) 01(fnsy) 0
D(1, F) = 51‘(1/'11) 51((fn7) 0

If in (41.6), we set, instead, f,+1 = X; and, after subtracting the (j)"
row to the j + 1** row and dividing it by X; =Y, for each j,1 < j <n ,we
multiply the i*" row by Y; and add to it the (i — 1) row of (41.6) since
fiXo) oo far1(Xo)

fl(xi—l) fn+1(-xi—1)

fl(Xi,l) N fn+1(xi,1) =0 and
fiXiz1) oo fari(Xig)
F) o i (X)
i) 'XZ, }/Z XZ 7Xi 'XZ,
v DEG L) i,y = BOIZ L) 5, ),
we obtain
01(f1) 01(fn,) 0
551'(f1)) - 5i(1<'<fn, ) 0
: oy | 0 S s 0i( X, fn 0
VDX, ) = dir1(f1) coo Oixa((fns) O
6ulfi) o 0ulfa) O
(Y, LY o (Y)Y
and we are through. ad

With a similar proof we also have

Lemma 41.12.2 (Cardinal-Mourrain). For each polynomial g it holds

JiXo) o fa(Xo)  g(Xo)
[K) o faK) g(Xa)

A% o ) g(Xa)
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f1(Xo) fn(Xo)  9(Xo))
61(f1) ... 6i(fu)  01(9)

_ o | : (41.7)
5aF)) oo Gulfa)  Oulg)
61(f1) o 6i(fu)  01(9)

_ : : : (41.8)
On(f1) oo Onlfn)  dul9)
fl(xn) fn(xn) 9( n))

O

Remark 41.12.8 (Becker, Cardinal et al.). Jacobi’s interpretation of the be-
zoutic matrix in terms of Jacobians (pg. 100) can be extended to more than
two forms: with the present notation since

YV — XV

i i YJXV—I—J

vox ~ YN

Jj=0
for the polynomial
h(X;) — h(X;_
8i(h)(X:,Y;) = % € kY1, Yi1, Xig1,. .., Xo][X;, V]
we have Oh(Yi,...,Yi1, Xi, X X
5zh )(z Xz _ 1y Li—1y Agy Ai41y--yAn
(h)(X;, X,) re

so that if in D(1,F) we substitute each Y; with X; we obtain the Jacobian
matrix of F. O

Given the polynomial ring P := k[ X1, ..., X,,] and its monomial k-basis T
we introduce n futher variables Y1, ..., Y, and we denote Py := k[Y1,...,Y,],
Ty the monomial k-basis of Py, and Pg the ring

P@ ::P®PY:k[Xl,...,Xn,Yl,...,Yn],

whose k basisis {TQw : 7€ T,w € Ty }.

Let us consider a set of n polynomials F := {f1,..., fn} € P generating
an ideal | and denote A := P/I; with a slight abuse of notation we denote
| also the ideal in Py generated by {f1(Y1,...,Yn),..., fn(Y1,...,Y,)} and
A:=Py/l

With this notation we have

Ak A=Pg/I(fi(X1,..., Xn), fi(Y1,...,Y5), 1 <i<n);

in connection we also denote lx :=1® Py C Pg and ly :=P ® | C Pg.
For each g € P denote D(g) := D(g,F) € Pg; denote also Dy := D(1)
and D; := D(X;),1 <i<n.
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Let a C 7 and b C Ty be suitable ordered finite sets such that we can
express each D;,0 <14 <n, as

D; ::ZZd(T?JT@w:ZZd%TwGPQg

TEAwWED TEAawED
and denote D; := (d(ﬁg,) the corresponding Dixon matrix.

Lemma 41.12.4. D(f) =0 for each f € F. O
Lemma 41.12.5 (Cardinal). For each g € P it holds
D(g) — g(Xl, - 7Xn)DO € IX and D(g) — g(Yl, .. .,Yn)DO (S |y.

Proof. By expanding D(g, F) along the first (respectively: last) row of (41.7)
(respectively: (41.8)) we obtain D(g) — g(X1,...,Xn)Do € Ix (respectively:
D(g) 7Q(Y1,...,Yn)D0). O

Corollary 41.12.6 (Cardinal). For each g € P, denoting

D(g) = szroﬂ-@wa

TEAWED
we have
ZdWT =9(X1,...,Xn) st_?gT mod lx for each w € b
TEQ TEQ
and
Z drow =g(Y1,...,Y,) Z d,(rOng mod ly for each 7 € a.
web web
O
Corollary 41.12.7. For each g € P it holds
O

Corollary 41.12.8. For each i,1 < 1 <n,w e b and T € a, there are
polynomials IR (X1,...,Xn) €P and h(Tl)(Yl, ..., Y,) € Py such that

filXo) ... fuXo) O
0(f1) .. a(fn) O

(1) D; — X;Dy = 51_(}1) - 51-(}’") = S ke

5u(ft) oo Gu(fa) 0
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(2) kff)(Xl,...,Xn) €| for each w € b;

61(f1) .. alfa) O
3) Di—vipy=| HUD 6T 0,
0n(f1) o On(fn) O
_ fiXn) oo fa(Xp) O
4) K(X1,...,Xn) € for each T € a. O
Let us now assume that that | := I(F) is an affine complete intersection

(Definition 36.1.1); as a consequence we have’

Fact 41.12.9. With the present notation and under the assumption that | :=
I(F) is an affine complete intersection, it holds:

(1) A is a finite k-dimensional vector space;

(2) the morphism Dy| : Hom(A, k) — A which associates to the functional
A A = k the element ) . Zwebd(T(BT/l(w) € A is actually an A-
isomorphism;

(3) Hom(A, k) is a free A-module whose basis element £ € Hom(A, k) satisfies

(4) Dy = Zle a; ®b; in AQ A where D = dimg(A) and {a;,1 < i < D} and
{bi,1 < i < D} are suitable k-bases of A;

(5) both a and b are k-generating sets of A. O

41.13 Cardinal-Mourrain Algorithm

Let P, Py, Pg, T, Tyy F :={f1,..., fn} € P aset of n polynomials gener-
ating the affine complete intersection ideal I, A, Ix, ly, D;,0 < i < r, a, b,
D, := (d(TzU)J) ,0 <17 <r, be as defined in page 116.

Let us morevoer denote V' := Span,(a), W := Span,(b),

Ky ::Spank{k&i):lgign,web}ﬁVCVHICP

and
H, ::Spank{hg):lgign,TGa}ﬂWCWQICPy

where k:u(f),h(:) are the polynomials whose existence is stated in Corol-
lary 41.12.8.
We present an algorithm, which iteratively extends the vectorspaces K,

Hj, returning, at terminantion,

"2 Compare B.Mourrain, Bezoutian and quotient ring structure J. Symb. Comp. 39
(2005), 397-415.



41.13 Cardinal-Mourrain Algorithm 121

e vectorspaces K, H, Ko C K =INV,HyCH=INW;

e the supplementary vectorspaces A, B, A K =V, B® H =W, which
satisfy the relation dimy(A) = dimy(B) =: §;

e the bases a := {ai1,...,as}, {b1,...,bs} of A and B respectively;

e J-square matrices M;,0 < i <mn,

such that

(1) My is invertible,
(2) M, := My'M, := (m;ﬁ’)) satisfy
5
Xpa; = ijiaj mod ,Vi,p,1<i<§1<p<n
j=1

so that, in particular

(3) A=P/I=ZV/K = Span,(a) and
(4) the assignement of the k-basis a and the square matrices

M, = M([X,],a),1 <p<mn,
is a Grobner representation of .

Recall that the Dixon polynomials D; are decomposed with respect to the
same ordered sets of polynomials a C P and b C Py which are indexing the
rows and the columns of the Dixon matrices D; so that

Di = CLTDib.

The algorithm in each step performes simultaneously the same operation on
the n + 1 matrices D; appying invertible transformations P, () on their rows
and columns, thus returning

PDOQaPDlQa"'7PDnQ

and transforming the bases of V' and W so that the indexes of the common

rows and columns of the matrices PD;Q are respectively P~" a and Q~'b.
We present in Figure 41.3 the general scheme of the algorithm whose
single operations we discuss here through an example.

Ezample 41.13.1 (Cardinal). As an example let us consider the ideal gener-
ated by F = {f1, f2} € k[X1, X2] where

fi=XT+X1X7 -1, f2= X7 Xo + X1
We thus have
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Fig. 41.3. Cardinal-Mourrain Algorithm
1:=0
Repeat
* Apply the saturation step on K; returning K’ : K; C K’ ' C 1INV,

Pertorm the quartering step on the matrices D,
Pertorm the column reduction step returning K;+1 : K' C K41 C 1INV,
Pertorm the diagonalization step,
Pertorm the row step returning H;+1; H; C Hiv1 CINW,

until Hi+1 = f]Z and Ki+1 = Kz

Dy = —X1X3¥1 - X1XaY1Ys — Xo¥7Ya + X1Y7 + Y] — Xo¥] — V1Y,
D1 = —X1X3Y{ - X1XoY7Ya + X YP + Y7,
Dy = —X1X3v1Ys — X2Y2Ys + X1 XoYE + XV} — X2V
- XoVYs — X1Xo — X1Y] — XoY1 — 1
Dy —X1Dg = (XZXZ2+X1X0)Vi+ (—X1X2 - X2+ 1)YE + (X2X5 + X1)V1 Yo,
Dy — XaDg = (X3X1 —Xo— X1)Y] + (—X2X1 — 1);
Dy —Y1Dg Xo(VaYP + YP) + (V27 — Y + Y7,
Dy—YaDg = X3(=Y2Y{ = Y1)+ Xo X1 (Y3 Y1 + Y] — 1) + Xo(V3Y7 + Y = ¥1)

X (VoY + Y1) + (Y2Y] — oY — 1)

whence
a={1,X0 X5, X1, X1 X0, X1X3},b = {1, Y1, V1Yo, Y2, VY5, Y},

Ko ={X2X; + 1} and Hy = {YoY?? + Y1 }. a
Saturation step It consists in replacing K; with K’ := K;r NV where, for
a vectorspace K, KT indicates the vectorspace

Kt .= {UO+iXi'Ui;Ui e K,0<i<n}

i=1

and the notation KP! means p iterations of the operator -, staring from K
so that KIP) = (KlP—1)+,

Definition 41.13.2 (Mourrain). A vectorspace V. C P is said to be con-
nected to e € V if, denoting E := Spang{e}, for each v € V \ E,
there exists | > 0 such that v € El and v = vy + 2?21 X,v;,v; with
viEE[l_l]ﬂV,Ogign. O

Ezample 41.13.3 (cont.). We have

KI = {X2X1 + 1,X2(X2X1 + 1)}
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Quartering step Set
d := dimy (V) = dimg (W), D := d — dimy (K"),

choose a basis {a1,...,ap,ap41,...,aq} of V such that {ap41,...,aq4} is a
basis of K’ and set A := Span;{a1,...,ap}.
Let L(K') = {A € Hom(P, k) : A(k) =0 for each k € K'} and

B = {A|Dg: A€ LK)} > {A|Do: A e L)}

where |Dg : Hom(P, k) — Py is the morphism which associates to the func-
tional A: P — k the element > __ > . d(T?g/l(T)w € Py.

Choose a basis {b1,...,bq,bry1,...,bs} of W such that {by,...,b,} is a
basis of B; denote H' := Span;{b,11,...,bq}

Remark that since K’ C |, B D £L(l) is a generating set of A so that H’
could be chosen as a subset of I.

Based on the decompositions V = A® K’ and W = B’ ® H' the matrices
D; can be decomposed quarterly as

_( My O - M; K; .
DO(HO LO),D1<Hi Li>,1§z§n.

Ezample 41.13.3 (cont.). We set D = 4 and
a1 =1,a3 = Xp,a3 = X3,04 = X1,a5 = X1 X5 + 1,06 = X1 X5 + X5,

so that Do = a1Y® — a2Y2Ya + aaY? — asY1Ya — ags.
We thus get

by =Y by = YPYa,b3 = Y7, by = 1,bs = Y1Y2,bs = Y1 + Y'Y5,

and
Do b1 by b3 |bs bs bg
a; | 1 0 01]0 0 0
a | 0 =1 0|0 0 0
az | 0 0 01]0 0 0
ag | O 0 110 0 0
as | 0 0 0j]0 -1 0
ag | 0 1 00 0o -1
Dy |bi by b3 | by bs bs
a; | O 1 1 0O 0 O
as | O 0 1 0O 0 O
az | 0 0 0 0O 0 O
as | 1 0 0 0O 0 O
as | 0 =1 O 0O 0 O
ag | O O —-110 O O
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Do | by bs by | bs bs bg
aa]0 0 —1]0 0 0
a1 1 0]0 0 -1
a3 0 0 0]0 0 -1
a0 1 0]0 0 -1
as ] 0 0 1 ]-1 0 0
ag |0 0 0]0 -1 0

a

Column reduction step By Lemma 41.12.5 if a column of Dy represents
a polynomial f € P, the corresponding column of D; represents X, f mod |

so that we can deduce that the columns of < Igz ) and actually of K; give

elements in | allowing to extend K’ returning a vectorspace K;11 : K’ C
Ky CclinV.

Ezample 41.13.3 (cont.). The sixth column of Dy returns X22 +Xo+Xy. O

Diagonalization step By construction the number r = dim(B) of columns
of My is equal to its rank; so there is an r x D matrices Mg such that
MyMy = 1d,.
We thus multiply each D; by the matrix P := < ldp 0 >
—HoMg Idg—p
obtaining the following decompositions

[ My 0 (M, K .
D0< 0 LO),D1<H{ L,'>,1§z§n.
This corresponds to a change of the basis a := {ai,...,aq} of V which
becomes P17 a.

1 0 00
Ezxample 41.13.8 (cont.). We have Mgy = | 0 —1 0 0 | and we have
0 0 01
10 0 00 O
0 1.0 0(0 O
to multiply by the matrix 8 8 (1) (1) 8 8 returning with
0 00 0|1 O
01 0 0]0 1

a1 =1,a2 = —X1X3,a3 = X3,a4 = X1,a5 = X1 X2+ 1,a6 = X1 X3 + Xo,
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Do | by by bs|bs bs b
a; | 1 0 01]0 0 0
a |0 =1 0|0 0 0
az | 0 0 010 0 0
ag | O 0 110 0 0
as | 0 0 0j]0 -1 0
ag | 0 0 01]0 0o -1

Dy |bi by b3 |bs bs bs
ar | O 1 1{0 0 O
as | O 0 1{0 0 O
ag | 0 0 00 O O
as | 1 0 00 O O
as | 0 -1 0|0 O O
ag | 0 0 00 0 O

Dy | by by b3 | by by bg

ap |0 0 —=1|0 0 0

ay | 1 1 0 0 0 -1

az | 0 O 0 0 0 -1

ag | 0 1 0 0 0 -1

as | 0 O 1 -1 0 0

ag | 1 1 0 0 -1 -1

a

Row step We perform on the rows the same construction we have performed
on the columns, thus enlarging H; to H;4+1 : H; C H;y 1 CINW.

Example 41.18.3 (cont.). The sixth row of D returns —Yo2Y; + Y2 —Y;. O
Lemma 41.13.4 (Mourrain). At the end of the algorithm denoting
F::Kzurl C |ﬁV,E::HZ'+1 C |ﬁW,

A CV and B C W, the vectorspaces such that K @ A=V, H® B = W,

d := dim, (V) = dimg (W), 6 := d — dimy (K), then it holds KNV =FK and

there exist linearly independent polynomials
{ai,...,a5,a541,...,aq} CV,a; GF,5<’L'§ d

and a basis {b1,...,bs,bs41,...,ba} of W with b; € H,6 < i <d, with respect
to which the Dizon matrices D; have the decompositions

Ids O M, O )
Do < 0 L0>’DZ < 0 Li),l_zgn.

Proof. At the end of the algorithm?,

w3 Meening: in the last Repeet-loop at whose end K;4+1 and H;41 are not increased.
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e the saturation step does not increase K so that K nv= K;
e the quartering step returns the decompositions

_( Mo O _( M K; L
DO_(HO LO)7DZ_(HZ_ L’L_)71§Z§n7

e since the column reduction step does not increase X, this means that K; =
0 for each t;
e a variation of the diagonalization step in which we left-multiply by

Myt 0
—HoMy* 1ds

returns the decompositions

[ 1ds 0 (M, o0 .
D0< 0 LO>7D’L<H/ Li);lélgna

with respect to a suitable basis; o
e since the row step does not increase H, this means that H = 0 for each i
thus completing the argument. O

Ezample 41.13.1 (cont.). We now have
K={X1Xo+1, X, X2+ X0, X2+ Xo + X1}

and H = {Y; + Y2Ys, —Y2Y; + Y — Y1} and we thus choose as basis for V
and W respectively

a1 =1,a2 = 7X1X22,a3 = Xl,a4 = X22+X2+X1,a5 = X1X2+1,CLG = )(1)(224»)(27
and
b = Y3 by = YiYa,bs = Y2, ba = 1,bs = —YoY1 + Y — Yibg = Y1 + Y2Ya;

with respect to these bases we have

Dol by by bs|bs by b
ai 1 0 0]0 O 0
as O -1 00 O 0
as 0 0 110 O 0
as 0 0 010 O 0
as | -1 -1 o]0 1 1
ag 0 0 00 0 -1
Dy |bi by b3 |bs bs bs
a; | O 1 110 0 O
as | O 0 1{0 0 O
as | 1 0 00 0 O
ag | O 0 00 0 O
as |0 -1 0|0 O O
ag | O 0 00 O O
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Do | by bo b3 | by bs b
aa]0 0 —1]0 0 0
a1 1 0|0 0 0
a3 |0 1 00 0 0
aa]0 0 0]0 0 -1
as |0 0 1 |-1 0 0
|0 0 01]0 1 1

127

The next loop will prove that we have already reached the required solu-
tion since neither K nor H are enalarged and can be also used to illustrate

the claim of the Lemma.

K is not enlarged neither by the saturation step nor by the column re-
duction step and we now left-multiply the D; by

obtaining the basis

a1 =
az = Xi,
as =

and the matrices

0
-1
0

0

0

0

o = Ol O =

0

o

=
(S}

o O Ol O

o O =o o

O = Ol O

X1X22 - X1Xo—1,
X2+ X5 + X7,
X1X2+ X,

S
iy

_— O oo OO

S
ot

S
(=)

(=
iy

O O OO O

=
\V]

O O OO OO

S
=

O = OO0 OO

S
ot

= Ol O O

S
(=) [

S OOl OO

O O oo O

o O oo oo

O O oo oo

o O oo oo
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Do | by by by | by bs bg
a1 0 0 —-1l0 0 0
| -1 -1 00 0 0
as| 0 1 0]l0 0 0.
aa| 0 0 00 0 -1
as | -1 -1 0 |—-1 0 0
ag| 0 0 00 1 1

a

Claim 41.13.4 (Cardinal-Mourrain). The §-square matrices MzT (re-
spectively M ;) are the matrices M ([X;],a) (respectively M([Y;], b)) of multi-
plication by the variables X; (resp. Y;) in the basis a := {a1,...,as} (resp.
b:={b1,...,bs}) of A. O

Historical Remark 41.13.5. A preliminary version of the algorithm, without
the saturation step, was proposed in his these by Cardinal in 1993 which
conjectured the claim above.
The insertion of the saturation step and the proof of the claim, under the
further assumption that V' is connected to 1, is due to Mourrain in 2003.
As regard the saturation step Mourrain™ comments

The reason why we need to introduce this saturation step is that if
we multiply all the [Dixon polynomials] by an element of the form
1+ fg,f € P,g € Py with f, g conveniently chosen, we could obtain

matrices of the form ‘ O_ ) . Applying only the [...] steps as

0 D
described by Cardinal, would not allow us to avoid the duplication
of the structure of A. Moreover, if f and g are in |, the polynomials
(14 fg)D; share the same properties, modulo |, as the [Dixon poly-
nomials| D;. To handle this problem, we add the saturation step,
which will “connect” the two blocks, provided that the vector space
V is connected to an element e. This is the hypothesis that will be
made hereafter to prove the main theorem.

This hypothesis is easy to check in practice, and usually we have
e = 1. Moreover, it is satisfied when the polynomials f; are mono-
mials. We do not have a proof that this extends by linearity to any
polynomial f;.

To simplify the proof, we will assume hereafter that e = 1. The proof
can be extended to any e, by showing that, in this case, e is invertible
in A7 and by dividing by e. O

™ B.Mourrain, Bezoutian and quotient ring structure J. Symb. Comp. 39 (2005),
397-415
"5 By assumption we have A = Span, (a) and a; = ea; for some a; so that
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Ezample 41.13.1 (cont.). Gauss-reducing {a1, as,as} and {by1, ba, b3} with re-
spect the basis elements of, respectively, K and H we can set
al i=as+a; =1,ah:=as —ag +as = — Xz, a4 := X
and
by = Y7, by o= by — bg = — Y1, b5 =
and we have™®

o 01 1 o 0 0 -1
M= 0 0 -1 and Mo =| -1 -1 O
1 0 O 0 1 0

41.14 Mourrain: Proving Cardinal’s Conjecture

Let us use the same notation as in the last sections; in particular we have
a:={ay,...,as}, b:={by,...,bs} A= Spany(a), B = Span,(b) and we set
Mp = MalMp = (m(-P)).

Jt

Proposition 41.14.1 (Mourrain). It holds

(1) Xpa; = Zl 1m(p) ii(),HZ(-p)G?foreachp,i,lgpgn,lgigé;
(2) Ypb; le 1m(p)b (p),ogp) € H for each p,i,1 <p<n,1<i<é;
(3) ( Xq) = XyD(Xp) +Y, (D(Xy) = X¢D(1)) forp <g;

(4) D(X,Xq) =Y, D(Xy) + Xy (D(Xp) = Y,D(1)) forp <g;

(5) D(X,X,) = Zlgi,j,lgé ml(f)mz('f)al ®b; + X, X(p#z) + prgp#z) JrXgp,q) for

p < q and suitable elements, Xgp q), gp q), gp 9 ¢ K®K;
(6) D(XpXq) = X1<iju<s ml(f)mz('?)al ®b;+ prflp’Q) + Yngp’q) + xép’q) for
p < q and suitable elements Xip’q),xgp’q), xép’q) cKQK.

Proof.

A>1= Zcim = (Z cz'a;) e.

6 The reader can check the result using the deglex Grébner basis of | induced by
X1 < X2 which is
{(X1Xo+ 1, X7 — X2 — 1, X5 + Xo + X1}

so that, in particular, Y =Y1 — 1 and Y2 = Ys + 1.
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(1) We have

é d
Dy =X,Do+ Y b+ > wPb, s 5P € K.

i=1

I=6+1

By identifying the coefficients of each b;,1 < i < ¢ we have

§
Zmz(f)al = Xpa; + kP kP € Ky c K.
=1

(2) Similar proof as (1).
(3) We have

D(X,X,) =

5(1 (fl)

5n(f1)

(4) Similarly as (3), we have to develop

fn(Xl,...,Xn) Xqu
51(fn> 0
5,(f2) X,
5a(fn) Y,
50 (f2) 0
fn(Xl,...,Xn) Xp
51(fn) 0
5,(f2) 1
5u(f) 0
fn(Xl,...,Xn) 0
51(fn) 0
S(f) 1
Sulf) 0
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01(f1) 01(fn) 0
dp(f1) - dp(fn) Xq
D(X,X,) = 5 5 5
5q(f1) 6q(fn) Y;?
on(f1) On(fn) 0
AV tn) e faVye Y)Y,
(5) By (2) we have
D(X,X,) = X,D(X,)+Y,(D(X,) —X,D(1))
S mPXpai @b+ Xoxi +Y, Y Y @b+ Yyxo
1<4,5<6 1<i<é
= Z m(p) Z ml(f)al - HEQ) ®bj + Xgx1
1<4,5<d 1<i<é
+ Z HZ(-q) ® Z mz(-f)bl — O’Z(p) + Y, x2
1<i<s 1<I<6
_ Z mh U al®b o Z m(10) (Q)
1<i,5,1<8 1<i,j<68
+ Y mP e @b+ Xgxa + Yoxa + xs
1<i,1<8
= Y mPmPa @b+ X+ Yoxe + xa
1<4,5,l<6
(6) Similarly as (5). O
Corollary 41.14.2 (Mourrain). The matrices M, = (mg-f)) commute.
O
With a slight abuse of notation we will also denote M, the map
s
Mp A= Aa;— ngsl)al
1=1
which corresponds to the multiplication by X, modulo K.
Since these operations commute, for each f(Xi,...,X,) € P we define

f(M):=f(My,...,M,): A— A
and N(f) = f(M)(1) so that N is a map N : P — A.
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Proposition 41.14.3 Q&ourrain). If V is connected to 1, the ideal H :=
I(K) C P generated by K satisfies H = I.

Proof. By construction we have H C I.

The assumption that V = A® K is connected to 1 implies the existence of
1,...,¢s €k, € K such that u = Zle c;a; = 1 — K, so that, in particular,
u is invertible in A and there exists A € Hom(P, k) such that Dg|A = u.

By expanding (41.7) along the last column, we have 0 = D(f;) =
fi(Xh ce ;Xn)DO + Z;-l:l(—l)j(sj‘ (fz)E_] for suitable Ej S F ® Py.

Thus, for each 1,

fi= fik+ fiu= fik+ fiDo|A = fir =Y (=1)76;(f:)E;j|A € H.

j=1
0

Proposition 41.14.4 (Mourrain). Assume V is connected to 1 and 1 ¢
K. Then

) for each f €V, f— f(M)(1) € K;

) for each a € A, N(a) = a and N(K) = {0};
) f—f(M)(1) € H for each f € P;

) ker(N) = H.

Proof.

(1) Assume that for each g € Span, {1}~V we have g—g(M)(1) € K and
let f € Span,, {1}V Since V is connected to 1, we have f = >7_| X;.g;
with 1 <1; <n and g; € Span, {1}~ N V. Thus

f=f@nQ) = ZXzi (9 — 9:(M)(1)) + (X3,9i(M)(1) — My, g:(M)(1) .

We have g; — g;(M)(1) € K by induction assumption and X;,g;(M)(1) —
M,g;(M)(1) € K by Lemma 41.12.5. Therefore f— f(M)(1) € Knv=
K, the last equality being due to the saturation step. Since the induction
hypothesis is true for f = 1, then the claim follows.

(2) For any polynomial a € A and any polynomial x € K we have
e a—a(M)(1) e KNA={0} and
e k(M)(1)=r — (k — k(M)(1)) € KN A= {0}
which implies that, for each a € A, N(a) = a and N(K) = {0}.

(3) Just a few slight adapations allow to use the same argument”” used for
(1) to prove, again by induction, that f — f(M)(1) € H for each f € P.

TP s connected to 1; tIE claim holds for f = 1; g; — g:(M)(1) € H by induction;
Xi1,9:(M)(1) — My, 9:(M)(1) € | by Lemma 41.12.5.



41.15 Mourrain: A Grobner-free Solver 133

(4) Since N(K) = {0}, H C ker(N). Conversely, for each f € ker(N),
f=F=N()=f—-fO)Q) €H;
thus ker(N) C H. 0

Theorem 41.14.5 (Mourrain). AssumeV is connected to 1. The §-square

matrices MZT (respectively M;) are the matrices M([X;],a) (respectively
M([Y:],b)) of multiplication by the variables X; (resp. Y;) in the basis
a:={ay,...,as} (resp. b:={b1,...,bs}) of A.

Proof. If 1 € K C I, then A = {0} and, by the saturation step, K = V and
the claim is trivial.

Since V is connected to 1, if 1 ¢ K we may assume 1 to be an element of
the basis A. Then by the proposition above ker(N) = H =l and Im(N) = A
so that A =P/l = A. O

41.15 Mourrain: A Grobner-free Solver

Remark 41.15.1. If V' is connected to 1, Cardinal-Moirrain Algorithm thus
returns a Grobner representation a, Mp, 1<p<mn,ofl

These data are the ones required by Auzinger—Stetter Algorithm (Com-
pare Section 40.8). O

Remark 41.15.2 (Mourrain). Let us now set d; = deg(f;), D := max;{d;}
and d:=1+>"  (d; —1).

Denote v a bound of the size of the matrices D;, which is at most the num-
ber of terms of degree bounded by d, that is, by Stirling’s formula, O(e™D™).

If V is connected to 1, a Grobner representation a, Mp,l < p<n,of
| where the basis elements a; € a satisfy deg(a;) < d, can be computed in
O(nv?) arithmetical operations.

In fact Cardinal-Moirrain Algorithm requires to perform at most v loops
each performing linear transformations over n matrices of size v. O

Cardinal-Moirrain Algorithm can also efficiently substitute Buchberger’s
Algorithm to provide a good complexity procedure to solve the membership
test.

Proposition 41.15.3 (Mourrain). For each f € P it is possible to test
whether f € | in O(nv*L) where L denotes the cost of evaluating g(M) for
ge FU{f}.

Moreover, denoting

n

d :=deg(f) + Z(di — 1), D := max{deg(fi),deg(f)} and v = O(e"D")

i=1
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with complexity O(nirt) it is possible to decide whether f € | and, if this is
the case, to produce a representation

n
fru= Zfigi ‘u,g; € P,u=1mod |,deg(u) < d,deg(g;) <d.

i=1
Proof. Adapt Cardinal-Mourrain’s Algorithm (Figure 41.3) by substituting
the saturation step with the inclusion in K; and H; of the n polynomials
corresponding to the non-zero columns (respectively: rows) of the matrices
fi(M),1 < i < n; the effect, even if V is not connected to 1, is that f;(M) =
0,1<i<n.

Thus if we define ¢ the map

o:P =k fo(f) = f(M),

we have | C ker(o) since, by construction f;(M) =0,1<i < n.
On the other hand, denoting u € V C P the element such that™® u =
Dy|¢ =1 mod | we have, for f € ker(o) C P

f(X1, . X)) = f(X1,..., X)) — F(M)(u) €1.

Thus we have | = ker(o) and f €| <= f(M) = 0.

The modified algorithm requires to perform at most v loops each per-
forming linear transformations over n matrices of size v and evaluations of
matrices f;(M) thus its complexity is O(nv*L).

Let us now modify Cardinal-Mourrain’s Algorithm (Figure 41.3) in a
different way: namely we consider also the matrix D(f) and apply the modi-
fications performed by the algorithm not only on the D; but also on D(f). The
effect is that we obtain, not only a basis a of A and with respect to it the ma-
trices M ([X;], a) representing the multiplication by the variables, but also the
matrix My := M([f], a) representing the multiplication by f. Such algorithm
has complexity O(nv*) where 7 = O(e"”D") and D := max{deg(f:),deg(f)}.

We thus have f € | <= M; = 0 and if we expand D(f) along the first

row we have n

D(f) = f(X1,...,Xn)Do = > fiE;
i=1
for suitable E; € Pg
Lemma 41.12.4 implies D(f)|A = 0 for each f € | and A € L(l) so that
we have n
fru=f(X1,...,X)Doll =Y fiEi|t
i=1
where g; := E;|¢ € P and v € P satisfies u = Dy|¢ = 1 mod | and is thus
invertible in I.
The degree bound is obvious by construction. a

™8 The existence of such wu, if V is connected to 1 is granted by Proposition 41.14.3
but even without this assumption is a consequence of the fact that Dyl is an
isomorphism being F a complete interesction.
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The introduction of Grobner basis in the computer algebra community acti-
vated a new interest toward some older bases like Macaulay’s (Sections 23.5
and 23.6) and his algorithms (see Chapter 30), Hironaka’s standard bases
(Sections 24.5-8) and Ritt’s characteristic sets.

Ritt’s results (dated 1932), strongly influenced by Noether’s results on
the Decomposition Theorem, were aimed to give an algebraic standpoint to
differential equations, but, as it was already usual for the Riquier’s follow-
ers (Delassus, Janet, Gunther) he translated his results also in the algebraic
varaiety setting where he gave an effective decomposition algorithm which,
through the further application of univiariate factorization, returned an irre-
dundant prime decomposition of a radical ideal.

While the computer algebra community became aware of Buchberger’s re-
sult, in China Wu Wen-tsiin was applying a weaker (but sufficient for his aims)
version of Ritt’s algorithm as a tool toward a “mechanization” of theorem-
proving in elementary geometry; Wu'’s version of Ritt’s result omit the hard
and useless (for his aims) factorization step, thus returning a decomposition
of a radical ideal into unmixed ideals.

In the Early Nineties, within the PoSSo frame, Lazard, which is the
stronger expaunder and developer of the Kronecker—Duval Philosophy, refor-
mulated Ritt’s solver avoiding the required factorization by means of Duval’s
splitting via his Theorem 11.3.2 thus producing a decomposition into radical
unmixed ideals, each defined via a triangular set, id est what we called (in
Definition 11.4.1) a Duval admissible sequence.

Later, Moller proposed an algorithm which applies only to zero-dimensio-
nal ideals, decomposing them into ideals presented through a triangular set;
the theory is based on ideas related to Gianni-Kalkbrener’s Theorem and the
algorithm is an adaptation of Traverso’s Algorithm 29.3.8.

Once a zero-dimensional ideal is represented through a triangular set,
Kronecker—Duval Philosophy requires to transform this data into a form suit-
able for the computation with arihmetical expressions of its roots; suitable
representations of such roots are available in older literature, for instance
Grobner’s algemaine representation and Kronecker’s parametrization; as it
was proved by Alonso et al. Kronecker’s idea is more suitable than Grébner’s
since it gives a representation with lesser bit-size complexity.
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An efficient algorithm to deduce, from a triangular set, a Kronecker’s
parametrization or Rational Universal Representation (RUR) via suitable
computation of matrix traces due to Rouillier crowns Kronecker—Duval Phi-
losophy.

After having presented Ritt’s decomposition theory (Section 42.1 and 42.2)
and the corralted solvers prosed by Ritt and Wu (Section 42.3), T dis-
cuss Lazard’s reformulation and expension of triangular sets (Section 42.4
and 42.5), the related solver (Section 42.6) and the relation between Lazard’s
triangular sets and Grobner bases (Section 42.7).

Next I discuss Moller’s Algorithm (Section 42.8) and Rouillier’s Rational
Universal Representation (Section 42.9), postponing the discussion of the
effective algorithms computing with arihmetical expressions of roots given
via algemaine and RUR representation to Chapter 45.

42.1 Ritt: Characteristic sets for differential polynomial
ideals

Let k be a differential * field of characteristic zero.

Once an indeterminate, such as Y is introduced, it is implicitly considered
as the first element of an infinite sequence of symbols Y, Y’ Y”, ..., Y®) ....
Y is then a differential indeterminate whose pth derivative is Y ()2,

Once we consider n differential indeterminates Y7, ...,Y, we will denote
Y;; the jth derivative of Y;. We will denote

k{Y1,..., Y.} :=k[Yij:1<i<n,jeN]

the polynomial ring in the infinite set of variables {Y;; : 1 < i < mn,j € N},

whose elements we call differential polynomials. For each A € k{Y1,...,Y,}

its derivative is the differential polynomial obtained applying the rules

(1) (a+b) =d +V,

! Id est a field which is endowed of an operation (differentiation) -" : k — k which
satisfies, for each a,b € k,

(1) (a+b) =a +V,

(2) (ab) =a'b+ ab'.

The elements a € k for which a’ = 0 are called constants. Note that, setting

b:=0in (1) we have 0’ = 0, and

b:=1,a# 0 in (2) we have 1’ = 0.
It is then easy to deduce that from the equalities

(m+1) =m'+1=m/,

0=0 = (m+ (—m)) =m' +(~m)| = (~m)’ = —(m),

0=(m -m Y =m@m™" +m™'m' = (m~') = -1,

satisfied by each m # 0, that each a € Q C k is a constant.
2 And the p** derivative of Y@ is Y4*P) for each integers p and q.
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(2) (ab) =a’'b+ab,
(3) (V7Y := V.Y for each i and q.

Example 42.1.1. 1f k is the constant field Q(X) and A := XY? + X?Yy; €
k{Yl, }/2} then A/ = Y12 + 2XY1Y11 + 2XY21 + XQ}/QQ, and

A” = 4Y Y1 + 2XYE +2XY Y19 + 2Yoy +4X Yoo + X?Yo3.
O

Definition 42.1.2. A subset | C k{Y1,...,Y,} is called a differential ideal
if it is an ideal and satisfies

fel = fel

Remark 42.1.3. Note that given any set A C k{Y1,...,Y,} the (polynomial)
ideal generated by A does not necessarily coincide with the differential ideal
which can be only defined as, equivalently,

(1) the set | C k{Y1,...,Y,} such that
o ACI
e G1,Go el = G1+ Gy el
e Gel,Aek{Yy,...,.Y,} = AGel
e Gel = G el
(2) the smallest differential ideal containing A;
(3) the intersection of all differential ideals containing A.
O

Historical Remark 42.1.4. In connection with Historical Remark 30.2.6 it is
worthwhile to compare Ritt’s notation which, for a set A C k{Y1,...,Y,},
denotes

(A) the polynomial ideal generated by it;
[4] the differential ideal generated by it?;
{A} the radical of [A] which is in fact a differential ideal?.

3 which in fact (compare (3) in the remark above) is an intersection of differential
ideals.

4 The argument consists in proving that, for each 7 € N, 7 # 0, and each differen-
tial polynomial A € k{Y1,...,Y,} the following holds:

(1) A™1A" € [A7);

(2) AT PATL € [AT] = AT OTAF ¢ [A7], foreach 6 €N, 1 <6 <,

(3) A/27r71 c [Aﬂ-],

(4) Ae{A} = A e{A}.
In fact:

(1) AT\'—IA/ — ﬂ_—l(AT\')/ c [AT\'];

(2) B = (7‘(‘ _ 6)A‘rr7671A/26 + (25 o 1)A‘rr76A/2672A77 _ (A‘rrf(SA/2671)’ c [ATF] S0

that,

(7‘[‘ . 5)A7‘r7671Al26+1 _ AIB o (25 _ I)ATrféAQ&flA” c [A‘rr]
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Personally, I think that this notation is not a remainder of Steinitz’ but
an elementary direct use of the obvious sequence (-), [-], {}. O

Definition 42.1.5 (Ritt). For a polynomial A € k{Y1,...,Y,}
o the class of A, class(A), is the value p < n such that

Ack{,...., Y, \k{Y1,....Y,1 }
o the order of A w.r.t. Y; is the value j such that®
Ae FIYy,Ya, ..., Y] \ FIYy, Y, ..., Y5 1]
where we set F := k{Y1,...,Yi—1,Yit1,..., Yo }.

If A€k, A is said to be of class 0.

IfAek{Y,....Yio1,Yipq,..., Yo}, its order w.r.t. Y; is 0.

For Ay, Az € k{Y1,..., Y}, Ay is said to be of higher rank than A, in Y;
if either Ay is of higher order than As w.r.t. Y; or A1 and As have the same
order 0 but the degree of Ay in the variable Y;s is higher than that of As.

If class(A41) = p > 0, Ay will be said reduced w.r.t. Ay if it is of lower
rank in Y, than A;. O

Definition 42.1.6 (Ritt). Let A;, Ay € k{Y1,...,Y,} and denote, fori €
{1,2}

p; = class(A;) the class of A;,
0; the order of A; w.r.t. Y,,,
d; the degree of A; in the variable Yy,s, .

Aj is said to be of higher rank than of Ay (denoteds as: A1 > As) if

p1 =p2,01 > 062 or

{pl > p2 or
p1 =p2,01 =02 and dy > ds.

Ay and As are said to be of the same rank (denoted as: Ay ~ As) if
p1 = p2,01 = 62 and dy = ds. O

(3) Since A" 9A?°~1 ¢ [A™] for § = 1 by (1) iteratively (2) implies
Aﬂ7671A126+1 c [ATF]
for 6 =m—14d est A"~ € [A7].
(4) Let 7 be such that A™ € [A]; then by the previous result A*"~! € [A™] C [4]
whence A" € {A}.

5 We must consider also the case j = 0, where, with a slight abuse of notation, we
set Yio = Y;.
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Both < and ~ are equivalences.
Remark also that the only termordering which is compatible with < is
the lexicographical order < induced by

Yi<Yio< <Y< - <Yo< Y < - <Y, <Yy <+

Lemma 42.1.7. Fach set of differential polynomials A contains a member
A € A such that A < B for each B € A.

Proof. If ANk # () any element there answers the requirement. Otherwise
denote

e p the minimal value such that AN Ek{Y7,...,Y,} # 0,
e ¢ the minimal value such that B := ANk{Y1,...,Yp—1}[Yp, Yp1, ..., Yps] #
0

and choose in B the element of minimal degree in Y. a

Definition 42.1.8 (Ritt). A finite set {Ay,..., A} of differenatial polyno-
mials is called a chain if either

e r=1and Ay #0 or
o r > 1, class(41) = p > 0, and, for each j > i, class(A;) > class(A;) and
A; is reduced w.r.1. A;S.

The chain A :={A,..., A} is said to be of highest rank than the chain
B:={Bi,...,Bs} (denoted A > B) if either

(1) there is j, j < min{r, s} such that A; ~ B; for i < j and A; = Bj, or
(2) s>r, and A; ~ B; fori<r

The chains A := {A1,..., A} and B := {B1,...,Bs} are said to be of

the same rank (denoted A~ B) iff s=r, and A; ~ B; for each i.
If A:={A;,..., A} is a chain for which class(A1) =p > 0, a differetial
polynomial F will be said reduced w.r.t. A if it is reduced w.r.t. each A; € A.
O

Lemma 42.1.9. Let
A:={A1,...,A.},B:={By,...,B;},C:={C4,...,C}
be three chains. Then
A=B,B~C — A>C.

Proof. There are four cases:

e Both A > B and B > C for the reason (1): denote j the smallst value such
that B; > C;. Either
— AZNBchz fOI‘i<j andAthj>-C’j;or

6 Of course r < n.
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— there is h < j such that A; ~ B; ~ C; for i < h and Ay, > By = C},.
In both cases A > C by (1).

e A > B by (2), while B > C by (1), and let j the smallest value such that
Bj - Cji
- If r < j <t, then A > C by (2);

— Ifr>j, then A; ~ B; ~ C; for i < j and A; ~ B; > Cj;, so that A > C
by (1);

e A B by (1), while B > C by (2) and let j the smallest value such that
Aj - Bj: then A; ~ B; ~ C; for i < J and Aj - Bj ~ Cj; therefore A = C
by (1);

e both A > Band B> C by (2) sothat r < s <t, Aj ~ B; ~C; fori <r
and A > C by (2). O

Lemma 42.1.10. Fach set of chains 2 contains a member A € 2 such that
A = B for each B € .

Proof. We form a subset 20, C 2l putting in 2, the chains A := {4;,..., 4,}
which satisfy Ay < By for each B:= {By,...,Bs} € 2.

If each chain A € 2; satisfies #4 = 1 any chain in 2(; satisfies our
requirement.

Otherwise, we form a subset 2> C 2f; collecting the chains A :=
{A1,..., A} which satisfy Ay < By for each B := {By,...,Bs} € 2. If
each chain A € 2, satisfies #.4 = 2 any chain in 25 serves our purpose.

Otherwise we repeat the same construction; since each chain has at most
n elements, in the worst case 2, returns the required chains. ]

Definition 42.1.11. For any (finite or infinite) set G C k{Y1,...,Y,}, any
chain A C G such that A < B for each chain B C G, whose existence is
proved in the Lemma above, is called a characteristic set of G.

Note that (A) C (G) but equality does not necessarily hold.

Lemma 42.1.12. Let G C k{Y1,...,Y,} and A := {A;,...,A.} C G bea
chain, where class(A1) > 0. The following conditions are equivalent:

(1) A is a characteristic set of G,
(2) G contains no G € k{Y1,...,Y,} \ {0} which is reduced w.r.t. A.

Proof. Assume that A is not a characteristic set and let B := {Bj,..., Bs} be
a characteristic set, so that B < A. If A > B by (1), there is some B;,i <,
such that B; < A; so that is reduced by A; if, instead, A > B by (2), Byr4+1
is reduced by A.

Suppose now that G contains a differential polynomial G # 0 which is
reduced w.r.t. A. If class(G) > class(4,), then the chain B := {44,..., 4,,G}
is lower than A; otherwise, denoting j be the highest value for which the
class(4;) < class(G), the chain B := {A4,...,4;,G, Ajt+1,..., A} is lower
than A. a
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Lemma 42.1.13. Let G C k{Y1,...,Y,} and A := {4;1,..., A} C G be
a characteristic set of G, where class(A1) > 0. Let G ¢ G be a nonzero
differential polynomial which is reduced w.r.t. A, G' := GU{G} and B be a

characteristic set of G'. Then B < A. O
Algorithm 42.1.14. Let G C k{Y1,...,Y,}\ {0} be a finite set. The following
algorithm allows to extract a characteristic set A :={4;,...,4,} C G.

Let us begin by picking an element A; € G which is of least rank. If
class(A41) = 0, A := {A;} is the required characteristic set. If class(4;) > 0
and no element in G is reduced w.r.t. {A;}, again A := {A;} is the required
characteristic set.

Otherwise, each element in G which is reduced w.r.t. {41} is such that
class(G) > class(A;); choose as Ay any such element of less rank.

Again, either G contains no other element which is reduced w.r.t. A :=
{A1, Ao} which is the required characteristic set; or one can choose as Az any
element which is reduced w.r.t. A := {41, A2} and of minimal rank among
all possible choices.

Inductively repeating the same constructions, a characeristic set A :=
{44,...,A,} is obtained in a finite number of steps.

O

Definition 42.1.15. For a differential polynomial G € k{Y1,...,Y,} of
class p > 0 and of order m in Y, the separant of G is the differential
polynomiala?,fm and its initial the cofficient of the highest power of Y, in
G.

More precisely, expressing G as a univariate polynomial

d
Gi=Y iV € b{Yi, ... Yo 1} Y5, Yor, o, Yom1][Yoml,
=0

with cq # 0, its separant is a?,G = Zle iciY;,;1 and its initial is cq. O
m

Let A :={A1,..., A} be a chain and let us denote, for each ¢, S; and I;
the separant and initial of A;.
If a differential polynomial G is not reduced w.r.t. A, let us denote

j the greatest value such that G is not reduced w.r.t. A4;,
p the class of A;,

m the order of A; in Y);

h > m the order of G in Y};

we can therefore associate to each differential polynomial G, which is not
reduced w.r.t. A, a couple &(G) := (j,h),1 < j < r,h € N and assume that
the set of such couples is well-ordered by the ordering < defined by

(4,h) > (§',h') < either j >4 or j =74 and h > K.

Let us consider the possible cases:
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(1) If h > m, denote I := h — m and remark that A;l) is of order h in Y,
linear in Y, and with S; as initial. The division algorithm performed in

kj{Yl’ e '7Y;D—1}[Y;Daypla e 'aYpm—l][Ypm]

(Compare vol. 1, page 12) allows to compute a value v € N and differential
polynomials C, D satisfying

526G =AY 4 D;

remark that D is
(a) uniquely determined, if v is chosen as small as possible,
(b) of order less than h in Y},
(c) of rank not higher then G in Y,, p < a < n',
(d) and so reduced w.r.t. A;,i > j.
Thus &(D) := (§',1') < (j,h) = P(G) since, either ' < h or b’ = m,
and D is reduced by A; for each i > j so that j' < j
(2) If h = m, then both G and A; can be considered as univariate polyno-
mials in

E{Y1,.. .Y 1, Y1, .., Y Y, You, o, Yom—1] [Ypml,

where the division algorithm allows to compute a value v € N and differ-
ential polynomials C, D satisfying

I'G = CA; + D;

remark that D is

e uniquely determined, if v is chosen as small as possible,
e reduced w.r.t. both A4;

e and each A;, 7 > j.

Thus ¢(D) := (j', 1) < (4, h) = &(G) since j' < j.

Since < is noetherin, in a finite number of applications of this algorithm
we can compute a sequence of differential polynomials G := Dy, D1, ..., D;
where Dy is reduced w.r.t. A and which satisfy relations

P"D; = C;B; + Djt1,
with
v; €N,

7 In fact, since S; is free of Y, we need only to treat the case in which G depends
on Y, and its derivates; denoting g the order of G in Y, clearly the order of D in
Y. does not exceed g and, in case its value is exactly g, the assumption that his
degree § in Yq4 is higher of the one of G implies that some term of C' is divisible

by Ya‘sg so that some term of CA;.” is divisible by thYgg; this is a contradiction

since no such term occurs neither in SYG — G has no term divisible by Y,fg —
nor in D which has no term divisible by Yjy,.
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Pi G{S]aljal S]ST},
C; Gk{yl,...,yn},
B;e{A,1<j<rheN}.

As a consequence

Theorem 42.1.16 (Ritt). Let A:= {A;,...,A.} be a chain and let us de-
note, for each i, S; and I; the separant and initial of A;. For each differential
polynomial G it is possible to compute

values v; € N,

and w; € N,

polynomials Cjp, € k{Y1,...,Y,},
a polynomial R € k{Y1,...,Ys},

such that
(1) R is reduced w.r.t. A,

(2) and is uniquely determined by the values v; and w;

(3) the set {(j,h): Cjn # 0} is finite,

(4) Sfl e S;{rjiul . I;‘J)TG =R+ Zj,h thAg»h).

Moreover, the values v; and w; can be assumed to be the minimal values
satisfying a relation of this kind. a

Definition 42.1.17 (Ritt). The unique polynomial R determined by the
minimal values v; and w; satisfying Theorem 42.1.16.(4) is called the re-
mainder of G w.r.t. A.

Theorem 42.1.18 (Ritt). Let

| C k{Y1,...,Y,} be a differential ideal,
A:={A1,..., A} be a characteristic set of |,

S; and I;, 1 < i <r, the separant and initial of A;,
X = H::1 Sllz

For each G € k{Y1,...,Y,}, denoting R the remainder of G w.r.t. A, we
have
Gel = R=0= Gel: X~

If, moreover | is prime, then G €| <= R =0 and (A) = I.

Proof. If G € | then R € I; therefore, being reduced w.r.t. A, it is necessarily
0 by Lemma 42.1.12.
Conversely if R = 0 then, with the notation of Theorem 42.1.16 we have

Syt S I G =R+ Y CipAl €
J,h

and G €l: X,
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Remark now that the S;s and I;s being reduced w.r.t. A are not members
of | (Lemma 42.1.12). Therefore, if | is prime and R = 0,

Syt S I G =R+ CpAM el = Gel.
j.h
O

Remark 42.1.19. For any prime differential ideal | C k{Y7,...,Y,}, one can
pick a maximal set of variables {V4,...,Vy} C {Y1,...,Y,} such that

o INE{Vy,....,Vg} =0,
e for each Z € {Y1,...,Y,} \ {V4,...,V4} there is a nonzero differential
polynomial Gz € | Nk{V1,..., V4, Z}.

Up to a relabeling the variables, we have an identification
E{Yy,.... Yoy =2k{W,... . Va, Z1,..., Z}
so that

o INKE{V4,...,Va} =0,
e for each i,1 < i < r, there is a nonzero differential polynomial in | N
k{‘/lv RS Vd7 Zz}

If for each i,1 < i < r, we pick any element A; € | Nk{V1,..., V4, Z;}
then the set {A1,..., A, } is naturally a chain, since each 4; is reduced w.r.t.
{Al, A ;Ai—l}-

Analogously, if we pick any element 4; € INk{V4,...,Vy, Z1} and, recur-
sively, for 4,1 < i <r, any element A; € INk{V41,..., V4, Z1,...,Z;} which is
reduced w.r.t. {A1,...,A;_1} and of least rank among all possible choices®,
then {Ay,..., A} is a characteristic set of I.

We will call {V7, ..., V;} — following Weispfening (cf. Definition 27.11.1)
— a maximal set of independent indeterminates or — following Ritt — a
parametric set of indeterminates or — following Lazard — the set of the
trascendental variables for I. O

8 This means that we must pick a reduced polynomial
A; € k){Vl, ey Vd, Zl, ey Zifl}[Zi, Zil, sy Ziqfl][Ziq]

of minimal degree in Z;; among all possible choices, where ¢, the order of A; in
Zj, is the minimal value for which

N k){Vl, o Va, 2, .,Zifl}[Zi,Zil, .- -,Ziqfl][Ziq] #* 0.
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42.2 Ritt: Characteristic sets for polynomial ideals

Let us now restrict ourselve to an (algebraic) field k of characteristic zero,
without requiring the existence of a differential structure and the polynomial
ring P := k[X7, ..., X, and reinterpret the theory developped in the previous
Section, assuming that k is a differential field in which all derivatives are zero
and P as a subring of k{Xy,..., X, }:

K[X1, ..., X0 Ck{X1,..., X0}

Then for any set A C k[X1,...,X,] we restrict ourselves to consider the
polynomial ideal

I(A) = [A] NE[X1, ..., Xn] = (A) NE[X1, ..., Xa].

In this context the same notation and results introduced in the previous
Section are still availale. In particular:

e for a polynomial A € k[X1,...,X,] the class of A, class(A), is the value
p < n such that

A€k[Xy,..., X, )\ K[X1, .., Xp_1],

the polynomials of class 0 being the elements in k;

e for any two polynomials Ay, Ay € k[X1,...,X,], A1 is said to be of higher
rank than As in X; if the degree of A; in the variable X; is higher than
that of As;

e if class(A;) = p > 0, As will be said reduced w.r.t. Ay if it is of lower degree
in X, than Ay;

e for any two polynomials A, As € k[X1,...,X,], denoting, for i € {1,2},
p; the class of A; and d; the degree of A; in the variable X,,,

p1 > p2 or
A1>A2 {plng andd1>d2
and
Ay~ Ay = p1=po,di = dy;

e a finite set
A= {Alv'-'vAr} C k[Xl,,Xn]

is called a chain (or ascending set, or reduced triangular set) if either r = 1
and A; # 0 or

— class(A;) =p > 0,cl

— for each j > 14, class(A4;) > class(A4;), and

— Aj is reduced w.r.t A;;
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e given any (finite or infinite) set G C k[X71,...,X,], in the chain
A= {Al,...,AT} cG

produced by Algorithm 42.1.14, each element A; is not only reduced w.r.t.
{A1, -+, A;_1} and of minimal rank among all possible choices, but neces-
sarily his class is higher of the one of A;_1;

e for two chains in k[X4, ..., X,], we have

{Al,...,AT} Z:A>'BZZ{B1,...,BS}

if either
(1) there is j, 7 < min{r, s} such that A; ~ B; for i < j and A; > Bj;, or
(2) s>r,and A; ~ B; fori <r
and
A~B < s=r, and A; ~ B; for each i;

o if A:={Ay,..., A} CEk[Xy,...,X,] is a chain for which class(4;) =p >
0, a polynomial F' € k[X1,...,X,] is reduced w.r.t. A if it is reduced w.r.t.
each A; € A;

e for any set G C k[Xy,...,X,], any chain A C G such that A < B for each
chain B C G is called a characteristic set (or: basic set) of G;

e for a polynomial

d
G=> aX)€k[Xy, ... X, 1][X,].ci € K[X1,..., Xp1],ca # 0
=0

of class p > 0 its initial is its leading polynomial ¢ = Lp(G).

e For a chain A4 := {A;,...,A,} and a polynomial G not reduced w.r.t. A,
denoting, for each i, I; the initial of A;, let j the greatest value such that G
is not reduced w.r.t. A;, and p the class of A;, then the division algorithm
in

X1, Xp—1, Xpt1s - -+ Xn ][ Xp),
allows to compute a value v € N and polynomials C, D satisfying
I[G = CA; + R,

where R is
— uniquely determined, if v is chosen as small as possible,
— reduced w.r.t. both A;
— and each A;,i > j.
e Then (compare Theorem 42.1.16) for each such G it is possible to compute
values w; € N,
polynomials C; € k[Xq,...,X,],
a polynomial R € k[X1,..., X,],
such that
(1) R is reduced w.r.t. A,
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(2) and is uniquely determined by the values w;
(3) "' I'"G =R+ 3, CjA;.

147

Moreover, the values v; can be assumed to be the minimal values satisfying

a relation of this kind.

e The remainder of G w.r.t. A is the unique polynomial R determined by

the minimal values v; in the formula above.

e For any prime ideal | C k[X7, ..., X, ], we can relabel the variables so that

E[X1, .. X 2 kVi, .. Ve, 24, 7]

and {V1,...,V4} is a mazimal set of independent indeterminates for |, d :=

dim(1).

Then each characteristic set of | consists (Remark 42.1.19) of r polynomials
A; e INk[V,..., Vg, Z4,...,Z;] which are reduced w.r.t. {Aq,...,4;-1}

and of minimal degree in Z; among all possible choices.

In this context it is worthwhile to record an old-fashioned proof of the

following well-known result:

Proposition 42.2.1. Let | C k[X1,...,X,] be a prime ideal, dim(l) := d,
{V1,...,Va} be a maximal set of independent indeterminates] for | and K €

k[X1,...,X,] a polynomial not contained in |.

Then the ideal I :== | + 1(K) is such that I" N E[V4,..., V] # {0}.

Proof (Ritt). Using the same notation as above, this is Ritt’s argument?:

We start with the observation that the polynomials in | which involve
no Z; with @ > j, where 1 < j < n—d, constitute a prime polynomial
ideal; we describe this prime ideal'® by |;.

I” contains the remainder of K with respect to {4i,...,4,}. Of
all nonzero polynomials in I’ which are reduced with respect to
{A1,..., A}, let B the one which is of lowest rank. We say that
B is free of the Z.

Suppose that this is not so, and let B of class d + p with p > 0. The
initial C' of B is not in |. There is a relation

C"A,=DB+E
where E, if not zero, is of lower degree than B in Z,. We say that
FE isin |. Let this be false. If p > 1, the remainder of E with respect
to Aq,...,A,—1 is a non zero polynomial contained in I, which is

reduced with respect to {A1,..., A} and of lower rank than B. If
p = 1, a similar statement can be made of E itself. Thus'! F is in

9 Ritt J.F., Differential Algebra, A.M.S. Colloquium Publications 33 (1950) p.84.

I just adapted the notation.
19 which is I := 1N k[VA,...,Va, Z1,..., Zj].

1 Remark that, by assumption, B is a nonzero polynomial contained in I’, which is
reduced with respect to {A1,..., A,} and of lower rank. So we have just reached

a contradiction.
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I, so that DB is in I. Then'? D is in I. D is of positive degree!?® in
Z,. As the initial of DB is that of C"™A,, the initial I of D is not
in I. If we had p = 1, D would be a nonzero polynomial in | which is
reduced with respect to {A1, ..., A, }; this is because D is of lowest
degree in X, than A,. Thus p > 1. The remainder of D with respect
to A1,...,Ap_1 is zero'®. Thus JD, with J some product of powers
of the initials of Ay, ..., Ap_1, is linear® in Ay,..., A,_1. If we write
JD as a polynomial in Z, its coeflicients will be in l,,_;. Thus JI is
in l,_1. This is false because neither J nor I is in I,_;.

Thus B is free of the Z and our statement is proved. O

Remark 42.2.2. Since any polynomial P = Py can be uniquely expressed as
P =Py =Lp(PR)X)° + Ro

where jo = ClaSS(P()), P, = Lp(P) S k[Xl, - .,onfl] and deng(Ro) < dp =
degj, (Po), recursively, we can define

e values j; := class(P;) < ji—1, and §; € N,
e polynomials R; € k[X71,...,X,,] and
e Py :=Lp,(P):=LpLp,_1(P) =Lp(P) € k[X1,...,Xj,_1] such that

P, =Lp,(P)X)' + R;, deg;,(R;) < &; = deg;,(P;)

until ¢ reachs a value ¢ for which P,y; = Lp,(P) € k.
Then, we have

t—1

t—1 h—1
8, v Ou— 61 v O 0 0;
P=Lp,(P)X)X; 7 - XPXP + R [ X0+ > R ] X0
=0 h=0 i=0

Jo g1 0

Recalling that the only termordering which is compatible with < is the
lexicographical order < induced by X; < X» < --- < X,,, we necessarily have

le<(P) = Lp,(P), T<(P)=X2 X" x0x%,

If we consider a chain
A= {Al,...,AT} C k[Xl,,Xn] = k[Vl,...,Vd,Zl,...,ZT],

each A; being of class d+1, we can find conditions for A to be a characteristic
set of a prime ideal.
Let us denote

2 BeckVi,...,Vq) = B¢l

13 Necessarily the degree in Z, of B is lower of that of A,.
“Del

15 Id est JD € (A1, ..., Ap—1) =1(A1,..., Ap_1).
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| the ideal generated by A in k(V4,...,Vy)[Z1,...,Z,],
Ij ::Iﬂk(Vl,...,Vd)[Zl,...,Zj],

Lj = I{?(‘/i,...,Vd)[Zl,...,Zj]/lj,

U k(‘/l, ..,Vd)[Zl,.. .,ZT] — Lj[ZjJrl,.. .,ZT],

I := 1], I;, each I; denoting the initial of A;.

Then:

Proposition 42.2.3. With the present notation, A is a characteristic set of
the prime ideal | : I°° iff the following conditions hold:

(1) ifr =1, Ay is irreducible in k(V1,...,Va)[Z1].
(2) if r > 1, {A1,..., Ar_1} is a characteristic set of the prime ideal |,_1
and mr_1(A;) is irreducible in L._1[Z,].

Proof. A reformulation of Theorem 34.1.2 and Theorem 34.3.2. ]

Algorithm 42.2.4 (Ritt). Let G C k[X1,...,X,] be a finite set generating an
ideal I.

The following algorithm allows to compute a characteristic set A :=
{A41,...,A,} of | and a polynomial I such that, denoting L the ideal gen-
erated by A we have

LclcL:I®=:H;
if moreover | is prime, then | = L.

One begins by extracting from G a characteristic set A with the methode
described in Algorithm 42.1.14, so that (A) C I'6. Next he computes the
remainders w.r.t. A of each member in G and includes the nonzero ones in G
producing a larger set G’ which however satisfies I(G') = I(G) = I.

If not all such remainders are zero, then (Lemma 42.1.13) a characteristic
set A’ of G’ satisfies A’ < A.

Thus the same procedure can be repeated until giving a set G* which sat-
isfies I(G*) = I(G) = | and a characteristic set A* := {41,..., 4, } extracted
from (G*), for which either

e A; is of class zero so that | = (1), or
e all the remainders w.r.t. A* of each member in G* is zero. Then (Theo-
rem 42.1.18), denoting I := [['_, I; the product of all initials I; of the A;s,
we have
I(A") C 1 CI(A") : I

if moreover | is prime, I(A*) = 1. 0

Historical Remark 42.2.5. To put in better historical perspective, I think it
is worthwhile to quote the words of Ritt!” referring also to his older book!®:

16 We can of course assume that A; is of positive class, otherwise | = (1) and we
are through.

17 In the Preface of his book Differential Algebra, A.M.S. Colloquium Publications
33 (1950), p.iv

18 Ritt J.F., Differential Equations from the Algebraic Standpoint, A.M.S. Collo-
quium Publications 14 (1932).
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The form in which the results of differential algebra are being pre-
sented has thus being deeply influenced by the teachings of Emmy
Noether, a prime mover of our period, who, in continuing Julius
Konig’s development of Kronecker’s ideas, brought mathematicians
to know algebra as it was never known before.

In this connection, I should like to say something concerning basis
theorems. The basis theorem [...] will be see to play, in the present
theory, the role held by Hilbert’s theorem in the theories of poly-
nomials ideals and of algebraic manifolds. When I began to work
on algebraic differential equations, early in 1930, van der Waerden’s
excellent Modern Algebra had not yet appeared. However, Emmy
Noether’s work of the twenties was available, and there was nothing
to prevent one from learning in her papers the value of basis theo-
rems in decomposition problems. Actually, I became acquainted with
the basis theorem principle in the writings of Jules Drach on logical

integration!?.

42.3 Ritt’s and Wu’s Solvers

Algorithm 42.8.1 (Ritt). Ritt applied Proposition 42.2.3, Algorithm 42.2.4
and Theorem 42.1.18 as tools for proposing a solver?® which, given a finite
set G C k[Xq,...,X,] generating an ideal |, applyes Algorithm 42.2.4 in
order to extract a characteristic set A* satisfying the properties stated by
Theorem 42.1.18 and tests whether?! it satisfies the properties of Proposi-
tion 42.2.3.

If the answer is positive then A* is a characteristic set of the prime ideal
H:=1(A*): I* and, in this case??

Zh=ZH)uZ(U+I(1)U---UZ(1+1(1));

19 The reference is to J. Drach, Essai sur la théorie général de integration et sur
la classification des Trascendentes Ann. Ec. Norm. 3¢ série 15 (1898) 245-384.

20 Ritt J.F., Differential Algebra, A.M.S. Colloquium Publications 33 (1950), p.95-
98.

21 Essentially Ritt proposes the primality test discussed in Section 35.4:

e the role used there by the Grobner basis G’ is taken here by the characteristic
set A™;
e the test | : I°° = | is not required since, in this setting

11 = (I(A%) : 1) I = 1(A7) : I® = 1.

22 Tt is worthwhile to note that this formula which is today improperly attributed
to Wu Wen-tsiin is Equation (32) in Ritt J.F., op. cit. p. 98.
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the same algorithm is to be recursively applied to each set GU {I;}.
If, instead, the answer is negative, then?®, we have found (using the no-
tation of Proposition 42.2.3) some factorization

mr_1(4,) = c]‘[w(gnei

in L,_; where g; € k[V4,...,V4|[Z1,...,Zr-1][Z;] and ¢ € k(V4,..., V) is a
unit; therefore

Z()=2(1+1(g1)) U--- U Z(1+L(gs))-
The result corresponds to an irredundant prime decomposition of I. O

Historical Remark 42.3.2. In other words, Ritt (in 1950) is applying the no-
tion of ’solving’ discussed in Section 34.5. In 1978, Wu Wen-tsiin relaxed
this notion of ’solving’ preserving the structure of the corresponding basis
(ascending set) which has a similar shape as a Primbasis (Definition 34.3.3)
or an admissible sequence (Definition 8.2.2 and 11.4.2) but requiring less
strong properties (essentially just those implied by Theorem 42.1.18 and Al-
gorithm 42.2.4).

In fact, in his research toward a Theorem-Proving algorithm in differential
(and elementary) geometry, as a tool for testing whether f(a) = 0 for each
root?* « of |, where f € k{Xy,...,X,} is a given differential polynomial
and | :=1(G) C k{X1,...,X,} a given differential ideal, Wu applied directly
Ritt’s theory reducing the problem to the test whether

(1) the remainder of f w.r.t. A* is zero and,
(2) by recursive application of the same algorithm, f(«) = 0 for each root «

In fact, for each root « of I,

(1) if [T—; Li(«) # 0, then, by Theorem 42.1.16, f(«) = 0 iff the remainder
of f w.r.t. A is zero;
(2) if I;(«) = 0, then « is a root of | + I(Z;).

For his application, there was therefore no need of performing factoriza-
tion of the characteristic set A* in order to deduce an irredundant prime
decomposition of I; all one needs is to decompose v/ as an intersection of
(unmixed) ideals generated by a characteristic set, in order to apply the re-
sults implied by Theorem 42.1.18 and Algorithm 42.2.4 reducing the problem

2 As in the prime decomposition algorithm discussed in Section 35.2

2 If K D k is a differential field extension of k, o := (a1,...,a,) € K™ and f €
k{Xi,...,Xn,} is a differential polynomial, the evaluation f(«) is by definition
the value @4 (f), where @ : k{X1,...,X,} — K is the morphism defined by

Do (Xij) = agj) for each 1, j.
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to zero-testing of 'normal forms’ of each element in G w.r.t. each such char-
acteristic set.
In the algebraic setting k[X7, ..., X,], such characteristic set is a set

A:={A,..., A} CKk[Xy,.... X, =2k, ..., V4l Z1, ..., Z],
where (compare Definition 22.0.1), for each ¢,
o the degree of A; in X is less than the one of A;, for each j < 7, and
o A, € k[Vi,... . Vil[Z1,..., Zi-1]|Zi]
id est it is exactly what we informally called a weak admissible sequence®®.

O

Algorithm 42.8.83 (Wu). Within this approach, Algorithm 42.3.1 is simplified

as follows: given a finite set G C k[X71,..., X,,] generating an ideal |, one

e applyes Algorithm 42.2.4 in order to extract a basic set A* := {A41,..., A, };

e returns A* and the polynomial I := []/_, I, where I; denotes the initial of
A'La

e and apply the same algorithm to each set GU{[;}, 1 <i<r a

whose rationale is based on the following
Lemma 42.3.4. Let

A:={A1,..., A} Ck[Xq,...,X,] a characteristic set,

L the ideal generated by A,

I; the initial of A;, for each j,

1= H::1 Ii7

Rem(A) the set?S of all polynomials whose remainder w.r.t. A is 0,
Sat(A) :=L: I,

3(A) = Z(A)\ Z2(()) ={aek”: Ai(a) =+ = Ar(a) =0 # I(a)}.

Then Z(Sat(A)) = 3(A). O
Proof. We have?”

Z(Sat(A) = Z(v(A) - 1) = Z(V(A) \ Z2({1}) = 3(A).

a

%5 Throughout this chapter, I will preserve the language used in the previous books;
so I will substitute with the neologisms of admissible Ritt/Lazard sequence the
terminology introduced by Lazard and his students, which is in any case reported
between parenthesis.

26 Not necessarily an ideal!

2T The formula
2 (V1) =z (V@) \ 21y

is a specialization of Z(l : f) = Z(I) \ Z({f})) — where | is a radical polynomial
ideal and f a polynomial in k[X1,..., Xy], — whose proof is the following: for

g€l: fand a € Z(1)\ Z({f}) we have 0 = fg(a) = f(a)g(a) and f(a) # 0 so
that g(c) = 0. Therefore Z(1) \ Z({f}) C Z(I: f).
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Corollary 42.3.5 (Ritt). With the same notation and assumptions as in
Lemma 42.5.4 let G C k[X1,...,X,] be a finite set generating an ideal | such
that A C | and G C Rem(A). Then:

1) L c I C Rem(A) C Sat(A);

2) if | is prime, then L =1 = Rem(A) = Sat(A);

3) Z(Sat(A)) = 3(A);

1 5040 € 2() € 2(0);

5 Z) =3(ADUZ(I+I(L)U---UZ(1+1(1,)). 0
(1

Proof. (1) and (2) are just a reformulation of Theorem 42.1.18 and (3) is
Lemma 42.3.4

Ad (4): 3(A) = Z(Sat(A)) € Z(1) € Z(L),

Ad (5): for each a € Z(I):

o [[I_, Li(a) #0 <= a € 3(A);
e for some i < r, we have I;(a) =0 < «a € Z(I1+ {L;}). O

Corollary 42.3.6 (Wu). With the same notation and assumptions as in
Lemma 42.3.4 and Corollary 42.3.5, for any g € k[X1,...,X,], g €| if and
only if

e the remainder of g w.r.t. A is 0 and

e gl +1(I;) for each i,1 <i<r. O

FErample 42.3.7. Let
G o= {X7 — X, (X] — 2X7) X3, (XT — 1) Xo Xy + X3} C k[X1, X2, X5, X4].

G, being a characteristic set of the ideal it generates, according Ritt’s
solver (Algorithm 42.3.1) we test the irreducibility of X — X} discovering
the decomposition

ZG)=Z(GC+{X;1 —1}HUZG+{X1+1}HUZ(G+{X1});

the characteristic set of Z(G+{X;—1}) being {X; —1, X3} which is prime we
have found a root (1,0) € k(Xa, X4)?; in the same way, Z(G+{X;1+1}) gives
the root (—1,0) € k(Xa, X4)?; the characteristic set A := {X1, XX, — X3}
of Z(G+{X1}) returns a root (0, §—:) € k(X2, X3)? of the prime (A) = (A) :
X3° and the decomposition

ZG) =ZG+{X1 -1HUZ(GC+{X1+1HUZ((A) : X3°)U Z(A+{X2});

Conversely, assume g satisfies g(a) = 0 for each a € Z(I) \ Z({f})); in other
words, for each oo € Z(l), f(a) #0 = g(a) = 0; thus fg(a) = fla)g(a) =
for each a € Z(1); as a consequence fg € VI=land g€ |:

Thus {g € k[X1,...,Xs] : g(a) = 0, € Z()\Z({f}))} Cc (I': f) and
Z(:HczM\NZ{fD)-
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the characteristic set B := {X1, X2, X3} of A+ {X5}) is prime and gives the
root (0,0,0) € k(X4)3. So in conclusion we have found the (redundant) prime
decomposition

(G)=(X1—-1,X3)N(X1+1,X3) N (X1, XX, — X3) N (X1, X2, X3)
and the manifold decomposition
Z2(G) = {(1,a,0,b),:a,b€ k}U{(-1,a,0,b):a,bc k}
U {(O,a,b,g),a,b € kya £ 0} U{(0,0,0,b),b € k}.

Wu’s solver (Algorithm 42.3.3) instead returns the root decompositions

Z(G) = 3(G)UZ(G+{X]-2X{})UZ(G+{X]—1}),
Z(G+{X!—2X7}) = 3(C1)UZ(C+{X2}),
Z(C1+{X2}) = 3(C3),
Z(G+{X{—-1}) = 3(Cy),
where
G = {X}XoX,— X3},
C; = {X?-1,X3},
C; = {Xi Xo X3},
and
3(6) = ZO\Z{(X{ -2X))(X7 -1} = 0,
3(C1) = Z(C1)\ Z({X2}) = {(0,a,b,%),a,b €k, a#0},
3(C2) = Z(Cq = {(1,a,0,b),(—1,a,0,b),a,b € k}.
3(c3) = Z(C3) = {(0,0,0,b),b € k},

42.4 Lazard: Triangular sets

Preserving the same notation as in Sections 42.2 and 42.3, computational
considerations suggested to relax the notion of reduction as follows:

Definition 42.4.1 (Moreno Maza). For any two polynomials A1, Ay €
k[X1,...,X,], where Ay is of class p > 0, As will be said initially reduced
w.r.t. Ay if its initial is of lower degree in X, than A;.

Definition 42.4.2 (Aubry et al.). A finite non-empty set
{A1,..., A} CE[Xy,. .., X,)

1s called
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a triangular set if each A; is of positive class and there are no two elements
having the same class;
an initially reduced triangular set if
e Ay is of positive class,
o for each j > i, Aj is of higher class than A;, and
o initially reduced w.r.t A;;
a fine triangular set if
o Ay is of positive class,
o for each j > i, Aj is of higher class than A;,
e for each j, the remainder of I; w.r.t. {A1,...,Aj_1} is not zero.

Remark 42.4.8 (Lazard). In connection with this generalization, it is easy to
realize that all the results stated by Ritt for chains and characteristic sets
hold werbatim for any triangular set, non dissimilarly as for Buchberger’s
reduction, where the absence of interreduction of the basis does not effect
the result on normal forms zero-testing.

This justifies also the relaxation of the notion of reduction.

In particular the notion of fine triangular set allows to avoid interreduc-
tion, while preserving the degree in X, of an element of class p and so the
rank relation between members of triangualar sets. ad

Definition 42.4.4 (Aubry et al.). Let G C k[X1,...,X,] \ {0} be a finite
set generating the ideal |. A finite non-empty triangular set

A = {Al,---yAr} C k[Xl,,Xn]
is called

an admissible Ritt sequence (or: Ritt characteristic set) of G if A < B for
each fine triangular set B C G;
a strong admissible Ritt sequence (or: Wu characteristic set) of G if there

exists a finite set G* C | such that I(G*) =1 and G* C Rem(A).

Historical Remark 42.4.5. Clearly, the notion of Ritt characteristic set is an
elementary adaptation to triangular sets of the notion of characteristic set
(Definition 42.1.11) and that of Wu characteristic set a precise description of
the particular triangular sets which are produced by Algorithm 42.2.4; both
ideas, therefore are explicitly present in Ritt’s Theory and none is related
with Wu’s results.

Wu's results are not related with the notion and properties of character-
istic sets; as discussed in Historical Remark 42.3.2, his relevant contributions
consist in using such theory, no more as a solving tool, but as a tool for testing
membership (Corollary 42.3.6), and, in this context, to relax the irrelevant
requirement of primality.

It is Lazard?® the person which, within the Kronecker-Duval philosophy-
cal frame discussed in the first volume and of which he was one of the main

28 In
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advocates, suggested to reconsider Ritt’s solver in Wu’s relaxed context and
introduced the notion of ’triangular sets’ thus strongly improving the old
notion of ’solving’ as used by Kronecker, Macaualy, Groner and Ritt and
presented in Section 34.5. ]

In this setting, let us now consider

a triangular set A := {A1,..., A} C k[Xq1,...,X,] generating the ideal L,
I; the initial of A;, for each 7,

I - HZ 1I

Rem(.A) the set of all polynomials whose remainder w.r.t. A is 0,

Sat(A) :=L: I,

3(4) = Z(A)\ Z({T}) = {a €k Ay(a) = -+ = A (a) = 0 £ I(@)},

G C k[X4,...,X,] be a finite set generating an ideal | such that .4 C | and
G C Rem(A).

Corollary 42.4.6. With the present notation, if A is a strong admissible
Ritt sequence of G, then

(1) Lc 1 C Rem(A) C Sat(A);
(2) if | is przme then L =1 = Rem(A) = Sat(A);
(3) Z(Sat(A)) = 3(A);

(4) 3(A) € ()CZ(L);
(5)
(6)

Z(1)=3(AUZI+IL)U---UZ(+I(1));
for each g € k[X1,...,X,],

g€l < geRem(A)NI+1I(L)N---Nl+1I(L).
o

Proposition 42.4.7. If, with the present notation, A is fine, then the fol-
lowing conditions are equivalent

(1) A is an admissible Ritt sequence of G;
(2) I C Rem(A).

Moreover it implies

(3) A is a strong admissible Ritt sequence of G

Proof. 1t is just a reformulation of Lemma 42.1.12. a

Lazard D., Solving zero-dimensional algebraic systems J. Symb. Comp. 15
(1992), 117-132

Lazard D., A new method for solving algebraic systems of posisitive dimen-
sion Disc. Appl. Math. 33 (1991), 147-160

Lazard D. Systems of algebraic equations (algorithms and complezity) Sym-
posia Mathematica 34 (1993), 84-105, Cambridge Univ. Press
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42.5 Admissible Lazard Sequence

Lazard reconsidered the notion of triangular sets in the same frame as ad-
missible sequences (Definition 8.2.2) and admissible Duval sequences (Sec-
tion 11.4).

Let us begin by explicitly interpreting the field k as a quotient field Lg := k
of some domian Ry; id est we assume that we are given a domain Ry and a
multiplicative system So C Ry such that??

k::LO::{%:aeRO,bGSO}.

Then let us consider a triangular set3°

A= {fl,---,fr} - Ro[Xl,...,Xn]
where, by definition, we can wlog assume that
0 < class(f1) < ... <class(f;) < class(fiy1) < ... < class(fy).

We also set d; := deg;(f;) where j := class(f;).
We can then now partition the variables among ’parameters’ (or: ’'inde-
pendent indeterminates’) and the others:

Definition 42.5.1 (Lazard). A variable X; is called

algebraic for A if j = class(f;) for some f; € A which is said®* to introduce
X]‘ 5
trascendental for A if j # class(f;) for each f; € A. a

As usual we relabel the variables as
kX1, Xn] kWA, Va, Zh, .0 2]

so that {V4,...,Va} (respectively {Z1,..., Z.}) is the set of the trascendental
(respectively: algebraic) variables for A.
Then we can recursively define, for each j,

i the value such that AN Ry[X1,...,X;] = {f1,..., fi} or, equivalently, the
maximal value for which class(f;) < j,
0 the value such that {Vi,...,Vs} ={X1,.... X;} n{W1,..., Va},

29 we can for instance take Ro := Lo := k and Sy := {1}; but for k := Q we could
consider instead Ro := Z, Sp := N\ {0}.

The reason why we choose to represent the field elements as explicit fractions
with denominators in a restricted chosen multiplicative system Sy is in order to
force uniqueness: see the note below.

30 Each element fi is chosen with coefficients not in Lo but in Ro; as a consequence
among all possible associated polynomials we can restrict our choice to those such
that their leading coefficient is in Sp. If we take Ro := Lo := k and Sy := {1}
this simply means to require that each f; is monic.

31 This concept is present in Ritt, op. cit. p.34.
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Rj = Ro[Xl, P ;Xj]/(fla e 7fi);

S;:={a € R; : a is not a zero-divisor};

L; the quotient ring Lj; := {# : a € R;,b € S;};

T = Ro[Xl, - ,Xj] — Rj and Ty = Lo[Xl, - ,Xj] — Lj the canonical
projections.

In particular, for each j

if X; = Z; is algebraic, so that it is introduced by f; and j = class(f;), we
have
Rj = Rj_1[X;]/mj—1(fi) = Ro[Xu, ..., X;5]/(frs- -, fi),
Sj = ijl = So[vl, .. .,Vg],
Lj = Lj—l[Xj]/ﬂj—l(fi) = Lo(V, .. .,V;;)[Zl, . -7Zi]/(f1a . -;fi);
if X; = V; is instead trascendental, we have
R; = Ro[X1,..., X;]/(f1,.... fi) 2 Rj—1[Xj],
Sj = ijl[X]'] = SO[Vlv .- '7V5]a
Lj = Ljfl(Xj) = Lo(‘/l, .. .,%)[Zl, .. -;Zi]/(fla .. ;fz)

Definition 42.5.2. We say that
A= {fl,---,fr} C Ro[Xl,...,Xn]

is an admissible Lazard sequence if, for each h,1 < h < r, setting j :=
class(fp), it holds

(i) [triangular] class(f) > 0 and class(fr) > class(f;), for each i < h3?;

(1) [reduced] the degree of fi in the algebraic variable X; = Z; is strictly
less than the one of f;, deg;(fn) < d; for each i < h;

(#ii)[normalized] T« (fr) € k[VA,...,Vi][Z1], (compare Remark 42.2.2);

(iv) [Ro-normalized] lc(fp) € So;

(v) [squarefree] Res(mj_1(fn),mj—1(f})) € Lj_1 is invertible®3;

(vi) [primitive] Cont(m;—1(fn)) =1 in L;—1[X;].

A is called a weak admissible Lazard sequence (or: a regular set) whose
associated map is (m1,...,7,) and whose associated tower of simple exten-
sions is (Lo, ..., Ly) if it satisfies only conditions (i-iw). ad

Definition 42.5.3 (Lazard). Let

o A:={A,..., A} Ck[Xy,...,X,] be an admissible Lazard sequence,
e L the ideal generated by A,

o [; the initial of A;, for each j,

o [ := H;‘:l Iz

32 As a consequence A is a triangular set; we therefore use the same notation
as above denoting (m1,...,m) and (Lo,...,Ln) the corresponding fields and
projections.

33 As a consequence m;_1(fn) is squarefree.
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Then the set
3(A) = Z(A)\ 2({1}) ={a €kt Ai(a) = = Ap(a) = 0 # I(a)}
is called the quasi-component associated to A and the ideal
Sat(A):=L:I*:=H
1s called the quasi-prime ideal associated to A.

Remark 42.5.4 (Lazard). Condition (iii) requires (compare Remark 42.2.2)
that, for each h and 7, denoting j := class(Lp, (fz)) we have X; € {Vi,...,Vy}.
If this is not the case and X; = Z, for some ¢, then, either

o gcd(Lp;(fn), f.) # 1 and we find a partial factorization of f, or
e gcd(Lp;(fn), f.) = 1 = sLp,(fn) + tf, for suitable polynomials s,t €
E[X1,...,X,]sothat F}, := sfy is such that class(Lp;(F3)) < class(Lp;(fn).
O

Remark 42.5.5. If

o the ideal I(A) C k[X1,...,X,] is zero-dimensional and we choose Ry :=
Lo :=k,Sp:= {1}, or

e we restrict our considerations to its extension I(A)k(V1, ..., Vy)[Z1,. .., Z;]
and we choose Ry := Lo := k(V4,...,Vq),So := {1}

in both cases all variables are algebraic and a set A := {f1, ..., f,} where each
fi is chosen monic, is an admissible Lazard sequence iff it is an admissible
Duval sequence.

In fact, if A is an admissible Lazard sequence, then (v) allows to deduce
that, since Res(f1, f1) € Lo, (Proposition 6.6.4) f; is squarefree in Lo[X1]
and L; is a Duval field (Definition 11.4.2); and, inductively, that

e L;_y is a direct sum of fields L;_; = ®,L;_1 ., so that, denoting m;_1 :
L;_1 — Lj_1, the canonical projection,
e condition (v), Res(mj—1(f;), mj—1(f;)") € Lj—_1, implies that

Res(mj—1xmj—1(f;): Tj—1xmj—1(f;)") € Lj—1x

e and that each m;_1 ,7mj—1(fn) is squarefree in L;_1 «[Z;]
e so that L; is a Duval field.

Conversely (i-ii) is satisfied by any admissible sequence and (v) by an
admissible Duval sequence, (iii-iv) are equivalent to the requirement that the
fi’s are monic, and (vi) is trivially satisfied since we assume Sy := {1}. O

Remark 42.5.6 (Lazard). The relation with admissible Ritt sequence is thus
expounded by Lazard?*:

34 Lazard D., A new method for solving algebraic systems of posisitive dimension
Disc. Appl. Math. 33 (1991), p.151.
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The notion of [admissible Lazard sequence] is stronger than the no-
tion of characteristic set in the Ritt—Wu Wen-tsiin method: Charac-
teristic sets are only subject to conditions (i) and (ii); but we will
see that this is not sufficient; in particular a characteristic set may
correspond to an empty ”component” of the zero-set. This is avoided
by condition (iii). The conditions (iv) to (vi) are needed in order
to obtain the unicity of the traiangular set associated with a quasi-
component.

and3®

Wu Wen-tsiin’s algorithm, like Buchberger’s one, depends on many
choices; moreover, the result of Wu Wen-tsiin’s algorithm is not
uniquely determined. [...] Thus there is a need for a more canonical
algorithm, that is an algorithm in which the result (or even better
the intermediate results) is more intrinsic, that is, depends on the
algebraic structure of the input and not on the algorithm itself. This
definition of ”intrinsic” is rather imprecise; it may be better under-
stood by considering the example of an algorithm which is intrinsic,
namely the subresultant algorithm, which has the property that the
coefficients of the successive remainders may be defined as subdeter-
minants of Sylvster matrix.

[

For getting a canonical result, [Lazard] strengthen the definition of
a triangular set by asking that the polynomials in it are squarefree,
primitive and monic in some technical sense. With these conditions,
the set of the solutions of an algebraic system is uniquely decomposed
in so called quasi-components which are themselves in one to one
corrispndence with these strengtened triangular systems.

Historical Remark 42.5.7. The existence in Wu’s solver of empty components
3(A) = Z(A)\ Z(I(])) ={a ek : Aj(a) = = Ar(a) =0 # I(a)} is il-
lustrated by Example 42.3.7 where for the characteristic set

G :={f1. fo, fs} == {X? — X{, (X] = 2X]) X5, (X7 — 1) X Xy + X3}

we have
3
I= HL‘ = (X{ —2X7)(X? - 1) =/ f1- (X - 2X))
i=1

so that 3(G) = 0.

This of course cannot happen in the old-fashioned Ritt’s solver where
each ’solution’ is the characteristic set of a prime. As I already remarked
in Historical Remark 42.4.5, Lazard’s contribution consists in relaxing the

3 Lazard D. Systems of algebraic equations (algorithms and complexity) Symposia
Mathematica 34 (1993), 84-105, Cambridge Univ. Press .
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notion of ’characteristic sets’ in order to avoid factorization while preserving
both the general structure and the relevant properties.

In order to reach this result, it is clearly sufficient to impose condition (iii),
which, as we have observed in Remark 42.5.4, can be forced just performing
the Extended Euclidean Algorithm to Lp;(fx) and f, in all cases in which
X, = Z, for j := class(Lp,(fn)-

The comparison with the notion of ’solving’ discussed in Section 34.5 is
striking: what Lazard did was simply substituting regular sets to admissible
sequences, quasi-primes to primes and quasi-components to irreducible vari-
eties! O

Theorem 42.5.8 (Aubry et al.). Let
A= {fl;---;fr} - Ro[Xl,...,Xn]

be a weak admissible Lazard sequence whose associated map is (m1,...,7n)
and whose associated tower of simple extensions is (Lo, ..., Ly,). Then for
each p € Ro[X1,...,X,], the following conditions are equivalent

(1) Tn (p) =0,

(2) p € Rem(A),
(3) p € Sat(A).

Proof. The proof is by induction by n. We begin by remark that if we set mg
the identity on Ry and A := ) the statements become

(1) b= T‘-O(p) = Oa
(2) p € Rem(0),
(3) p € Sat(0) = {0}

which are obviously equivalent.

So we can assume n > 0 and that the theorem holds for Ro[X7, ..., Xp—1]
and we denote S := Sat(A) C Ro[X1,..., Xn_1].

If X, is trascendental, for each p = Z?:o a; X! € Ro[X1,. .., Xn_1][X4]
the result follows by induction since we have

(1) mp(p) =0 <= mp_1(a;) = 0 for each ¢,
(2) p € Rem(A) < a; € Rem(A) for each 1,
(3) p € Sat(A) < a; € S for each i.

If, instead X,, = Z; is algebraic denote r the remainder of p w.r.t. f; and
express it as r = Zfl:o a X! € Ro[X1,..., Xn—1][Xn]. Then the result is a
consequence of the following claims:

1) mp(p) =0 <= m,(r) =0;

) T(r) =0 <= mp_1(r) = 0;

) Tp—1(r) =0 <= m,_1(a;) = 0 for each ;
) 7 € Rem(A) <= a; € Rem(A) for each [;
) Tn-1(r) =0 <= r € Rem(A);

(
(2
(3
(4
(5
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(6) mn(p) =0 < p € Rem(A);
(7) m(p) =0 <= p € Sat(A),

whose proof is the following:

(1) By definition 7, (Lp(f;)) = mn—1(Lp(fi)) € Ly, is a unit, while 7, (f;) = 0;
therefore from r = Lp(f;)“p + qf; we have

T (1) = T (Lp (i) 7 (p) + mn (@) 0 (fi) = mn(Lp(fi))“ 70 (p)

whence the claim.

(2) Since mp(r) =0 <= mp_1(r) € (mn-1(fi)), the claim follows because
deg,, (r) < deg, (f;) and m,_1(Lp(f;)) € Ly, is a unit.

(3) obvious;

(4) obvious;

(5) by inductive assumption;

(6) by the list of implications and by the remark that the remainders of r
and p are the same;

(7) since Rem(A) C Sat(A), it is sufficient to prove that p € Sat(A) —
Tn(p) = 0.
We have I"p € I(A) where m is a suitable integer and I is the product
of all initials of the elements in A.
Clearly m,(I) is a unit, so that 7, (I"p) = 0 implies 7, (p) = 0. O

Theorem 42.5.9. Let A := {A4;,..., A} C k[X1,...,X,] be a triangular
set generating the ideal L.
Then the following condition are equivalent:

(1) A is a weak admissible Lazard sequence;
(2) A is an admissible Ritt sequence of Sat(A);
(3) Sat(A) = Rem(A).

Proof.
(1) = (3) is Theorem 42.5.8.
(2) <= (3) is a consequence of Lemma 42.1.12.

(3) = (1) Assume that (3) holds while (1) does not. Inductively we can
assume that B := AN Ry[X1,...,X,—1] is a weak admissible Lazard

sequence whose associated map is (71,...,m,—1) and whose associated
tower of simple extensions is (Lo, ..., Ln—1).
Clearly X,, = Z, is algebraic and, since (1) does not hold, the initial

I of A, is such that m,_1([,) is a zero divisor in L,_1, so there is
p € k[X1,...,X,—1] such that m,_1(I,p) = 0 and 7m,_1(p) # 0. Therefore
I,p € Sat(B) and the remainder r of p w.r.t. A is not zero. Clearly
also I,r € Sat(B) and r € Sat(A). Thus r € k[Xy,...,X,,_1] satisfies
r € Sat(A) and r ¢ Rem(A) giving the required contradiction. 0
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An ideal [Sat(.A)] which is the saturated ideal of a [weak admissible
Lazard sequence A = {Ay,..., A,)] is said triangularizable; it is al-
ways equi-dimensional of dimension [n — r|, where n is the number
of variables and [r] the length of [A]. A prime ideal is always tri-
angularizable, and the primes associated to a triangularizable ideal
are simply obtained by factoring recursively each [4;] in the field
extensions definied by the factors of [Ay,..., A;_1].

It should be remarked here that [weak admissible Lazard sequences]
are a good alternative to Grobner base for representing triangular-
izable and prime ideals in computers: the number of polynomials in
a triagular set is always bounded by the number of variables, which
is not the case for generating sets of Grobner bases of prime ideals.
Computing a Grobner basis from a triangular set may be done by any
Grdobner base algorithm, and is usually not too difficult. The inverse
transformation is very easy for prime ideals. 36

Actually, the standard way for a complete resolution of a polynomial
system consists in the following scheme.
1 Compute a lex Grobner base, either directly or through a change
base ordering. This step checks zero-dimensionality.
2 Deduce from it a set of [weak admissible Lazard sequences].
3 For each of these triangular systems, compute a RUR, [Rational
Univariate Representation].
4 For each RUR compute a numerical approximation of the solu-
tions together with a bound of the error. 37

In the next sections we will discuss efficient algorithms to compute trian-
gular sets; the first, due to Lazard returns a weak admissible Lazard sequences
and applyies also in the non-zero-dimensional case; the second, by Moéller re-
quires zero-dimensionality. In the last section we discuss the notion of RUR
and the related algorithms.

42.6 Lazard’s Solver

Let us begin by remarking that, since admissible Lazard sequences and ad-
missible Duval sequences coincide, arithmetical operations in each member
L; of a tower of simple extensions, can be performed a la Duval.

In particular:

e when Wj(p) € Lj i Wherep € k[Xl, ‘e ,Xj]\k[Xl, [P ,Xjfl] and Xj = Zz
is algebraic — is a zero-divisor, then it is sufficient to compute, in L;_1[Z],

36 D. Lazard, Resolution of polynomial systems Proc. ASCM 2000, World Scientific
(2000) 1-8

37 D. Lazard, On the specification for solvers of polynomial systems Proc. ASCM
2001, World Scientific (2001) 1-10
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f' = ged(mj—1(p), w51 (fi)) and f7 == Z=) i order to obain a Duval
splitting
L; = L; 1[Z]/f © L2/ f

where, denoting ' : L; — L;j_1[Z;]/f" and #” : L; — L;j_1[Z;]/f” the
canonical projections, 7’7, (p) = 0 and 7”7, (p) is invertible;
e testing invertibility of 7, (p) € L;, for a polynomial

pe k[levXj]\k[Xlaanfl]

consists in testing invertibility of
— mj—1(Lp(p)) € L;_1 if X; is trascendental,
— Res(mj—1(fn), mj—1(fi)) € Lj—1 if X; = Z; is algebraic;

e computing the inverse of an invertible element 7;(p) € L; — where p €
EX1,...,X;]\ k[X1,...,X;1] and X; = Z; is algebraic — in principle
requires to compute ged(p, f;) in L;—1[X;] but3®

two difficulties arise: the first one is that the Euclidean algorithm
and its generalizations are defined only for polynomials on integer
rings. Fortunately, [Duval’s Model] permits us to compute as if the
coefficients were in a field if we split when we encounter a zero-divisor.
The second difficulty is to decide which Euclidean algorithm to use: the
coefficients being polynomials, an elementary algorithm will generate a
swell of coefficients; thus we have to use the subresultant algorithm??;
but it needs exact quotients which are not well defined in our context.

38 Lazard D., A new method for solving algebraic systems of posisitive dimension

Disc. Appl. Math. 33 (1991), p. 154
id est the version of the Euclidean Algorithm proposed by Collins and Brown
and briefly discussed in Example 1.6.1 and Historical Remarks 1.6.2.

It consists, given two polynomials Py, P, € D[X], where D is a domain, in
producing, by means of pseudo-division algorithm, a PRS

39

Py, Pi,..., P = ng.(]Do7 Pl) S D[X]
which satisfes the relations
Pita/c; = biP; — Qit1Pit1

for suitable Qi+1 € D[X] and b; € D, and predictable elements ¢; € D. These
data allow also to compute (essentially as in Proposition 1.3.1) polynomials S;, T;
satisfying the Bezout’s Identities P; = Po.S; + Pi'T;.

In the quoted passage, the proposed approach is to apply the algorithm
to ﬂ'jfl(fi) and ﬂ'jfl(p) in Ljfl[Xj] = Ljfl[Zi], where p € k)[Xl,...,Xj] \
E[X1,...,X;-1] and X; = Z; is algebraic. The technical problem consists that
the computation requires zero-testing; the proposal solution requires to

— compute a PRS fi,p, P>,..., P- of fi and p in k[X1,...,X;-1][X;],
— evaluate mj—1(Pr), mj—1(Pr—1), ... until a non-zero element ;_1 (P,) is produced
which therefore satisfies

mj—1(P,) = ged(mj—1(fi), mj—1(p)) € Lj—1[X;] = L;j-1[Z:].
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We suggest the following approach: apply the subresultant algorithm
to the input viewed as multivariate polynomials in [k[X1,. .., Xj]]; re-
duce the subresultants, starting from low degrees; the first which does
not reduce to zero reduces to a factor of [f;] viewed as a polynomial
[in Lj1[X;] = L;j1[Zi]].
e Condition (vi) requires to perform ged computations over a Duval field
L;_1[X;] = Lj_1[Z;]; however condition (iv) implies that one of the coef-
ficients of f; is a member of K[V, ..., V4] thus no splitting occurs.

The central procedure of Lazard’s Solver is an algorithm intersect(p, .4)
where p € k[X1,...,X,] and A C k[X;,...,X,] is an admissible Lazard
sequence, and whose output is a finite family B := {B, ..., B;} of admissible
Lazard sequences which satisfy

Z(I(p)) N 3(A) C U, 3(B;) € Z(I(p)) N 3(A).

Given a finite family 2 := {A;,..., 4;} of admissible Lazard sequences
we denote
intersect(p,2l) := U'_, intersect(p, A;)

Finally, given a finite set
G:={g1,---,gm} Ck[X1,...,X4],
the procudere
solve(G) := intersect(g;, intersect(gs, intersect(- - - intersect(g.,, 0))))

returns, as output, a finite family B := {By,...,5;} of admissible Lazard
sequences which satisfy

2(G) = niZ(I(g:))
-~ 2N (zm(gg)) 0 (- (2t 3(@))))

= Ui:13(6i)-
Algorithm 42.6.1 (Lazard). intersect(p,.A) applies another procedure
(r) := normalize(p, A)

whose input is the polynomial p € k[X1,...,X,] and the admissible Lazard
sequence

A= {fl,...,fr} CRo[Xl,...,Xn] :Ro[Vl,...,Vd][Zl,...,ZT]

w.r.t. which we use the same notation as in Section 42.5%° and which computes
two polynomials ¢ and r such that

40 In particular {V4,...,Vy} (respectively {Z1,...,Z.}) is the set of the trascen-
dental (respectively: algebraic) variables for A.
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(1) mn(gp) = mn(r),
(2) mp(p) =0 < m,(r) =0 and
(3) r is reduced, normalized and Rg-normalized.

Here is the procedure:
set q :=1,
[reduced] we compute the remainder r of p w.r.t. A,
[normalized] while
0 v 01 51 v5
To(r) = XX XX ¢ K[V, Val, 6, # 0

t—1 0
then
e compute (compare Remark 42.5.4) a polynomial! s € k[X1,...,X},]
for which class(Lp,(sr) < class(Lp,(r),
e compute the remainder r of sr w.r.t. A and

e set g := sq,
[Ro-normalized] if lc(r) ¢ So choose? ¢ € Ry such that lc(cr) € Sp and set
ri=cr,q:=cq. O

Algorithm 42.6.2 (Lazard). We can now present the procedure
B := intersect(p, A)
where A is the admissible Lazard sequence

A= {fl;---;fr} CRO[X1,-.-,Xn] :RO[Vl,...,Vd][Zl,...,ZT]

and we use the same notation as in Section 42.5%3:

(1) B :=10, (r) :== normalize(p, A)
(2) If
o r =0:set B := {A} and exit;
o rck\{0}: set B :=( and exit;
o r ¢ k: goto (3);
(3) expressing r as
r= Lp(r)X]‘-S +r
where j = class(r), Lp(r) € k[X1,..., X;-1], deg;(r) < ¢ = deg;(r), set
B := B U intersect(r, intersect(Lp(r), A)).

(4) Compute Cont(r) € k[X1,...,X,;-1][X;] and set r :=
ing r to be primitive.
(5) Setting j = class(r), denote i, the values such that

Co+tm , thus forc-

41 Here a Duval splitting could happen.

42 1f we have Ry := Lo := k and Sy := {1}, this simply requires to choose ¢ :=
le(r) ™t

43 In particular {V4,...,Vy} (vespectively {Z1,...,Z.}) is the set of the trascen-
dental (respectivelty: algebraic) variables for A.
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ANRy[Xq,..., X1 ={f1,..-, fi}

class(f;) < j

{Vi,..., Vs ={X1,..., X} n{W,..., Vg}
X; = Vs is trascendental,

and set

A7 ={f1,-- i}, AT = {firn o o)

(6) Compute R := Res(m;j—1(r),mj—1(r")) € L;_1.
o If R is invertible, so that m;_1(r) is squarefree in L;_[X;], goto (7)
e If instead, R is not invertible, then
— compute??, using the subresultant algorithm, a factor ro | r such
that, in Lj—l[XjL

mj-1(ro) = ged(mj—1(r), mj—1(1")),

—set r:=r/rg
— goto (3)
(7) It A =0 set €:= A7 U{r}
(8) If AT #0
e compute € := intersect(f;;1,intersect(- - - intersect(f., A; U{r}))).
e Set € := {C € € : normalize(f;,C~) # 0 for each [,i < | < r}*>.
(9) B := B Uintersect(p, €). O

Ezample 42.6.3. Let us compute solve(G) where (compare Example 42.3.7)

G = {f1, fo, f3} C k[X1, X2, X3, X4]
and
fr= X0 = X{, fo = (X = 2X7) X5, f3 = (X7 — 1) XXy + X3
We have

normalize(f3, ) = f3,
C1:={fs} = {(X} — 1)X2Xy4 + X3}, normalize(f3,C;) = f3,
intersect(f3,0) = {C1} =: ¢4,
normalize(f2,C1) = fo
= Lp(f2) = Xi — 2X7
normalize(ry,C1) = r1;
T2 Z:\/T_l:X?—QXl
Co:=Cy U{r} = {r2} = {X7 — 2X1}
normalize(f3,Cs) = X2 Xy + X3(XZ — 1) =: r3¢,
T4 = Lp(Tg) = XQ, rs :(=T3 — 7’4X4 = (X12 — 1)X3
normalize(ry,Cy ) =714

44 This can produce a Duval splitting.
4% Where C~ = CU Ro[X1, ..., X;], j = class(r).
16 We have (X7 — 1)f3 — X1 XoXure = Xo X4 + X3(X7 - 1).
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Cs:=Cy U{ra} = {r2,ra} = {X7 - 2X1, Xo},
intersect(ry, {C2}) = {C3}
normalize(rs,C; ) = X3 =: 167,
Cy:=0Cq5 U{rg} ={ra,ra,r6} = {Xf —2X1, X5, X5},
normalize(rs,C3) = rs,
intersect(rs, {C3}) = {C4}
Cs :=CoU{rs} = {ra,rs} = {X3—2X1, Xo X4+ X3(X2—1)}
€y = {C4,C5}
intersect(f3,C2) = €
normalize(ry,C; ) # 0,7 € {4,5}
fintersect(rl, 1) =&,
2

Cont(Fa) — X3 = 76,

CG = Cl_ U {TG} = {7’6} = {Xg}
normalize(f3,Cs) = (X7 — 1) X2 Xy =: 17
Lp(?‘7) = (X12 — 1)X2 =T
normalize(rs,Cg) = 75
Lp(rg) = (X2 —1) =: 19
normalize(ry,Cs) = 79
C7 = Cg U {7’9} chr = {7’9,7"6} = {)(12 — 1,X3}
intersect(rg, {Cs}) = {C7}
Co+8(rg) = X2 =1y,
Cs :=Cg U {T4} = {7‘4,7‘6} = {Xg,Xg}
intersect(rs, {Cs}) = {C7,Cs}
Tont(rr) — X4 = 110,
Cy := Cg U {7‘10} = {TG,Tlo} = {Xg,X4}
intersect(f3, {Cs}) = {Co}
€y :={C4,C5,C7,Cs,Co}
normalize(f,C; ) #0,i € {4,5,7,8,9}
intersect(f2, ;) = intersect(fs,C1) = &,
Rem(f1,r2) = 2X7 1= 111,
by Duval splitting we get
ri2 := Xi,
normalize(ri1, {r12}) = 712,
normalize(ry, {ri2}) = r4,
normalize(rg, {r12,74}) = 76
Ci1 = {ri2,74,76} = {X1, X2, X3},
r13 = X1 -2
normalize(ri1, {ri3}) =4
intersect(f1,C4) = C11,
Rem(f1,r2) = 2X? := 111,
by Duval splitting we get
r12 := Xy,

47 We have (X7 — 1)rs — X1 X372 = X3.
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normalize(ru, {7‘12}) =T12
normalize(rs, {r12}) = Xo X4 — X3 =: ry4,
Ciz = {ri1,ria} = {X1, Xo X4 — X3}
r13 ‘= X1 -2
normalize(ri1, {ri3}) =4
intersect(f1,Cs) = Ci2
normalize(f1,C7) = 0,
normalize(f1,Cs) = f1,
\/ﬁ: X13 7X1 =:T15,
intersect(fl,Cg) = {T15,T4,T6} = {X13 — Xl,XQ,Xg} = C13
normalize(f1,Co) = f1,
\/ﬁ: X? —X1 =:T15,
intersect(f1,Co) = {ris,76,m10} = { X7 — X1, X3, X4} =: C14
solve(G) = intersect(f1, €2) = €3 := {C11,C12,C7,C13,C14}

so that

Z(Cll) = Z({X17X27X3}) = {(070707 CL) ac€k, }7

Z(C2) = Z({X17X2X4*X3}) = {(0,a,b,2),a,b € k,a # 0},

Z(C7) = Z({Xl - 17X3}) = {(x7a707 b) S {1 1}7 CL,b € k7 }7

Z(Ci3) = Z({Xl X1,X5,X3}) = {(2,0,0,a),x€{0,1,-1},a €k, },

2(014) = Z({Xl X17X37X4}) = {(m,a,O 0) x € {07 1, - 1}, ac k7 },
where

Z(Clg) U Z(C14) C Z(C12) U Z(C7)

Algorithm 42.6.4 (Lazard). For to removing redundant components, Lazard
proposes an algorithm inclusion?(7, U) which is performed to the set of the
quasi-components ordered by increasing dimension and in which each quasi-
component T is compared with each component U of higher dimension to
test whethere 7' C U.

The procedure consists in checking whether normalize(f,T) = 0 for each
f € U, the answer being positive iff all tests have success.

Of course the tests produce a Duval-splitting in 7. O

Ezxample 42.6.5. For instance, with the present example, the tests
inclusion?(Z(C;), Z(C12)),4 € {13,14},
return the splittings

Z(Cy3) = Z(Cr) U Z(Ch5), Cis = Z({X1,X2,X3}) = {(0,0,0,a),a € k, }
Z(C14) = Z(C7) U Z( 14)7 Ci4 = Z({leXQaX3}) = {(O,a,0,0),a € kv}

the answer being positive for the components Z(C}).
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42.7 Ritt bases and Grobner bases

Let k be a field of characteristic zero, P := k[X1,..., X,],
T :={X{"-- X" :(a1,...,a,) € N}

< be the lexicographical ordering on 7 induced by X; < ... < X,,.
Let | C P and let G := {g1,...,9s} be the reduced Grobner basis of |
ordered so that

T(g1) < T(g2) < ... < T(gs-1) < T(gs);

and denote, for each i,1 <i <n, G; := GNk[Xy,...,X;]
Adapting Definition 42.5.1, we say that a variable X is called

algebraic for | if there is g € G; \ G;—1
trascendental for | if G; = G;_1.

As usual we relabel the variables as
EXy,...,. Xn) =2k, Va, 21, .., Z,]

so that {V4,...,Va} (respectively {Z1,..., Z.}) is the set of the trascendental
(respectively: algebraic) variables for G.

To each reduced lex Grobner basis G we associate a set M(G) inductively
(on the rank r := r(I(G)) of the ideal generated by G as follows:

if r =1, then set M(G) :={g1},
if 7 > 1, denoting i the value for which Z, = X;, so that G; \ G;_1 # () and
(as we will prove below) M(G;_1) is a triangular set, then we set
° M(G) = M(Gi_l), if G; C Rem(/\/l(Gi_l));
e if, instead, G; ¢ Rem(M(G;_1) then we set M(G) := M(G;—1) U
{g;} where j is the minimal value for which the remainder of g; w.r.t.
M(G;-1) is not zero.

Definition 42.7.1 (Aubry et al.). The set M(G) defined above is called
the median set of |, where | is the ideal generated by the lex reduced Grobner
basis G. O

Ezxample 42.7.2. For
G = {X1Xy, Xo X3, X3X4} € k[ X1, Xo, X3, Xu] = k[V1][Z1, Z2, Z3]

we set

M(G2) = {X1 X5},
M(G3) = M(G2) since X2 X3 € Rem(M(G2)),
M(G) = M(GQ) U {X3X4} = {X1X27X3X4}. O

Proposition 42.7.3 (Aubry et al.). Let G C P be a reduced lex Grobner
basis generating an ideal | and let M(G) be its medial set. Then



42.7 Ritt bases and Grébner bases 171

(1) M(G) is a non empty triangular set;
(2) M(G) C1C Rem(M(G));

(3) M(G) is a fine triangular set;

(4) M(G) is an admissible Ritt sequence;
(5) M(G) is initially reduced.

(1) Obvious,

(2) The only non trivial result is the inclusion | C Rem(M(G)). Assume
that there is f € | for which f ¢ Rem(M(G)) and denote r its remainder
w.r.t. M(G) remarking that r € |.

Therefore there is g € G such that T(g) | T(r). Since r (and so also
T(r)) is reduced, the same is true for T(g). Let i := class(g), and A :=
{h € M(G) : class(h) < i}. Remark that either

e G; C Rem(A) and A= M(G;), or

e G; ¢ Rem(A) and there is h € G; such that {h} = M(G;) \ A

so that there are three cases: either

(a) g € Rem(A), or®

(b) g=he M(G)\ Aor

(c) g#h = T(g) > T(h) ¥
but all these cases reduce to a contradiction:

(a) contradicts the assumption that T(g) is reduced;
(b) ditto;
(c) cannot hold for the same reason: in fact, class(h) = ¢ = class(g) and
T(g) > T(h) implie deg;(T(g)) > deg,(T(h)) = deg,;(h) which in
turn implies that T(g) is reduced by h. O
(3) Assume that for some g € M(G) the remainder of Lp(g) w.r.t.

A:={he M(G): T(h) < T(g9)} = {h € M(G) : class(h) < class(g)}

is zero, so that, denoting j := class(g) and ¢’ € k[X1,...,X;] the poly-

nomial such that g = Lp(g)X;legj(g) +¢', deg;(g') < deg;(g), the re-
maider r of g and the one of ¢’ w.r.t. A are the same. In particular
r € | € Rem(M(G)) whence r = 0, and g € Rem(A) contradicting the
construction of M(QG).

(4) If follows form (2) and Proposition 42.4.7.

(5) If not, there is a smallest (w.r.t. j := class(g)) element g € G which is
not initially reduced w.r.t.

A = {he M(G):T(h) <T(g)}
= {he M(G):class(h) < j}
= {Ala---aAp}'

48 g ¢ Rem(A) so that G; ¢ Rem(A) and M(G;) \ A = {h}.
49 We assume lc(f) = 1 for each f € G so that T(g) = T(h) = g = h.
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On the other side the remainder of Lp(g) is not zero w.r.t. A. Then,
Theorem 42.1.18 implies that, for suitable integers w;, and denoting I;
the initilal of A;

It Lrg = I L Lp(g) X Y 4 g

reduces w.r.t. A to a polynomial ¢ := RX;-legj @ 4 g" € | which is

e reduced w.r.t. A,

e class(t) = j,deg;(t) = deg;(9),

e T(t) = T(R)X;™" < T(Lp(9))X; ™" = T(g).

Then, necessarily, T(t) is divided by T(h) for some h € G, for which
Lp(h) € Rem(A); therefore T(h) € Rem(A) and T(t) € Rem(A) contra-
dicting the assumption that ¢ is reduced. ad

It is possible to recover Ritt’s Corollary 42.3.5 as follows: for each algebraic
variable Z; = X; denote A; the smallest®® polynomial in G;\G;-1 and denote
A(G) :={A4,..., A }.

With this notation we have:

Theorem 42.7.4. If G generates a prime ideal |, then:

(1) M(G) = A(G),

(2) 1 = Rem(M(G)) = Sat(M(G)),
(3) 3I(M(G)) = Z(I);

(4) 3M(G)) # 0.

Proof.

(1) It is sufficient to show that for each j the remainder of the initial Lp(A;)
w.r.t. B:={A4:,...,4;_1} is not zero.
If it were zero, we would get a contradiction from Lp(A;) € | which is
impossible since A; is a member of a reduced Grobner basis.

(2) Since | C Rem(M(G)) by the Proposition above, the result follows from
Corollary 42.3.5.

(3) Again by Corollary 42.3.5.(4).

4) Z() # 0. ad
Ezxample 42.7.5. If G generates just a radical ideal |, it could happen that
3(M(G)) =0.

Let

Fo={X7—2,X37—2,(X1— X2) X3, (X1 + X2) X4} € k[ X1, X2, X3, X4].

The Grobner basis is G := F U {X3X4} and M(G) = F. Clearly the
product of the initials

%0 Recall that the elements in G are enumerated so that T(g;) < T(gi+1) so the
’smallest’ polynomial in G; \ G;—1 is also the polynomial g € G; \ G;j—1 having
the <-minimal value T(g).
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(X1 — Xo)( X1+ Xo) = X7 - X3 € (X} -2,X7-2)
Thus 3(M(G)) = 0.

42.8 Moller’s Zero-dimensional Solver

Lemma 42.8.1. Let J C Q be a zero-dimensional ideal and let h € Q. It
holds
ZJ: 1) ={aec Z(J) : h(a) # 0}.

Proof. Let us consider the irredeundant primary decomposition J = U2:1 qi
where, for each 4, p; denotes the associate maximal p; = /7.
We have (Theorem 26.3.2 (19)) J : h>* = [J._,q; : h> and (Corol-

e JQ iffhep;
lary 27.2.12) q; : h _{CIi iff h &p;

Proposition 42.8.2 (Moller). Let J C Q be a zero-dimensional ideal and
let H :={hy,...,hs} C Q be a set of polynomials such that

Z(H)cC Z(J).
Denoting J; :=J and J; := J+ L hig1,..., he), 1 <i <, it holds

whence the claim follows easily. O

z()=2zH)| | |_| Z(J; : h$).

Proof. Clearly
Z()\ Z(H)

{a € Z()): exists i, <t hi(a) # 0}

= I_l{a € Z(J) : he(a) = -+ = hip1(a) = 0 # hy(a)}

t
= | |2Wi:n)
i=1

the last equality following from Lemma 42.8.1. ]

The intendend application of Proposition 42.8.2 requires efficient algo-
rithms in order to compute, given a zero-dimensional ideal J C Q and a
polynomial h € @\ {0} both J + (h) and J : h*°; different techniques are
discussed in Sections 26.3-7. In connection, Moller anticipated some version
of Caboara—Traverso ideas (Section 26.6); in particular he stated

Lemma 42.8.3 (Moller). Leta =1(g1,...,9s) C Q and h € Q\{0}. Then,
M:= {(u,v) € Q% :u—hv € a}

is a module with basis F = {(g;,0),1 <i <s}U{(h,1)}.
Moreover, fizing any termordering < on W and denoting
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e {e1,e2} the canonical basis of Q2,
e W = {re; ;7€ W,ic{l1,2}},
o <y the <-compatible termordering on W) defined by

1>73 or

Te; <9 Te; +— . .
e {z:j and T < T/,

G the Grobner basis of M wrt <a,
Go:={be Q:(0,b) € G},
G1:={a€ Q: (a,b) € G}.

Then (a: h) =1(Go) and a+ (h) = 1(Gy).

Proof. Obviously F C M. For each (u,v) € M there are f; € Q such that
u—hv =73, figi so that (u,v) = >, fi(g9i,0) +v(h, 1); this proves M = I(F).
The relation I(G1) = I(g1, ..., 9s, h) = a+ (h) is obvious.
The other claim is a direct consequence of the trivial equivalence

(0,v) EM <= —hwea < ve(a:h).
o

In order to deduce a : h*, Moller proposed to iteratively apply the same
algorithm in order to iteratively deduce a : h’; the result is then obtained at
stabilization®!.

Remark 42.8.4. If, as it is assumed, J is zero-dimensional, Moller also pro-

poses to apply Traverso’s Algorithm 29.3.8 in order to deduce J+ (h) and a

proper variation of the FGLM algorithm in order to compute (J : h).
Namely, denoting {7,...,7,} = N(J), and, for each f € Q

Rep(f,N(QJ)) := (v(f, 71, NQ)), ..., 7(f, 7, N()))

its Grobner description, in order to obtain (J : k), Moller’s Algorithm is to
be applied to the functionals

b Q—k: f—~(fh,7,NU))

in the same way in which FGLM Algorithm is obtained by applying Méller’s
to the functionals
bi:Q—=k: f—~(f,7,NU)).

51 Compare the discussion after Lemma 26.3.9.
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Let J C Q be a zero-dimensional ideal and let G := {g1,...,9s},1lc(g;) =
1, be its Grobner basis with respect the lex ordering induced by Z; < Z3 <
... < Z, ordedered so that T(g1) < T(g2) <... < T(gs).

The assumption that the ideal is zero-dimensional trivially implies that
g9s € K[Z1,...,Z,)\K|[Z1,...,Z,—1] and that deg,.(¢;) := d; < ds := deg,.(gs)
for each i < s.

As a consequence (Compare Kalkbener’s Theorem 26.5.4)52 {Lp(g;),1 <
i < s} is a Grobner basis w.r.t. <; moreover, since J is zero-dimensional we
also have Lp(gs) € k.

Theorem 42.8.5 (Moller). With the present notation we have

I(g1;---,9s-1) : 9s = L(Lp(g1), - - - Lp(gs-1))-

Proof. If h € J and T(h) < T(gs), then there is j < s such that T(g;) | T(h)
and there are ¢ € k\ {0}, 7 € W, such that h’' := h — c7g; satisfies b’ € J and
T(h') < T(h) < T(gs)-
Thus for each h € J, for which T(h) < T(gs), it holds h € I(g1,...,gs—1)-
For each i,1 < i < s, set h; := Lp(g;)gs — Z%~%ig;; since

T(Lp(9:))T(gs) = T(Lp(g:) Z* = T(Lp(g:) Z) Z =% = T(g:) 2%

we have T(h;) < T(gs) and, since h; € J, we have h; € I(g1,...,95-1)
whence Lp(g:)gs € I(g1,...,9s—1) and Lp(g;) € I(g1,...,9s-1) : gs. We have
thus proven the inclusion I(Lp(g1), ... Lp(gs—1)) € I(g1,---,95-1) : gs-
Conversely, let us consider a polynomial g € I(¢1,...,9s-1) : gs,g # 0.
Since ggs € I(g1,...,9s—1), there is i < s such that T(g;) | T(g9gs) =
T(g)Z% and there are c € k \ {0}, 7 € WNk[Z1,...,Z,_1] such that

T(9gs) = et Z* =" T(g;) = erT(Lp(9:)) Z;* = erT(Lp(gi)gs)-
Denoting ¢’ := g — ¢ Lp(g;) and remarking that®?
9" € gy, .-, 9s-1) : gs) + I(Lp(g1), ... Lp(gs-1)) S I(g1,- -, g5-1) : gs

we have that either

e T(9') <T(g) and g — ¢’ € I(Lp(g1), - - - Lp(gs—1)) or
e ¢ =0and g € I(Lp(g1),...Lp(gs—1)).

52 Apparently Kalkbener’s Theorem 26.5.4 and the weaker Méller’s Theorem 42.8.5
are independent.
53 Recall that we have just proved the inclusion

I(Lp(g1), ... Lp(gs—1) € I(g1,---59s-1) : gs-
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Thus, by <-indiction we can deduce that

I(g1,---59s—1) : gs CIL(Lp(g1),---Lp(gs—1)-

O
Corollary 42.8.6 (Méller). With the present notation and setting H :=
{Lp(g:),1 <i < s}U{gs} we have
Z(H) C 2(J).
O

Algorithm 42.8.7 (Mdoller). With the present notation, the algorithm de-
scribed in Figure 42.1 produces a triangular set decomposition of the zero-
dimensional ideal J.

Fig. 42.1. Moller’s Algorithm

¥ := Solve(J)
where
J C Q is a zero-dimensional ideal,
< is the lex ordering induced by Z; < ... < Z,
{g1,...,9s}, 1c(g:) =1, T(g1) < ... < T(gs) is the reduced Grobner basis
of J wrt <.
T ={t1,...,t,} is a finite set of triangular sets such that

20) = | |zay).

Let G be the reduced Grobner basis wrt < of I(Lp(g1),...Lp(gs—1));

@ = Solve(I(Lp(g1), -, Lp(gs-1))

T = {tU{NF(gs,t)} : t € 4}

i= 17 Gs—1:= {917 (R 795};

While Lp(gs—;) ¢ J do
Compute a reduced Grébner basis GY_; of 1(Gs—;) : Lp(gs—:),
Compute a reduced Grobner basis Gs—i—1 of I(Gs—;) + I (Lp(gs—:)),
%; = Solve(I(G’,_;))
T =T UL,
1:=1+1

In fact ¥ is obtained, according Proposition 42.8.2 by the disjoint union
of

e T’ which gives the triangular set decomposition of I(H), and
e T, which gives the triangular set decomposition of J; : Lp(g;)®°, for i,l <
i < s°* where [ is the value for which {g1,...,q} = HNK|[Z1,..., Z,_1].

5 Remark that Proposition 42.8.2(6) apparently requires, before the While-loop,
to compute
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The correctness of the While-loop is a direct consequence of the ordering
of the basis elements®® and on the fact that

Lp(gs—i) € ) = (I(Gs—i : Lp(g;) = Q@ <= Z (I(Gs—; : Lp(g22,)) = 0.
O

Ezample 42.8.8. To illustrate the algorithm let us consider Example 39.2.3
where, denoting

Hy = {Z}— 71,93 94}
U {22173 — 223+ 3723 4+ 62122 — 979 — 271 + 2}
U {22273 — 273+ 373 —AZ1 79 — 575 + 47, + 2}

hy = 273 —8Z3+ 1523+ 302,75 — 4575+ 6

Hy = {Z} —7,,72,75)}

hy = Z3—27s,

hy = 273+ 3Zy—47Z; —2,

Hs = {Z?—-7,,2,2,)}

hy = Z2—7

hs = Z3+3Z,—27Z1—1

we obtain

Ji= {gla v 798}
Jo = 1({Lp(g:),1 <i < 7}) =121 — 2, Zo)
fl = {Zl - 2, ZQ}
Solve(Js) := {t1}
tl = {Zl - 2, ZQ, Zg’ - 3Z§ + 2Z3}
Jg = J1 : (Z1 - 2) == ]I(Hl U {hl})
Js = H({Lp(h) che Hl}) = H(Zl — 1,75 — 1)
tg = H({Zl - 1,Z2 — 1})
Solve(Js) := {t2}
f2 = {Zl - 1,Z271,Z3274Z3+3}

— a reduced Grébner basis G of I(g1,...,9s) : 95°),
— areduced Grobner basis Gs—1 of I(g1,...,gs) + I(gs),
— the triangular set decomposition of I(GY)
but this computation is trivilal and returns G, = {1} and Gs—1 = {g1,...,9gs}-
55 For each | > i we have

Lp(gs—i) €J <=  gs—i €Ek[Z,..
— gs—1 € k[Zl,..
<~ Lp(gs—1) €J

7ZT—1]
7ZT—1]
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Jg :=J3: (Zg -1)= H(HQ @] {h3, hg})
J7 = ]I({Lp(h) che Hg}) = ]I(Zl, 212 — Zl) = ]I(Zl)
t3 = {Zl,hg,hg} = {Zl,ZQQ - 222,2Z3 + 3Z2 - 2}
Jg = J6 : Z1 = H(Zl — 1,Z2)
t4 = {Zl - 1,Z2,h3} = {Zl - 1, Z2,2Z3 - 6}
Solve(Jﬁ) = {fg,t4}
Jg = (Jg +]I(ZQ - 1)) : (Z1 - 1) = ]I(Zl,ZQ — 1, Zg + 2)
t5 = {Zl,ZQ - 1,23 + 2}
Solve(Jg) := {ts5}
Solve(Js) := {t;,2 < i <5}
J4 = (J3+]I(Z271)) : (Z1 +Zg*2) = Q
Solve(Jy) := 0
Solve(J;) :={t;,1 <i <5}

and
Z()={bj:1<j<9}=]|2(t)
with )
Z(t1) = {bs,bs,bg} Z(ty) = {bg, br}
Z(t3) = {bi,ba} Z(ts) = {bs} Z(t5) = {bo}

42.9 Rouillier: Rational Univariate Representation

Let us assume we are given a zero-dimensional ideal J C Q via a Grobner
representation

b={b,....[bs]} CA=0Q/J Ay := (ag?)) = M([Zu],b),1 <h<r

and let us remark that, via a direct application of Alonso—Raimondo—Traverso
Algorithm (Remark 40.8.1) we can reduce ourselves with good complexity to
the case in which

(1) J is radical,
(2) we have a linear form Y := )", ¢, Z, which is a separating element of
ZJ).

where we recall that

Definition 42.9.1. A polynomial f € Q is called a separating element of
Z(J) iff, for each o, B € Z(J), we have a # = f(a) # f(B). O
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The application of Alonso—Raimondo—Traverso Algorithm has the further
advantage that the obtained separating linear form Y := )", ¢, Z) is an
allgemeine coordinate for J so that (Corollary 34.3.4) Alonso—Raimondo—
Traverso Algorithm returns a triangular set

(gQ(Y), Z1 — gl(Y), ceis L — gr(Y) - K[Y, Z1, .. .,ZT], (421)

of the ideal J* :=J+ (Y =3, enZp) C K[Y, Z1, ..., Z,], where g; € K[Y],
deg(g;) < deg(go) = #(Z2(J)) and (J being radical) gg is squarefree.

Ezample 42.9.2. For the radical ideal J C C[Zy, Z2, Z3] discussed in Ex-
amples 39.2.3 and 40.3.2 and the separating element/allgemeine coordinate
Y = 73Z1 + ZQ + 3Z3 we have

g = Y2+Y®—90Y7 —142Y° + 2489Y°
+  4689Y* — 20880Y — 31428Y2 4 45360Y,
38918880091 = —8611Y® + 29288Y7 + 697698Y°

2278040Y° — 15347699Y* + 562965123
44649972Y2 — 473227920Y + 778377600,
19Y® — 108Y 7 — 1426Y° + 7808Y"°

31851Y* — 167652Y° — 185004Y 2 + 955152Y,
—24917Y® 4 102316Y 7 + 1972926Y°
7718320Y° — 435950534 + 180492084Y

+  164226564Y2 — 1073833200Y + 1556755200.

+

6406405

+

7783776003

O

Proposition 42.9.3 (Alonso—Becker—Roy—Wo&rmann). With the cur-
rent notation and setting

Z)={a1,...,as} CK", ;= (agi), . ,agi)),ﬂi = Zchagj)
h

there are polynomials hi(Y),..., h.(Y) € K[Y], deg(h;) < deg(go), such that

I =1(g0(Y), gb(Y) 2y — i (Y),..., gb(Y) Ze — he(Y)) C K[Y, Z1, ..., Z,].
(42.2)

Moreover, for each 1,1 <1 <r, we have

() =>_al [T -8 (42.3)

i=1 j#i
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Proof. go(Y) being squarefree, ¢ (Y) is invertible in K[Y]/go; thus h; :=
Rem(g}gi, go) satisfy the required property.
Since go(Y) = >25_; [1;2; (Y — B;), for each [,1 <1 < s we have

g(B)a = a" > T -8
i=1 jki
= o' T[ (B -8)
il
= > a?T[B—85)
i=1 i
= hb(ﬂl)'
O

Remark 42.9.4. Compare Proposition 42.9.3 with Kronecker’s result (41.3);
the only difference is that here the assumption of the primality of the ideal J
is relaxed to radicality. O

Remark 42.9.5 (Alonso—Becker—Roy—Waérmann). Denoting S the size of the
elements aEL-) in the matrices A4,, clearly (42.3) grants that the coefficients
in the Kronecker parametrization (42.2) have size O(Ss) giving a strong
advantage with the O(Ss?) size of the coefficients of the allgemeine basis

(42.1). 0

Ezample 42.9.6. In the setting discussed in Examples 42.9.2 we have

gh(Y) = 9Y®4+8Y7 —630Y° — 852Y° 4 12445Y*
+ 18756Y? — 62640Y? — 62856Y + 45360,
hi(Y) = 9Y® 4+ 5Y7 —638Y° — 668Y° + 136557
4+ 15591Y3 — 92178Y? — 76896Y + 90720,
ho(Y) = 5Y® —348Y° — 62Y° + 7155Y* + 2790Y — 39852Y2 — 20088Y,

h3(Y) = T7Y®+65Y7 —380Y° — 3966Y° + 34557
+ 56421Y3 — 5562Y2 — 191160Y + 90720.

Corollary 42.9.7 (Alonso—Becker—Roy—Wormann).
For each f € Q, there is hy(Y) € K[Y] such that

9o (V) f (2, Zy) = hy(Y) € JT, deg(hy) < deg(go).
Proof. Tt is sufficient to set h(Y) := Rem(f(hi(Y),...,h(Y)),00(Y)). O

Both Proposition 42.9.3 and Corollary 42.9.7 are existential results; thus
we need a computational definition of h¢(Y); to obtain it we consider a new
variable S, the extension field K (S), the ideal
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Jé = JK(S)[Zl, - ,ZT] C K(S)[Zl, ey Zr] = 0 Q®g K(S),

the algebra A := K(S)[Z1,...,2,]/J° = A®k K(S), the element f :=Y +
Sf €A, the matrix Aj.

Theorem 42.9.8 (Alonso—Becker—-Roy—Wormann). With the current
notation, it holds:

(1) the minimal polynomial m§(T) € K(S)[T] of Ay is

my(T) = _H (T — Bi — Sf(a)) € K[S,T);

(2) denoting p(S,T) := %, we have

T

p(0.7) = =3 fle) [L(7 - )

(3) for each o € Z(J) it holds f(a) = %;
(4) hs(T) = p(0,T).

Proof. (1) is obvious, (2) requires a trivial verification and (4) is a direct
consequence of (3); so we have just to prove (3): for each ¢,1 < ¢ < s we have

S

p0.0) = =3 fe) [[6.-5)

j=1
FE]

= —fle) [1(8. - 8)

j=1
A

= *f(OéL)g()(OéL).

Remark 42.9.9 (Alonso—Becker—Roy—Wdrmann).

The computation of the Kronecker parametrization (42.2) does not require
to assume that J is radical; assuming as known s = #Z(J) (an efficient way
for computing it is discussed in Corollary 42.9.13 below) and denoting x (7'
and m(T) respectively the characteristic and the minimal polynimials of Ay

we have
90(T) = vV x(T) = vVm(T).

Once a linear form Y is fixed, the minimal polynomial m(T") of Ay which
coincides with the minimal polynomial of the element Y € A can be directly
obtained by checking the successive powers [1], [Y], [Y?],... for linear depen-
dency; Y is then a separating element if and only if deg(y/m) = #Z(J).
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In order to make this approach effictive, all one needs is the availability
of a finite set of linear forms which is granted to contain at least a separating
element. Such a finite set is provided by Chistov—Grigoriev Corollary 35.6.4.

O

Remark 42.9.10. Alternatively, once #Z(J) is known, a separating linear
form Y can be obtained by an easy adaptation of Alonso—Raimondo Al-
gorithm 35.7.156aimed to avoid the evaluation of the swelling coefficients of
the g;s, i > 0:
(1) set Y := Zz aiZi, J:=1
(2) by linear algebra on the Grébner descriptions of
[, [v1],[v3,...
compute the minimal polynomial m(T) € K[T] such that m(T") € J*.
(3) if d:=deg(v/m) < #Z(J) then set j := J and
(a) while j < r, verify, whether
[(Vm)' (Y)Z,], [1], [Y], [Y2), . [V
are linearly dependent;
(b) if so, set j :=j+ 1 and go to (3.a);
(c) if instead they are linearly dependent, set J :=j, Y :=Y +cZ;, a; :=
a; + ¢ and go to (2)
(4) when deg(y/m) = #2(J), then
e JT + (y/m) is radical,
o Y :=>".a;Z; is a separating linear form and
e /m is its minimal polynomial.
O

Lemma 42.9.11. Let f € Q be a separating element of Z(J) and let s =
#Z()). Then {1,[f],[f?],...,[f !} is a K-linearly independent set of A.

Proof. Assume that m(T) := Zj;(l) a;T* € k[Y] is such that m(f) = 0 mod J;
since f a separating element of Z(J), the polynomial m(T') has the s distinct
roots {f (), € Z(J)} giving a contradiction. O

For every polynomial h € Q, we can consider the bilinear map
U AxA— K, (p,q)— Tr(Anpg)

and the corresponding quadratic form associated to ¢

h
Qnr(zy,...,x5) = Z'yj(,l)zj:cl
4.l

which satisfies £5,(p,p) = Tr(App2) = 35, 'yj(z)cjcl = Qnlci,...,cs) for each
p=21_ycilbi] € A=Spang{[bi],. .., [bs]}-

56 Compare also Remark 40.8.1.
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Proposition 42.9.12 (Rouillier). For a polynomial h € Q, the quadratic
form Qp, has #{a € Z(J) : h(a) # 0} as rank.

Proof. Let f € Q be a separating element of Z(J). By the Lemma above,
the set {1,[f],[f%,...,[f*!]} is K-linearly independent and thus can be
completed to a basis

{17[f]a[f2]""a[fsjl]a[bs-i-l]v"'v[bS]} = {[bl]a"'a[bS]}
of A. For each p € Q let ¢; € K be such that

W= el + 3 el
7=0 j=s+1

Thus, setting Y; := Z;Zl ¢;bj(a;),1 <i <s, by Corollary 40.5.2 we have

2
s s s

Qh = TI‘(Ahpz) = ZSJL(O&Z) Z Cjbj(Oéi) = Z Sih(ai)}/f.

i=1 j=1 i=1

The matrix

1 flas) flas)? - flag!

is invertible — being Vandermonde since f € Q separates Z(J), — and a
submatrix of the one associated to the linear forms that define the linear
change of variables Y;.

Thus the Y;s are linearly independent and (compare Theorem 13.5.2) the
rank of @), is the number of roots of J which are not roots of h.

Corollary 42.9.13. The rank of

Q1(x1,...,x4) = Zﬁﬁ)ijl = ZTr(Abjbl)xjxl
gl gl
iss = #2(J). 0

Once a Kronecker parametrization (42.2) is obtained via Theorem 42.9.8,
the multiplicity of each root can be obtained in the following way: denoting,
for each f € Q, By the matrix representing the endomorphism

b : Q/VI— Q/VI, B(g]) — [fg]

we have
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Lemma 42.9.14 (Alonso-Becker—Roy—Wormann). Let Y be a a sepa-
rating linear form of Z(J); then

Tr(By) -+ Tr(Bys)
(1) The matriz , 1s invertible;
Tr(Bstl) ce TI“(By2572)
(2) let ag,...,as—1 € K be the unique solution of the linear system
Tr(By) -+ Tr(Bys—) agp Tr(A;)
T‘I‘(Bysfl) te TI‘(By2572) As—1 TI'(Astl)
and let F(Y) := ?;é a;Y'!; then

F(a;) = 8; = mult(ay, J), Vo € Z(J).

Proof. (1) holds since the matrix is Hankel.
Ad(2): we have, for each 7,1 <i <s

Zszﬁzj = TI‘(ij)
i=1

s—1

= ZalTr(BYjH)
ol

- Sagar
=0 i=1
s s—1

- Z(Zmﬂf) 5
i=1 =0

= Z F(ai)ﬂi;
i=1

since the matrix (ﬂf ) is Vandermonde, we have F(o;) = s; for each i. O

Up to now, in order to represent the roots of | we alternatively,

e assumed J to be radical in order to apply Corollary 34.3.4 or
e applied Proposition 42.9.3, using the minimal polynomial m(Y") of Y € A.

In both cases, we lose the multiplicity of each root, which we recover via
Lemma 42.9.14.

An improvement allows to remove the requirement that J be radical and
to directly use the characteristic polynomial x(T') = [[;_,(T — B;)*, thus
directly deducing multiplicities.
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Proposition 42.9.15 (Rouiller). Let J C Q be a zero-dimensional ideal,
not necessarily radical and set

ZJ) ={a1,...,as} CK", «a; = (agi), D), s = mult(ay, J).

Let f € Q be a separating element of Z(J); denote x == x5 := > iy c;T*"
the charactristic polynomial of Ay and B; == f(a).

For each h € Q denote v, (T) == ;_; sih(a;) ]i[ (T - Bj).

=
Then
(1) x=x5= Hizlﬂ(g; *)ﬂz))sl
(2) )§<((T)) - Za‘zO_T‘H&f
(3) (s—i)e = Z;:O ci—j Tr(Ay;) fori=0,..,s;
S
(4) m(Br) = sih(ea) T1 (B = B);
i
(5) h(a) Mfor1<z<s-
/ Tr(A; ;i)
6 Zg>0 TJLL{ ;
(7) settmg \/X = leo a; T, it holds
s—1s—i—1
= Z Ahff alTS =i 1
i=0 j=0

_ X (T )
(8) (D) = ey
(9) ged((T), x(T)) = 1;

(10) for each i, s; = (}gﬂ&z 33
11) the squarefree decomposition (Definition 4.7.2) x = X} of x is obtained
1 Xi

via xi = ged(71(T') — I(y/X)' (1), /X)-

Proof.

(1) See Corollary 40.5.2.

(2) We have
X(T) s
X(T) =1 T — Bz

I
-
Nl &
=

.
=

N
Il
-

-
Il
—_
<,
v
o

I
N®
N N
N &
N~
.
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(3) We have

S

(4) We have v,(8) = >_i_; sih(av) H (B = Bj) = sih(eu) ﬁ (B = Bj).

(5) Obvious.

(6) We have
(L) N~ siflai) 2z sib(ai)B] g~ Tr(Angs)
@ LTk ST

—_

(7) A direct consequence of (6).
(8) Obvious.
(9) Obvious.

si [ (T-85)
i=1 j=1
(10) c '“gT()T) 7 whence the claim.
I IT ()
=

(11) The claim follows easily from

() =X (T) = 3 (si =) [[(T=8)
= D si-0]IT-8)

si#l i
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= | [T@-8)| [ D=0 [ T-8)
o s e

O

Definition 42.9.16 (Rouillier). Let J C Q be a zero-dimensional ideal.
A Univariate Representation (x,®) of J is the assignement of polynomials
X(T), % (T),y1(T), ..., (T) € K[T] which defines a K-isomorphism

n(a) %(a))
®:{acK:x(a)=0 —>ZJ:a>—>( sy
¢ (@) =0} = 2() Yo(e) Yo()
which satisfies mult(P(a), J) = mult(a, I(x)).
If moreover f € Q is a separating element of Z(J) and x = xy is the
charactristic polynomial of Ay, the univariate representation (x,®) is called
the Rational Univariate Representation (RUR) of J associated to f. O

Corollary 42.9.17 (Rouillier). With the assumptions and notations of
Proposition 42.9.15 and setting

D {f(a),a€ ZU)} = Z(J): B = fla) — (%(ﬁ) V7, (6)) W

7B B
(xf, D) is the Rational Univariate Representation of J associated to f. ]

Remark 42.9.18 (Rowillier). For a Rational Univariate Representation

e )

of J and a factorization x(7") = [, x:(T'), ged(xi, x;) = 1 setting
v;i(T) := Rem(~;(T), x;) for each i, j

e @ )
Y1 Tni (X
@iZCYEKZXiOé):O —>{( Sy )}
¢ ( J Yoi(e) Yoi(e)
we have that (y;, @;) is a Rational Univariate Representation, for each ¢, and
it holds Z(J) = L; {(”gg yofgg))) caeK, yila) = 0}. O

Remark 42.9.19. If J is radical, the representation of Z(J) proposed in Propo-
sition 42.9.3 is a RUR of J associated to Zh cplp. O

Algorithm 42.9.20 (Rouillier). Given a zero-dimensional ideal J C Q via a
Grdobner representation

b={[b],....[bs]} CA=0Q/J, Ay := (agp) = M([Zu],b),1<h<r
and assuming to have the matrices Ay, representing the endomorphisms @, :
A — A, a RUR of J associated to a linear form can therefore be computed
by the following procedure:
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(1) For each j,1,1 <14 < s compute Tr(Ay,s,);

(2) Compute s := #2(J) as rank of Qu(z1,...,2s) = > 5, Tr(Ap;p, )72
(Corollary 42.3.6);

(3) Repeatedly, choose (via Corollary 35.6.4) a linear form Y := >, ¢, Zp
and compute, via Proposition 42.9.15(3), the characterisitc polynomial
xy of Ay until deg(,/Xy) = #Z(J) thus granting that Y is a separating
element.

Alternatively deduce via Remark 42.9.10 a separating linear form Y :=
> n ¢hZp and compute the characteristic polynomial xy of Ay via Propo-
sition 42.9.15(3).

(4) Compute v1(T),vz,(T),...,vz.(T) via Proposition 42.9.15(6-7).

It can be proved that its complexity is in O(s* + rs?) arithmetic opera-
tions in K and that, in the case K = Q, the cost is in O((s + rs?)M(ls?))
binary arithmetic operations, where [ denotes the bit-size of the entries of the
matrices Ay, and M(¢) denotes the cost of multiplying two integers of bit-size
L. a

Remark 42.9.21 (Dahen). Clearly (Compare Proposition 42.9.3) the relation
between the elements of the Allegemiane basis (42.1) and the RUR (42.2) is
given by h; := Rem(gg9:, go)-

The better behavieour of Kronecker’s parametrization w.r.t. Allegemiane
bases can be generalized to triangular sets.

In fact, given a triangularizable zero-dimensional ideal J C Q[Z1, ..., Z,]
via a set G :=(g1,...,9m) C Q[Z1,..., Z;], denoting

T:= (fla"'vfr)c@[zla"'aZT]

its triangular set and, for each ¢,1 < i < r,

Nij1:=NF ferl]:[ 8f] A(f1,--05 i)

the normal form of f;1 HJ 1 6% w.r.t. the Grobner basis (f1,. .., fi), both

theoretical and pratical analysis suggest that the height®” of the triangular
set N := (f1, Na,...,N,.) of J is better than the one of T°%. O

5 for a set G := (g1,...,9m) C Q[Z1,...,2Z,] its height is the value h(G) :=
max (log(c(gi,7): 1 <i<r,7 €W).

% We have h(T) = O(rhd®") and h(N) = O(rhd") where d = max(deg(g;)) and
h = h(G).
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Given a (squarefree) polynomial f € k[T, a natural question! is to determine
its Galois group (Definition 14.1.3) over k. Based on classical techniques as the
representation of a group of finite order as a permutation group (Section 43.1)
and as a permutation group of the set of roots of a separable polynomial (Sec-
tion 43.2), Lagrange resolvents (Section 43.3 and 43.5) and Cachy modules
(Section 43.4) recently the problem has been completely solved (Section 43.6
and 43.7) by Annick Valibouze and Jean-Marie Arnaudies for polynomials f
of degree bounded by 11.

43.1 Representation of Groups as Permutation Groups

Let? G be a finite group.

Ezxample 43.1.1. Throughout this section, as an example we take as G the
alternative group A4 whose 12 elements we denote

g = Id, g2 = (1,3,2), g3 = (1,2),(3,4),
g4 = (1a273)a g5 = (274a3)7 ge = (2a374)a
gr = (1a473)a gs = (174a 2)7 g9 = (1a374)a

gio = (1a3)7(2a4)7 g1 = (172a4)7 g12 = (1a4)7(2a3)

and whose corresponding multiplication table is

! Other equally natural questions are

e to solve f by radicals, in case it is possible, and
e the Galois inverse problem of determining, given a finite group G, a polynomial
f € k[T] for which G is its Galois group.

Such questions are just mentioned here but not discussed in this book.
2 For this theory, compare Burnside W., Theory of groups of finite order, Cam-
bridge Universiy Press (1911) Ch. XII
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1 2 3 4 5 6 7 8 9 10 11 12
171 2 3 4 5 6 7 8 9 10 11 12
212 4 7 1 3 8 5 10 12 6 9 11
313 6 1 9 8 2 11 5 4 12 7 10
414 1 5 2 7 10 3 6 11 8 12 9
515 10 4 11 6 1 12 7 2 9 3 8
6,6 9 11 3 1 5 8 12 10 2 4 7
7T, 7 8 2 12 10 4 9 3 1 11 5 6
88 12 9 7 2 3 10 11 6 4 1 5
999 3 8 6 11 12 1 2 7 5 10 4
0710 11 12 5 4 7 6 9 8 1 2 3
11711 5 6 10 12 9 4 1 3 7 8 2
12112 7 10 8 9 11 2 4 5 3 6 1

Impose on the set of the subgroups H C G the relation
Hi~Hy, — existsT€G: H =7 'Hyr

and denotes &€ := {Cy,...,Cs}, the set of all the conjugacy classes.
We associate to each such class its degree

deg(Ci) = [G : H],H S Ci,

and its weight
w(C;) := #G/ deg(Ci) = #H, H € C;,

we enumerate & so that?
w(C1) < w(Ca) < --- < w(Cs)

and we impose a partial ordering < on & setting C; < C; if the following
equivalent conditions

e there are H € C; and H' € C; such that H C H’,
e for each H € C; there is H' € C; such that H C H’,

hold.
Since in this setting we have [G : H'| = [G : H|[H : H'] we also have

Ezxample 43.1.2. G = A4 has five conjugacy classes, each consisting of the
subgroups of order (respectively) 1,2,3,4,12:

C1 has deg(Cy) = 12,w(C1) = 1 and consists of
H11 = H1 = {Id},

3 In particular: C; = {{Idg}} and Cs = {G}.
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Cs has deg(Cz) = 6,w(C2) = 2 and contains of

Hyy = Hp = {Id, g3},

Hyy = giHagy' = {Id,gio},

Hys: = goHagy' = {Id,g1o};
Cs has deg(C3) = 4,w(C3) = 3 and contains of

H31 = H3 = {Id;92;94};

H3y = grHzg;' = {1d,g5,96},

Hsz = 95H3951 = {Id, 97,99},

Hzy = geHzgs = {Id,gs,911};
C4 has deg(Cs) = 3,w(C4) = 4 and contains of

Hy = Hy = {Id, g3, 910, 912};

Cs has deg(Cs) = 1,w(Cs) = 12 and consists of

Naturally we have

C1-<Cg-<C4-<C5, C1 < C3 <Cs.
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O

Let now E be a finite set, n := #F, and denote Sg the group of the

permutations of the set F.

Definition 43.1.3. Each group morphism & : G — Sg is called a represen-

tation of G as a permutation group of degree n.
It is said to be

o faithful if ker(®) = {Idg},
e transitive if for each x,29 € E there is g € G : &(g)(xo) = x.

A representation ¥ : G — Sp is called equivalent to @ (denoted: ¢ ~ @)
if there is a bijection © : E — F satisfying ¥(g) = © o ®(g) 0 O~ for each

geqG:
O
le e
e 29 g

Remark that

(1) ker(®) = ,cply € G: 2(9)(z) = z};
(2) if ¥ is equivalent to @ we have
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e ker(P) = ker(¥),
e {9eG:P(g)(x)=a}:2€eE}={{geG:¥(g)(x) =2} :2€F};
(3) if @ is transitive, then the set
Co={{geG:P(g)(zx)=x}:z € E} €&
is a conjugacy class which is called the conjugacy class associated to @.

Assuming & to be transitive, fixing x¢ € E, and denoting

Hy = {g € G s ®(g)(x0) = o},

(G/Hy), :={gHp : g € G} the set of the left classes of Hy,

O the bijection © : E — (G/Hy), defined O(z) = {g € G : (g)(zg) = z},
p: G = S(a/m,), the representation p(h)(H') = hH', for each h € G and
each H' € (G/Hy)

then

Lemma 43.1.4. p ~ &. a

Corollary 43.1.5. For a finite group G, denote € the set of all transitive
representations of G as permutation group and € the set of the equivalency
classes of the transitive representations of G as permutation group: € :=
&/ ~.

We obtain a bijection between € and £ by associating to each I' € € the
conjugacy class Ce associated to each @ : G — Sg belonging to I.

In particular, there are transitive representations of G as permutation
group of degree n only if n =[G : H| for some subgroup H C G. O

On the basis of this, we can associate to each C; € £ a transitive repre-
sentation p; : G +— Sy, di = #C; over the set of left classes of some H € C;.

Ezample 43.1.6. With G := A, and Hy = {Id, g3} we can consider the left
classes of Hy which are

L21 = {Idag3}a L22 = {92797}; L23 = {g4vg5}a
Loy = {g6,911}, L2s := {98,990}, La2s := {910,912}

thus obtaining a representation ps : G — Sg in which we have

p2(gl) = Id, 02(92) = (1a273)(4a576)a
P2(93> = (274>(3a5) p?(g4) = (1a372)(4a675)a
P2(95) = (1’354)(2’&5)’ p2(96) = (1,4,3)(2,5,6),
P2(97) = (1’255)(3’&4)’ p2(98) = (1,5,4)(2,6,3),
p2(99) = (175a2)(374a6)7 P2(910) = (1a6)(274)a
p2(g11) = (1,4,5)(2,3,6), p2(g12) = (1,6)(3,5).

In the same way, with Hs = {Id, g2, g4}, the left classes of Hs are

= {Id,g2,94}, L3 {93, 96,99}
L3z = {g5.910,911}, Las = {g7,98, 912},

t~
h
|
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thus obtaining the representation p3 : G — Sy in which

p3(g1) = 1d, p3(g2) = (2,4,3),
p3(g3) = (152)(374)5 (94) = (25374>a
p3(g5) = (15372>5 (96) = (15273>a
P3(97) = (1a4’2)a (98) = (1a4a3)a
p3(99) = (15234)5 (10) = (153)(234)5
ps(g1) = (1,3,4), 03(912) = (1,4)(2,3).
Finally the left classes of Hy = {Id, g3, g10, g12} are
Ly = {Id, g3, 910,912},
L42 = {925965975911}5
L43 = {94595598599}7
thus obtaining the representation ps : G — Ss in which
pa(g1) = palgs) = palgio) = pa(gi2) = Id,
pa(92) = palgs) = palgr) = palgn) = (1,2,3),
pa(9s) = palgs) = palgs) = pa(ge) = (1,3,2).

O

Let & : G — Sg be a (not necessarily transitive) representation of G as
permutation group. Let C € £ be a conjugacy class and let H C G be any
member of C; the number

m:=#{e€ E:P(h)(e)=e:he H}

is clearly independent on the choice of H € C but depends on the represen-
tation @ of G as permutation group and on the conjugacy class C.

Definition 43.1.7. Such number m is called the mark of C in the represen-
tation .

More in general if we consider the H-orbits of E and we denote «; the
number of orbits consisting of i elements* such numbers are independent on
the choise of H and depend only on ¢ and C.

Remark that we have the relation #E =n = ia;.

Ezxample 43.1.8. Let us choose the representation ps : G — S3 of G as per-
mutation group and the group H := Ho.

Then we have 3 orbits of cardinality 1, so that m = 3.

If we instead choose ps5 : G — S1o for H := Hy we obviously have 6 orbits
all of cardinality 2. |

4 S0 that, in particular m = ;.
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Setting C := C; < C; =: C’, using freely the corrent notation® and defining

e B = {C € (G/H),: C C C'}, for each C' € (G/H):,
e B:= {BC/ :C' e (G/H/)l}

we have the partition (G/H); = UpesB in terms of the left-action of G. Thus
we have a left-action of G on B which can be identified, via C’ — B¢, with
the one on (G/H');.

Let us fix, for any conjugacy class C;, an associated transitive represen-
tation p; : G — Sc;,p;(g) : H +— gH'.

By the consideration above on the action of G on B , the mark of C in the
representation p;% is independent not only on the choice of H € C; but also on
the choice of the transitive representation p;. Such number therefore depends
only on the couple (C,C’) = (C;,C;) and is called the incidence number or
mark of (C;,C;) and will be denoted J(C;,C;) = m?.

0

1>
; = i=1
It satisfies m] = #G ‘=
j=s
deg(C;) i=1.

Ezxample 43.1.9. The matrix of incidence number for A4 are

1 2 3 4 5
1112 6 4 3 1
210 2 0 3 1
310 0 1 01
410 0 0 3 1
5(0 0 0 0 1

O

Let @ : G — Sg be a representation of G as permutation group and
let us consider any orbit w := {®(g)(x) : ¢ € G}; by restriction we thus
obtain a representation G — S, which necessarily is equivalent to one of
the representations defined by a C;, 1 < i < s. Denoting, for each i , a; the
number of orbits w thus equivalent to C; we can therefore associate to @ the”

symbol [Y7_; a;C;] denoting that the representation [®] is made up
of ay representations equivalent to [C1], az representations equivalent
to [C2], and so on.

With modern notation we associate to @ an element Zle a;C; in the free
Z-module L = >}, ZC; with basis €.

In conclusion:

® In particular H € C, H € C' and H C H'.

6 Id est the number of elements H' € C; which satisfy p;(h)(H') = H' for each h €
H.

" Burnside W., op. cit., p. 238



43.1 Representation of Groups as Permutation Groups 195

Proposition 43.1.10. The application U : & — > I_, a;C; defines a bijec-
tion between the set of all equivalence classes of the representations of G as
permutation group of degree n and the set of elements >.:_; a;C; € L¢ such
that a; € N for each i and y;_; a; deg(C;) = n.
If we moreover denote, for each j p; the mark of C; in the representation
@ we have the relations .
My = Z azmz
i=1

a

In the same way, if we consider the H-orbits of the elements in C; and
we denote a(u)g the number of such orbits consisting of v elements® such
numbers are independent also on the choice of the transitive representation
p;j, thus depending only on the couple (C;,C;).

Remark that we have the relation

Z va(v)! = deg(C;).

Let us consider any such sequence A7 := (a(1)7,a(2)?,...,a(v)?,...) and
let us remark that a(v)] # 0 = v < deg(C;) so that, in particular, there
are at most a finite number of values v for which a(v)! > 1.

The sequences Ag can be stored more compactly as
Bf = [(a1,v1), .-, (ar, )] i r 21,1 <1y <vp <---,a; > 1 for each i,
where v; are the values for which aq; := a(yl)g #0.

Definition 43.1.11. The partition array defined by G is the array, whose
rows and columns are indexed by conjugacy classes of G and whose (i, j)th
entry is B}

Example 43.1.12. The array (Af) for Ay is

| 1 2 3 4 5
1| (12,0,...) (6,0,...) (4,0,...) (3,0,...) (1,0,...)
2 | (0,6,0,...) (2,2,0,...) (0,2,0...) (3,0,...) (1,0,...)
3| (0,0,4,0,...) (0,0,2,0 ) (1,0,1,0,...) (0,0,1,0 ) (1,0,...)
4 | (0,0,0,3,0,...) (0,3,0,...) (0,0,0,1,0 )  (3,0,...) (1,0,...)
51| (,...,0,1,0,...) (0,...,0,1,0,...) (0,0,0,1,0 ) (0,0,1,0 ) (1,0,...)

and the corresponding partition array defined by A4 is

Uk W N~
_RIRI=_=
=L oy
— s W N

8 So that, in particular m? = a(1)

P
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Proposition 43.1.13. The rows of partition array defined by G are all dif-
ferent.

Proof. For any values i,j,1 < j < i < s it is sufficient to show that Bj: =+ Bf
Let us fix elements H; € C; and H; € C; and denote N; :={g € G : gHjg~'}
the normalizer of H; in G. Thus the claim follows from

a(1)} = [N; : Hj] # 0 =m] = a(1)].

%

43.2 Representation as Permutation Group of Roots

Let f(T) :==T"+aT" '+ -+ aT" "+ +an1T + a, € k[T] be a
monic, separable polynomial of degree n over a field k; denote

k the algebraic closure of k,
R :={a1,...,an} C k the set of the roots of f,
Ky :=kloa,...,a,], k C Ky C kits splitting field,
G(Ky/k) its Galois group

so that, in particular

n

FI)=T"+> a7 = [[(T - ay).

i=1 j=1

We have the natural representation of G(Ky/k) as a permutation group
of the roots of f

G(Ky/k) = Sw; = Sp, 0+ 55 o) = Qg (iy;
remark that

e the representation is independent on the enumeration of the roots®;
o G(Ky/k) is transitive.

Assume now that f has a factorization f = H;:1 p; into irreducible com-
ponents. G(Kj/k) then operates transitively over each 2R, ; denoting, for
each j, C;; the conjugacy class of the subgroup G(K,,/k) C G(Ky/k) we
have G(Kf/k’) = Zj Cij S EG(Kf/k)-

9 More precisely, let t € S, and defined §; = ay(;y for each 4; then for each
o € G(Ky/k) we have

o(Bi) = o)) = Qs,i(s) = Be—15,(;) for each 4;

so a different enumeration of roots simply give an equivalent representation of
G(K;/k).



43.3 Universal Lagrange Resolvent 197

Conversely, let us assume k to be infinite and let K.k C K C k

be a finite extension of k, [K : k] = n, and let us consider a faithful
representation G(K/k) — S, of degree n and the corresponding orbits
wi,...,wp of {1,2,... n}; if we set n; := #w;, we can reenumerate both

the orbits and the elements in {1,2,...,n} so that w1 = {1,...,n1},ws =
{ni+1,... 00} ..., wp = {Z:;llniJrl,...,n},nl < ng-- < n,. We can
than fix any element a; € w;,n;_1 < a; < n; and denote

G :={g9€GK/k):g(a;) =a;},

Kii={a €K gla) = a,g € Gy},

& € K; a primitive element so that K; = k[¢;],

P; € k[T] its minimal polynomial,

Ri = {&1,...,&n,} the conjugates of &.

Then, since k is assumed to be infinite, we can assume that the sets R; are
disjoint; therefore f := [, P; is separable. Clearly

{0’ S G(K//{Z) : 0‘(&']‘) = gij for each Z,j} = {IdG(K/k)}
so that K = k(fll,.. .,fij,. .. ;grnT) .

Corollary 43.2.1. Ifk is infinite, for each finite extension K,k C K C k the
Galois field G(K/k) can be faithfully represented as G(Ky/k) for a separable
polynomial f € k[T). O

43.3 Universal Lagrange Resolvent

Let us fix an integer n and let us denote

.A = k[Xl, N ,Xn],

Fi=k(X1,...,Xn),

01, -+, 0y, the elementary symmetric functions of Xy, ..., X,,
Z C A the ideal generated by o1, -, 0,

S :=k[o1, -+, 0n],

K:=k(o1, - ,0n),

F(T) € S[T] the polynomial

n

F(T)=T"+ i(&)iaﬁm =[] - x,).

=1
We have

(1) F D K is an algebraic extension F = Kp;

(2) A is the integral closure of S in F;

(3) the representation of G(F/K) — S¢x,,.,
group of the roots of F' is an isomorphism.

X,} = Sn as a permutation
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Under this isomorphism, we can therefore associate to each subgroup H C S,,
the corresponding invariant field

(H) :={a€F:h(a)=a, foreach h € H}
and we have

4) F D I(H) is an algebraic extension;

5) I(H) is a separable extension of K;

6) H = G(F/I(H));

7) the integral closure of S in I(H) is Ay := ANI(H);

8) there are elements ¥ € Ay which are C-primitive for |(H), id est which
satisfy |(H) = K[&];

(9) Ap, being integrally closed and noetherian, is a finite S-module;

(10) (H) = {§ : a € Au,b € §;b # 0} C k(o,--,00)[X1,..., Xp] =
’C[Xl, N ,Xn]lo;

1) I(H) is the fraction field of Ap;

2) the rank of Ay as a S-module is dimg(I(H)) =[S, : H] := #L}{;

(13) the finite set B := {X{*X5?--- X2 0 < a; < i}, #B = n!l is both a

k-basis of A/Z and a basis of A as an S-module;

On the basis of (8) we can introduce the following

Definition 43.3.1. Each K-primitive element ¥ € Ay for |(H) is called a
resolvent of H and is said to be homogeneous if it is a homogeneous polyno-
mial in A.

The minimal polynomial Ly € S[T] of ¥ over K is called the Lagrange
resolvent of H associated to W.

Erample 43.3.2. The Vandermonde determinant

1 1
X, Xy o X,
2 2 2
ve=T]x - X)) = Xi Xy o Xg
= S
Xinfl X;zfl . Xg_l
is a K-primitive element for Ay; its minimal polynomial is Ly = T? —
Disc(F) € S[T]. where Disc(F) = [, ,;(X; — X;)? is the discriminant of
the polynomial F(T) € S[T]. O

19 1n fact if = € I(H), then there are a, 8 € A, 8 # 0 such that 2 = %
It is sufficient to define

bi=[[ B esS\{0}, a=a J[ o®cAn

0€ESy o€S,\{I1d}

in order to have z = 3.
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Lemma 43.3.3. If U € A and H := {g € S, : g(¥) = ¥} then ¥ is a
resolvent of H. a

Remark 43.3.4. Each group H possesses homogeneous resolvents provided k
is infinite. In fact, if ¥ € Ay is a K-primitive element of degree d, denote, ¥,
the homogeneization of ¥ by toy,

X, X,

W, = (toy) W (—, - .

¢ (01) (t0'1, tO’l

Consider now a set of e := [S,, : H| elements
{T1,...,7e} CSn

such that {r1 H,...,7.H} is the set of all the left classes and let us denote
P(T) :=[I;_,(T—7:(¥)) and D(t) := Disc(P;) € S[t] its discriminant. Since
P (T) =Ly, D(U%) # 0; thus D(t) # 0 and, k being infinite, there is A € k
suclh that D(A\) # 0 so that ¥y , which is homogeneous of degree d, is K-
primitive, thus being the required homogeneous resolvent. Its corresponding
Lagrange resolvent is Ly, = P\(T). O

Theorem 43.3.5 (Lagrange). Let H C S,, be a subgroup and ¥ € Ay a
resolvent of H. Denoting Ay := Disc(Ly) the discriminant of the Lagrange
resolvent of ¥, we have
v
Ap C {M,f € S[T]}.

Ay
Proof. Let e =[Sy, : H] and {m,...,7} C Sy, be such that {mH,...,7.H}
is the set of all the left cosets of H, with 7 =Ids,. Set ¥; := 7;(¥) for each
1 so that

e

Ly = H(T —W) =T+ i(fl)iC’iT‘i*i, C; eS.
=1

i=1
If we denote Si,...,Sc.—1 the elementary symmetric functions on ¥s, ..., ¥,
since
e—1
T 4y (-1 8T
j=1
= [T -w)
i=2
- T-0

= Tl (W -T2 4 (W2 - Oy — )T " - -

is a polynomial in S[¥][T], we have S; € S[¥] for each j.
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Consider g € Ap, denote g; := 7;(g) for each ¢ and set, for each m,0 <

m < e,
e

N i= Zgj%m = ij(gwm) €Ss.
j=1

Jj=1

The g;s can be solved a la Cremer in terms of the h,,: setting

ho 1 1 1 1 1
hl WQ cee We 'pl IPQ e ]pe
D= . . and oy = . .
heoy WS ..o wett vt owett L e
so that
637 = H (W] — Wl)Q = DISC(Ew) = Alp
1<i<j<e
we have g = %.

We prove our claim if we show that & := dgD € S[¥]: we know that &
can be expressed as E(Ws,...,¥,) with E € S[¥][Ts,...,T,] symmetric in
Ts, ..., Te; thus the Fundamental Theorem on Symmetric Functions grants
the existence of a polynomial F' € S[¥][Y1, ..., Ye_1] for which

E(WQ,...,WH) = F(Sl,...,Se_l) S S[W]

as claimed. O

43.4 Cauchy modules

Let us use the same notation as in Sections 43.2 and 43.3 and let us consider
a monic, separable polynomial

f(T)=T"+a,T" ' 4 +a,T" "+ 4+ an1T +a, € k[T]
Definition 43.4.1 (Ampére). The n interpolating functions
fz(T) = fi(Xla s 7Xi715T) € k[le s 7Xi71][T]71 < 1 <n

are recursively defined as

— fim1(T) — fi—1(Xi-1) l<i<n.
) <

f1(T) := f(T) and fi(T) : T X,
O

Definition 43.4.2. The polynomials f;(X;) = fi(X1,...,X;),1 <i<n are
called the Cauchy modules associated to f. a
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Erample 43.4.3. For n =5 we have

(X)) = XP+Xta+ XPas + Xiaz + Xya4 + as,
fo(X2) = X3+ X5X1+ X3XT + Xo X} + X

+ (X3 + X3X1 + Xo X7 + X7)

+ ax(X3 4+ Xo X1 + X7)

+ a3(Xo + X1) + ag,

X34+ X3Xo + X3 X3 + X3 + X7X,
X3Xo X1 4+ X2X, + X3 X7 + Xo X7 + X3

ar (X3 + X3Xo + X5 4+ X3X; + Xo X1 + X7)
az (X3 + Xo + X1) + as,

X7+ X4 X3+ X2+ X4 Xo + X3X

X34 Xa X1+ X3X1 + Xo X1 + X7

a1 (X4 + X3+ Xo + X1) + aq,

X+ Xy +Xs+Xo+ X1 +aq

f3(X3)

+ + + |

fa(X4)

+ o+

f5(X5)
O

Lemma 43.4.4 (Cauchy). The Cauchy modules satisfy deg;(f;)+i=mn+1
and lc(f;) =1 for each i.

Moreover, under the further assumption that the roots are all distinct, for
each i, the roots of fi(au1,...,a;i—1,X;) are {a;,i < j < n}. O

Proof. The claims being true by definition for ¢ = 1 we inductively have
filar, ..., ai_1,a;) = Jii(an, aizg,0p)—fia(Q1,n0io2,ic1) 0 for each

Qj—Qi—1

Ji<j<n o

Lemma 43.4.5 (Cauchy). Assume g € k[X] is such that there is u € k for
which g(a) = u for each root o € Ry of f. Then Rem(g, f) = u.

Proof. The polynomial Rem(g, f) — u has degree less then deg(f) and van-
ishes in each root of f; therefore is zero. a

Let gn(X1,...,X,) € A = k[Xy,...,X,1][X,] be symmetric in the
variables X1,..., X, and recursively denote

gn—1 := Rem(gn, fn(Xy)) € k[X1,..., Xn—1] the remainder of the division
of gn by fn in k[X1,..., Xn-1][X4];

gn—2 = Rem(gn—1, fn—1(Xn-1)) € k[X1,...,X,—2] the remainder of the
division of g,—1 by fn—1 in k[X1,..., Xn—o][Xn-1];

gi := Rem(g; 11, fiy1(Xit1)) € k[ X1, ..., X;] the remainder of the division
of gip1 by fivr in k[Xy, ..., Xi][Xipa];
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g1 := Rem(go, f2(X2)) € k[X;] the remainder of the division of g2 by f2 in
k[Xq][Xo];

go := Rem(g1, f1(X1)) € k the remainder of the division of ¢; by fi in
k[Xl]v

remarking that we can assume g; € k[ X1, ..., X;] instead of the weeker g; €
k(X1,...,X;) because le(f;) = 1.

Remark 43.4.6 (Cauchy). Each g; is a symmetric polynomial in the variables
X1y, X,

Moreover, repeatedly applying Lemma 43.4.5, if #0R¢ = n, id est all the
roots of f are distinct we have that, for each i, g;(a1,..., ;) € k(a, ..., q;)
satisfies

gi(al, . ,ai) = gi+1(a1, . ,ai,aj),i < _j <n

so that go = gn(aa,...,an).

Done alors la valeur [go] de [gn(aq,...,an)] , determinée comme
nous [’avons dit ci-dessus, sera une fonction rationelle et méme
entiére, par conséquent une function continue des coefficients ren-
fermés dans f(x). D’ailleurs chacun de ces coefficients représentera,
au signe preés, ou la somme des racines de léquation [f(x) = 0],
ou la somme formée avec les produits qu’on obtient en multipliant
ces racines deux a deuzx, trois a troix, etc. Donc la valeur trouvée de
[go] pourra étre encore considérée comme une fonction continue des
racines de l’équation [f(z) = 0]; et dans la formule

[gn(ala .- "an) = 90]

qui se vérifiera toutes les fois que les racines [(aq,...,qn] seront
imégales, les deuxr membres varieront par degrée insensible en méme
temps que ces racines.
Il est mainteneant facile de s’assurer que [the result] s’etende, avec la
formaule [gn(aq,...,an) = go], au cas méme od l’équation [f(x) = 0]
offre des racines égales. Car des racines égales de 'équation [f(x) =
0] peuvent étre considérées des valeures variables de racines sup-
posées d’abord inégales, mais trés peu différent les unes des autres;
et puisque la formule [gn(c1,...,an) = go] , dont les deux mem-
bres varient par dégres insensibles avec les racines, par conséquent
avec leurs différences, continuera de subsister pour des valeurs de
ces différences aussi rapprochées de zéro que l’on voudra, elle sub-
sisteracerainement das le cas méme ou ces différences viendront a
s’évanouir. '

11 A. Cauchy Usage des fonctions interpolaires dans ls determination des fonctions

symmetriques des racines d’une équation algébrique donnée C.R. Acad. Sci. Paris

11 (1840) p.933,
In: A. Cauchy Oeuvres t. V, Gauthier—Villars (1882) Paris , pp. 476-7.
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Thus we have:

THEOREME II. Soient

f(z)
une function entiére de x, du degré n, et
— — b
flag) = DI o p g - [T ZSH

les functions interpolaires de divers ordres qui renfermant avec la
variable © diverses valeurs particoliéres a,b,c,... de cette variable.
Concevons d’ailleurs que les letters

représentent les n racines de l’équarion

flz)=0

et désignon par

F(aabaca"'ah’k)

une function entiére mais symmétrique de ces racines. Pour éliminer
de cette méme fonction les racines

k.h,...,c,b,a
il suffira de la diviser successivement par les divers terms de la suite
flasb,e,... b k), fa,bc,... h,),..., f(a,b,c), f(a,b), f(a),

considérés le premier comme fonction de k, le second comme fonc-

tion de h,. .., lavant-dernier comme fonction de b, le dernier comme
fonction de a. Le dernier des rests ainsi obtenus sera indépendent
de a,b,c,...,h,k, et représentera nécessariament la valeur U de la

fonction symmétrique
F(a,b,e, -+, h, k)
exprimée a l'aide des coefficients que renferme le premier membre de
Uéquation [f(z) = 0].12
In conclusion the argument above gives:

Theorem 43.4.7 (Cauchy). Let g,(X1,...,X,) € A be a symmetric poly-
nomial in the variables X1,..., X, and let g,_1,...,g90 be obtained as above
by successively dividing gn (X1, ..., Xn) by fu(Xn), fa—1(Xn=1),..., f1(X71).

The last remainder go will be independent of X1,...,X, and gives the
value gn(a1,...,an) as a function of the coeffiecients ay,...,a, of f. a

12°A. Cauchy, op. cit., pp. 474-5.
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Erample 43.4.8. For n = 3 we have

[(X)) = XP+ XPay + Xiaz + a3,
f2(X2) = X3+ XoXi+ X7+ a1(Xo+ Xy) +az,
f3(X3) = Xz3+Xo+Xi+a

For the symmetric polynomial
g=X3Xo+ X3X3 + X3X, + X5 X1 + X3X{ + Xo X}
we have

g2(X1, X2)

—2X3 —4X3X, — 6X3X] —4Xo X —2X]

+ a1 (—4X3 —9X3X, — 9Xo X7 — 4X3)
+ a?(=3X3 - 6XoX; —3X3) — a3 (X2 — X1)
a(X1) = Xpay + Xi{a?+ Xiaiaz + atas — 243,
go = a%ag — 2a§ — ajas.

a

Let us now extend the notations of Sections 43.2 and 43.3 by denoting

F the prime field of k,

J=1(oy +a1,00 —ag,...0n — (—1)"a,) C A

A= k[Xl, N ,Xn],

Je = Jk[Xq, ..., Xn],

B:={X{"X3? - X 0<a; <i},

B = {X{"X5% - X 0<a; <n-—1i},

I':=G(Ky/k) CS,,

R : I' = Sy, = S, the canonical representation of I as a permutation
group of the roots of f defined by

R(u) = syt ulas) = as,(i);
“: A — Ky C k the k-algebra morphism defined by
g=g(ai,...,ay,), for each g € A.
Remark 43.4.9. For each g € A and each s € S,, we have
s(9) = s(g)(en,- .- 0m) = s (glon,. ... on)) = 5(3)

where S,, is interepreted as

S, = G(F/K) in the left hand side and
S, = G(K;/k) in the right hand side.

Remark 43.4.10. For each g(X1,...,X,) € A=k[Xy,...,X,] which is sym-
metric in the variables X1,..., X,, we have both
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e g€ kand
e g—gel

Moreover, with the present notation Cauchy’s Theorem 43.4.7 can be read
as

Let g(X1,...,X,) € A be a symmetric polynomial in the variables
X1,...,Xy; set g, := g, and let g,_1, ..., g0 be obtained by succes-

Sively diViding gn(Xh s 7Xn) by fn(Xn)v fnfl(anl)a ceey fl(Xl)-
The last remainder gq satisfies

90:§€F(ala"'aan)'
O

Proposition 43.4.11 (Machi—Valibouze). The reduced Grébner basis of
J (and also of J¢) w.r.t. any termordering < induced by X1 < Xo < ... < X,

18 {fl,...,fn}. O

Proof. Remark that for each ¢ we have T(f;) = X Z-"_”l for any term-ordering
< induced by X; < X3 < ... < X,,. Therefore Buchberger’s First Criterion
(Lemma 22.5.1) grants that {fi,..., fn} is the Grobner basis of the ideal it
generates w.r.t. any such termordering.

We have therefore just to prove that

J=1(f1,..., fn)-

Clearly, Cauchy’s Theorem grants J C I(f1,...,fn) and equality is a
direct consequence of the remark that N(I(f1,..., fn)) = B’ so that

dim(A/J) = #B = n! = #B' = dim (A/I(f1, ..., fa)) .
O

To complete our argument, we need to consider the ”generic” monic poly-
nomial

f(M)=T"+a,T" ' +.. .+ an 1T +a, €F(ay,...,a,)[T]

and express the associated Cauchy modules f;, which are symmetric polyno-
mials in X7q,...,X;, as elements in

fl’ S F(al, . ,an)(Xl, . ,Xi).
Lemma 43.4.12. With the present notation it holds:

(1) fn(T) - fn(Xn) =T —Xn;

(2) f(f) = forn(M T (T = X5) + X7, fiX) [T,2 (T — X;) for each
v,1 <v<n;

(3) F(T) = F(T) + X0, fi(X) T2 (T — X5); |
(4) F(T) = F(T) = 15 (0 = (~1)'oi) T = S, Ai(X) [T5(T - X5).
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Proof. (1) requires just a trivial verification;
(2) We have
[i(T)T = Xim1) = fiea(T) = fim1(Xi-1)
so that (i = 1) J(T) = f1(T) = fo(T)(T — Xi) + f1(X)
Thus, inductively,

sy = ﬂ(T)ﬁ(T—X»+§fi<xi>ﬁ<T—Xj>
= (AE) +hn (D@ - X)) ﬁ(T - X))
+ gfxxnﬁw—xj)
@) _;<TX]->+§;fz—<Xz—>i1_Ii<TXj>;
(3) (1) implies
fn<T>ﬁ<TXj> - fn<Xn>j(TXj>+f[1<TXj>

fn(Xn) H (T — X;) + F(T).

1

The claim than follows by substituting this result in the formula of (2)
forvi=n—1.
(4) Trivial. O

Denoting hg(Xy,...,X;) the d** complete sum in k[X1,...,X;], id est
(Compare Definition 6.3.2) the sum of all terms of degree d in k[X7, ..., X;]
we have

Proposition 43.4.13. It holds, setting ag =1,

(1) ha (X1..., X“Q’)gé):';g_(il """ Xiz2Xiz1) hg—1(X1,...,X;) for each d and

eachi<n;
(2) fi(Xy) = Z;SH an—it+1—agha(X1,..., X;).

Proof. (1) Trivial
(2) Thus
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fi(Xi)
_ fic1(Xi) = fi1(Xia)
Xi— X
n—i+2
_ ZJF . ha(Xi, ..o, Xi2, Xi) —ha(X1, ..., Xio0, Xi1)
n—i+2—d Xi — Xi—l
d=0
n—i+2
= Z an—it2—dha—1(X1,...,Xs)
d=1
n—i+1
= Z an—iy1—aha(X1,..., Xi).
d=0
O
Corollary 43.4.14. (Compare Proposition 6.5.15 and Fact 6.3.14)
The Grébner basis of T = 1(o1,...,0,) w.r.t. the lex termordering <
induced by X1 > Xo > ... > X, is
{hn—i-i-l(Xla R 7Xi)a 1<i< TL}
Proof. We have just to apply Propositions 43.4.11 and 43.4.13 with a; =
.=a, =0. O

Historical Remark 43.4.15. When stating Proposition 6.3.15 and Fact 6.3.14,
I was completely unaware of Propositions 43.4.13 and of Cauchy’s Theo-

rem 43.4.7 which imply Propositions 43.4.11.

Only later I realized that they were reported in Valibouze’s Habilitation

where the history is also told:

L’idéal [J] des relations symétriques est engendré par les n polynémes
[c1 — a1,09 — ag,...,0n — ay]. Augustin Cauchy utilise les fonc-
tions interpolaires introduites par Ampére pour calculer un systéme
de générateurs qui se révéle €tre une base standard réduite, pour
Uordre lexicographique, de lidéal [J]. Cette base standard sert a tester
Vappartenance o Uideal [J] et a évaluer sur k un polynéme symétrique
en les racines de f. Comme elle est réduite, la base standard de [J]
permet de retrouver la base naturelle de [A/J]. Cauchy calcule cette
base standard pour n =4 et en 1990 et avec Antonio Machi nout la
calculons pour tout n en utilizant des séries génmeratrices tronquées
[--+]. Alain Lascoux suggére une démonstration plus courte qui fait

appel aux A-anneaux et auz différences divisées sur les S-fonctions.
13

(1998) p. 23.

O

13 Valibouze A., Théorie de Galois constructive, Mémoir d’Habilitation, Paris 6
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43.5 Resolvents and Polynomial Roots

Let us consider again the monic, separable polynomial
f(T)=T"+a,T" ' 4 +a,T" "+ -+ an 1T + a, € k[T]
and use freely the same notation as in Sections 43.2 and 43.3.
Definition 43.5.1. Let ¥ € Ay be a resolvent of H C S,, and let
Lylo1, -, 00, T] € ko1, -+, 00][T] = S[T]

be the Lagrange resolvent of H associated to W.
The (H,¥)-Lagrange resolvent of f is the polynomial

Ly f[T] = Ly[—ar, -, (1) 'a;, -, (=1)"a,, T] € k[T).
If Ly s is separable, one sais that ¥ is f-separable.

Proposition 43.5.2. If k is an infinite field and A C k is a ring whose
fraction field is k, there is a resolvent W € A[Xy,...,X,] of H for which
Ly ¢ is separable; moreover ¥ can be chosen homogeneous.

Proof. Since the roots «; of f are distinct, the n! polynomials

<Z Uiozs(i)> —1le k[Ul, ey Un],
=1

where s runs among the elements of S,,, are all different.
Thus denoting, for each H' € (S,,/H);,

G = H ((Z Uias(i)> — 1) € k[Ul,,Un]

seH’

we have ged(édg, o) = 1 for each H', H" € (S,,/H);, H # H".

Since A is infinite, we can choose u1,...,u, € A such that the elements
omr(ut, ... up), H € (S, /H), are all distinct.

For such values, we set

U= H <<iusz(z)> - 1) € |(H)ﬂA[X1,...,Xn].

seH i=1

Its conjugates in KC are the polynomials

Uy = H ((iuzXé(z)> — 1) ,H/ € (Sn/H)l

seH’

which are all distinct so that ¥ € A[Xy,...,X,] is the required resolvent of
H.
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We have Loy = [Iprees, /), (T —¥ur(a,. .., an)) which is therefore
separable.

The same argument as in Remark 43.3.4 proves that ¥ can be made
homogeneous: denote

(i), = (to )= )y (B, K
BUT) = Tlmes, m, (T — @)y
D(t) := Disc(P;) € S[t] = ko1, -+, 0n, t],

D(t) :=D(ay, -, an,t) € Alt].

We clearly have D(t) # 0 so that, A being infinite, there is A € A such that
D(A) # 0; thus

0 =, € (H)NA[X1, ..., X,]
is homogeneous of degree deg(¥) = #(H), and its conjugates in F are
O = (W) € AlX1,.... X, H' € (Su/H):.

Denoting, for each H' € (S,,/H);, O := Ops (a1, ..., o) wehave Lo 5 =
e, m, (T'— 0n) whose discrimiant satisfies D(A) # 0.
Therefore

e the Ops are all distinct,
e O is a homogeneous resolvent of H,
e Lo, ¢ is separable. O

Let us now denote

Z:=ZJ)={(B1,---,0n) €k :p(B1,...,B,) =0, for each p € J} C k™;

I':=G(Ky/k) CS,,

H := (S,/I), = {I's : s € S,} the set of the right classes of I' :=
G(Kys/k) C Sp,

N = #T.

Lemma 43.5.3. It holds

(1) = {(Ozs(l), .. .,as(n)) HCNS Sn},
(2) A/J = Spany(B'), A/J = Span, (B');
(3) both J and J¢ are radical.

Proof. (1) is obvious; (2) is a trivial consequence of Proposition 43.4.11; (3)
follows from

dimy, (A/VI) = #Z = n! = dimg (A/J).

For each I” € H let us denote

Wpr = (as(l)a-'-aas(n)) 18 € F/}a

Prr=T1lep (T - >ie1 UiO‘S(i)) )
mp =ZWp)={g€ A:g(f1,...,Bn) =0 for each (51,...,58,) € Wp}.
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We also denote W :=Wp, ¥ := Pp, m := mp.
Lemma 43.5.4. With the present notation, it holds
(1) the u-resultant of Z

vz =[] <T§:Uias(i)> € k[Uy,...,U,[T)

s€S,

factorizes into irreducible complonents as ¥z = [ cp Pre;

(2) the irreducible components of Z are the Wr:s : Z = Jp ey Wr;

(3) each mp: is mazimal in A;

(4) J= ﬂF’eHmF/f'

(5) mp = Z(Wp/) for each I € H;

(6) Ky = A/mp: for each I'" € H. O

Lemma 43.5.5 (Arnaudiés—Valibouze). Let ¢ € m, g € (\riew mpv.
r’'#r
Then m is generated by
{0‘1 +ay,020 —Qag,...,0p, — (—1)"an,g}.

Proof. Denoting a := J + (g), by assumption we have Z(a) = W = Z(m),
whence

(1) there is p € N for which!* m” C a,
(2) JCaCVa=m.

Since [ () mp | + m? = A there arew € | (| mp | and v € m” for
r’'eH r’'eH
r’'#r r'#r

which 1 = u + v. Therefore for each x € m, we have x = xu + xv with

zuem’ Ca, zveEM ﬂmp/ :ﬂmp/:JCa
r'eH I''eH
r’'#r
so that z € a. O

Let © be a resolvent of a subgroup H of S,, and denote
0:=0 = Oar,...,an);
0, =06,0,,...,0, the distinct conjugates s(0),s € S, of @ in F D K;
H,:={s€S,:5(0)=06;},1<i<w.

Remarking that 6 is a root of the (H, ©)-Lagrange resolvent Lo ¢[T], let us
assume that

(1) 6 is a simple root of Lo ¢[T], and wlog

4 A is noetherian.
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(2) its conjugates in Ky are 0.6,,....6,,1<r<u,

and denote

h:=Tl_,(T - ©;) the monic irreducible factor of Lo, ¢|T] in k[T7;
0 .= {@1, . -7@7"};

S:={s€S,:50;) €O, foreachi,1 <i<r};
g:=h(O) ee A=k[Xy,...,X,] foreachi,1 <i <.

Theorem 43.5.6 (Arnaudiés—Valibouze). With the present notation we
have

(1) The I'-orbit of © in F is O,

2 rcSclU._,H, and [S:T)=[SNH:I'NH],

B) I'=S=U,_,H < m=1I(01+a1,02 —as,...0n — (—=1)"an,g).
Proof.

(1) For s € I', since h € k[T, we have

e ~ ~

h(s(0)) = h(s(0)) = s(h(O)) = 5(0) = 0

therefore s(©) € O.
For each 7,1 < i < r, since h is irreducible, there is s € I' for which
;E\@/) = 5(6) = O;; since, with the same argument above, we have
h(,;E\(9/)) = 0 then necessarily s(©) = 0;.

(2) The inclusion S C |J;_, H; being trivial, let us prove I' C S: for s € I’

we have
({818 = (61,80}

therefore the same argument as above allows to deduce

sel' = s(évz) = $(6;) for each 4,1 <i <,
— s(@;)e{@Nl,,é;} for each 7,1 <¢ <,
= $(0;) €{61,...,0,} foreachi,1 <i<r,
= s
Moreover

e O is the S-orbit of O,

e {s€85:5(0)=60}=SnNH,

o {sel':s(®)=0}=INH,

whence r = [S: SN H] = [[": I'N H] so that

[S:SNH|SNH:I'NH|=[S:T[I":T'NH]

gives the required [S: ' = [SNH : I'N H].
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(3)
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Clearly g(51, ...

,Bn) = 0 for each (B1,...,08,) € Wr.

Therefore, Lemma 43.5.5 reduces the statement to I' = S = J._, H; iff

9B, ...

We have

<~
—

,Bn) # 0 for each (B1,...,0,) € U Wr.

r’'eH
r'#r

9(Br, .-, Bn) # 0 for each (B1,...,B8.) € |J Wr

r’'eH
r'#£r

h(©(ag(y, - - > asmy)) # 0 for each s €S, \ I’
h(s/(\é/));éOforeaChSESn\F.

Since h is a simple factor of Lo ¢[T'] the only s € S,, for which h(;z\@/)) =0
are those satisfying s(©@) € O id est the elements in J;_, H;.

Thus

!

!

<~

m= ]1(0‘1 +ay,00 —as,...0p — (—1)"an,g)

9(Br,- -, Bn) # 0 for cach (B1,...,8,) € |J Wr

r’'eH
r'#r
—_—

h(s(@)) # 0 for each s € S, \ I

s ¢ | J Hi implies s € S, \ I’

i=1

OHZ' cr
=1

which, by (2) is equivalent to I' = S = (J;_, H;.

43.6 Lagrange resolvent and Galois group

Let

e H be a subgroup of S,

o c:=[S,: H|,

e O a resolvent of H,

e ©=0,...,0, its distinct conjugates in F over K,
e Hi:={s€S,,:5(01)=06;},1<i<e,

e 0 := é,

e v the multiplicity of 6 in Lo /[T,

so that
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(A) Lo[T] =TIi=, (T - 6:),

(B) Lo IT) =TT, (T-61),

(C) (Sn/H)1={Hi,1 <i<e}, Hi=H;
we wlog assume that

(D) ;=0 < i<u,

and denote

¢« 0:=1{61,....0,);
e S:={s€S,:5(0;) €0,1<i<v}.

Proposition 43.6.1. With the present notation
(1) if 0 is a simple root of Lo [T then

G(Kp/k(0)) = {s € G(Kf/k) : s(0) = 0} = G(Ky/k) N H;
(2) if v > 1, then

G(Kp/k(0) = {s € G(K/k) : 5(0)

0y = G(K;/k) N S;

(a) [k(0): k] = [G(Ky/k) : G(Kf/k) N S],
(b) G(K;/k)NS > G(Ks/k)NH and
(c) [G(Ky/k): G(Ky/k)n H] < v[k(0) : K].

Proof.

(1) For each s € G(Ks/k) and each p € A we have (Remark 43.4.9) s(p) =
s(p); so for each s € G(Ky/k) N H we have

0=0=5(0)=s(8)=s0)
so that G(Ky/k) N H C G(Ky/k(9)).
If, instead s € G(K/k)\ H, ©' := 5(O) is a conjugate of © in F over K
distinct from 0; since S, = G(F/K) and Lo ¢[T] = [[,cs, (T - s(@))

necessarily

s(0) =s5(0)=5(0)=0 £0 =0
and s ¢ G(K;/k(9)).
(2) For each s € G(K/k) we have s € {s € G(Ky/k) : s(§) = 0} iff, for each

—~ —_~—

i,1 <i<w, s(6;) = 0 which is equivalent to s(6;) € O; thus s € S and

the claim.
Moreover:
(a) since [Ky : k(0)] = #G(Ks/k(0)) = #(G(Kf/k) N S) we have
(o) s k) = —Ke M ROEIE) ik, k) G k) N 8l

(K k(O)]  #(G(Kp/k)NS)
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(b) se H = 5(01) =607 = s € S so that
G(Ks/k)NH C G(Kf/k)nS
(c) also we have
GKs/k)NnS={se G(Ks/k):5(6;) € 0,1 <i}
and G(Ky/k)NH ={s € S:s(0) = 6O}; thus

[G(Kf/k)NS:G(Ks/k)NH] = #{s(0):seGKs/k)nS}
#{s(©):s€ G(Ks/k)NH}

v

IN

and
(G(Ky/k) : G(Ky/k) N H]
= [G(Ky/k): G(Kf/k)NS|[G(Kf/k) NS - G(Ky/k) N H]
k() : K]v.

IN

Corollary 43.6.2. With the present notation

(1) if v =1 then the degree of 0 over k is [G(Ks/k) : G(Ks/k)N H|;

(2) ek — G(K;/k)CS;

(3) HiNG(Ks/k) C S for each i <v;

(4) HiNG(Kys/k) =0 for each i > v;

(5) G(Kf/k)n S = U;’ZlHiﬂG(Kf/k). o

Let us denote

e h(T) € k[T] the monic irreducible component of Lg ; for which h(6) = 0,

e 01 =0,0,,...,04 the G(Kf/k)-conugates of 6;

e R := {@1,...,@6},

o S(P):={seS,:s(P) =P} for each ¢ € R,

[ Rz :{QSERQSZQZ},lSZSd,

o S;:={s€S,:s(P) eR;, for each d € R;},

o O the set of the G(K/k)-orbits of R = Ule Ri;

so that

(E) h"| Loy, W f Loy,

() 1) =1L, (7 0.

(G) $1=5,R1 =0,

(H) #R = v, and (Proposmon 43.6.1) d = [G(Ky/k) : G(Kf/k) N S;] for
each 7,
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For each 2 € O, {2 NR;,1 < i < d} is the set, for each j, of the
G(K;/k)NS; orbits of £2; thus such set is independent on the choice of j but
depends only on (2. Thus we have, for each i,1 < i < d, each j,1 < j < d,
and each @ € 2 NR;

mo:=#(0L2NR;) =[G(K;/k)NS; : G(Ky/k)NS(P)];
as a consequence

(I) #82 = dmy, for each 2 € O,
(J) Z_Qeo mao = #Rl =V,

(K) ”(T) = 1geo llsca (T - 5) ’

Let us now introduce a second resolvent ¥ of the same subgroup H and
set ¥, := s(¥), s € H;.

Definition 43.6.3. Two monic (not necessarily irreducible nor squarefree)

factors F' and G of, respectively, Lo, 5 and Ly ; are said parallel iff there is
JC{L,...,e} for which

F(T):Z(T—@Nj) andG(T)ZZ(T—@;).
0

If F' and G are parallel and either Lg ; or Ly ¢ is f-separable then J is
unique.

Denoting, for each 2 € O
o Jo:={j:1<j<e0; €},
o Po(T):=1,c,, (T - q/j) ,

by definition, the factor in Ly ; parallel to h¥(T) is

I (r-2)=1I 11 (T@?)Qlan(T).

NREO¥EN Re0 jeo

Moreover for each 2 € O, {¥; : j € Jo} is a G(Ks/k)-orbit, so that

(L) Pq(T) € E[T] for each 2 € O,
(M) deg(Po) = #82 = dm.

In conclusion of this tour de force, we have

Theorem 43.6.4 (Arnaudiés—Valibouze). Under the present notation,
the factor of Ly s which is parallel to h¥ is [[,cn Pa; moreover for each
2 € O the polynomial Po(T) is an irreducible factor in k[T of L, 5; more-
over deg(h) | deg(Pg). O
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Let us impose on each N¢, e € N\ {0}, the ordering < defined by

(bl,...,be> = (al,...,ae) <= b; < a; for each 1.

Let us fix a subgroup H of S,, and let us denote (using the same notation
as Section 43.1)

& the set of all conjugacy classes of the subgroups of S,,,

C; € & the conjugacy class to which G(K/k) belongs,

C; € &€ the conjugacy class to which H belongs,

e:=[S,: H]|, ‘

(a1, ...,a.) the sequence such that A := (as,...,a.,0,...,0,...).

Theorem 43.6.5. With such notation, let © be a resolvent of a subgroup H
of Sn; let us assume that each irreducible factor of Lo ¢ is separable and let
us denote, for each j,1 < j < e, b; the number of irreducible factors of Lo .
Then

(1) (b1,..-,be) X (a1,--.,ae),
(2) if Lo,s is separable, id est O is f-separable, then

(bl,...,be): (al,...,ae).

Proof. Let {m,...,7.} C S, be such that {m H,...,7.H} is the set of all
the left cosets of H, with 7 = Ids,. Denote, for each i, H; := TiHTi_l,
O, :=1;(0) and 6; := ©; so that H; = H and ©; = ©. We have

€

Lo = [[@-6)),

i=1
Loy = H(T—ei),
i=1
Hi = {TGSnZT(@i):@i}.

Let us fix a value j,1 < j < e, and a k-irreducible simple factor p of Lg ¢,
deg(p) = j; then p = [[,c;, (T'— 0;) for some J C {1,... e}, #J = j.
If i € J, by Corollary 43.6.2.(1), j = deg(p) = [G(Ks/k) : G(K;/k) N H,;
let us therefore denote, for each 7,
nj=#{i:1<i<e,j=[G(Ks/k): G(K¢/k) N H]}.

Clearly we have both jb; < n; and Ag = (n1,%,...,7%,0,...,0,...)
which proves (1).
If, moreover Lo ¢ is separable, we have

€

S b =deg(Log) =e=> j2

i=1 =1 7

and, since jb; < n; = j"j—J for each j, we obtain (2). O
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43.7 Computing Galois groups of a polynomial

Given a value n let us denote

o £:={C1,...,Cs}, the set of all the conjugacy classes of S,,,
e for each 7,1 < j <s,
— Hj a subgroup H; € (j,
- €5 1= [Sn : Hj]
- 71 =Ids,,...,Tje; €S, elements such that {TnhHj, ... s Tie; H;} is the
set of all the left cosets of Hj,
— O; a resolvent of Hj,
- @jm = ij(@j), 1 <m< €5,
- Lo, = Hfé:l (T = Ojm) -
If Lo, s is f-separable, we denote, for each j < s

® ajp, the number of irreducible factors of Lg, y whose degree is m, for each
m,1 <m <ej;
o 1(O;, f) = (aj1,...,a4;).
Then combining Proposition 43.1.13 and Theorem 43.6.4 we obtain

Theorem 43.7.1. With the present notation and under the assumption that
all resolvents ©;,1 < j < s are f-separable, then the conjugacy class of
G(Ky/k) is Cr where v denotes the index of the row of the partition array sz
coinciding with the array

(m(O1, f), m(O2, f), ..., 7(Os, [)).-
O

This gives an effective method for computing the conjugacy class of

(
) determine the partition array sz ,
2) choose suitable f-separable resultants ©;,
) compute Lo, f,

) factorize them deducing the values 7(0;, f), and

) deduce the conjugacy class of G(K/k) by comparing the values of the
partition array Bg .

Let us remark that

e steps (4) and (5) don’t require any special comment;

e we briefly discuss step (3) in Algorithm 43.7.2;

e the hard task is steps (1) and (2) which have been systematically solved
by Arnaudies and Valibouze for n < 112,

15 Here I report their result for n = 4; for 5 < n < 11 I refer to the survey Valibouze
A., Computation of the Galois Groups of the Resolvent Factors for the Deirect
and Inverse Galois problems L. N. Comp. Sci. 948 (1995), 456-468, Springer,
and to the LITP reports quoted there.
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Algorithm 43.7.2. The computation of Lg, s is a direct application of the
results of Proposition 43.4.11; it is sufficient to compute the Grobner basis
G of the ideal generated by

{fi,-, fn, T —O;} CK[T, X1,...,X5]
w.r.t. the lex ordering induced by T' < X; < Xs... < X,;; then we have
{Lo, r} = GNE[T].
O

We report here the results by Arnaudies—Valibouze for n = 5; the follow-
ing table lists the 11 conjugacy classes of Sy, reporting for a chosen element
Hj € Cj, their structure, their generators and their order:

H |l 0 1
Hy | Sz [(3,4)] 2
Hs | S2 [(1,2)(3,4)] 2
Hy | As [(1,2,3)] 3
H5 52 X SQ [(1,2),(3,4)] 4
Hg | Vq4 [(1,2)(3,4),(1,3)(2,4)) 4
H; | Z4 [(1,2)(3,4),(1,3,2,4)] 4
Hg | Ss3 [(2,3,4),(3,4)] 6
Hy | Dy [(3,4),(1,2)(3,4), (1,3)(2,4)] 8
Hio | A4 [(1,2)(3,4),(1,3)(2,4),(2,3,4)] 12
Hy, | Sy [(1,4), (2,4), (3,4)] 24

where A,, denotes the alternative group, D,, the dihedral group, V4 the Vier-

gruppe, |, := {Ids, }. The corresponding resultants are'6
61 = wXi+uXo+ usXa,
Oy = Xi+ X3Xy,
O3 = X1 Xo+ X1X3+ XoXy,
0, = (Xo—X3)(X3—X4)(X4— Xa),
05 = Xi1Xo,
O = X1X3+ XoXy — X1 Xy — X3Xy,
O = X1X5+ XoX3 + X3 X7 + XaX7,
Oy = X,
Oy = Xi1Xo+ X3Xy,
O = H (X; — Xi),
1<i<j<4

@11 = 1.
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Fig. 43.1. Partition Array for Sy
1 2

3 4 5 6
T [ (24, 1] 1z, 1] 1z, 0] @ D] ©. 1 ©.1
2 | [(12,2)] (2.1),(5,2)]  [(6, 2)] (4. 2)] (2.1),(2,2)]  [(3.2)
3 | 112, 2)] (6.2)] (4.1), (4,2)]  [(4,2)] (2.1, (2,2)]  [(6.1)
4| [(8.3)] (4,3) (4.3 (2.1, (2,3)]  [(2,3)] (2,3)
5 (6,4)] (2,2),(2,4)] (2,2),(2,4)] (2,4)] (2,1),(1,4)] (3,2)
6 | [(6:4)] (3. 4)] (6. 2)] (2, 4)] (3.2) (6.1)
7 | [(6:4)] (3. 4)] (2,2), (2,0)]  [(2,4)] (1,2), (1, 9] [(3,2)
8 | [(4:6)] (2.3), (1,6)]  [(2,6)] (1,2),(1,6)]  [(2.8) (1,6)
o | [(318)] (14), (1,8)]  [(3,4)] (8. 1)] 1,2),(1,4)]  [(3,2)
10 | [(2,12)] (1,12)] (2,6)] (2. 4)] (1,6)] (2,3)
11 (1,24)] (1,12)] (1,12)] (1, 8)] (1,6)] (1,6)
7 8 10 11
TG 1] 1 (EIu) CY) T ]
2 | [(312)] (2:1),(1,2)] (1,1, (1,2)]  [(1,2)] (1. 1)]
s @D, @21 [(22)] (3. 1)] (2, 1)] (1. 1)]
4| [(28)] (1.1), (1,3 [(1,3)] (2, 1)] (1. 1)]
5| w2, e (22 (1,1), (1,2)]  [(1,2)] (1. 1)]
6 | (3.2 (1, )] (3. 1)] (2. 1)] (1. 1)]
7ol @, (1) (1.1), (1,2)]  [(1,2)] (1. 1)]
8 | 1) (1.1), (1, 3] [(1.3)] (1,2)] (1. 1)]
o |2, [(14)] (1.1), (1,2)]  [(1,2)] (1. 1)]
10 | [(1,6)] (1, 4)] (1,3)] (2. 1)] (1. 1)]
11 | [(1.6)] (1, 4)] (1,3)] (1, 2)] a1

Finally the partition array is report in Figure 43.1.
This table is applied as follows: one

e computes the discriminant Lg,, s of f and checks whether Lg,, r is a
square in which case

G(Kf/k) = Hjaj € {1a3a4365 10}»

e computes a factorization of Lo, ¢; if 7(Os, f) is

~[41) — G(K;/k) = Hi,
(1,2)] = G(Kf/k) = Ho,
] and Lo,,,f is a square = G(Ky/k) = Hs,
] and Lo,,,f is not a square = G(Ky/k) = Hs,
(1,3)] and Lo,,,f is a square = G(Ky/k) = Hy,
,(1,3)] and Le,,,s is not a square = G(K;/k) = Hg,
then computes a factorization of Lo, r; if 7(Oy, f) is
] and Lo,,,s is a square = G(Ky/k) = Hio,
] and Le,,,f is not a square = G(Ky/k) = Huq,
| — G(Ky/k) = Ho.

,1),(1,2)] then computes a factorization of Lo, ¢'7; if 7(O4, f) is
& 1, 8)] — Hg,
& 2, 4)] = Hy

16 where w1, us, us are distinct and non zero values.
17 one could similarly use Lo, 5,1 €{1,2,3,7}.
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The main effort in the research toward solving technques has always been de-
voted to 'practical’ complexity, namely smooth and fast software tools' while
"theoretical’ complexity has never been deeply considered. The noteworthing
exception is the TERA group based in Ecole Polytechnique, Buenos Aires
and Santander around Marc Giusti, Joos Heintz and Luis M.Pardo which
in a series of papers produced in the Nineties? devised a solver with good
complexity. The input is assumed to be a finite set of polynomials generating
a zero-dimensional ideal J C Q and given by a straight-line program, the
output being

a system of coordinates in Noetherian position for the ideal,
a primitive element of Q/J,
its minimal polynomial ¢(T') = go(T') € K[T] and
either
— an Allgemaine Basis (go(T), Z1 — g1(T), ..., Zy — g-(T)) or
— a Kronecker/RUR presentation
9q 9q
T), —(T)Z1 —w(Y1,..., Yy, T), -+, —
A7), 5 (1) 21 —wi(1 aT), 5
! The most effort within the PoSSo group was devoted toward an efficient memory
management!
2 Of which here and in the Bibliography I quoted only the most relevant ones:
e Giusti M., Heintz J., Morais J.E., Pardo L.M., When Polynomial Equation Sys-
tems can be “Solved” Fast?, L. N. Comp. Sci. 948 (1995), 205-231, Springer
e Giusti M., Heintz J., Morais J.E., Morgensten J., Pardo L.M., Straight-line pro-
grams in geometric elimination theory, J. Pure Appl. Algebra 124 (1998), 101—
146
e Giusti M., Heintz J., Hagele K., Morais J.E., Pardo L.M., Montana Lower bounds
for diophantine approzimation, J. Pure Appl. Algebra 117—118 (1997), 277-311
e Giusti M., Heintz J., Morais J.E., Pardo L.M., Le réle des structures de données
dans les problémes d’élimination, C.R. Acad. Sci. Paris 325 (1997), 1223-1228
Morais J.E., Resolucion eficaz de systemas de ecuaciones polinomiales, Ph. D.
Thesis, Univ. Cantabria, Santander (1997)
e Giusti M., Lecerf G., Salvy B., A Grébner Free Alternative for Polynomial System
Solving, J. of Complexity 17 (2001), 154-211
Lecerf G., Une alternative aux méthodes de réécriture pour résolution des
systémes algébrigues Ph.D. Thesis, Ecole Polytechnique (2001)

(T)Zr — Wr (T)
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The relevant result is that such algorithm has (low) polynomial complexity
wrt the natural misure of the data (number of variables, degree of imput
polynomials, number of roots, size of the straight-line program).

What is amazing is that this good-complexity theoretical result has pro-
duced a software solver whose practical performances compare with the best
available Grobner-based solvers.

After posing the problem approached by the TERA group (Section 44.1),
discussing the technical tools, mainly an appropriate Newton-Hensel lifting
(Section 44.2 and 44.3), and presenting the general structure of the Kro-
necker package (Section 44.4) I deeply discuss its three steps (Sections 44.5,
44.6 and 44.7), its genericity conditions showing that the 'good’ choices live
in an open Zariski set (Section 44.8) and sketch its complexity analysis (Sec-
tions 44.9).

44.1 Kronecker parametrization

Let

| C k[X1,...,X,] be an unmixed radical ideal,

d ;= dim(l), r := n — d = r(l) the dimension and the rank of I;

M := (¢;j) € GL(n, k) be an invertible n x n square matrices with entries in
k such that, denoting Y; := Zj ¢;;X; for each i,

Vi, Yy ={Vi, . Ve, 24, Z)

is a Noether position (Definition 27.9.4) for I;
K :=k(W,...,Vq), and K C 02(k) its algebraic closure;
J:=1K[Z,...,Z;], the 0-dimesional extension of I;
s := deg(J) the multiplicity (Definition 27.12.9 and 27.13.7) of I.

Recall (Section 34.2) that a K-linear form
U=MZ1+- -+ N2, A € K, #0,
is a primitive element of K[Z1,...,Z,]/J iff
Spany {1,U,U%,..., U} 2 K|[Z1,...,Z,]/J.

Definition 44.1.1 (Giusti-Heintz—Morales—Pardo). With the notation
above, the assignment of
a matriz M := (c;;) € GL(n, k) such that, setting Y; :=3_; cij X,

Vi, Yy ={Vi,.. Ve, 24, Z)

is a Noether position for |;
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a primitive element
U .= )\1Z1+"'+/\TZT,A1' c K,/\1 #0,

of K|Zy,...,Z;]]J;

the minimal polynomial q(T) = go(T') € k[V1,..., V4][T] of U;

the parametrization (g1(T),...,9-(T)), gi € k(V1,...,Va)[T] of the variety
Z(1) such that Z; — g;(U) € J for each 1,

is called a geometric resolution of the variety Z(l).

Remark 44.1.2 (Giusti—Lecerf-Salvy).

Recalling Kronecker’s result (41.3) and Proposition 42.9.3, one can remark
that for each polynomial p(T') € K[T| which is relatively prime with ¢(7),
and thus invertible in K[T']/q(T), one obtains, setting

another parametrization ( p((T)) e “;T((T))) of the variety Z(l), with
p(U)Z; —w;(U) € J for each i.

In particular the results (41.3) by Kronecker (where g is assumed ir-
reducible) and of Proposition 42.9.3 (where go is assumed squarefree) are
obtained setting p := g—%. ad

Definition 44.1.3 (Giusti—Lecerf-Salvy). A parametrization

q(Vl, . .,Vd,T) = 0,
Vi, Va1V 2 = wi(Vi,...,Va, T)
g_g’(vl""vvd’T)ZT = wr(Vla---anaT)

of a radical and equidimensional ideal | C P,dim(l) = d, in ’generic’ position
is called a Kronecker parametrization of |. O

The discussion above allows to state

Proposition 44.1.4 (Giusti-Lecerf-Salvy). With the notation above one
can wlog assume

) a(T) := go(T) € k[VA, ..., Va][T1;

) for eachi <, wiek[Vl,...,Vd][T];
g f(zr ;ach 1<r, a%gi(T) = w;(T) mod ¢(T),
) for eachi <r, 6—‘1( —wl(U)EI;
g deg(q) = degz(q) = deg(J),

(1

(2
(3
(4
(5
(6
(7) deg(w;) < degy(q ) deg(J ) for each i < r.
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Moreover, for any radical ideal |, given any system of coordinate
MW,.... Y ={",....Vu, Z1,..., Z}

which is in Noether position for | and any primitive element, there is a unique
geometric resolution of the variety Z(1).

Proof. To prove that, we consider (compare Sections 41.8 and 41.9) new
varables Ag41,. .., Ay, the field K, := K(Ag41,-..,4yn), the extension |, :=
|Ka[Z1,...,Zy] of lin K4[Z4,...,Z;], the K(Agy1, ..., Ap)-linear form

UA = Ad+1Z1 + -+ AnZT

which is a primitive element of 14, and its characteristic polynomial g4 (T') €
(KalZ1,...,Z:]/14) [T], which is squarefree, monic and of degree deg(1¢).

Differentiating g4 (7)) with respect to each A44; we deduce the geometric
resulution

qA(Vl,...,Vd,T) = 0,
Ya(Wi,...,Va, )21 = —af’A‘jﬁl(Vl,...,Vd,T)
Sa,.. Vo, 1)Z, = —§%4(h,... .V, T)

O

On the basis of these considerations, the TERA group aimed to solve the
following

Problem 44.1.5 (Giusti-Heintz—Morales—Pardo). Let

fla"'af’fag € K[Zla"'aZ’r]
and denote, for each p,

Z,={aeK": fi(a) == fy(a) =0 # g(a)}
Jo =1(f1,-.., fp) : g,

L, := \/E,

Vo= Z2(J,)

V, = Z(L,) = ZI(Z,).

Assuming that

(1) Z, is finite;

(2) for each p, dim(L,) =1 — p;

(3) the Jacobian matriz (BQZL;) Of fla . '7fp w.r.t. Zl, .. .,ZT has rank p at
each point of V,,
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compute a parametrization

qU) = 0,
Z1 = wi (U)
Z, _ wy(U)
of Z,., where q(U) € K[U] and w;(U) € K(U) for each i. O

Remark 44.1.6. This problem can be easily justified via the considerations
of Remark 35.3.9, Theorem 35.6.8 and Remark 35.6.9 on the ARGH-scheme;
at each step of computation one obtains an ideal f C Q[X1,...,X,] and a
polynomial g € Q[X7,...,X,] and one needs to compute the roots of the

ideal
(\/f : goo) = g® CQW,....V)Z1,.... 2]

where we wlog assume that {Vi,...,Vy, Z1,..., Z.} is in Noether position for
f and d = dim(f).

Denoting (g1, ..., 9s) any basis of §¢ it is sufficient (cf. Corollary 36.1.6)
to perform a generic linear combination f; := 22:1 Aijg; to obtain a regular
sequence f1,..., fr.

Thus the setting related to the ARGH-scheme coincides with the one of
Problem 44.1.5; such problem thus can be interpreted as solving an ARGH-
component of a given ideal by producing its Kronecker parametrization.

Moreover, in this setting

(1) f© is zero-dimensional;
(2) each L, has rank p since fi,..., fr is a regular sequence;
(3) it has been proved? that the Jacobian condition is satisfied by any generic
combination of the basis elements.
O

44.2 Lifting Points

The variety Z(f1,..., fr) is a subvariety of the §-dimensional variety, V

VPDZ(fla"'vf’l“)vézripa

defined by the polynomials f1, ..., f, which satisfy conditions (2-3) of Prob-
lem 44.1.5. We call this sequence of polynomials a lifting system of V,.
Let us now consider a new system of coordinates {Y7,...,Y;.} which is
a Noether position for L, and the projection ¢ : K" — K® defined by

o(ar,...,ar) = (a1,...,as).

P

3 Krick T., Pardo L.M., Une approache informatique pour lapprozimation dio-
phantienne, C.R. Acad. Sci. Paris 318 (1994), 407-412.
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Definition 44.2.1. A point p := (p1,...,ps) € K° is a called a lifting point
of V, w.r.t. the lifting system fi,..., f, (and the frame {Y1,...,Y;}) if the
Jacobian matriz of fi,..., fp w.rt. Ysiq,...,Y, is invertible at each point of
the variety Vp, := V, N ¢~ (p1,...,ps) whose O-dimensional ideal Z(V,) we
denote L.
Definition 44.2.2. With the notation above, the assignment of
a lifting system fi,...,f, of V,
a matriz M = (cij) € GL(r, K) such that {Y1,....Y;}, Yi =3, ¢;;Z;, is
a Noether position for V,;
a lifting point p == (p1,...,ps) of V, w.r.t. the lifting system fi,..., f, and
the frame {Y1,...,Y,.};
a primitive element U = Asp1Ys541 + - + MY, Ny € K A\sp1 # 0, of
K([Ys541,...,Y:] /L
the minimal polynomial ¢(T) of U;
the parametrization (gs+1(T), ..., g-(T)) of V,
so that

o Y, —g;(U) €L, for each j,0 < j<r,
o Vo ={(p1,...,ps5,95+1(), ..., gr(@)) ;@ € R}, R :={a € K: ¢(a) =0}
is called a lifting fiber of V,.
Remark 44.2.3. Denoting
M~1:= (di;) € GL(r, K) the inverse of M,
hiY1,...,Y.) = fl(Z] di;Y;, ... ,Zj dr;Y5),

the following relations are satisfied by the data above:

(1) Ulgs41(T),...,9-(T)) = Xs419541(T) + - - + Agr(T) = T,
(2) hl((pla .. ap5vg5+1(T)7 s agT(T)) € H(Q(U))a
(3) s:=deg(L,) = deg(L,).

Moreover, by Proposition 44.1.4, for any lifting fiber of V,, there exists a
unique geometric resolution of V, for the same Noether position and primitive
element. O

Proposition 44.2.4. The specialization of the minimal polynomial and the
parametrization of this geometric resolution on the lifting point p gives exactly
the minimal polynomial and the parametrization of the lifting fiber.

Proof. Assume that U is not a primitive element of V,; we can then choose a
primitive element U’ of V,, which is also a primitive element for V, too. The
specialization of the corresponding Kronecker parametrization of V, gives a
parametrization of V,. By linear algebra on

Spany {1,U", U ... .U '} = K[Yss1,..., Y] /Ly

one can compute the minimal polynomial of U whose degree is necessarily
less than s giving the required contradiction. a
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Lemma 44.2.5. With the notation and assumptions above, the set of points
(P1y -y D5s As+1y- -+, Ar) € KT such that either

p:= (p1,...,ps) s not a lifting point or
U :=Xst1Y541 + -+ A, is not a primitive element for V,

are contained into an algebraic proper subset of K".

Proof. Let J the Jacobian matrix of fi,..., f, wr.t. Ysiq1,..., Y.

The integral dependency relation of det(J) modulo L, is given by a monic
polynomial F(U) € K[Y3,...,Ys][U].

By assumption, det(J) is not a zero-divisor of K[Y1,...,Y;]/L,, so that
A(Y1,...,Y5) == F(0) # 0 satisfies A € L, + (det(J)) .

Each point p := (p1,...,ps) such that A(p1,...,ps) # 0 is a lifting point.
Let now fix a lifting point p := (p1,...,ps) and consider (Compare Proposi-
tion 44.1.4)

e the ideal Ly := LK (A5, ..., Ar) Y541, .., Y],

o Y= As 1 Yspr+ -+ AY, € K(Asyr,.., Ap)[Ysqr, ..., Ya]/L

o qA(T) € (K(Ast1,- -y A)[Ys41,-..,Ys]/La) [T] its minimal polynomial,
e Disc(q) € K(As41,...,A,) its discriminant (cf. Theorem 10.6.5).

Then any point (Ast1,-..,Ar) such that Disc(q)(As41,...,Ar) # 0 gives a
primitive element Y := A\s1Ys541 + - - + A Y, for V. a

44.3 Newton—Hensel Lifting

Proposition 44.3.1. Let

R be an integral domain,

I an ideal of R,

I* C R[T)] its extension,

f:=(f1,..., fr), fi € R[Z1,..., Z;],

U:=MZ1+... M2, \; € R a linear form,

q(T) € R[T] a monic polynomial, s := deg(q) > 1,

v = (01 (T),...,v.(T)),v:(T) € R[T], deg(v;) <s,

J = (ggj) the Jacobian matriz of f1,..., fr wrt. Z1,..., 2,

and assume that the following relations

(A) fij(n(T),...,ve(T)) =0 mod I* + (q), for each j,
(B) T =X v (T) + ... 00 (T) mod I* + (q),
(C) J1(T),...,v.(T)) is invertible modulo I* + (q),

hold in R[T); then the following objects exist and can be computed:

e o monic polynomial Q(T) € R[T),
o V= (Vi(T),...,Vi(T)),Vi(T) € R[T],
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such that in R[T] hold
(1) deg(Q) =,
(2) Q(T) = q(T) mod I'*,
(3) deg(V;) <'s, for each i,
(4) Vi(T) = v;(T) mod I'*, for each i,
(5) f;(Vi(T),..., Vo(T)) = 0 mod (I*)? + (Q), for each j,
6) T=MVi(T)+ ...\ Vo(T) mod (I*)? + (Q).
Proof. Consider a generic vector
w = (wi(T),...,w-(T)),w;(T) € R[T],deg(w;) <s

and write the Taylor expansion of f between w and v:

fw) =f(v) +J(v) - (W—=v) + -

Since the aim is to find a such vector w which moreover satisfies
w = v mod I* and f(w) = 0 mod (I*)? + (¢q),

we use such conditions on the expension above obtaining

0=f(w)=f(v)+J(v) (w—v)mod (I*)* +(q)

thus deducing, thanks of assumption (C), the existence and the uniqueness
of the solution

wi=v—J }v) - f(v) mod (I*)* + (q).
The polynomial
AT):=Uw)-T = u(T)+...w.(T)—T € R[T],

is such that deg(A) < s and assumptions (B-C) allow to deduce that all his
coeflicients are member of I.
Setting Y :=T + A(T) we have

AY)=AT)+ A (T Y =T)+---=A(T)+ A(T)A(T) + - - -

hence A(Y) = A(T) =Y — T mod I?.
Therefore defining p(T'), u;(T') as the unique polynomials such that

p—q'Au; —wiA € (g), deg(p) <s,deg(u;) <s,
we have, mod(I*)? + (q),

QYY) =q(Y) = p(Y) = qY) = AY)¢'(Y) = (T) — (Y = T)¢'(T) = ¢(T)
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We have therefore the ideal equality
H = (q(T),Y—T—A(T),21—wl(T),...,ZT—wT(T))
= (Q(Y%T*Y*A(Y)vzlfvl(}/)a;ZT*‘/T(Y»

in the ring (R/Iz) U,Y, Z1,...,Z,].
Therefore Q and V satisfy the required conditions:

(1) deg(p) <'s =deg(q) = deg(Q) =s;

(2) it is sufficient to remark that p € T;

(3) deg(u;) < s,deg(w;) <s = deg(V) < s, for each ;
(4) it is sufficient to remark that u; € I.

(5) We have

fj(‘/i(Y), .. ,VYT(Y)) = fj(Zh .. -;Zr) = fj(wl(T), .. ,’LUT(T)) mod H
and f;(w1(T),...,w.(T)) € (I*)?> 4 (g) hence

[ini(Y),.. . Ve(Y)) € (I)? + L) N R[Y] = (I")* + (Q(Y)).
(6) Since, mod(I*)? + H,

Y —UWA(Y),...,V,(Y)) =

we have Y —U(Vi(Y), ..., Va(Y)) € ((I")2 + L) NR[Y] = (I*)2 + (Q(Y)).
O

Corollary 44.3.2. With the same notation and assumptions as in Proposi-
tion 44.3.1 for any € € N the following objects exist and can be computed

e a monic polynomial Q(T) € R[T),
o V= (i(T),....V,(T), Vi(T) € RIT),

such that

) deg(Q) =
Q(T) = (T) mod I*

(1
(2)
(3) deg(V;) <'s, for each i,

4) Vi(T) = v (T) mod I*, for each i,

(5) £;(VA(T), ..., Vo(T)) = 0 mod (I*)"* +(Q), for each j,
6) T=MWV(T ) AV (T) mod (1) 4 (Q)

hold in R[T). O
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44.4 Kronecker Package: Description

The solution of Problem 44.1.5 is incremental on the number of equations
to be solved, thus iteratively solving each system V,, each resolution being
encoded by means of a lifting fiber.

Thus, at each step the algorithm depends on the choice of a Noether
position for V,, a lifting point and a primitive element, Zariski-openness
granting that such choices can be done randomly.

Let us therefore assume we have

the 0 = r — p-dimensional variety V, C Z(f1,..., fr),

the projection ¢ : K™ = K% defined by ¢(ay,...,a,) = (ay,...,as),

the lifting system f1,..., f, of V,,

a frame of coordinates which is in Noether position for V, and which, by
simplicity, we assume to be {Z1,...,Z,},

a lifting point p := (p1,...,ps) of V, w.r.t. the lifting system fi,..., f, and
the frame {Z1, ..., Z,},

the primitive element U = Asy1Zs+1 + - + M Zp, A € kyAs41 # 0, of
K[Zss1,. .., 2] /Ly,

the minimal polynomial ¢(T") of U,

the parametrization (vs41 (1), vs42(T), ..., v-(T)) of both V, and V,.

Up to now we simply assume that

e the Noether position {71, ..., Z,},
e the lifting point p := (p1,...,ps), and
e the primitive element \sy1Zs41 + -+ + A\ 2y

are sufficiently generic in order to satisfy all the conditions of genericity
required by the algorithm; we will discuss deepler such conditions in Sec-
tion 44.8.

Lifting Step Thus we are assuming to have a geometric resolution

qo(T) = 0,
Zsv1 = wvs(T)
Z. = v.(T)

for the primitive element
U:i=Xy1Zs541+ -+ M2y € K[ Z511,..., 2] /L,
of the variety V, defined by
a:=(p1,...,05,541,...,0) €Vy <= fi(a)=...= fy(a) =0 # g(a)

and the 0-dimensional radical ideal
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Ly :=Z(Vp) =L, + (Z1 —p1,..., Zs — ps)

and we compute a geometric resolution

Q(Zs,T) = 0,
Zst1 = Vsp1(Zs5,T)
Zr - ‘/7"(Z57T)

for the primitive element
P
U= XyiZsri € k(Z5)[Zss1, ... Z2] /LD
i=1
of the variety Vp defined by
a=(p1,...,ps-1,0s,...,07) €EVp <= fi(a)=---= f,(a) =0 # g(a)
and the 1-dimensional radical ideal
Lp:=Z(Vp)=L,+ (Z1 = p1,---, Zs—1 — D5—1)-

Intersection Step From this date we compute a geometric resolution

qz) = 0,
Zs = w(Z)
7, = u(2)

for the primitive element

p
U= Xsy;Zsyj € K[ Zs,..., Z,] /L

Jj=0

of the 0-dimensional radical ideal

L/ = \/LT + (Zl —P1y-- .,Z(S—l _p(s—lafp'i'l)‘

Cleaning Step We now remove the points a € Z(L") such that g(a) = 0 thus
getting the required geometric resolution

(T) = 0,
Zs = ws(T)
Z, = (1)

for the primitive element
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Ui=X\Zs+- - +NZ, € K[ Zs,...,Z;] /Ly
and the lifting point p’ := (p1,...,ps—1) of the variety V, defined by
a=(p1,...,Po-1,Qs,...,ar) €EVy <> fi(a)=...= frr1(a) = 0 # g(a)

and the 0-dimensional radical ideal

Ly :=Z(Vp) = Los1 +(Z1 —p1,- .., Zs—1 — ps—1)-

44.5 Kronecker Package: Lifting Step

Defining

€:=deg(Ly) +1=deg(L,) +1
hi(Z5) Z(5+1) . '7Z7') = fi(pla e 7p(5—1aZ53Z5+13 . -7Z7')

we can apply Corollary 44.3.2 to the data

R := K|[Zs],
I:=1(Zs5) C R,
I* == 1(Z) C K[Zs,T),
f.= (hl, ceey hr),hi S R[Z5+1, e ,ZT],
U:i=X 12541+ -+ N2y,
q(T) € R[T] the minimal polynomial of U,
v = (V541(T), vs42(t), ..., v.(T)),
thus obtaing

a monic polynomial Q(T) € K|[Zs][T],
V= (Vi (T), ..., Vo (T)), Vz(T) € K[zs][T],

such that

(1) 7 (Vo1 (T), (T)) = 0 mod I°*t! + (Q), for each j,
(2) T= AsVi(T ) AV (T) mod I€M! +(Q)

id est

a polynomial Q(Zs,T) € K[Zs, T,
V= (%-ﬁ-l(ZﬁaT)a ceey VF(Z(SaT))a‘/;(Z(SaT) S K[Z(SaT]a

such that

(1) fi(p1,-..,ps—1,Zs, V6+1(Z5,T), V. (Zs,T)) = 0 mod Q, for each j,
(2) T=Ns41Vs41(Z5,T) + r‘/T(ZJa T) mod Q.
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We therefore have the parametrization

Q(Zs,T) = 0,
Zst1 = Vsp1(Z5,T)
7 = ViZsT)
of
Vp:={a=(p1,...,ps—1,05,...,0,) €K' : fi(a) =--- = f,(a) =0# g(a)}

and the 1-dimensional radical ideal

Lp:=Z(Vp)=L,+(Z1—p1,..., Zs—1 — P5—-1)-

44.6 Kronecker Package: Intersection Step

Let us therefore assume to have a 1-dimensional ideal
| C K[Z(;,Z(;_;,_l, .. .,ZT]

and its radical L := v/ given by means of a geometric resolution

Q(Zs,T) = 0,
Zsy1 = Vsp1(Zs,T)
Z, = V.(Zs,T)

for

e the Noether position{Zs, Zs11,..., 2} for L and
e the primitive element U := As11Z541 + -+ M2, s € K C K(Zs),

and a polynomial f € K[Zs, Zs41, ..., Z,] such that L+ (f) is 0-dimensional®.
Let us consider Q(Z5,T) and f(Zs, Vs31(Zs,T),...,Vi(Zs,T)) as poly-
nomials in K[Zs][T] and their resultant:

Lemma 44.6.1. Denoting

i A(Z5) = RCS(Q, f(Z57 ‘/5+15 ceey ‘/T) € K[Z5]7

e B:=K|[Zs, Zs+1,---,2Zr)/L,

e B :=K(Z5)[Zs41,---,2Zr]/LE,

o F(T) € K|Zs][T] the integral dependency relation of f modulo L,
4 We apply the results of this section to the case L := Lp and

f(Z57Z£5+17 e '7Z7‘) = fP+1(p17' .- 7p5—17Z57Z£5+17 e '7Z7‘)'
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D the endomorphism of multiplication by f in B,

xr(T) € K(Zs)[T] the characteristic polynomial of Py,

my(T) € K(Zs)[T] the monic polynomial of Py,

W= Z(L¢) = {by,...b¢}, 0; := mult(b;, L),

¢ : KPT— K the projection ¢(a, B, ..., B,) = a,

e for each a € K, W,, :={a1,...as} = 7 1(a) N Z(L), each a; being counted
with the proper multiplication s; := mult(a;, L), >, s; = deg(L®),

we have

(1) ms(T), x¢(T) € K[Z][T;

(2) setting x¢ == >, Ci(Zs)T" and s := deg(L®) we have C;(Z5) € K|[Zs]
and deg(C;) < (s — i) deg(f);

(s—
(3) Co(Zs) € L+ (f);
(4) Co(a) =TI,,ew, f(@i)™.
(5) Co(Zs) and A(Zg) concide up to the sign;
(6) deg(A) < sdeg(f);
(7) {a e K: A(a) =0} = {¢(b) : be W, f(b) = 0};

Proof. Since F(®;) = 0 we deduce that m; | F and, since both are monic,
Gauss Lemma (Corollary 6.1.5) implies (1). We moreover know (Corol-
lary 40.5.2) that x(Z5,T) = [[,_, (T — f(Zs,b;))°" so that we deduce (2).

Remark that B is a finite K[Zs]-module of rank s := deg(L®).

Since any K [Z;]-basis of B induces a K (Zs)-basis of B’ (cf. Section 36.3),
the characteristic polynomial of $; in B and B’ coincide, so that Cayley-
Hamilton theorem in B implies x(Zs, f) € L and hence (3).

Moreover, for each « € K, denoting By := K[Zs, Z541, ..., Z:]/L+(Zs—a)
and remarking that the specalization at « of the K[Zs]-basis of B gives
a K-basis of By, we deduce that Cy(c) is the constant coefficient of the
characteristic polynomial

S

X(T) =@ - f@a)™

i=1

of the multiplication by f in By whence (4).
Since

e ac Z(L+(f)) = Co(r(a)) = 0 for each a € KP*! as a consequence of
(3) and,

e for each o € K which annihilates Cp, (4) implies the existence of a €
7~ 1(a) N Z(L) which annihilates f(a),

we obtain (5) of which (6-7) are direct consequences. a

Since probably Zs is not a primitive element for

K[Z55Z5+15"'5ZT]/ L+(f)a
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while this is true for a generic element \sZs + U, let us therefore introduce
a new variable Z, denote

2 K[Zs, Zsirs .. Z)[T) — K[Z, Zsq1, ..., Z:][T)
the substitution
§:=9\\; (Z-T),T, Zss1,...,2Z) for each g(Z5, T, Zss1, ..., Zr),

and assume that Z = (AsZs + T') has the required properties, as it is true for
almost choices of \s.

Definition 44.6.2. A point As € k is called a Liouville point w.r.t. the above
geoemetric resolution of L if

(1) As #0 X
(2) @ z:s monic in T and degT(Q) = degT(Q) =s= deagqu),
(3) Q is squarefree and relatively prime with P, P := &=.

Lemma 44.6.3. With the above notation, if As is a Liouville point then the
variables {Z, Zs41,...,Zr} are in Noether position w.r.t. L .= {f : f € L}
and

Q(z,T) = 0,
Zst1 = Vsp1(Z,T)
Zy = ‘Z"(Za T)

is a geometric resolution of L for the primitive element U.

Proof. First of all, LN K[Z] = {0}, since for each h(Z) € LNK[Z], Q(Zs,T) |
h(XsZs + T) and Q(Z,T) | h(Z); since Q(Z,T) is monic in T this implies
h(Z) = 0 as required.

Thus, in order to prove that {Z, Zs11,...,Z,} is in Noether position it is
sufficient to prove that each Z; is dependent over Z: denote L; := L+ (T —
U)C K|Z,Zs+1,...,Zy,T] and consider a bivariate polynomial h(Zs, Z;) €
L, monic and whose total degree is bounded by degy. (h), whose existence
is implied by the assumption that {Zs, Zs41,..., Z,} is in Noether position
w.r.t. |; then h(\;(Z—T), Z;) € L and (since Q(Z,T) € L and its total degree
is bounded by s) we can deduce the existence of a polynomial H(Z, Z;) € L,
monic and whose total degree is bounded by degy. (h), i.e. the dependency
of Z; over Z.

Since Q remains squarefree, U remains primitive. a

Lemma 44.6.4. Almost each \s € K is a Liouville point.
Proof. Setting W := )\5_12 we have

Q(Z,T) = QN (Z=T),T) = QW — \;'T,T).
Both
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the discriminant of Q(W — AT, T) and
the resultant, in K [W, A][T] of Q(W — AT, T) with 3% (W — AT, T)

are polynomials in K[W, A] and do not vanish for A = 0; hence almost
all choice for A\s # 0 grants (3). Also denoting h(Z,T) := H(Q) (Defini-
tion 23.2.1) the homogeneous part of maximal degree s of @ so that the
coefficient of T° in Q(Z,T) is h(—A;',1); since again h(0,1) # 0, almost all
choice for A\s # 0 grants (2). O

Remark 44.6.5. 1f A5 € K is a Liouville point w.r.t. the above geoemetric res-
olution of L, and f denotes the polynomial f := f()\5 (Z-T), Z5+1, e Zy),
the resultant A(Z) € K[Z] of the polynomials (in K[Z][T]) Q(Z,T) and
FOGHZ —T),Vs41(Z,T),...,Vi(Z,T)) satisfies A(A\sZs +U) € L: in fact we
already proved (Lemma 44.6.1) that A(Z) € L+ (f); thus replacing Z with
AsZs + U we obtain A(A\sZs +U) € L.

Moreover each root (a,Bs+1,-..,3:) € 7 () of L, where Ala) = 0,
corresponds to the root (85, Bs+1,-- ., 0r) of L + (f) where

Bs =X [ =D XowiBsss | »

j=1

or equivalently, o = >30_ X185+
This is not yet sufficient to describe Z(L + (f)) because we still miss the
parametrization of the coordinates. Denoting

T5,T541,...,T, new variables,

Kt = K(Tg, T§+1, e ,TT),

Lt = LKt[Z(;, Z§+1, ey ZT],

Uy =U+Ts1Zsp1+--+1 2, = 2521()\6-{-]‘ +Ts45) 25+,

let us assume to have the geometric resolution

qt(Z57T) = 07
Zsy1 = Visy1(Zs5,T)
Zr = ‘/t,r(ZzY; T)

of L; for the primitive element U;. Since, for a Liouville point As for L, A5+ T
is a a Liouville point for L;, in this setting the resultant computation returns
a polynomial A;(Z) C K [Z] such that A:((As + T5)Zs + T) € L; more
precisely, if we express A:(Z) as

A Z)=AZ)+ T5A5(2) + Ts41A541(Z) + -+ T A (Z)+ B

where A;(Z) € K[Z] and B(Ts, Tsy1,...,Tr, Z) € (Ts, Ts41,-..,T)? and we
evaluate it in
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N +T5)Zs + U = (M Z5 +U) + ZsTs5 + Ts541Z541 + - - + 10 2,
Taylor expansion allows to deduce that both A(AsZs + U) and
A'NsZs +U) + Zs4jAs+j(NsZs +U),0< j < p

are members of L.
The roots of the polynomial A;(Z) are the values of the linear form

p
Up=> As+j(Zops + Tsyj)

=0

at the roots of L + (f). Thus denoting Z(L + (f)) =: {a1,...as}, and U the
linear form U := 377_ X5+ Z545 we have Ay(Z) = [[_, (Z — Ui(ay))™ € Ly
and

H(Z —Ui(a;))% = A(Z) + Z Asi(Z)Ts s mod Ly + (Ts, Tsya, ..., T7)?.
=0

=1
Thus, by expansion, we obtain

S

A(Z) = H(Z —Ul(a;))”
A54i(2) = = Zsrian)sw(Z = U@t ] (Z2-U(a;)™.
h=1 j=1,j#h
Thus D(Z) := ged(A, A") = [[;_, (Z - Ul(a;))%~! divides each As4; so
e A2)/D(Z) = o,
A(Z)/D(2)Zs = As(Z)/D(Z)
A(Z)|D(Z)Zs41 = As1(Z)/D(Z)
A(2)/D(2)2, = A(2)/D(Z)

is the required geometric resolution of L + (f) for the primitive element U :=
Do No+iZssj-

Finally, euclidean arithmetic allows to compute the inverse of A’/D mod-
ulo A/D and gives a representation

o(z) = 0,
Zs = us(2)
Z, : v (Z)
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In order to successfully apply Remark 44.6.5, we need to compute the

geometric resolution

qt(Z57T) = 07
Zsy1 = Visy1(Zs,T)
Zr - ‘/t,r(ZzY; T)

of L; for the primitive element U, starting with our data:

e the parametrization

Q(Z&T) = 0,
Zsy1 = Vsr1(Zs,T)
Z, = Vi(Zs5,T)

of L:=Lp and
e the primitive element U := As41Z541 + -+ - + A2y

Since in K[Zs, Zsi1, ..., Zy|/Lt we have Z; = V;(Zs,U) mod L, we ob-
tain
U+ Ts41Vs41(Zs,U) + - + T,V,(Zs,U)

Ut
= U+ Ts51Vsr1(Zs,Up) + -+ TV, (Z5,Uy)

modulo L; + (T, Tsy1,. .., Tr)?, whence
U=U; —T5:1Vs1(Zs, Up) — - = T.Vi(Zs, Uy).

Therefore replacing U in the parametrization and applying Taylor expan-

sion we obtain

a p
(%5, T) = Q(Z,T)~ a—g > Ts1iVsri(Z5,T)
=1
= Q(Zg,T) —T5+1W5+1(Z(5,T) — e —TTWT(Zg,T)

modL; + (T, Ts41,...,T)? and
Vissi(Z5,T) = VipilZ T)fa—sz:T Viri(Z5,T)
t,0+i\ 45, = 0+i\46, oT £ 041 Vo+i\ 4o,
modL; + (q;) + (Ts, Tsa1,-- -, Tr)?.

Algorithm 44.6.6. In conclusion we have to compute

e the data ¢; and V; 54; with the formulae above;
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e the resultant A;(Z) of the polynomials ¢;(A\;'(Z — T),T) and
fp+1(p17 <3 P61, )‘6_1(Z - T)a ‘A/t,szrl(Z&T)v ) ‘A/t,T(le(lea T))

e and, by expansion, the data A, D, As, ..., A,.

This computation, mainly the one of A;(Z), for complexity reason (see the
discussion in page 240) is not performed in K (Z5)[T] but in

R[T), R:=K|[Ts,...,T,|[Zs])(Z5s — p)***

where p € k is a ‘generic’ value, d := deg(f),s := deg(Q) so that ds counts
the roots, with multiplicity, of L + (f).

44.7 Kronecker Package:Cleaning Step

So now we have the geometric resolution

qo(Z) = 0,
Zs = ws(Z)
Z, : v (Z)

of L + (f) and we need to remove from W := Z(L + (f)) =: {a1,...as} the
roots such that g(a;) = 0.
This is easily performed by computing

G(Z):=g(p1,. ., ps5-1,05(Z),...,v:.(2)),
e(Z) := ged(q, G),
q = q/e,

I
w; = v; mod q.

We need however to be sure that the lifting point p := (p1,...,ps—1) is
not bad: it is sufficient to be sure that

p ¢ (W' N Z(g))
where we are denoting

W :={aeW:g(a) #0},
W/ = ZT(W'),
7 K™ = KO~ the projection m(a, ..., o) = (ay,...,a5_1).

A such point is called a cleaning point. Clearly almost all lifting points
are cleaning points: the bad points are the projections of the intersection of
a variety with dimension § — 1 and the hypersuface g; such projection over
K°~! has dimension § — 2.
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44.8 Genericity conditions

With the same notation and assumption as in Section 44.4 we are now dis-
cussing the genericity conditions; we therefore begin with

e a Noether position {Z1,...,Z,},

e a lifting point p := (p1, e ,Pé)a
e a primitive element U := A\sy1Z541 + -+ + M2, of K[Zs41,...,2Z,]/Lp.

for V,,.

The computation we sketched in Section 44.4 and discussed in the next
Sections returns a lifting fiber of V41 for the lifting point (p1,...,ps—1) and
the primitive element A\sZs + As+1Z5+1 + - -+ + A\ Z, provided the following
conditions hold:

{Z,...,Z,} is in Noether position for V,1;

p:= (p1,...,ps—1) is a lifting point for V,41;

s is a Liouville point for Lp;

AsZs + As41Z541 + - + A\ Z; is a primitive element for V,1;
p:= (p1,...,ps—1) is a cleaning point for W".

We need moreover three further assumptions:

(1) {Zo,...,Z,} is in Noether position for each homogeneous ideal "L, C
K(Zy,...,Z);

(2) ps is lucky for the truncated computation;

(3) U and As are lucky for the resultant computation of Remark 44.6.5.
In fact

1) consider, as an example, the 1-dimensional prime ideal enerated by
pg

f(Z1,25) = Z} — Zy € K|[Zy1,Z5). While the variables are in Noether

position, any specialization of Z; returns a single point, notwithstanding

deg(f) = 2.
On the otherside, this does not happen for a really generic frame of
coordinates: if we perform a generic change of coordinates obtaining

f(Y1,Y2) = d3, Y7 + di1d12Y1Ys + d55 Y5 — do1 Y1 + do2Ya

each evaluation of Y7 returns two points.
More in general we need to avoid a degeneration in which

deg(f(pla e ap53Z5+1a N -7ZT) < deg(f)7

this cannot occur if {Zy, Z1, ..., Z,} is in Noether position for the homo-
geneous ideal "L,;
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(2) ged and resultant computation of polynomials have good complexity if
performed over L[T] where L is a field, but this implies the ability of
performing zero-testing and inverting, which is out of the present model.
The computation, e.g., of the resultant

A(Z(S) = ReS(Qa f(Z(55 ‘/5-‘1-1; sy VF)
which satisfies deg(A) < n := deg(L®)) deg(f) costs

M(n) := O(nlog®(n)log log(n))

arithmetical operations in K (Zs) if it is performed in this field where we
don’t have a good complexity model for zero-testing and inverting; the
result of this computation gives a polynomial A(Zs) € K|[Zs] of degree
7.
Let us now fix a value p € K and, remarking that K(Z5) C K|[[Zs]],
consider the ring

R = K[[Zs]]/(Zs — p)"™* = Spany {1,..., 27}

where we can perform both

e zero-testing: an element g =
i iff g(p) = 0,

e inverting : the inverse in R of the invertible polynomial g, g(p) # 0, is
the polynomial s(Zs),deg(s) < n which satisfies

s(Z5)9(Zs) + t(Zs)(Zs — p)" = ged(g(Zs), (Zs — p)"+ = 1

for a suitable t(Zs), deg(t) < deg(g).
Thus any element

n

1 ociZ§ € Ris zero iff ¢; = 0 for each

g(Zg) = d(Z(g)/T(Zg) S K(Z(;), d(Zg),T(Zg) S K[Zg]

can be canonically represented by an element ¢ € Spang{1,..., Z]} such

that g(Z(;)T(Z(;) = d(Z(;) mod (Zg — p)n—H.

Thus the same algorithm which, if performed on K (Zs), resturns A(Zs)

with complexity M(n) can be performed also on R with the same com-

plexity M(n) returning some polynomial B(Zs) := > ¢;Z} € K[Zs) of

degree bounded by 7.

Can we assume that such polynomial B(Zs) is the true resultant A(Zs),

i.e. that B(Zs) = A(Zs) = A(Z5)? The answer is obvious: the solution is

correct iff in each step of the computation, the algorithm in R gives the

same answer as the algorithm in K(Zs), id est

e when zero-testing g(Zs) € K(Zs5), g =0 < g(p) =0,

e when computing the inverse h(Zs) := g=(Zs) of g(Zs) € K(Zs), the
polynomial s(Zs) such that s(Zs)g(Zs) = 1 mod (Zs — p)"*! satisfies
s =h.
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This behavieur depends on the choice of p € K there are some values
p in which some wrong answer is returned failing this approach; but
almost all choices are ”lucky” thus allowing to produce the correct answer
B(Zs5) = A(Zs) = A(Zs) with the good M(1) complexity while computing
in the ring R instead than in the field K(Zs).

(3) In a similar way a better complexity is obtained if the computation (see
Remark 44.6.5) of the resultant A(Z) € K[Z] of the polynomials G,(Z,T)
and f()\gl(Z—T), %+1(Z, T),..., IA/T(Z, T)) in K[Z][T] can be performed
with the ring arithmetics of K[Z] instead of the field arithmetics of K (7).
Such ability depends on a lucky choice of the Liouville point As and of

the primitive U.

44.9 Complexity consideration

We record here the following®

Fact 44.9.1. Let R be an integral domain and K be a field. Denoting
M(n) := O(nlog?(n) loglog(n)),
the following holds

(1) The bit-complexity of the arithmetic operations (addition, multiplicata-
tion, quotient, remainder and gcd) of integers of bit-size® n cost M(n).

(2) Multiplication and division of polynomials in R[T| whose degree is bounded
by n cost O(nlog(n)loglog(n)) arithmetical operations in R.

(3) ged and resultant computation of polynomials in K[T] whose degree is
bounded by n cost M(n) arithmetical operations in K.

(4) Multiplication of two n-square matrices in R costs O(n*) arithmetical
operations in R, with w < 2.39.

(5) Inversion of an n-square matrixz in K costs O(n*) arithmetical operations
n K.

(6) If D = k[T)/q(T) where k is a field and q a squarefree monic polynomial,
inversion of an n-square matriz in D costs O(n?) arithmetical operations
(addition, multiplication, determinant, adjoint matriz) in D where {2 <

4 .

7

5
Cft.

e Aho A.V., Hopcroft J.E., Ullman J.D., The design and analysis of computer
algorithms, Addison-Wesley (1974)

e Bini D., Pan V, Polynomial and matriz computations Birkhduser (1994)

e Biirgisser P., Clausen M., Shorolahi M.A., Algebraic Complexity Theory, Springer
(1997)

6 i.e. integers m such that log(m) < n.
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(7) performing a linear substitution into a polynomial p € K[X] of degree d
costs M(d) arithmetical operations in K. ad

Definition 44.9.2. A polynomial f € k[X1,...,X,] is said to be given by
a straight-line program of size L if there is a sequence {Q1,...,QrL} C
k[ X1,...,X,] where f € {Q1,...,QL} and, for each i,1 < i < L either

° Q1 S {Xl,...,Xn},
e Q; €k, or
e there are ji,jo < i such that, either
- Ql = Q]1 +Qj2;
- Qz = le - ij
7Qi:Qj1'Qj27 g
Theorem 44.9.3. Let

fl,...,fr,QEK[Zl,...,ZT]

be polynomials of degree bounded by D and given by a straight-line program of
size at most L; with the same notation and assumptions as in Problem 44.1.5,
a geometric resolution of Z, can be computed with

O(r(rL + r?)M?(DS))
arithmetic operations in K where
S = max(deg(Z,),1 <p<r)< D!

by means of a probabilistic algorithm.

Its probability of returning correct results relies on choices of elements of
K ; choices which give a non correct result are contained into a closed Zariski
set.

Proof (sketch). Let us remark that

e The computation of Proposition 44.3.1 costs O((rL +r?)M(S)a(2)) where
a(j) is the cost of arithmetical operations in R/I7 :
— the evaluation of f and J has complexity O(rL),
— the inversion of J costs O(r®),
— the updating of @ and V costs O(r?),
all these costs being evaluated in terms of arithmetical operations in
R/I?|T] each such operation costing M(S)a(2)).
e The computation of Corollary 44.3.2 costs O((rL+r)M(S) Z;-Ofé(e) a(2%)).
e The Lifting Step costs O((rL + r?)M?(S)) since a(j) = M(j) so that

log,(S+1) log, (S+1)

S OoMEH)SMS) Y 1/27 € OM(S)

Jj=0 j=0
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e The Intersection Step costs O(r(L + r2)M(S)M(dS)) :
— if p € K[Zs,U] is stored in a two dimensional array of size O(S?), S :=
deg(p), the computation of p costs O(SM(S)) arithmetical operations in
K it is sufficient to compute p; for each homogeneos component p; of p
of degree i; in this setting, since also p; is homogeneous of degree i, it
is sufficient to compute p;(Zs,1) = p;(A\; ' (Zs — 1),1) i.e. to perform a
linear tranformation over each univariate polynomial p;(Zs, 1) € K|[Zs];
thus the cost is in O (Zf:o I\/I(z)) C O(SM(9))
— the computation of Res(Q, f(Zs, Vs+1,..., V) costs

O((L + r*)M(s)M(ds)) < O((L + r*)M(S)M(DS))

arithmetical operations in K, where L is the size of the f, d :=
deg(f) < D, s:=deg(Q) < S : the computation is in fact performed in
KIZo)1 /(25 — p)y=+);

~ the computation of A¢(Z) costs O((r — D)(L 4+ r?*)M(S)M(DS)) arith-
metical operations in K: apply the result above to

K[T5;T§+1; v 7TT]/(T57T5+17 s 7T’l“)2;

— the computation of the geometric resolution of L; costs O(r?M(S)M(DS))
arithmetical operations in K:
o the arithmetics in L := (K[Z5]/(Zs — p)**') costs

O(M(ds)) < O(M(DS)),

o the computation of the polynomials Ws; requires O(rM(S)) arith-
metical operations in L

o the computation of the polynomials V; 44; requires O(r) arithmeti-
cal operations in K[Ts, Tsi1,...,Tv]/(q) + (Ts, Ts+1, ..., Ty)? which
means O(r2M(S)) arithmetical operations in L and O(r2M(S)M(DS))
in K;

o removing multiplicity costs O(rM(s)), s := deg(4;) < S.

e The Cleaning Step costs O((L + r?)M(9)). O

Remark 44.9.4. Therefore 'generic’ choices give the complete answer.
Moreover the result can be checked by evaluating the input polynomial;
if they satisfy the required equations, at most the algorithm failed to recover
all roots.
In the special case in which ¢ = 1, i.e. the case in which we want to

compute the roots Z(f1,..., f.), since Bezout’s theorem informs that the
number of solutions is [];_, deg(f;), it is therefore possible to check whether
the algorithm recovered all solutions. a

It is worthwhile to compare the complexity of this algorithm, with a
Grobner basis approach; let us therefore assume that each polynomial is
given by a dense representation:
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Corollary 44.9.5. Let
fl;---;fr;e K[Zl,...,ZT]

be polynomials of degree bounded by D > n and let g := 1; with the same
notation and assumptions as in Problem 44.1.5, a geometric resolution of Z,
can be computed with O(D3"+OW)) arithmetic operations in K by means of
the probabilistic algorithm of Theorem 44.9.5.

Proof. By Bezout’s theorem DS < D" so that M(DS)) is in D"+°() and
L< T(D:FT) which is in D™t too. |

Remark 44.9.6. We recall that the degree bound of a 0-dimensional Grébner
basis is, with the present notation, O(D") (cf. Sections 38.3 and 38.4) so that

the dense representation of each polynomial costs v := (’)(DTZ) and a rougth
evaluation of the cost of Grobner basis computation returns O(D*") (cf. the
final comments of Chapter 22). O
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This conclusive chapter of the Part on ‘algebraic solving’ can be devoted to
nothing but the application to multivariate systems of the Kronecker’s Phi-
losophy expounded in the first volume that ’solving’ does not mean producing
programs which compute the roots of polynomial equation systems; it means
producing programs which compute with their roots.

In the multivariate case, given a finitely generated (zero-dimensional)
ideal J C K|[Zi,...,Z,], such philosophy will be put in effect if we were
able to consider each its root (a1, ...,a,) € Z(J) given by means of a proper
suitable representation of the ideal itself.

The considerations performed on the univariate case in the first Part
(Chapters 8 and 11; in particular Sections 8.2, 8.3 and 11.4) and Groébner’s
reinterpretation of both Kronecker’s Theory and of the Primitive Element
Theorem (Section 8.4) in terms of Allgemeine Basissdtze (Section 34.2), which
explicitly link root representation with lex Grobner bases and triangular sets,
give the leitmotif of this chapter (see also Section 34.5): I will consider the
roots (a1, ...,a,) € Z(J) given if

e the ideal J C K[Z1,...,Z,] is represented by means of one of the Grébner-
related technques discussed in the Second Volume, so that

K(Zy,...,2,]]) — B Kla,....al
(alv"'ﬂaT)eZ(J)

e and procedures on K[Z1,...,7Z,]/J are given which allow to perform (via
Duval splitting) the four operations and zero-testing on each Klay, ..., a;].

This approach will be illustrated by the following instances:

(1) the Kronecker—Duval Model, where I have just to quote the approach
endorsed by the Project PoSSo!;

(2) the representation of v/J by means of an Allgemeine Basis (Defini-
tion 34.2.2, Equation (42.1));

(3) the representation of J by means of Kronecker’s parametrizations (Sec-
tion 41.9, Chapter 44) and Rational Universal Representations (Propo-
sition 42.9.3, Definition 42.9.16;

! Polynomial System Solving, ESPRIT-BRA 6846
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(4) the respresentation of J by means of a Grobner representation (Defini-
tion 29.3.3);

(5) the respresentation of J by means of the linear representation w.r.t. the
term ordering <. (Definition 29.3.3);

45.1 Kronecker—Duval Model

In relation with Kronecker—Duval Model, I have just to suggest to reread
Chaptres 5, 6, 12, Section 34.5 and Chapter 42 under the light put by the
following quotation?:

The standard method for computing with algebraic numbers consists
in working in a tower of fields, each field being defined by the minimal
polynomial of an algebraic number, defined over the preceding field.
The computation in such a field needs addition, multiplication and
extended gcd of univariate polynomials, as well as Euclidean division,
and, recursively, similar operations in the smaller fields.

[Duval’s] dynamic evaluation may be viewed as a lazy factorization: in
representation of algebraic numbers, the reducibility of a polynomial
may only posing a problem when testing equalities or when inverting
elements.

When such an operation is needed, a ged computation (already
needed for inverting) allows to detect if there is a reducibility prob-
lem and, in this case, to get a partial factorization of the reducible
polynomial.

It follows that, for dynamic evaluation, an algebraic number is rep-
resented as a root of a (possibly reducible) square free polynomial.
When a factorization occurs from a non trivial ged, the computation
splits in two cases, depending on which factor has the algebraic num-
ber as a root. Sometimes, one of the cases is irrelevant, but frequently
both cases are of interest, and one needs to carry on two independent
computations.

Thus the domain of computation is a reduced artinian ring which is
implemented as a family of towers. The evaluation is dynamic in the
sense that the towers change during the computation.

Towers are equivalent with special algebraic systems, the triangular
systems where each polynomial introduces a new variable. More gen-
erally, any finite set of algebraic numbers may be represented as a
solution of a zero dimensional algebraic system.

POSSO Report R2

2 Whose author is Daniel Lazard
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45.2 Allgemeine Representation

Let us consider

e K an infinite, perfect field, where, if p := char(K) # 0, it is possible to
extact pth roots;
K its algebraic closure;
Q=K|Z,...,7Z,],
W={Z"---Z% : (a1,...,a,) € N'};
J C 9 a zero-dimensional ideal;
J= ﬂ;zl q; its irredundant primary representation in Q;
foreach 7, 1 <i¢<r
- m; = ,/q;, the associated maximal prime,
- K; = Q/ml, K cCcK; CK,
- Qz = Ki[Zl, e ,ZT],
the irredundant primary representations q; = N’_,q;; and m; = N7, m;;
in Q;,
— the roots b;; := (bgw),...,bgzj)) eK/ CK,1<j<m,
- dij = Inult(bij,J) = deg(q”) for each j, 1 S j S T,
which satisfy:
mij = (Z1 — b7 Z, — b)),
the b;;s, 1 < j < r;, are K-conjugate for each 1,
up to a renumeration, ,/q;; = m;j,
m; =mg; N Q,

(1)
(2)
(3)
(4)
(5) 9i =qi; N Q,
(6)
(7)
(8)
9)

for each j, 1,1 < j,l <7, dij =dy =: ds,
= deg(mi) = (K, : K],
deg(qs) = dir,
J =i Ny i, V] = Ni—y Nji; my; are the irredundant primary
representations in K[Z1, ..., Z,],
(10) Z(J):{bw : 1§z§r,1 S]ST]},
o Y =71+ . _,c¢Z; an allgemeine coordinate (Definition 34.4.7) for J;
o F=J4+(Y-Z1-Y aZ) CK[Y,Z,.... 2],
e go the monic primitive generator of J* N K[Y],
e for each ¢
- =mi (Y - 20 - Y, aZy),
—af =a+ (Y -2 - Y, aZ),
— hi € K[Z1] the monic polynomial such that (h;) = m;} N K[Z1],
— for each 7,1 < j <r;
o m;-"j =m;; + (Y — 71— Z;:Q ClZl>,
o q;=qy+ (Y =21 =Y aZ),
o Bij = bgu) + 27:2 Clbl(m,
which satisfy:
(11) h; = H;;l (Y — Bi;) for each i,
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(12) go(Y) = ITiey B = TTiey TG, (Y = Bi) ™
(13) R:= deg(go) = >_i_, nd —deg(J)
(14) fo :=SQFR(go) = H == [Tj2, (Y = Byy).

As a consequence we have the isomorphisms (defined by canonical pro-
jection and chinese remaindering):

Q/J ~ o[y]/Jt = YT 90)
. @D, evl/a; ~ D, K1/ (nd)

@;_IQ/%

!

69; 1K[Y/(Y ﬁ”)

IR

IR

D._, @;J:l Q;/aij D,_, @;]:1 Q; [Y]/q;;

and
oY RVARRE= Q[Y]/ VIt = K[Y]/(fo)
D, o/m = @, avi/m; ~ PD._, KI¥1/(hi)

D, @;]:1 Qi/mi; = @i_, @:il Q; [Y]/m:g- P,_, Kilvl/ (Y - ﬂij)

Let us now assume that J is radical, so that go = fo and the reduced
Grobner basis w.r.t. the lex ordering induced by Y < Z; < ... < Z, is the
allgemaine basis (see Theorem 34.2.1)

(gO(Y)’Zl - gl(Y)a SRR Zr - gT(Y))

of J* and let us show how to apply it in order to perform arithmetical ma-
nipulation over each root b;;:

1R

canonical representation: all arithmetical expressions

p(biy) = p{? ... b)Y, peQ

of each root b;; € Z(J) have a canonical representation
p(bij) = D(Bij)
where p(Y) := Rem (p(g1(Y), ..., 9-(Y)),g0(Y)) € K[Y].

Remark 45.2.1. For each ¢(Y') € K[Y], deg(q) < deg(go), the polynomial
p =g € Q defined by

(Zl,..., Zl—i-ch i

satisfies the relations

=p=qand §(b;;) = q(Bij)-

Q)
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vector space arithmetics: given two arithmetical expressions pi,ps € Q of
the roots b;; € Z (J) and values ¢y, co € K, the arithmetitical expression
p(bi;) := c1p1(bij) + cop2(b;j) has the canonical representation p(b;;) =
[/)\(ﬂw> where

pY) = cap(Y)+capa(Y)
= caRem (pi(9:1(Y),...,9-(Y)),90(Y))
+  coRem (p2(91(Y), ..., 9-(Y)),90(Y));

multiplication: with the same notation the arithmetitical expression
p(bij) := p1(bi;)p2(bi;)
has the canonical representation p(b;;) = p(8;;) where
p(Y) := Rem ((p1(Y)p2(Y), 90(Y)) ;
zero testing: given an arithmetical expression p € Q we have
p(bij) =0 < p(Y) := Rem (p(¢1(Y), .-, 9-(Y)), 90(Y)) = 0;

inverse and division: given an arithmetical expression p € Q, our aim is to
produce

)

e a factorization gg = g(()o)g(()l)a

e a polynomial ¢(Y) € K[Y],deg(q) < deg(gél))
such that
o if g{” = go,1 = g{" then, for each b;; € Z(J), p(by;) = p(Bi;) = 0;
o if gél) =go,1 = géo) then, for each b;; € Z(J),
p(bij) = D(Bi;) # 0 and p~ ' (by;) = d(byy) = q(Bij);

o otherwise, for each b;; € Z(J), we have

= p(bij) =p(Bij) =0 <= gé?)(ﬁij) =0,

— p(bsj) =p(Bij) #0 <= g((, )(ﬂij) =0, in which case

p~(bij) = d(bi;) = q(Bij),

so that, denoting
o [y = {i:lgigr,hﬂgéo)}:{i:hi | p} C {1, --,r},
oI :={i:1<i<ri¢ly={ih|g"y={i:hi 1P} C{1,---,r},
JL = ﬂieILCIi, L e {Oa 1}7
o Z,:={bj:iel} e{0,1},
o ¢\ :=Rem(g;,g) € K[Y], 1€ {0,1},1<j <,
one has

() 98 = TLier, hi = Ties, Ty (Y = Bij), e € {0, 1}
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(b) for « € {0,1}, (g((f)(Y),Zl —dVY),.... 2, — gﬁ”(Y)) is the All-
gemaine basis of JF id est its reduced Grobner basis w.r.t. the lex
ordering induced by ¥ < 71 < ... < Z,;

(c) Z,=Z2(,), 1 €{0,1};
(d) Zo = {bi; € Z(I) : p(bij) = 0};
(e) Z1 = {by; € Z(J) : p(bi;) # O};
(f) J=Jon Ji,

)

Q/J = Q[y]/Jt

IR

K[Y]/(g0)

Q/hh@Q/h = Qyl/it eyt K[Y1/(g8”) @ K1Y/ (g{").

IR

(h) g8 is squarefree, ¢ € {0,1};

(i) J,=+J, € {0,1}.

In order to produce both the required factorization gg := g(()o) (M and
polynomial ¢(Y') € K[Y],deg(q) < deg(gél)), having the properties listed
above, we simply apply Lazard’s Theorem 11.3.2 and compute:

98 = ged(90,p) € K[Y];

[ ]
e 5.t € K[Y] such that sp+tgg = 9(()0);
N g(l) go_.

0 0) *

o
9o
e u,v € K[Y] such that ug(o) + Ug(l) 1;

e ¢:= Rem(su, gé )).

In fact this computation is simply a reformulation of Lazard’s Theo-

rem 11.3.2: denoting p1(Y) := ﬁ()}(?/) we have:

o if 90 (ﬁw) = 0 then p(Bi;) = 90 (61] )p1(Bij) =
o if gO (ﬂ”) = 0 then

q(Bi)p(Bij) = s(Bij)u(Bi;)p(Biz)
= u(Bi;)s(Bi;)P(Bij) + u(Bi;)t(Bij)g0(Bij)
= u(Biy)a) (Bij)
= ul(Bi)as” (Bij) + v(Bi)as” (Big)
= 1.

(1) _

Remark that g((, ) =1 implies g, = go,v = 0,u =1 and

Rem(su, g((, )) Rem(s, g((, )).
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45.3 Kronecker Parametrization and Rational Universal
Representation

While using the same notation as in the previous section, let us now assume
to have a Rational Universal Representation

(X(Y)a'YO(Y)’Vl(Y)’ e 7'7T(Y))
of J, so that
_ 71 (a) W@y ., o) =
a {(70(04)""’70(04))' € Kix(e) 0}

and we denote for each 4, j, a;; the root of x(T') for which

71(041'3‘) %(Oéij)

bi; = (’YO(Q’L'J.)’“ v Wo(aij))

and 1; := [[;(T" — ay;) for each i observing that we have

) = [T o)™ = T i

ij

We also denote v_1(Y) € K[Y], the unique polynomial which satisfyies

Yo(Y)y-1(Y) =1mod x, deg(y-1) < deg(x).

If J is radical, then Y is squarefree, v = x’,d; = 1 and the representation
is a Kronecker parametrization.

With the present notation, if the given RUR is associated to the allge-
meine coordinate Z; + Z::2 ciZ;, then we have x = go, a;; = B;; for each
1,7 and ; = h; for each i.

Let us now show how to adapt the considerations of the previous section
in this setting:

canonical representation: all arithmetical expressions

p(bsj) :p(bﬁm, b)Y peQ

of each root b;; € Z(J) have a canonical representation

where
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vector space arithmetics: given two arithmetical expressions pi,ps € Q of
the roots b;; € Z (J) and values ¢y, co € K, the arithmetitical expression
p(bi;) = c1p1(bij) + capa(bi;) has the canonical representation p(b;;) :=

p(aij)
Yo(aiz)

where

plY) = cpi(Y)+ copa(Y)
= aRem(pi(11(Y),. ., %)), x(Y))
+  coRem (p2(11(Y), .-, %(Y)), x(Y));

multiplication: the arithmetitical expression pq(b;;)p2(bi;) has the canonical

%a]])) where

q(Y) :=Rem (p1(Y)p2 (Y )v-1(Y), x(Y)),

representation

so that
qlog) _ palaig)pa(ai;)y-1(ou;)
Yo(eiz) Yo(avis)
_ (p(bij)ro(aiz)) - (p2(bij)yo(ens)) - v-1(aij)
Yo(cvis)
= p1(bij)p2(bij);

zero testing: given an arithmetical expression p € Q we have
p(bij) =0 <= p(Y) = Rem (p(11(Y),..., 7 (Y),x(Y)) = 0;

inverse and division: Even while y is not necessarily squarefree, Lazard’s
Theorem 11.3.2 can be applied essentially in the same way in order to
compute the required factorization y := x(?x(1) and the polynomial
q(Y) € K[Y],deg(q) < deg(xM), having the required properties.
We begin by remarking that of all the data related to the multiplicity of
the primary components of J — namely r,r;,d; — the only available to
us is?

T

R=deg(x) = »_rid;

i=1
but that is all we need, since
Lemma 45.3.1. With the present notation, it holds
ged(x,p™) = [] ¢
1€lp
where In = {i: 1 <i <r ;| p}.

Proof. In fact, for each i, ¢; | p < wfi (x,p®). O

3 ¢f. (13) of the properties listed in page 248.
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Corollary 45.3.2. Denoting

° X(O) = gcd(x’/yglﬁfi) c K[Y],

o 5.t € K[Y] such that sy2,p% 4+ tx = x\©;
o (M=

X_.

NOR

e u,v € K[Y] such that ux® +vx® = 1;

e ¢:=Rem(usp® 1, x1)

then

o if X9 =x,1=xM then, for each b;; € Z(J), p(bi;) = 0;
o if xM =x,1=x then, for each b;; € Z(J),

p(bij) = plois) %0 and p_l(bij) _ q(aij-)

Yo(vi;) Yo(ei;)
o otherwise, for each b;; € Z(J), we have
- plbyy) =0 = xV(ay) =0,
- p(bsj) = % #0 <= xW(a;;) =0, in which case
1 q(ovij)
p~(biy) =
( J) ’YO(O‘ij)

Proof. Since for each b;; € Z(J), yo(ai;) # 0 and v—1(ay;) # 0, Lazard’s
Theorem 11.3.2 grants that:
e denoting p; := 7*(15 - we have

Xo

X (i) =0 = 5%(ai;) = X (@i )pr (i) o (i) = 0.

o xW(ay;) = 0 implies pT*(avi;) # 0 and
J J

u(ovij)s(ai )P () 21 (cuij)

)
)
aij)s(aij)y2 (aif)p™ (eug) + ulaij )t (i) x (i)
)
)

Therefore denoting

o Ip:={i:1<i<ra [ xO}={i:¢; |p}C{1,--,r},
Li={i:1<i<rig¢l}={i:¢s|xD}={i:¢:tp} C{1,---,r},
J, = MNicr,9i, L € {0, 1},

Z, = {bij NS IL}, L€ {0, 1},
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o 7\ := Rem(y;,x") € K[Y], . € {0,1},0< j < r,
one has
Corollary 45.3.3. With the present notatiocrlL, the following holds:
() X = Tlier, ¥ = Tier, I (V — @)™, ¢ € {01
(b) for v € {0,1}, (X (), 2" (V)24 (V), ..., 7(V)) is the Rational

Universal Representation of J,;

© 2= { (35 252 ) sa ekl =0}, e 01);
(@) 2= 2(0), 1€ (0,1);

(e) Zo = {bi; € Z(I) : p(bi;) = 0};

(1) 21 = {by; € 200) plbis) # 0}

( ) J=JoNJy,
If moreover J is radical and the given Rational Universal Representation
is a Kronecker Parametrization, setting

O] o 0) :
& =Rem(yj—5-1,x") € K[Y],. € {0,1},1<j < n,

it holds

(h) x“ is squarefree, v € {0,1};

() ﬁmbe{o,l}. |

( ) Hze[ 1/}1 = HieIL H;I:l (Y - ﬂij)) S {Oa 1}7'
(k) for L€ {0,1},

ox © ox®
(v) _ (¢)
(v, B2 - ) 2 - )

is the Kronecker Parametrization of J,.
O

Proof. The only non-trivial statements are (b) which is Remark 42.9.18
and (k) for which it is sufficient to remark that, by construction, for each
b;j € Z,, and each [,1 <1 < n, one has

i leq)
! —
Yo(aiz)
= 'Yl(aij)'Y—l(aij)
)
'Y]( g ( Q5 ) aax—y (Oéz'j )7,1 (aij)
©
O (i)
‘El (O‘U)

) ENOYVEES
g)(Y (04”)
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45.4 Grobner representation

Using the same notation as in Section 45.2, let us begin by assuming that
the zero-dimensional ideal J, deg(J) = R, is given by means of a Grébuner
representation (Definition 29.3.3)

a=1{q, . .,qr},1 =1, M=M(q):= {(al(?)) e K® 1 ghgr}
so that

(1) Q/J=Spang(q),
(2) Zna =3, al(jh)qj for each I,j,h,1 <1, < R,1<h<n,in Q/J,

and by recalling that? for each f € Q its Grébner description (Defini-
tion 29.3.3)

Rep(f,q) :== (v(f,q1,9),---,7(f,qr,q)) € K"

in terms of this Grobner representation which satisfies

F=Y (f.q5,9)q €
J

can be efficiently computed both when f is represented as a linear combina-
tion of terms in W or via a recursive Horner representation.

In other terms as we already observed in Historical Remark 29.3.4, we
can efficiently compute the structure constants

l
7 = s, @, Q)

which satisfy
(3) qig; =, %-(jl-)ql for each [, 5,h,1 <14,7,l < R.

As a consequence we can adapt Definition 29.3.3 saying that
Definition 45.4.1. A Grobner representation of J is the assignement of

(a) a K-linearly independent set q = {q1,...,qr},

(b) the set M = M(q) := {(al(?)) eK®F 1<h< n} of n square matrices
(c) R? values %—(]l-) eK

which satisfy

(1) Q/J = Spang(q),

(2) Zna =3, al(;L)qj, (mod J), for each l,j,h,1<1,j <R,1<h<n,
(3) ¢igj = Zz%'(jl')‘ﬂa (mod J) for each l,j,h,1 <14, j1<R.

4 Compare the discussion in Section 29.3 and in particular Algorithm 29.3.8.
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The values %-(l-) = (i, @, q) are called the structural constants of the
K-algebra Q/J = Span(q)
The linear representation of J w.r.t. the term ordering < is the Grébner

representation (N<(J), /\/l,%.(;)) where q = (N<(J)). O

The application of Grobner representations as a tool for effectively per-
form Kronecker’s Philosophy requires the solution of the following

Problem 45.4.2. Given

e a zero-dimensional ideal J O J and
e a K-basisq' = {q},...,q5} C Spang(q)
such thay Q/J) = Spang(q’), compute a Gréobner representation of J'. a

We postpone discussing the solution of this problem to the end of the
section, after we will have expound our application.

Since a Grobner representation of J gives the natural arithmetics of a K-
algebra, in order to apply it for carrying into effect Kronecker’s Philosophy,
we just need to focus on inversion and division.

On the basis of the discussion in Section 29.3 and in particular Algo-
rithm 29.3.8 we can wlog assume that each arithmetical expression given via
a polynomial p is represented either via a recursive Horner representation or
as a linear combination of terms in W), thus it can be easily expressed as

P=>,70 ¢ A)q-

canonical representation: all arithmetical expressions

p(biy) = p(\? ... b)), peQ

of each root b;; € Z(J) have the canonical representation
p(bij) =Y 7(p, 0, @) (bij);

vector space arithmetics: given two such arithmetical expressions p1,ps €
Q of the roots b;; € Z(J) and values ¢1,c2 € K, the arithmetitical
expression p(b;;) := c1p1(bij)+capa(bi;) has the canonical representation

> (cn(pl, ¢, q) + 27(P2, 4., q)) ¢.(bij);

J

multiplication: with the same notation the arithmetitical expression

p(bij) := p1(bij)p2(bi;)

has the canonical representation

> <Z > P14 YR (P20 0, q)) ax(bis);
A L K



45.4 Grobner representation 259

since

> (Z > (e a DV (P20 s q)) q(bij)

A

= 3> 19,972, 05, 9) (Z %(Q)qA(bij))
L K A
= ) v(p1a V(P2 4, D (bij) g (big)

= <ZV(P1aqL,Q)qb(sz)> . <ZV(P2,qﬁ,q)qn(bij)>
= pi(bij)p2(bij).
zero testing: given an arithmetical expression p € Q we have
p(bij) =0 <= ~v(p,q,q) = 0 for each i.

inverse and division: Linear algebra, namely Gaussian algorithm, is all we
need to deal with division.
Let us consider any p € Q given by the canonical representation

R
p=> (P q a)g mod J

=1

and let us remark that, for each ¢ < r, setting

S

1 J=
5'{Rdeg(J) J#V]

we have

pby) =0 <= pem; < p'cq < q;:p° =1;

p(bij) #0 <= pgm; = p°¢ai <= q;:p° =03

p(bij) =0 <= i+ (p°) = ai <= m;i+(p) =m;;

p(bij) #0 <= g+ (p°) = (1) = m;+ (p) = (1);

therefore, denoting

e A the matrix A := (y(p° 'qx,qx, q))/\n

e lp={i:1<i<nrp’eq}={i:pem}={i:pby) =0}C
1,1},

e ={i:1<i<rni¢ght={i:p¢q={i:p¢m}=1{i:

p(bij) #0} C{L,---,r},

J. = Nier,qi, ¢ € {0, 1},

Z, :={b;;:iel},e{0,1};

b = {b1,...,br} another K-basis of Q/J = Spany (b),

¢ Q/) = Spang(q) — Q/J = Spang(b) the morphism defined by

¢(g) = p°g for each g € Spany(q),
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e C := (c¢,;) the matrix representing the morphism ¢,
e m:0Q — Q/J = Spang(q) the canonical projection,

o §:=deg(Jo),
we have
(1) J=JoNJy;

Jo+J1 = (1);
JO—J+( ),J1:J:p6;

(2)

(3)

(4) Z, = (L,LG{O 1};

(5) Zo = {bij € Z(1) : p(bi;) = 0};

(6) Z1 = {bi; € Z(J) : p(by;) # 0};

(7) d(ge) =’ = 3.2 bicu, 1 < K < R;

(8) Im(¢p) C Q/J is the pr1nc1pa1 ideal generated by 7(p?);
(9) 7~ YIm(¢)) = Jo = J + (p°);

(10) ker(¢) ={m(g) : g € Q m(gp° )*0} co/J

(11) ker(¢m) ={g € Q: gp’ € J} = J:p° = Jy;

(12) S is the rank of C.

Remark 45.4.8. If J is radical, id est 6 = 1, then both Jy and J; are
radical.

In this case, the procedure outlined here, which requires the evaluation of
p?~1 and p‘5 1q' in order to compute both p® and p-(p°~1q!), is simplyfied
since we need Just to evaluate pq.. a

If we now perform Gaussian column reduction on C' := (¢,,;) performing
the same transformation on the identity we obtain two matrices

D :=(d,y) and E := (exs)
which satisfy

(13) D =CE;

(14) E is invertible

(15) D is lower triangular, so that £ >+ = d,, = 0;

(16) ¢ > S =deg(Jo) = d,¢ =0 for each ;

(A7) 9" :=={q1,.... 45}, @@ = Zf;l b.d,, 1 <£<S,is a linear basis both

of Im(¢) and 7w(Jo) C Q/J;
(18) foreach £,1 <€ <8, o := Zle grere € Span (q) satisfies

P’ xe = ¢(xe) = s
(19) for each ¢, 1 < ¢ < S, p°~!y, has the representation®

ZqA (Zv 'gnsaro 4 )m) ;

5 We have
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(20) q" := {xs+1,---, XR}, Xt = Zle Gruere, S+1 <€ < R,is a linear
ba51s of both ker(¢) and 7(J1) C Q/J;

(21) {d}, - dstU{xs+1,---,XRr} is a K-basis of Q/J,

(22) there is a linear relation  (mod J)

S R
1= > ag+ Y, axe
£=1 1=S+1
S R
= ZCZPJXZ + Z coxe
=1 (=S+1
S R R
- pzcl (Z ax (Z 7(p6_IQIwQA7 ené)) + Z CoXe
(=1 A=1 r=1 (=S+1
R S R
= D Zq/\ (ZZ’Y(pal%wq}nq enécé>> + Z CoXe;
A=1 (=1 k=1 (=S+1
(23) denoting
S R
M= AP e, gr, Qenecn, 1 S A SR,
(=1 r=1

and setting
R
= Z axXTIx
A=1

we have 1 = ¢gp mod Jq;
24) for each k,S < k < R, there is a value® p(k) for which e ). = 1
P p(r)
and e, () = 0 for each £ # k.
As a consequence

Corollary 45.4.4. With the present notation it holds
o if S =0 then C is the null-matriz, J1 = (1), Jo = J and p(b;;) = 0;
o if S = R then C is invertible, Jo = (1), J; = J,

p(bij) #0 and p~*(bi;) = q(bi;);

R R
D3 a0 e o @)ene

k=1 A=1

Z(b\ (Z’Y "4, 009 )6%) 4

6 Remark that the x** column of D, which is null, corresponds to a repeated
transformation of the p(x)™ column of C which is never chosen as a pivot element.
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otherwise, for each b;; € Z(J), we have
- p(bij) =0 < bij S Z(JQ),
- p(bij) #0 <= b;; € Z(J1), in which case

p~(bij) = q(bij).

O

In conclusion Gaussian reduction is all we need in order to obtain the
Duval splitting J = Jo N J1; what we have to do is:

compute the canonical representation of p°—!;

compute the matrix A representing the canonical representation of
p6_1Qm 1<k <R
compute the canonical representation of

pPP=p-p tandp »° 'q.), 1 <K <R

thus obtaining the matrix C

e perform Gaussian column-reduction on C' deducing D and FE;
e extract the K-linearly independent bases q' and q” of, respectively,

m(Jo) and 7(J1);

apply the solution discussed below of Problem 45.4.2 in order to obtain
a Grobner representation of both Jy and Jg;

compute, for each kK, A\, 1 <k < .5, 1 < A < R, the values

R
een = (P, ax, )
=1

compute the unique solution (ci, ..., cg) of the linear equations
s R _ R
1 = Y, (> Y(P° g, g1, q)ene ) + EZ:SJrl Ce€1e
s R — R
0 = 2521 Ce ZK:I 7(p6 1Qm q2, Q)ené + Zé:S-i—l Ce€oy
s R - R
0 = Zezl Cy (Zﬁzl 7(p5 1(1m qR; q)ekal) + Ze:S+1 CLERL

S R —_
Compute = Zgzl anl 7(p5 1QI€5 qx, q)ekalclﬂ; 1 < A < Ra
R
return ¢ == \_; Q7.

Remark 45.4.5. 1t is clear that this algorithm is essentially a refinement of
Traverso’s Algorithm 29.3.8 for computing Jy extended and adapted in order
to obtain also J; := 71 (ker(¢)) and q. O

Ezxample 45.4.6. Let us consider the ideal

J:=W(Z} - 73,2129, 73 — 7o) C K[Z1, 2] = Q
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whose roots are {(0,0), (1,0), (0,1)}, (0,0) having multiplicity 2 and the pri-
mary component (X?, X5), the Lagrange basis

Q1 ::1_Z%_227q2 = Zl—Zf,Q3 = Z12,Q4 = ZQ,

and the polynomial p:=1— 27 + Z5 = q1 — q2 + 2q4.
We thus have

|t @ @ @ Q@ 93 W
1|1 0 0 O ZZ13 -1 0 0
A= ¢2|!-3 1 0 0 and C := Zy | —1 0 0 16
qs3 0 0 0 0 Z1 —4 1 0 0
g 0 0 0 8 1 1 0O 0 0
and we deduce
ZZ]1 0 0]0 aq| -1 0 =110
o Zy| 0 1 010 . @| -4 0 =310
D= Zy| 0 0 110 b= q3 0 0 0 1
1[-1 0 —-1]0 “| -1 15 —15]0

Thus we have

b ‘JO = J+H(p3) = J+{qllaq/27qé} = J+{212 - 17Z27Z1 - 1} :]I(22521 - 1)’
* Z(Jo) ={(1,0)} = Zo
o d(x1) = d(—q1 —4q2 — F5qs) = P(BZF + 1522 —4Z1 — 1) = ¢},
o d(x2) = d(750) = d(75%2) = ¢5,
o ¢(x3) = d(—q1 — 3q2 — 75q4) = G427 + {222 — 321 — 1) = g3,

q1 -1 0 -1 0

g|—-1 0 0 0
o AF = ( w0 0 0 0 and

wl-1 40

3 1 3 1 3 1
P X1=—4 —q2 — 5(14, P X2 = 5(14, P X3=—q — §¢J4;

h=1:p =)+ {xa} =+ {ws} =+ {27} =2}, 2122, Z5 — Z>),
Z(Jl) = {(0,0), (07 1)} = Zla

{dh, db s, xa} = {22 — 1,725, 71 — 1, Z%} is a K-basis of Q/J;
1=—¢} + xu;

(M, nr) = AE(=1,0,0,1)T = (1,1,0,1)

g =q+ g+ 3q = —2Z% — L7y + Z1 + 1 satisfies

1 =¢gp mod J;.

L4 p4:3,€3g:0,f7&4.



264 45. Duval I1

Ezample 45.4.7. Let us consider the radical ideal J C K[Z1, Za, Z3] discussed
in Example 39.2.3, 40.3.2 and 42.8.8 for which we choose

q:=N):={1,21,25,7Z3, 7%, 21 7, 73, 71 Z3, Z3}
and the algebraic expression p = Z1Z3 so that we have
Zo=Z(Jo)={b;:i€{1,2,4,9}},Z, = Z(J1) = {b; : i € {3,5,6,7,8}}.
We thus have

L Zy Zy Zs 7} ZiZy Z3 Z1Zs 73
Z: o0 0 0 2 0 0 0 4 6
Z1Z5 |1 3 —1 4 7 -1 -1 12 7
Z3 |0 3 -3 15 9 -3 -3 42 36
c._| #%00 6 -3 30 18 -3 -3 84 72
o Z2 o1 2 0 3 2 2 1 0 ’
Z3 |0 -2 2 -8 —6 2 2 —24 -18
Zy |0 -9 9 —45 27 9 9 —126 -—108
Zy |0 -3 -3 -3 -9 -3 -3 -12 -6
1 |0 2 -2 6 6 -2 -2 20 12
Z2 |1 0 0 O 0]0 0 0O
Z1Z3| 0 1 0 0 00 0 0 O
Z210 0 1 0 0[]0 00O
Z1Zo0 0 0 0 1 00 0 0 O
whence we compute D := VA 0 0 0 0 1 (0 0 00O
Zs |1 0 % 0 01]00 00
Zy |0 0 =3 0 00 0 0O
Zy |1 0 = 0 —2(0 0 0 0
1 |[-2 0 % 0 0]0 0 0 O
1 |[=L 1 =2 2 £l 2 0 0 4
7z % 0 % -1 % -3 0 0 -1
Zy |0 0 % &+ 0[]0 -1 -1 0
Zs |20 2 2 210 0 0 -5
and F := ZZ10 0 0 0 O|1 0 0 O
Z1Zo| 00 0 0 0|0 1 0 0
ZZ210 0 0O 0 0|0 O 1 o0
ZhZs| 2 0 2 + F|0 0 0 1
Z2|10 0 0O 0O O|O0 O 0 1
Moreover
1., 1 RIS
1 = 75(23+Zg+zlf2)f§legf§(322f223f922f21+2)

1
—92175 — 5(Zf —271)

1
5(Zf — 371+ 2)+9(Z1Z — Zs)
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9 1
+§(Z22 — Zy) + §(Z§ + 7173 — 523 — Z1 +4)

so that
Jo = W(Z2+4 25+ 2y —2, 2,723,323 — 273 — 97y — Z1 + 2, Z1 Zo, 22 — 274)
Wi = WZ} —3Z1 42,2175 — 72,23 — Zo, 23 + Z1Z3 — 573 — Z1 + 4)
¢ = 247! (2Z§ + 47173 + 3372 4+ 6671 Zy — 1822 — 2075 — 9975 + 3877 + 18)

Let us now finally discuss a solution of Problem 45.4.2:

e for each I, A\, h compute the values

R
h h
bz(,\) = Z 'Y(‘Il/v qi, Q)az('x)

which satisfy, for each I,h, (mod J')

R
sz(x D= Z <ZV a,%,4 )> = Zv 49,9 Znqi = Zng) € J';
A=1

A=1 \i=1 =1

e by linear algebra, for each [, h compute the unique values a’ l(;L), 1<57<8
satisfying

s R
Za/z(;l)% =Y "bVax = Zug,  (mod J);
A=1

j=1

e for each i, j, A compute the values

_ (szw;,q“ vmq;,qmq))
R

which satisfy, for each 4,7, (mod J')
R
Y>> A ana vm)v(q},qmq)> A

5Vgy = (
Z 1 k=1

R

R

>a
| \

1 \¢

Z’y QwQL; q]7q1€) (Z’yw@ Q)\>

=1

Il
M=

=1

B

Il
M:u

Z (4 @ DY G A) 004
k=1
/

= et

\H
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e by linear algebra, for each ¢, compute the unique values +' (l-), 1<I<S

ij
satisfying
S ) R
A
Sy a =" 6D ar = dlg mod I
=1 A=1
thus the data

(@) o' ={q1,- -, ds},
() M(a) = { (')

(¢c) the structure constants 'y’(l)

ij

are the required Grobner representation of J'.

45.5 Linear representation

Let us now specialize the results of the previous section to the case in which

(A) gq=N<(J) ordered so that 1 =¢1 < g2 < -+ < gg;

(B) at each step of the Gaussian algorithm, as pivot element among all pos-
sible choices we systematycally choose the mostleft available column;

(C) b = N4(J) ordered so that by > --- = br_1 > bg = 1, so that ¢; =
br—i+1 for each i.

Remark 45.5.1. Given any Grobner representation of J and a term order-
ing <, a direct application of Moller’s Algorithm 28.2.7 to the functionals
7('5 G, Q) returns N<(J) o

Ezample 45.5.2. Conditions (A-B) are satisfied by both Example 45.4.6
and 45.4.6 which further satisfies also condition (C).
Therfore the reader can easily veryfy our claims on thise examples. a

As a consequence of (B) in the transformation of C' into D each column,
which is not a pivot element, is modified only by means of columns to its
left. Therefore, since in (24) the set J := {p(k) : S < k < R} denotes the
indices corresponding to the columns of C' which have not being used as pivot
element, the assumption (B) allows to reformulate (24) as:

(24)’ denoting p(k) := max{l : es, # 0} for each k,5 < k < R, and J :=
{p(k) : S < K < R} we have ey, = 0 for each £ # k).

Thus we trivially have

Corollary 45.5.3. If assumptions (A-B) are satisfied, then
N(i) = {b, 1 <i<R,i¢ J}.
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In the same mood, as a direct consequence of the ordered imposed on b by
condition (C) we also get

Corollary 45.5.4. If assumptions (A-C) are satisfied, then

N(Jo) = {bs+1, ey bR}
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