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Maŕıa Emilia Alonso · Maria Grazia Marinari · Teo
Mora

The big Mother of all Dualities 2: Macaulay Bases

the date of receipt and acceptance should be inserted later

Abstract We present some interesting computational applications of Macaulay’s notion of inverse
systems and Noether equations. In particular we discuss an algorithm by Macualay which computes
the forgotten notion (introduced by Emmy Noether) of reduced irreducible decomposition for ideals of
the polynomial ring.

Keywords Lasker-Noether Decomposition, Macaulay Inverse Systems

Mathematics Subject Classification (2000) 13E10, 13E05, 13P10

1 Introduction

This paper is the second in a series of survey articles on results which introduced duality tools in
computer algebra and follows [1], reported on Möller’s Algorithm. Its aim is to present some interesting
computational applications of Macaulay’s notions of inverse systems and Noether equations.

After introducing general notation (§ 2), we recall Macaulay’s ideas, his notion of Noether equations
as a tool for describing m-closed ideals (§ 3) and the module structure imposed on inverse systems
(§ 4).

We then discuss Macaulay’s duality between m-closed ideals and modules of Noether equations
(§ 5), together with Gröbner’s interpretation of Macaulay’s results in terms of differential equations
(§ 7) and we deduce the relations with Leibniz’s (§ 6) and Taylor’s Formulas (§ 8)

We formalize and specialize the duality discussed in the previous paper [1], proposing a characteri-
zation of zero-dimensional ideals in a polynomial ring in terms of what we label Macaulay Bases (§ 9),
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i.e. the collections of the Noether equations of the primary components. We also discuss a compact
representation of them (§ 13), which is already implicitly presented in Macaulay’s book (cf. [13],§ 69),
and the relations between Macaulay Bases and Gröbner Bases (§ 10).

In order to illustrate the most relevant applications of Macaulay’s ideas, we need to recall (§ 11)
a forgotten idea by Emmy Noether, namely she proved a stronger version of the well-known Lasker–
Noether Decomposition Theorem, that is: each ideal has an irredundant reduced primary decomposition
(see Rem 11.2, V III); such irredundant reduced decomposition can be characterized also for embedded
primary ideals, unfortunately strongly depending on the frame of coordinates, so no uniqueness result
can be stated. Gröbner (cf. [9], pp. 177–178) explicitly suggested to apply an improved version of an
algorithm by Macaulay (§ 12) in order to successfully compute the irreducible reduced decomposition
of an ideal: both the examples by Hentzel and the approach used by Gröbner clarify that such notion
strongly depends on a frame of coordinates.

We conclude this survey pointing, without proofs, to some further results:

a good complexity algorithm which allows to evaluate a polynomial into a Macaulay basis (§ 14.1)
a good complexity algorithm which allows to compute Noether equations of a primary ideal (§ 14.2)
a combinatorial algorithm which deduces the (finite) Gröbner éscalier (i.e. the set of terms which are

not maximal terms of members of the given ideal) of a zero-dimensional ideal from its Macaulay
basis. (§ 14.3)

a theorem which merges Lazard Theorem [11], Möller’s Algorithm [4,1] Gianni–Kalkbrener Theorem
[8,10] and Cerlienco–Mureddu Correspondence [5,6] giving a strong description of the structure of
the Gröbner basis and of the dual basis of a zero-dimensional ideal (§ 14.3).

2 General notation

Throughout the paper
k is a field,
for all n ∈ N, {X1, . . . , Xn} is a (finite) set of indeterminates,
P := k[X1, . . . , Xn] ⊂ k[[X1, . . . , Xn]] =: S,
a ⊂ P is an ideal and
m := (X1, . . . , Xn) ⊂ P is the maximal ideal at the origin O.

Moreover, we let T := {Xa1
1 . . . Xan

r : (a1, . . . , an) ∈ Nn} and, for all d ∈ N,
Td := {τ ∈ T : deg(τ) = d} and T (d) := {τ ∈ T : deg(τ) ≤ d}.
For any τ ∈ T and 1 ≤ h ≤ n with Xh | τ, the term τ

Xh
is called h-predecessor of τ and for all

j ∈ {1, . . . , n} the term Xjτ is called j-successor of τ.
Each (non-zero) f ∈ P can be uniquely expressed either as polynomial in Xn over k[X1, . . . , Xn−1]

f =
deg(f)∑

i=0

giX
i
n, gi ∈ k[X1, . . . , Xn−1], (gdeg(f) 6= 0), (1)

or, if B is any k-basis of P, as linear combination of elements in B

f =
∑
β∈B

c(f, β)β =
s∑

i=1

c(f, βi)βi : c(f, βi) ∈ k∗, βi ∈ B. (2)

The B-support of f is the finite set

SB(f) := {β ∈ B : c(f, β) 6= 0}.

In particular, if B = T instead of ST (f) we simply write S(f) and also consider

S̃(f) := {t ∈ T : t | τ, for some τ ∈ S(f)}.

For any f =
∑

τ∈T c(f, τ)τ ∈ S is called support of f also the, possibly infinite, set
S(f) := {τ ∈ T : c(f, τ) 6= 0}.
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If < is a semigroup ordering on T , then, for any f ∈ P, the ti ∈ S(f) can be chosen so that
t1 > · · · > ts and call

T<(f) := t1 is called maximal term of f, lc(f)< := c(f, t1) leading cofficient of f.
For each set G ⊂ P we consider the set

T<{G} := {T<(g) : g ∈ G}, and

T<(G) := {τT<(g) : τ ∈ T , g ∈ G}
the monomial ideal it generates.
For each ideal a ⊂ P, the minimal basis of the monomial ideal T<(a) = T<{a} is denoted G(a).
Moreover,

N<(a) := T \T<(a)1,

B<(a) := {Xht : 1 ≤ h ≤ n, t ∈ N<(a)} \N<(a)
= T<(a) ∩ ({1} ∪ {Xht : 1 ≤ h ≤ n, t ∈ N<(a)}) ,

C<(a) := {t ∈ N<(a) : Xht ∈ T<(a), for all h},
are respectively called Gröbner éscalier (or souséscalier), border set and corner set of a w.r.t. <;
we also set k[N<(a)] := Spank(N<(a)) and k[[N<(a)]] ⊂ S the vector subspace consisting of all the
series f ∈ S with S(f) ⊆ N<(a).

If no confusion can arise, we will usually omit the dependence on <, simply writing T{·},T(·),N(·),k[N(·)],
etc.

For each f ∈ P, there is [2,3] a unique canonical form

g := Can(f, a, <) =
∑

τ∈N(a)

γ(f, τ,<)τ =
∑

τ∈N(a)

γ(t, τ,N(a))τ ∈ k[N(a)] (3)

such that
f − g ∈ a and, if t ∈ T , t < τ =⇒ γ(t, τ, <) = 0. (4)

A Gröbner basis [2,3] of a is any set G ⊂ a such that T(G) = T(a), i.e. T{G} generates the monomial
ideal T(a); the reduced Gröbner basis [2,3] of a is the set G(a) := {τ−Can(τ, a) : τ ∈ G(a)}; the border
basis [14] of a is the set B(a) := {τ − Can(τ, a) : τ ∈ B(a)}.
Finally, for each 0-dimensional ideal a ⊂ P, its degree or multiplicity is:

deg(a) := #N(a).

Denoting P∗ := Homk(P,k) the k-vector space of k-linear functionals, each ` ∈ P∗ is characterized
by its values on any k-basis B of P, namely for each f ∈ P we have, by the k-linearity of ` ∈ P∗ :

`(f) =
∑
β∈B

c(f, β)`(β).

In particular if B = T , then, each ` ∈ P∗ can be encoded by means of the series
∑

t∈T `(t)t ∈ S in
such a way that to each series

∑
t∈T γ(t)t ∈ S is associated the k-linear functional ` ∈ P∗ defined, on

each f =
∑

t∈T c(f, t)t ∈ P by:
`(f) :=

∑
t∈T

c(f, t)γ(t).

P∗ has a natural P-module structure associating to each ` ∈ P∗ and f ∈ P

(`f) ∈ P∗ defined by (`f)(g) := `(fg), for all g ∈ P.

Two sets L := {`1, . . . , `s} ⊂ P∗ and q = {q1, . . . , qs} ⊂ P are said to be:

1 Note that N<(a) is an order ideal, i.e. a subset N ⊂ T satisfying st ∈ N =⇒ t ∈ N for all s, t ∈ T ; we also
note that N ⊂ T is an order ideal iff I := T \N is a semigroup ideal, and conversely I ⊂ T is a semigroup
ideal iff N := T \ I is an order ideal. Moreover, if I ⊂ T is a semigroup ideal with a slight abuse of language,
it may happen that we use the same letter I to denote the monomial ideal it generates in P.
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• triangular if `i(qj) = 0, for each i < j;
• biorthogonal if `i(qj) = 0, for each i 6= j.

For k-vector subspaces L ⊂ P∗ and P ⊂ P, see ([14,15,1]) we let:

P(L) := {g ∈ P : `(g) = 0, ∀ ` ∈ L}, (5)

L(P ) := {` ∈ P∗ : `(g) = 0, ∀ g ∈ P}, (6)

having:
P ⊂ P(L(P )) (resp. L ⊂ L(P(L)),

and, more precisely, it holds P = P(L(P )), without any assumption on P, while L = L(P(L)), only if
L is finite dimensional.
Moreover, for k-vector subspaces P, P1, P2 ⊂ P and L,L1, L2 ⊂ P∗ it holds:
1. P is an ideal iff L(P ) is a P-module, L is a P-module iff P(L) is an ideal.
2. P1 ⊂ P2 implies L(P1) ⊃ L(P2) and L1 ⊂ L2 implies P(L1) ⊃ P(L2).
3. L(P1 + P2) = L(P1) ∩ L(P2) and P(L1 + L2) = P(L1) ∩P(L2).
4. L(P1 ∩ P2) ⊃ L(P1) + L(P2) and P(L1 ∩ L2) ⊃ P(L1) + P(L2).

If P1, P2 ⊂ P are 0-dimensional ideals and L1, L2 ⊂ P∗ are finite dimensional, then in 4. equalities
hold. Actually, also hold:
5. L(

∑
ρ aρ) = ∩ρL(aρ) and P(

∑
ρ Lρ) = ∩ρP(Lρ), with no assumption on aρ∈N ⊂ P and Lρ∈N ⊂ P∗,

6. L(∩ρaρ) ⊇
∑

ρ L(aρ) and P(∩ρLρ) ⊇
∑

ρ P(Lρ), where strict inclusion can hold also if aρ∈N ⊂ P
are zero-dimensional ideals and Lρ∈N ⊂ P∗ finite k-dimensional P-modules.

3 Macaulay notation

For any polynomial (or series) f ∈ S,
• L(f) is its lowest degree non-zero homogeneous component,
• ord(f) := deg(L(f)) is its order or underdegree.

Moreover, {ζτ : τ ∈ T } is an (infinite) set of indeterminates and k[ζτ ]τ∈T ⊂ k[[ζτ ]]τ∈T .
A dialytic equation of a is any linear combination∑

τ∈T
aτζτ ∈ k[ζτ ]τ∈T satisfying

∑
τ∈T

aττ ∈ a.

For each v ∈ T , the v − derivative of the dialytic equation
∑

τ∈T aτζτ is the dialytic equation∑
τ∈T aτζτv corresponding to the ideal member∑

τ∈T
aττv = v

∑
τ∈T

aττ ∈ a.

The modular equations or inverse functions of a are the equations identically satisfied by the
coefficients of each and every member of a, i.e. the elements∑

τ∈T
cτζτ ∈ k[[ζτ ]]τ∈T with

∑
τ∈T

cτaτ = 0 for all
∑
τ∈T

aττ ∈ a ⊂ P.

The notions of lowest degree component, under-degree (or order) etc. are implicitly extended to dialytic
equations and inverse functions.

If a is an ideal (resp. homogeneous ideal), then the set of all inverse functions up to (resp. of) degree
d and the set consisting of all dialytic equations up to (resp. of) the same degree are conjugate systems
of linear equations (i.e. the solutions of either system give the coefficients of the other one).

To each inverse function
∑

τ∈T cτζτ ∈ k[[ζτ ]]τ∈T we can associate the linear functional γ ∈ P∗
defined by γ(τ) = cτ (encoded, see previous §, by the series

∑
τ∈T cττ ∈ k[[X1, . . . , Xn]]), conversely

each series
∑

τ∈T cττ is associated to the inverse function
∑

τ∈T cτζτ .
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Macaulay proposed a more illuminating notation and expressed such modular equation as the Laurent
series ∑

τ∈T
cττ−1 =

∑
(a1,...,an)∈Nn

ca1...anX−a1
1 · · ·X−an

n ∈ k[[X−1
1 , . . . , X−1

n ]].

The inverse system of the ideal a is the set of all negative power series
∑

τ∈T cττ−1 which are
inverse functions of a.
Note that, in contrast to dialytic equations (involving only a finite number of variables ζτ ), in general
the inverse functions

∑
τ∈T cτζτ =

∑
τ∈T cττ−1 can have an infinite number of variables ζτ with

nonzero coefficient cτ .
In the set of inverse functions, Laurent series which are just polynomials are characterized, as

follows:

Definition 3.1 (Macaulay) An inverse function
∑

τ∈T cττ−1 for which there exists γ ∈ N such that
if deg(τ) > γ =⇒ cτ = 0, is called Noetherian equation.

For any inverse function E, representing a Noetherian equation of degree d, and every f ∈ P we have:
• ord(f) > d =⇒ E(f) = 0 and, more generally,
• E(f) = E(g) for g = Can(f,md+1) ∈ Spank(T (d)), so that E is a modular equation for md+1

and the set of all modular equations of a having degree bounded by d coincides with the set of all
modular equations of a + md+1.

Since for each m-primary ideal q ⊂ P there exists some ρ ∈ N∗ (the characteristic number of q)
such that q ⊃ mρ, for each τ ∈ T with deg(τ) ≥ ρ it results τ ∈ mρ ⊂ q, therefore each inverse function∑

τ∈T cττ−1 of q has cτ = 0 for all τ ∈ T ,deg(τ) ≥ ρ, i.e. it is a Noetherian equation of degree bounded
by ρ− 1.

For each τ ∈ T , a k-linear functional M(τ) ∈ P∗ is defined by:

M(τ)(f) := c(f, τ) for all f =
∑
t∈T

c(f, t)t ∈ P. (7)

We set M := {M(τ) : τ ∈ T } ⊂ P∗ and we consider Spank(M) ⊂ P∗, denoting, for each ` :=∑
τ∈T c(τ, `)M(τ) ∈ Spank(M), support of ` the finite set:

S(`) := {τ ∈ T : c(τ, `) 6= 0}.
For every f :=

∑
t∈T att ∈ P and ` :=

∑
τ∈T cτM(τ) ∈ Spank(M) we have:

`(f) =
∑
t∈T

atct =
∑

t∈S(`)∩S(f)

atct.

Therefore Spank(M) ⊂ P∗ is the set of all the Noetherian equations. In particular for each m-primary
ideal q, we have L(q) ⊂ Spank(M).

Denote, for each vector subspace Λ ⊂ Spank(M),

I(Λ)2 := {f ∈ P : `(f) = 0, ∀ ` ∈ Λ}

and, for each vector subspace P ⊂ P,

M(P ) := L(P ) ∩ Spank(M) = {` ∈ Spank(M) : `(f) = 0, ∀ f ∈ P}. (8)

Any semigroup ordering3 < on P induces an ordering on M defined by:

M(τ) ≤ M(ω) ⇐⇒ τ ≤ ω.

Notice that whenever dialytic equations (i.e. polynomials) are ordered according to their degree, the
corresponding inverse functions are ordered according to their order (or under-degree) and conversely.

In order to extend the notation of Buchberger Theory to inverse functions one can consider any
semigroup ordering and not just well-orderings.

2 Remarking that Spank(M) ⊂ P∗ we also note the equality I(Λ) = P(Λ) and point out that in the sequel
mostly this second notation will be used.

3 Not necessarily a termordering!
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Definition 3.2 For every

` :=
∑

i

ciM(τi) ∈ Spank(M) with ci ∈ k \ {0}, τi ∈ T , τ1 < τ2 < · · · < τi < · · ·

T<(`) := τ1 is the leading term of ` ,
ord(`) := mini(deg(τi)) is the order (or under-degree) of ` ,
deg(`) := maxi(deg(τi)) is the degree of `.
For any Λ ⊂ Spank(M), we set

T<{Λ} := {T<(`), ` ∈ Λ}, N<{Λ} := T \T<{Λ}
and again, when no confusion can arise, we will omit < .

For a degree-compatible term-ordering <, ord(`) = deg(T<(`)), ∀ ` ∈ Spank(M).

4 Stability

For each j ∈ {1, . . . , n}, σj , ρj , λj ∈ Endk(Spank(M)) are defined as follows:

σj(M(τ)) := σXj (M(τ)) =
{

M(ω) if τ = Xjω
0 if Xj - τ

∀ τ ∈ T ;

ρj(M(τ)) := ρXj (M(τ)) = M(Xjτ) ∀ τ ∈ T ;

λj(M(τ)) =
{

M(τ) if Xj | τ
0 if Xj - τ

∀ τ ∈ T .

Remark that
σjρj = Id, ∀ j,
ρjσj = λj , ∀ j,
σkρj = ρjσk, ∀ j, k, j 6= k.

As for each i, j we have σjσi = σiσj , for each t ∈ T is inductively defined a σt ∈ Endk(Spank(M)),
by σXjt := σXj

σt, so that for each τ, ω ∈ T we have:

στ (M(ω)) =
{

M(υ) if ω = τυ
0 if τ - ω.

Therefore, for each f =
∑

i citi ∈ P, also a σf ∈ Endk(Spank(M)) is uniquely defined by σf (`) :=∑
i ciσti

(`).
Letting, for all f ∈ P, ` ∈ Spank(M),

`f := σf (`),

the k-vector space Spank(M) is naturally endowed with a P-module structure.
Remark also that, for each ` ∈ Spank(M) and each f ∈ P, σf (`) is exactly the f -derivative of `.

Lemma 4.1 Given any ` ∈ Spank(M), f ∈ P and i, it holds:

`(Xif) = σi(`)(f).

Proof. Notice that for each t ∈ T we have S(tf) = tS(f) := {tτ : τ ∈ S(f). Writing f :=∑
t∈T att and ` :=

∑
τ∈T cτM(τ), we have that for all t ∈ S(Xif) it holds Xi | t and c(t, Xif) =

aτ , where τ is the i-predecessor of t.
Since each t ∈ S(`)∩S(Xif) is the i-successor of some τ ∈ S(f)∩S(σi(`)), and Xiτ ∈ S(Xif)∩S(`)

holds for all τ ∈ S(f) ∩ S(σi(`)), we have our contention because

`(Xif) =
∑

t∈S(`)∩S(Xif) c(t, Xif)c(t, `) and
σi(`)(f) =

∑
τ∈S(σi(`))∩S(f) c(τ, f)c(τ, σi(`)).
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Definition 4.2 A k-vector subspace Λ ⊂ Spank(M) is called:
• Xj-stable if σj(`) ∈ Λ, for each ` ∈ Λ;
• stable if σf (`) ∈ Λ, for each ` ∈ Λ and f ∈ P.

Lemma 4.3 Given vector subspaces Λ, Λ1, Λ2 ⊂ Spank(M) we have:
1. for any change of coordinates {Y1, . . . , Yn}, are equivalent conditions:
• Λ is stable,
• Λ is Xj-stable, for each j,
• Λ is Yi-stable, for each i;

2. if Λ 6= {0} is stable then M(1) ∈ Λ;
3. if Λ1 and Λ2 are stable, then also Λ1 ∩ Λ2 and Λ1 + Λ2 are so.

Theorem 4.4 For any finite dimensional vector subspace Λ ⊂ Spank(M) ⊂ P∗, are equivalent condi-
tions:

1. Λ is stable,
2. the vector space P(Λ) is an ideal and P(Λ) ⊂ m.

Proof. 1. =⇒ 2. For each ` ∈ Λ, f ∈ P(Λ) and i, we have σi(`) ∈ Λ and by Lemma 4.1 `(Xif) =
σi(`)(f) = 0. This proves that

Xif ∈ P(Λ), ∀ f ∈ P(Λ) and i, i.e. P(Λ) is an ideal.

Moreover, since Λ is stable, by Lemma 4.3 we have M(1) ∈ Λ so that

f(0) = M(1)(f) = 0, ∀ f ∈ P(Λ) i.e. P(Λ) ⊂ m.

2. =⇒ 1. Since Λ ⊂ P∗ is finite dimensional we have Λ = LP(Λ).
For each f ∈ P(Λ), ` ∈ Λ and i, since P(Λ) is an ideal we have Xif ∈ P(Λ) so that σi(`)(f) =
`(Xif) = 0 and

σi(`) ∈ LP(Λ) = Λ.

5 Gröbner Duality

Proposition 5.1 Given vector subspaces a ⊂ P and Λ ⊂ Spank(M), it holds:
1. Λ ⊂ MP(Λ) and, if Λ is finite dimensional, then equality holds;
2. a ⊂ PM(a).

Proof. 1. We have Λ ⊂ LP(Λ) so that

Λ = Λ ∩ Spank(M) ⊂ LP(Λ) ∩ Spank(M) =
= L(P(Λ)) ∩ Spank(M) = M(P(Λ)).

If Λ is finite dimensional, then Λ = LP(Λ) and so equality substitutes inclusion.
2. Since M(a) ⊂ L(a) we have P(M(a)) ⊃ P(L(a)); so that

a ⊂ PL(a) ⊂ PM(a).

For each ρ ∈ N, denoting ∇ρ := Spank({M(τ)(·) : τ ∈ T (ρ− 1)}), we have:

Lemma 5.2 For each ρ ∈ N it holds:
•P(∇ρ) = mρ,
•M(mρ) = L(mρ) = ∇ρ.
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Proof. Trivially we have

P(∇ρ) ⊃ mρ and L(mρ) ⊃ M(mρ) ⊃ ∇ρ,

and the equalities follow since dimk(∇ρ) =
(
n
ρ

)
= deg(mρ).

Corollary 5.3 For each m-primary ideal q it holds:
•M(q) = L(q),
• q = PM(q);

Proof. Since q is m-primary we have q ⊃ mρ for some ρ ∈ N and

L(q) ⊂ L(mρ) = ∇ρ ⊂ Spank(M),

so that M(q) = L(q). Hence
q = PL(q) = PM(q).

Proposition 5.4 Given a finite-dimensional stable vector subspace Λ ⊂ Spank(M):
•P(Λ) ⊂ m is an m-primary ideal,
• dimk(Λ) = deg(P(Λ)).

Proof. From Theorem 4.4 P(Λ) ⊂ m is an ideal, Λ finite dimensional implies that there exists ρ ∈ N
with Λ ⊂ ∇ρ, thus P(Λ) ⊃ mρ is a primary ideal.

Also dimk(Λ) = deg(P(Λ)).

Proposition 5.5 For each m-primary ideal q it holds:
•M(q) is stable;
• dimk(M(q)) = deg(q).

Proof. As q = PM(q) by 5.3, Theorem 4.4 grants that M(q) is stable. Also, since M(q) = L(q) we
have

dimk(M(q)) = dimk(L(q)) = deg(PL(q)) = deg(q).

Lemma 5.6 Given m-primary ideals q1 and q2 and finite dimensional stable vector subspaces Λ1, Λ2 ⊂
Spank(M), it holds:

1. q1 ⊂ q2 =⇒ M(q1) ⊃ M(q2) and Λ1 ⊂ Λ2 =⇒ P(Λ1) ⊃ P(Λ2);
2.M(q1 + q2) = M(q1) ∩M(q2) and P(Λ1 + Λ2) = P(Λ1) ∩P(Λ2);
3.M(q1 ∩ q2) = M(q1) + M(q2) and P(Λ1 ∩ Λ2) = P(Λ1) + P(Λ2).

All the above facts can be summarized as follows:

Remark 5.7 The maps P(·) and M(·) (respectively restriction of P(·) to m-primary ideals and L(·)
to finite dimensional stable k-vector subspaces) are mutually inverse by 5.1 and 5.3. They actually
give a biunivocal, inclusion reversing, correspondence between the set of the m-primary ideals q ⊂ P
and the set of the finite dimensional stable vector subspaces Λ ⊂ Spank(M).

Moreover, for each m-primary ideal q ⊂ P we have deg(q) = dimk(M(q)) and, for any finite
dimensional stable vector subspace Λ ⊂ Spank(M) we have dimk(Λ) = deg(P(Λ)).

Proposition 5.8 For ρ ∈ N, let qρ be m-primary ideals and Λρ ⊂ Spank(M) be finite dimensional
stable vector subspaces. Then

1.M(
∑

ρ qρ) = ∩ρM(qρ) and P(
∑

ρ Λρ) = ∩ρP(Λρ);
2.M(∩ρqρ) =

∑
ρ M(qρ) and P(∩ρΛρ) =

∑
ρ P(Λρ).

Proof. Clearly 1. is a consequence of 5. of §2, as for 2. it follows from of 6. of §2, by definition of
Spank(M) and M(−).
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Lemma 5.9 Given a (not necessarily finite-dimensional) stable vector subspace Λ ⊂ Spank(M), for
each ρ ∈ N, let Λρ := Λ ∩∇ρ. Then we have:

1. Λ1 ⊂ · · · ⊂ Λρ ⊂ Λρ+1 · · · ⊂ Λ, and so
P(Λ1) ⊃ · · · ⊃ P(Λρ) ⊃ P(Λρ+1) ⊃ · · · ⊃ P(Λ),

2. Λ =
∑

ρ Λρ, and so P(Λ) = ∩ρP(Λρ),
3. P(Λ) is an m-closed ideal and Λ = MP(Λ).

Proof. Clearly 1. and 2. are trivial. Ad 3., we have P(Λ) = ∩ρ(P(Λ) + mρ), namely

P(Λ) = ∩ρP(Λρ) = ∩ρP(Λ ∩∇ρ) =
= ∩ρ(P(Λ) + P(∇ρ)) = ∩ρ(P(Λ) + mρ);

on the other hand

Λ =
∑

ρ

Λρ =
∑

ρ

MP(Λρ) = M(∩ρP(Λρ) = MP (Λ).

Proposition 5.10 For each m-closed ideal a ⊂ P ⊂ S, it holds:
• a = PM(a);
•M(a) is stable.

Proof. Considering, for every ρ ∈ N, the m-primary ideal aρ := a + mρ, we have

a = ∩ρaρ = ∩ρPM(aρ) = P

(∑
ρ

M(aρ)

)
= PM (∩ρaρ) = PM(a).

Let ` ∈ M(a) and let ρ− 1 = deg(`), we have ` ∈ ∇ρ = M(mρ) and therefore

` ∈ M(a) ∩M(mρ) = M(a + mρ);

since M(a + mρ) is stable, for each f ∈ P,

σf (`) ∈ M(a) ∩M(mρ) ⊂ M(a).

Theorem 5.11 The mutually inverse maps P(·) and M(·) give a biunivocal, inclusion reversing, cor-
respondence between the set of m-closed ideals a ⊂ P ⊂ S and the set of stable vector subspaces
Λ ⊂ Spank(M).

6 Leibniz Formula

Proposition 6.1 For any f, g ∈ P and ω ∈ T it holds:

M(ω)(fg) =
∑
υ∈T

υτ=ω

M(υ)(f)M(τ)(g).

Proof. Let
f =

∑
υ∈S(f) c(f, υ)υ =

∑
υ∈S(f) M(υ)(f)υ,

g =
∑

τ∈S(g) c(g, τ)τ =
∑

τ∈S(g) M(τ)(g)τ,
fg =

∑
ω∈S(fg) c(fg, ω)ω =

∑
ω∈S(fg) M(ω)(fg)ω

for each ω ∈ T , we have

M(ω)(fg) = c(fg, ω) =
∑

υ∈S(f)
υτ=ω

c(f, υ)c(g, τ)

=
∑

υ∈S(f)
υτ=ω

M(υ)(f)M(τ)(g).
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Corollary 6.2 (Leibniz-type Formula) For any f, g ∈ P and ` ∈ Spank(M) it holds:

`(fg) =
∑

υ∈S(f)

M(υ)(f)συ(`)(g).

We point out that Lemma 4.1 is nothing but a particular case of Corollary 6.2.

Proposition 6.3 (Möller–Stetter) Given any k-basis {`1, . . . , `s} of a finite dimensional stable vec-
tor space Λ ⊂ Spank(M) and any finite basis {g1, . . . , gt} of an ideal a ⊂ P. Then

`i(gj) = 0, ∀i, j =⇒ `(f) = 0, ∀` ∈ Λ, f ∈ a.

Proof. Let f =
∑t

j=1 fjgj ∈ a and let ` ∈ Λ. Then, for each υ ∈ T , συ(`) ∈ Λ as Λ is stable. Therefore,
for all j and υ ∈ T , συ(`)(gj) = 0 and by the Leibniz-type Formula

`(f) =
t∑

j=1

`(fjgj) =
t∑

j=1

∑
υ∈S(fj)

M(υ)(fj)συ(`)(gj) = 0

Corollary 6.4 With the same notation as above

`i(gj) = 0, ∀i, j =⇒ Λ ⊂ M(a).

7 Differential inverse functions at the origin

A nice interpretation of the set Spank(M) of all the Noetherian equations at the origin4 in terms
of differential operators was proposed by Gröbner, assuming (as we will do throughout the section)
char(k) = 0.

For each (i1, . . . , in) ∈ Nn, setting τ := Xi1
1 . . . Xin

n , we denote by

D(τ) := D(i1, . . . , in) : P → P

the differential operator:

D(τ) := D(i1, . . . , in) =
1

i1! · · · in!
∂i1+···+in

∂Xi1
1 · · · ∂Xin

n

.

Also, for τ := Xd1
1 · · ·Xdn

n ∈ T , and t := Xe1
1 · · ·Xen

n ∈ T such that τ | t so that di ≤ ei, we will
use the following shorthand (

t

τ

)
:=
(

e1

d1

)
· · ·
(

en

dn

)
.

Proposition 7.1 [14] Let τ := Xd1
1 · · ·Xdn

n ∈ T , and t := Xe1
1 · · ·Xen

n ∈ T . Then

D(τ)(t) :=
{(

t
τ

)
Xe1−d1

1 . . . Xen−dn
n if τ | t,

0 if τ - t
.

4 Noetherian equation at a point means ‘at the maximal ideal corresponding to the point’.
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Denoting D := {D(τ) : τ ∈ T }, for each δ :=
∑

τ∈T cτD(τ)(·) ∈ Spank D we set S(δ) := {τ ∈ T :
cτ 6= 0} and S̃(δ) := {t ∈ T : t | τ, for some τ ∈ S(δ)}.
Remark that, for each τ ∈ T , D(τ)(·)(0, . . . , 0) = M(τ), so that if we set ev : Spank(D) → Spank(M)
the morphism defined by ev(D(τ)) = M(τ) for each τ ∈ T we have

ev(δ)(·) = δ(·)(0, . . . , 0) =
∑
τ∈T

cτM(τ)(·) ∀δ :=
∑
τ∈T

cτD(τ)(·) ∈ Spank D

so that the set
{δ(·)(0, . . . , 0) : δ ∈ Spank(D)} ⊂ P∗

coincides with the set of all the Noetherian equations at the origin and, in particular, for each m-primary
ideal q, we have

L(q) ⊂ {δ(·)(0, . . . , 0) : δ ∈ Spank(D)}.

We impose on D the same semigroup ordering < induced on M so that

D(τ) ≤ D(ω) ⇐⇒ M(τ) ≤ M(ω) ⇐⇒ τ ≤ ω

and we set
T<(δ) := T<(ev(δ)), ord(δ) := ord(ev(δ)), deg(δ) := deg(ev(δ)).

Letting D(τ1) ·D(τ2) := D(τ1τ2) we impose on D also a semigroup structure which is isomorphic
to the one of T :

Proposition 7.2 [14] For υ := Xd1
1 · · ·Xdn

n , and τ := Xe1
1 · · ·Xen

n , we have

D(υ) (D(τ)(·)) =
(

υτ

τ

)
D(υτ)(·).

Setting,

στ (D(ω)) =
{

D(υ) if ω = τυ
0 if τ - ω

for each τ, ω ∈ T

σf (δ) =
∑

i ciσti(δ) for each f =
∑

i citi ∈ P, δ ∈ Spank(D)
we get σf : Spank(D) → Spank(D) for all f ∈ P.

Definition 7.3 A vector subspace ∆ ⊂ Spank(D) is called
• Xj-stable if for each δ ∈ ∆, σj(δ) ∈ ∆;
• stable if for each δ ∈ ∆ and each f ∈ P, σf (δ) ∈ ∆.

8 Taylor Formula and Gröbner Duality

Letting b := (b1, . . . , bn) ∈ kn, mb := (X1 − b1, . . . , Xn − bn) ⊂ P,
λb : P → P the translation λb(Xi) = Xi + bi, for all i; we have λb(mb) = m and, for each mb-closed
ideal ab, a := λb(ab) is an m-closed ideal. Therefore

{`λb(·) : ` ∈ Spank(M)} = {δ(·)(b) : δ ∈ Spank(D)} ⊂ P∗

is the set of all the Noetherian inverse equations w.r.t. mb-closed ideals and, in particular

L(qb) ⊂ {`λb(·) : ` ∈ Spank(M)},

for each mb-primary ideal qb.
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Remark 8.1 [15] Let p ⊂ P be an (n-r)-dimensional prime ideal, up to a suitable change of coor-
dinates, we may assume p ∩ k[Xr+1, . . . , Xn] = {0}, i.e. p := pk(Xr+1, . . . , Xn)[X1, . . . , Xr] maximal
ideal. Let pQ = ∩s

i=1ni be a prime decomposition in Q := Ω(k)[X1, . . . , Xn] (where Ω(k) is the universal
field of k), with p = ni ∩ P, for each i. If ai := (ai1, . . . , ain) ∈ Ω(k)n is the root for which

ni = (X1 − ai1, . . . , Xn − ain),

then, via the translation λai
: Q → Q, we are in the situation discussed above. In particular

• the set {`λai(·) : ` ∈ Spank(M)} ⊂ Q∗ consists of all the Noetherian inverse equations w.r.t.
ni-closed ideals;

• if q ⊂ P is p-primary, then q := qk(Xr+1, . . . , Xn)[X1, . . . , Xr] is a p-primary ideal and
qQ = ∩s

i=1si is a decomposition into simple5 primary components satisfying:
− √

si = ni,
− q = si ∩ P for each i,
− L(si) ⊂ {`λai

(·) : ` ∈ Spank(M)};
• if j is a p-closed ideal, then for J := jk(Xr+1, . . . , Xn)[X1, . . . , Xr] one has JQ = ∩s

i=1Ji where
Ji is ni-closed and j = Ji ∩ P, for each i.

Lemma 8.2 For each b := (b1, . . . , bn) ∈ kn and f :=
∑µ

i=1 c(f, ti)ti ∈ P, it holds:

c(τ, λb(f)) = M(τ)λb(f) = D(τ)λb(f)(0, . . . , 0) = D(τ)(f)(b).

Corollary 8.3 (Taylor formula) For each b := (b1, . . . , bn) ∈ kn and each f :=
∑µ

i=1 c(f, ti)ti ∈ P,
it holds

λb(f) = f(X1 + b1, . . . , Xn + bn)

=
∑
τ∈T

D(τ)(f)(b)τ.

Let us denote, for each vector subspace ∆ ⊂ Spank(D),

Ib(∆) := {f ∈ P : δ(f)(b) = 0, ∀ δ ∈ ∆}

and, for each vector subspace P ⊂ P,

Db(P ) := {δ ∈ Spank(D) : δ(f)(b) = 0, ∀ f ∈ P}.

We point out that if b = 0, then we will simply write I(∆) and D(P ), noticing also that D(a) = M(a)
for all a ⊂ P ⊂ S,m-closed ideal.

Corollary 8.4 Let ∆ ⊂ Spank(D) be any vector subspace.
Then, the following conditions are equivalent:
•∆ is stable,
•Λ := ev(∆) is stable,
• the vectorspace Ib(∆) is an ideal and Ib(∆) ⊂ mb.

Proof. Clearly 1. ⇐⇒ 2..
The equivalence with 3. is a consequence of the obvious equality

δ(f)(b) = δλb(f)(0, . . . , 0) = ev(δ)λb(f)

and Theorem 4.4

Lemma 8.5 For any stable vector space ∆ ⊂ Spank(D), it holds Ib(∆) = λ−1
b (P(ev(∆))).

5 A primary ideal is called simple if its corresponding maximal ideal is linear.
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Proof. Denoting Λ := ev(∆), we have

Ib(∆) = {f ∈ P : δ(f)(b) = 0,∀δ ∈ ∆}
= {f ∈ P : ev(δ)λb(f) = 0,∀δ ∈ ∆}
= {λ−1

b (g) : g ∈ P, ev(δ)(g) = 0,∀δ ∈ ∆}
= λ−1

b ({g : g ∈ P, `(g) = 0,∀` ∈ Λ})
= λ−1

b (P(Λ))

= λ−1
b (P(ev(∆))).

Lemma 8.6 For P ⊂ P, it holds Db(λ−1
b (P )) = ev−1(M(P )).

Proof. It holds

Db(λ−1
b (P )) = {δ ∈ Spank(D) : δ(f)(b) = 0,∀f ∈ λ−1

b (P )}
= {δ ∈ Spank(D) : δλ−1

b (g)(b) = 0,∀g ∈ P}
= {δ ∈ Spank(D) : ev(δ)λb(λ−1

b (g)) = 0,∀g ∈ P}
= {δ ∈ Spank(D) : ev(δ)(·) ∈ L(P )}
= {δ ∈ Spank(D) : ev(δ)(·) ∈ L(P ) ∩ Spank(M)}
= {δ ∈ Spank(D) : ev(δ)(·) ∈ M(P )}
= ev−1(M(P )).

Corollary 8.7 Each mb-closed ideals ab ⊂ P and each stable vector subspaces ∆ ⊂ Spank(D) satisfy

IbDb(ab) = ab and DbIb(∆) = ∆.

Proof. We have

IbDb(ab) = λ−1
b (P(ev(Db(ab))))

= λ−1
b (P(ev ev−1(M(λb(ab)))))

= λ−1
b (PM(λb(ab)))

= λ−1
b λb(ab)

= ab

and
DbIb(∆) = Db(λ−1

b (P(ev(∆)))) = ev−1(M(P(ev(∆)))) = ev−1 ev(∆) = ∆.

This allows to conclude that

Theorem 8.8 (Gröbner) The mutually inverse maps Ib(·) and Db(·) give a biunivocal, inclusion
reversing, correspondence between the set of the mb-closed ideals ab ⊂ P and the set of the stable vector
subspaces ∆ ⊂ Spank(D).

Moreover, to any mb-primary ideals qb ⊂ P corresponds a finite dimensional stable k-vector sub-
space so that deg(qb) = dimk(Db(qb)); and to any finite dimensional stable vector subspaces ∆ ⊂
Spank(D) corresponds an mb-primary ideal so that dimk(∆) = deg(Ib(∆)).

We recall here the classical Leibniz Formula in order to stress how applying ev one can motivate
the use of this name for Proposition 6.1 and its corollary
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Lemma 8.9 (Leibniz Formula) For any f, g ∈ P and ω ∈ T it holds

D(ω)(fg) =
∑

υ∈S̃(f)
υτ=ω

D(υ)(f)D(τ)(g)

Proposition 8.10 For any f, g ∈ P and any δ ∈ Spank(D) it holds

δ(fg) =
∑

υ∈S̃(f)

D(υ)(f)συ(δ)(g).

Corollary 8.11 For all f ∈ P, δ ∈ Spank(D), 1 ≤ i ≤ r, it holds

δ(Xif) = Xiδ(f) + σXi
(δ)(f).

Corollary 8.12 Given any b ∈ kn and mb ⊂ P, for any δ ∈ Spank(D), it holds

δ(Xif)(b) = biδ(f)(b) + σi(δ)(f)(b).

Notice that by applying ev to Corollary 8.11 and Proposition 8.10 we get exactly what stated in
Lemma 4.1 and Corollary 6.2.

Corollary 8.13 (Möller–Stetter) Given
any k-basis {δ1, . . . , δs} of a stable vector subspace ∆ ⊂ Spank(D),
b := (b1, . . . , bn) ∈ kn and mb ⊂ P,
an ideal a ⊂ P and any finite basis {g1, . . . , gt} of a.

If δi(gj)(b) = 0∀i, j, then δ(f)(b) = 0,∀δ ∈ ∆, f ∈ a.

Corollary 8.14 With the same notation as above.

If δi(gj)(b) = 0∀i, j, then ∆ ⊂ Db(a).

9 Macaulay Bases

Given a semigroup ordering < on T and an m6-closed ideal a ⊂ P ⊂ S, for each t ∈ T let γ(t, τ, <) be
the coefficient corresponding to τ ∈ N(a) in the canonical form Can(t, a, <) of t (see (3)).
Labelling the elements in N(a), for each τi ∈ N(a), we let

`(τi) := M(τi) +
∑

t∈T(a)

γ(t, τi, <)M(t),

and we will show that M(a) = Spank{`(τi), τi ∈ N(a)}.
Notice that `(τ) ∈ M(a) requires in particular `(τ) ∈ k[(M]) which holds iff #{t : γ(t, τi, <) 6= 0, τi ∈
N(a)} < ℵ0, by (4) clearly this is granted if the set {t ∈ T : t > τ} is finite.

In order to have duality between P(−) and M(−) (i.e. to deal with functionals which are poly-
nomials (in Spank(M) = k[M] and not series in k[[M]]) we may choose on T a Hironaka/standard

6 Where, as usual, m = (X1, . . . , Xn)) so that, in particular, 1 ∈ N(a).
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inf-limited7 ordering <. In this setting to Gröbner bases correspond the so-called Hironaka/standard
bases (which deal with series instead of polynomials) and the notion of leading term is the one related
to standard (and not Gröbner) bases.

Remark that in this context the ideal we obtain results to be given in terms of a standard (not
Gröbner) basis. Note that, as a Hironaka’s basis of an ideal returns its m-closure, the restrictions on
both m-closed ideals and inf-limited ordering are quite natural and strictly related in the theory we
have developped here.

Finally, notice that, letting ft := t−
∑

τj<t γ(t, τj , <)τj , for all t ∈ T(a), the set {ft : t ∈ T(a)} is
a dialytic array (i.e. a k-linear basis of a) and we have:

Proposition 9.1 With the notation above, it holds:

`(τ)(ft) = 0,∀t ∈ T(a), τ ∈ N(a).

Proof. Our contention is true as for all t ∈ T(a), τ ∈ N(a) =⇒ M(τ)(t) = 0, and similarly for all
υ ∈ T(a), τ ∈ N(a) =⇒ M(τ)(υ) = 0, moreover M(τ)(τj) = 0 for all τj 6= τ ∈ N(a), so that

`(τ)(ft) = M(τ)(ft) +
∑

υ∈T(a)

γ(υ, τ, <)M(υ)(ft)

= M(τ)(t−
∑
τj<t

γ(t, τj , <)τj) +

∑
υ∈T(a)

γ(υ, τ, <)M(υ)(t−
∑
τj<t

γ(t, τj , <)τj)

= −γ(t, τ, <) + γ(t, τ, <) = 0

Corollary 9.2 With the notation above, it holds:

M(a) = Spank{`(τi), τi ∈ N(a)}.

Moreover, restricting ourselves (as done in most of our examples) either to m-primary ideals, or to
ideals homogeneous w.r.t. the valuation vw, associated to the weight function w := (w1, . . . , wn) ∈
Rn, wi > 0, we have:

Corollary 9.3 Given ρ ∈ N, for each τi, deg(τi) < ρ, denoting

`ρ(τi) := M(τi) +
∑

t∈T(a)
deg(t)<ρ

γ(t, τi, <)M(t), then

• N(a + mρ) = {τi ∈ N(a),deg(τi) < ρ},
• M(a + mρ) = Spank{`ρ(τi), τi ∈ N(a),deg(τi) < ρ}.

Definition 9.4 Referring to Definition 3.1 a basis {`1, `2, . . . , `i, . . .} of a stable vector subspace
Λ ⊂ Spank(M) is called Macaulay basis of Λ w.r.t. < if

•T{Λ} := {T(`i)} ⊂ T is an order ideal;
• `i = M(T(`i)) +

∑
v∈N(Λ)

ξ(v,T(`i))M(v), ∀i and suitable ξ(v,T(`i)) ∈ k.

7 i.e. an ordering on T such that

– Xi < 1, ∀ i
– for each decreasing infinite sequence in T , τ1 > τ2 > . . . > τr > . . . and each τ ∈ T there is r ∈ N such that

τr < τ .
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Corollary 9.5 With the notation above, if we set Λ := M(a) it holds
• {`(τi), τi ∈ N(a)} is a Macaulay basis of Λ,
•T{Λ} = N(a).

Proof. For each i and each t ∈ T(a), we have

γ(t, τi, <) 6= 0 =⇒ t > τi,

and so T(`(τi)) = τi.

Example 9.6 Given the m-closed ideal a := (X2−X2
1 , X3−X3

1 , . . . , Xn−Xn
1 ), which is homogeneous

w.r.t. the valuation
vw : T 7→ R, such that vw(Xi) = i, ∀ i ∈ {1, . . . , n},

letting `j :=
∑

τ∈T
vw(τ)=j

M(τ), ∀ j ∈ N, it is easy to verify that, for each ρ ∈ N :

a + mρ = (Xρ
1 , X2 −X2

1 , X3 −X3
1 , . . . , Xn −Xn

1 ),
deg(a + mρ) = ρ,

M(a + mρ) = Spank{`j , 0 ≤ j < ρ},
M(a) = Spank{`j , j ∈ N}.

Moreover, if < denotes the refinement of vw by the lexicographical ordering induced by X1 ≺ · · · ≺
Xn,

• for each ρ ∈ N, (Xρ
1 , X2, X3, . . . , Xn) = T(a + mρ);

• for each ρ ∈ N, {Xρ
1 , X2−X2

1 , X3−X3
1 , . . . , Xn−Xn

1 }, is the Gröbner basis of a + mρ w.r.t. <;
• for each i ∈ N, T(`i) = Xi

1;
• for each ρ ∈ N, T{M(a + mρ)} = {1, X1, . . . , X

ρ−1
1 };

• the Gröbner basis of a w.r.t. < is {X2 −X2
1 , X3 −X3

1 , . . . , Xn −Xn
1 };

• N(a) = {Xj
1 , j ∈ N} = T{M(a)}.

10 Macaulay Bases and Gröbner Representations

Proposition 10.1 If Λ ⊂ Spank(M) is any stable vector subspace, then also Spank(M(T{Λ})) (where
M(T{Λ}) := {M(τ) : τ ∈ T{Λ}}) is so.
Moreover, if {`i, 1 ≤ i ≤ s} is a Macaulay basis of Λ, then {M(T(`i)), 1 ≤ i ≤ s} is a Macaulay basis
of Spank(M(T{Λ})).

Proof. For each ` ∈ Λ either σi(T(`)) = 0 or σi(T(`)) = T(σi(`)) as, by assumption, Λ is stable.

Proposition 10.2 Given a stable vector subspace Λ ⊂ Spank(M), let:
• {`1, `2, . . . , `i, . . .} be its Macaulay basis w.r.t. <, where, for each i,

`i = M(τi) +
∑

v∈N(Λ)

ξ(v, τi)M(v), τi = T(`i);

• {t1, . . . , ts} be the minimal basis of the monomial ideal N(Λ) ⊂ P;
• gj := tj −

∑
τi∈T{Λ} ξ(tj , τi)τi, for each j.

Then (g1, . . . , gs) is the Gröbner basis of P(Λ) w.r.t. <.

Proof. It is sufficient to show that

`i(gj) = M(τi)(gj) +
∑

v∈N(Λ)

ξ(v, τi)M(v)(gj)

= −ξ(tj , τi)M(τi)(τi) + ξ(tj , τi)M(tj)(tj) = 0.
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Let < be any semigroup ordering on T ,
q ⊂ P an m-primary ideal,
N(q) := {τ1, . . . , τs}, and
`i := `(τi) := M(τi) +

∑
t∈T(q) γ(t, τi, <)M(t) ∈ Spank(M) as above;

then:

Proposition 10.3 With the above notation, Λ := Spank{`1, . . . , `s} and N(q) are biorthogonal.

Note, (see also Corollary 12.2), that τi < τj , for all i < j, does not imply Λi := Spank{`1, . . . , `i}
is a P-module for each i. For instance consider the following:

Example 10.4 Let P := k[X1, X2],
< any termordering on T such that X2 > X2

1 ,
a := (X2

2 −X2
1 , X1X2, X

3
1 ), so that N(a) := {1, X1, X

2
1 , X2}, and

`1 = `(1) = M(1), `2 = `(X1) = M(X1), `3 = `(X2
1 ) = M(X2

1 ) + M(X2
2 ),

`4 = `(X2) = M(X2).
Then Λ3 := Spank{`1, `2, `3}, is not a P-module as P(Λ3) is not an ideal, namely:

`3(X2
2 ) = 1, X2

2 /∈ P(Λ3), while X2 ∈ P(Λ3).

11 Reminds on Primary Decomposition

Every handbook in Commutative Algebra contains the so called Lasker-Noether decomposition theorem:

Theorem 11.1 (Lasker-Noether) In a noetherian ring R, every ideal a ⊂ R has an irredundant
primary decomposition a = ∩r

i=1qi such that:
• qj is a primary ideal, for all j ∈ {1, . . . , r}, with pj = √

qj ,

• qj 6⊃
r⋂

i=1
j 6=i

qi, for all j ∈ {1, . . . , r},

• pj 6= pi, for all i 6= j ∈ {1, . . . , r}.
If a = ∩r

i=1qi = ∩s
j=1q

′
j are two irredundant primary representations of a (where for each i, j we

have pi =
√

qi and p′j =
√

q′j), then:
– r = s,
– for all i ∈ {1, . . . , r}, ∃j ∈ {1, . . . , s} : pi = p′j ;
– for all j ∈ {1, . . . , s}, ∃i ∈ {1, . . . , r} : p′j = pi.
For each i ∈ {1, . . . , r}, the prime ideal pi is called associated prime ideal of a and the primary ideal

qi is called primary component of a; each minimal element in {pi : 1 ≤ i ≤ r} is called isolated prime
of a, while associated prime ideal which are not isolated are called embedded, a primary component qi

is called isolated or embedded according to what is its radical.
The isolated primary components of a are uniquely determined.

Remark 11.2 We briefly recall here the iter followed by E. Noether in [20] for proving the above
facts, in order to emphasize a result of Macaulay/Gröbner which will be proved in the next section.

I In a commutative ring R, an ideal which is not a finite intersection of ideals strictly containing
it is called irreducible.

II In a commutative ring R, every prime ideal p ⊂ R is irreducible.
III In a noetherian ring R, every irreducible ideal is primary (but not conversely).
IV (Lasker-Noether) In a noetherian ring R, every ideal a ⊂ R is a finite intersection of irreducible

ideals.
V (Noether) In a noetherian ring R, reduced representation of an ideal a is a representation of a

as intersection a = ∩r
j=1ij of finitely many irreducible ideals s.t.

– for all j ∈ {1, . . . , r}, ij 6⊃
r⋂

h=1
j 6=h

ih,
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– there is no irreducible ideal ij
′ ⊃ ij such that a =

 r⋂
h=1
j 6=h

ih

 ∩ ij
′.

V I (Noether) In a noetherian ring R, each ideal a ⊂ R has a reduced representation as intersection
of finitely many irreducible ideals.

V II A primary component qj of an ideal a contained in a noetherian ring R, is called reduced if

there is no primary ideal qj
′ ⊃ qj such that a =

 r⋂
i=1
j 6=i

qi

 ∩ qj
′.

V III In an irredundant primary decomposition of an ideal of a noetherian ring, each primary
component can be chosen to be reduced.

We recall here some well-known examples which show that the statements about uniqueness of
representation cannot be improved.

Example 11.3 (Hentzelt) All the examples live in the polynomial ring Q[X, Y ].

1. The decomposition (X2, XY ) = (X)∩ (X2, XY, Y λ), for all λ ∈ N, λ ≥ 1, where
√

(X2, XY, Y λ) =
(X, Y ) ⊃ (X), shows that embedded components are not unique; however, since

(X2, XY, Y ) = (X2, Y ) ⊇ (X2, XY, Y λ), for each λ > 1,

(X2, Y ) is a reduced embedded irreducible component and
(X2, XY ) = (X) ∩ (X2, Y ) is a reduced representation.

2. The decompositions (X2, XY ) = (X) ∩ (X2, Y + aX), as a ∈ Q
(where

√
(X2, Y + aX) = (X, Y ) ⊃ (X), and (X2, Y + aX) is reduced) show that also reduced

representations are not unique; note that, setting a = 0, we find again (X2, XY ) = (X) ∩ (X2, Y ).

Example 11.4 We also recall the reduced representation

(X2, XY, Y λ) = (X2, Y ) ∩ (X, Y λ)

of the primary ideal aλ := (X2, XY, Y λ) into reduced irreducible components.
Neither such decomposition is unique since we also have

aλ = (X2, Y + aX) ∩ (X, Y λ) as a ∈ Q.

Let us also remark that these reduced irreducible components give the irredundant primary repre-
sentations

(X2, XY ) = (X) ∩ aλ

= (X) ∩ (X2, Y + aX) ∩ (X, Y λ)
= (X) ∩ (X2, Y + aX)

in terms of reduced primary components.

Example 11.5 (Noether) In the same context it is worthwhile to recall the decompositions in Q[X, Y, Z]

aλ = (X2, XY, Y 2, Y Z) ∩ (X, Y λ),
(X2, XY, Y 2, Y Z) = (X2, Y ) ∩ (X, Y 2, Z),

whence

aλ = (X2, XY, Y 2, Y Z) ∩ (X, Y λ)

= (X2, Y ) ∩ (X, Y λ)

because (X, Y 2, Z) ⊃ (X, Y λ) for all λ ≥ 2.

We will show in Section 12 that in an irredundant primary decomposition of an ideal, for each
embedded associated prime p it is possible to determine a reduced primary component q associated to
it, together with a reduced decomposition of q into irreducible components associated to p.
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12 Macaulay Bases and Primary Decompositions

Consider:
a noetherian inf-limited ordering < on T ,
an m-closed ideal a ⊂ P ⊂ S,
the (finite) corner set C(a) := {ω1, . . . , ωs},
the (not-necessarily finite) set N(a),
the Macaulay basis {`(τ) : τ ∈ N(a)} and
the vector subspace Λ ⊂ Spank(M) it generates.

For each j, 1 ≤ j ≤ s, denote

Λj := Spank{υ`(ωj) : υ ∈ T , ωj ∈ C(a)} and qj := P(Λj).

Note that
qi ⊂ qi′ ⇐⇒ Λi ⊃ Λi′ .

Moreover, let J ⊂ {1, . . . , s} be the subset of indices corresponding to the minimal elements of {qj :
1 ≤ j ≤ s}

Lemma 12.1 (Macaulay) With the above notation, for each j, denoting

Λ′
j := Spank{υ`(ωj) : υ ∈ T ∩m}

we have:
1. dimk(Λ′

j) = dimk(Λj)− 1,
2. `(ωj) /∈ Λ′

j = M(qj : m),
3. for each m-primary ideal q′ ⊃ qj =⇒ M(q′) ⊆ Λ′

j .

Proof. For each h, 1 ≤ h ≤ n, denoting lh := Xh`(ωj), we have

Λ′
j ⊂

∑
h

Spank{υlh : υ ∈ T } =
∑

h

M(qj : Xh)

= M (∩h(qj : Xh))
= M(qj : m).

As qj : m 6= qj we have dimk(Λj) > dimk(M(qj : m)) ≥ dimk(Λ′
j) ≥ dimk(Λj) − 1, whence the first

claim.

Corollary 12.2 With the notation above, if a is an m-primary ideal, then it is possible to enumerate
the set N(a) := {τ1, . . . , τs} so that, for all σ:
Lσ := Spank({`(τ1), . . . , `(τσ)}) is a P-module, aσ = P(Lσ) is a zero-dimensional ideal and there is
a chain a1 ⊃ a2 ⊃ · · · ⊃ as = a.

Proof. The proof can be done by induction on s := #N(a), being trivial if #N(a) = 1 (i.e. N(a) = {1}).
Choose any element ωj ∈ C(a), j ∈ J , and set

τs := ωj , Ls−1 := Spank({`(ω), ω ∈ N(a), ω 6= τs}.

Then `(ωj) /∈ Ls−1,
dimk(Ls−1) = s− 1,
#N(as−1) = s− 1, so that
N(as−1) = {ω ∈ N(a), ω 6= τs}

and the claim follows by induction.

Corollary 12.3 For a zero-dimensional ideal a, with deg(a) = s, there is a finite ordered set of
l.i. k-linear functionals L = {`1, . . . , `s} such that: L := Spank(L) = L(a), each vector subspace
Lσ := Spank({`1, . . . , `σ}), 1 ≤ σ ≤ s, is a P-module each aσ = P(Lσ) is a zero-dimensional ideal,
and there is a chain a1 ⊃ a2 ⊃ · · · ⊃ as = a.
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Proof. Fix any term-ordering < and consider the irredundant primary decomposition a = ∩r
h=1qh.

For each i, let us denote ai := (ai1, . . . , ain) ∈ kn and mi :=
√

qi = (X1 − ai1, . . . , Xn − ain). Let
λi : P → P, be the translation λi(Xj) = Xj + aij , for all j, and let {τi1, . . . , τiµi

} = N(λi(qi)) be
enumerated so that Corollary 12.2 holds.
Setting

L := {`(τij)λi(·), 1 ≤ i ≤ t, 1 ≤ j ≤ µi} = {`1, . . . , `s},
we have deg(a) =

∑r
i=1 µi =

∑r
i=1 deg(qi) and L := Spank(L) = L(a). The claim is obtained, by

Corollary 12.2, enumerating the set L so that for each α, β, `α = `(τiαjα
)λiα

(·), `β = `(τiβjβ
)λiβ

(·) we
have iα = iβ , jα < jβ =⇒ α < β.

Theorem 12.4 (Gröbner) With the above notation, for an m-primary ideal a, it holds:
1. each Λj is a finite-dimensional stable vectorspace,
2. each qj is an m-primary ideal,
3. each m-primary ideal qj is reduced,
4. each m-primary ideal qj is irreducible,
5. a := ∩j∈Jqj is a reduced representation of q.

Proof. 1. is trivial by construction; 2. is a direct consequence of 1.; 3. if qj is not reduced, then
exists q′ ⊃ qj such that a = ∩i 6=jqi

⋂
q′ and Lemma 12.1 implies `(ωj) /∈ Λ′

j ⊇ M(q′). Then, looking
to the leading terms of the `(ωi)s, it is easy to see that

`(ωj) /∈
∑
i 6=j

Λi + M(q′) = M(a) = Λ;

4. if qj = q′∩q′′ is reducible, Lemma 12.1 implies `(ωj) /∈ M(q′)+M(q′′), i.e., again, the contradiction
`(ωj) /∈ Λ; 5. since M(a) = Λ =

∑
j Λj =

∑
j∈J Λj =

∑
j∈J M(qj), the representation a := ∩j∈Jqj

is reduced being the components reduced by 3., moreover, redundant components have been removed
by restricting the indices to J.

Example 12.5 If a = m2 = (X2, XY, Y 2) ⊂ k[X, Y ], then
C(a) = {X, Y }, Λ = Spank{M(1),M(X),M(Y )}, and

ω1 := X, Λ1 = Spank{M(1),M(X)}, q1 = (X2, Y );
ω2 := Y, Λ2 = Spank{M(1),M(Y )}, q1 = (X, Y 2);

whence (X2, XY, Y 2) = (X2, Y ) ∩ (X, Y 2).

Example 12.6 In Ex. 10.4 a = (X2
2 −X2

1 , X1X2, X
3
1 ), C(a) = {X2

1 , X2}
Λ = Spank{M(1),M(X1),M(X2

1 ) + M(X2
2 ),M(X2)} = Spank{`1, `2, `3, `4},

and ω1 := X2, Λ2 = Spank{M(1),M(X2)}, q1 = (X1, X
2
2 ),

ω2 := X2
1 , Λ2 = Λ, q2 = a,

namely, X2`3 = M(X2), X1`3 = M(X1), X2
1 `3 = X2

2 `3 = M(1),
thus a is irreducible.
In connection with Corollary 12.2 we have to set

τ4 := X2
1 , L3 := Spank{M(1),M(X1),M(X2)},

obtaining a3 = (X2
1 , X1X2, X

2
2 ) = (X1, X

2
2 ) ∩ (X2

1 , X2).
There are therefore two possible orderings of N(a), satisfying Corollary 12.2:

N(a) = {1, X1, X2, X
2
1}, which returns the chain

(X1, X2) ⊃ (X2
1 , X2) ⊃ a3 ⊃ a, and

N(a) = {1, X2, X1, X
2
1} which returns the chain

(X1, X2) ⊃ (X1, X
2
2 ) ⊃ a3 ⊃ a
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If a is not m-primary, let

C(a) = {ω1, . . . , ωt}
ρ := max{deg(ωj) + 1 : ωj ∈ C(a)}+ 1 so that q′ := a + mρ is an m-primary component of a, and

Λ ∩∇ρ = M(q′),
a = ∩r

i=1qi an irredundant primary representation of a, with
√

q1 = m,
b := a : m∞ = ∩r

i=2qi and b = ∩u
i=1Qi a reduced representation of it,

C(q′) = {ω1, . . . , ωt, ωt+1, . . . , ωs} ⊃ C(a)
for each j, 1 ≤ j ≤ s, Λj := Spank{υ`(ωj) : υ ∈ T }, and qj := P(Λj)
q := ∩s

j=1qj

Then

Corollary 12.7 With the notation above, it holds:
1. q ⊂ q′ is a reduced m-primary component of a,
2. q′ := ∩t

j=1qj is a reduced representation of q′,
3. q = ∩s

j=1qj is a reduced representation of q,
4. qi ⊃ b ⇐⇒ i > t,
5. a = ∩u

i=1Qi

⋂
∩t

j=1qj is a reduced representation of a.

Example 12.8 In Ex. 11.3.1. we have a := (X2, XY ), C(a) = {X},
Λ = Spank{M(1),M(X)} ∪ {M(Y i), i ∈ N}, then
b = a : m∞ = (X)
ρ = 3, q′ = a + m3 = (X2, XY, Y 3), C(q′) = {X, Y 2}
ω1 = X, Λ1 = Spank{M(1),M(X)}, q1 = (X2, Y );
ω2 = Y 2, Λ2 = Spank{M(1),M(Y ),M(Y 2)}, q1 = (X, Y 3) ⊃ (X);
whence (X2, XY ) = (X) ∩ (X2, Y ).

Moreover if Ex. 11.3.2. shows that reduced representation (and even the notion of Macaulay basis)
strongly depend on the choice of a frame of coordinates. In fact, choosing, for each a ∈ Q, a 6= 0,
Λ = Spank{M(1),M(X)− aM(Y )} ∪ {M(Y i), i ∈ N}, we obtain
ρ = 3, Λ ∩∇ρ = {M(1),M(X)− aM(Y ),M(Y ),M(Y 2)},
ω1 := X, Λ1 = {M(1),M(X)− aM(Y )}, q1 = (X2, Y + aX),
ω2 := Y 2, Λ2 = {M(1),M(Y )}, q2 = (X, Y 3) ⊃ (X),
whence (X2, XY ) = (X) ∩ (X2, Y + aX).

Let us now perform a generic change of coordinates in Ex. 11.3.1.
Φ : Q[X, Y ] → Q[X, Y ], Φ(X) = aX + bY, Φ(Y ) = cX + dY, ad− bc 6= 0 6= a,

we obtain:
a = (aXY + bY 2, a2X2 − bY 2),
Λ = Spank{M(1),M(X),M(Y ), a2M(Y 2)− abM(XY ) + b2M(X2), . . .},
b := (aX + bY )
ρ = 3, q′ = a + m3, C(q′) = {X, Y 2},
Λ ∩∇ρ = Spank{M(1),M(X),M(Y ), a2M(Y 2)− abM(XY ) + b2M(X2)},
ω1 := X, Λ1 = {M(1),M(X)}, q1 = (X2, Y ),
ω2 := Y 2, Λ2 = {M(1), aM(Y )− bM(X), a2M(Y 2)− abM(XY ) + b2M(X2)},
q2 = (aX + bY, Y 3) ⊃ (aX + bY ),
whence (aXY +bY 2, a2X2−bY 2) = (aX+bY )∩(X2, Y ). So far we have chosen {M(1),M(X),M(Y )}
as basis of ∇3 however what we need to do is to extend the basis {M(1), aM(X)−bM(Y )} of M(b)∩∇3

to a basis of ∇3, of course any choice eM(Y ) + fM(X), ae − fb 6= 0 is acceptable giving the reduced
primary ideal P({M(1), eM(Y ) + fM(X)}) = (X2, eX − fY ) and the irredundant reduced primary
decomposition a = (aX + bY ) ∩ (X2, eX − fY ).

Example 12.9 One naturally should expect that irredundance should be preserved by change of coor-
dinates; it does as shown by this example.

If we consider the irreducible m-primary ideal q := (X2, Y 2) we know that the generic initial ideal
has the shape gin(q) = (X3, XY, Y 2); thus we could fear to obtain a decomposition (X3, XY, Y 2) =
(X3, Y ) ∩ (X, Y 2); this is not what happens; in fact if we perform a generic change of coordinates

Φ : Q[X, Y ] → Q[X, Y ], Φ(X) = aX + bY, Φ(Y ) = cX + dY, ad− bc 6= 0 6= a,
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we obtain
a =

(
(aX + bY )2, 2bdXY + bcX2 + adX2, X3

)
Λ = Spank{M(1), αM(X) + βM(Y ), γM(X) + δM(Y ), `}, ∆ := αδ − βγ 6= 0
where ` := −(ad + bc)M(XY ) + 2bdM(X2) + 2acM(Y 2); we thus obtain
`X = −(ad + bc)M(Y ) + 2bdM(X), `Y := −(ad + bc)M(X) + 2acM(Y ), `XY = M(1)
with ∆ = (ad + bc)2 − 4abcd = (ad− bc)2, thus proving irreducibility.

13 Horner representation of Macaulay Bases

The description of the Noether equations necessarily requires a compact and less-consuming form, as
Example 9.6 shows.

If we denote, for each j, 1 ≤ j ≤ n,

M[j, n] := {M(τ) : τ = Xa1
1 · · ·Xan

n ∈ T , a1 = · · · = aj−1 = 0 6= aj} ⊂ M,

then each element ` ∈ Spank(M \ {Id}) can be uniquely expressed, (see [15]), as

` = `(1) + · · ·+ `(j) + · · ·+ `(n), `(j) ∈ Spank(M[j, n]) ∀ j,

we will also introduce the notation

`(≥j) :=
n∑

i=j

`(i).

Lemma 13.1 [15] Let ` = `(1) + · · ·+ `(n) ∈ Spank(M \ {Id}). The following hold:
1. λi(`) = λi(`(1)) + · · ·+ λi(`(i−1)) + `(i);

2. (λi(`))(j) =

λi(`(j)) if j < i,
`(j) if j = i,
0 if j > i;

3. `(i) = (λi(`))(≥i) = λi(`(≥i)).

We can thus formulate

Corollary 13.2 (Macaulay) Given a finite dimensional stable vector subspace Λ ⊂ Spank(M) with
k-basis B := {`1, . . . , `s}, `1 = Id, let ` ∈ Spank(M) be such that the vector subspace generated by
B ∪ {`} is stable.

Then there are cij ∈ k, 1 ≤ j ≤ r, 1 ≤ i ≤ s such that

`(j) =
s∑

i=1

cijρj(`
(≥j)
i ).

Corollary 13.3 If Λ ⊂ Spank(M) is a finite dimensional stable vector subspace with dimk(Λ) = s,
then there are ns(s+1)

2 elements cijh ∈ k, 1 ≤ j ≤ n, 1 ≤ i < h ≤ s such that, setting

`1 := Id,

`
(j)
h :=

∑h−1
i=1 cijhρj(`

(≥j)
i ), 1 < h ≤ s, 1 ≤ j ≤ n

`h :=
∑r

j=1 `
(j)
h , 1 < h ≤ s,

it holds
Λ = Spank{`h, 1 ≤ h ≤ s}.
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Example 13.4 In Example 9.6 we have

`0 := Id,

`h :=

{∑h
j=1 ρj(`

(j)
h−j), 1 ≤ h ≤ n,∑r

j=1 ρj(`
(j)
h−j), n ≤ h.

14 Four pointers

14.1 Polynomial Evaluation at Macaulay Basis

We recall that, via recursive Horner representation, each polynomial f ∈ P can be uniquely represented
as

f(X1, . . . , Xn) = H0(f) +
r∑

j=1

XjHj(f),

where H0(f) = f(0) ∈ k, Hj(f) ∈ k[X1, . . . , Xj ], for all j and each Hj(f) has recursively a similar
Horner representation.

Assume we are given, via recursive Horner representation, a polynomial f ∈ P and the Macaulay
basis of a primary ideal at the origin {`1, . . . , `s} through the elements cijh ∈ k, 1 ≤ j ≤ n, 1 ≤ i < h ≤ s
such that, for each h and j

`
(j)
h =

h−1∑
i=1

cijhρj(`
(≥j)
i ). (9)

Proposition 14.1 [15] For each h, j, 1 ≤ j ≤ n, 1 ≤ h ≤ s there are polynomials fhj ∈ k[X1, . . . , Xj ]
such that
fhj =

∑h−1
i=1

∑n
ν=j cijhHj(fiν);

`
(j)
h (f) = fhj(0) =

∑h−1
i=1

∑n
ν=j cijh(Hj(fiν))(0) or, equivalently,

`
(j)
h (f) = H0(fhj) =

∑h−1
i=1

∑n
ν=j cijhH0(Hj(fiν)).

Corollary 14.2 [15] With the notation and assumptions above, it is possible to compute `
(j)
h (f) for

each h, j, 1 ≤ j ≤ n, 1 ≤ h ≤ s, with complexity O(n2s2).

Proof. We need to compute each H0(fhj) where each element fhj is a Horner component of the
recursive Horner representation of f , each fhj is a combination of Horner components of fiν , i < h and

f1j := H0(f) +
j∑

i=1

XiHi(f)

for each j, because `1 = Id.

14.2 Computing a Macaulay basis

Let < be an inf-limited ordering, a ⊂ P an m-primary ideal, V := M(a), Λ := {`1, . . . , `s} a Macaulay
basis of V . Then, by Corollary 13.3, the k-basis

Γ := {ρj(`
(≥j)
i ), 1 ≤ j ≤ r, 1 ≤ i ≤ s}

satisfies the following:

Theorem 14.3 For any ` ∈ Spank(M) \ V such that U := {λ + a` : λ ∈ V, a ∈ k} is stable, ` ∈
Spank(Γ ).
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We are now going to discuss the structure both of V and of each stable extension

U := {λ + a` : λ ∈ V, a ∈ k}

in view of Corollary 13.3 and Theorem 14.3; for that we will sistematically study the example introduced
in Ex. 9.6 in the case r = 3 (varying the ordering).

Example 14.4 Letting f1 := X2 −X2
1 , f2 := X3 −X3

1 , a := (f1, f2), let us consider the refinement
< of vw by the reverse lexicographical ordering induced by X1 � X2 � X3. Then we have

• the Gröbner basis of a w.r.t. < is {X2
1 −X2, X1X2 −X3, X

2
2 −X1X3};

• {X2
1 , X1X2, X

2
2} = T(a);

•N(a) = {1} ∪ {X1X
i−1
3 , X2X

i−1
3 , Xi

3, i ∈ N} = T{M(a)}.
• For all i ∈ N, T(`3i−2) = Xi−1

3 , T(`3i−1) = X1X
i−1
3 , T(`3i) = X2X

i−1
3 ;

• for all ρ ∈ N, (X2
1 , X1X2, X

2
2 , X1X

ρ−1
3 , X2X

ρ−1
3 , Xρ

3 ) = T(a + mρ);
• for all ρ ∈ N, {X2

1 −X2, X1X2 −X3, X
2
2 −X1X3, X1X

ρ−1
3 , X2X

ρ−1
3 , Xρ

3}
is the Gröbner basis of a + mρ w.r.t. <;

•N(a) = {1} ∪ {X1X
i−1
3 , X2X

i−1
3 , Xi

3, i < ρ} = T{M(a)}.
In particular

`1 := M(1),
`2 := M(X1),
`3 := M(X2) + M(X2

1 ),
`4 := M(X3) + M(X1X2) + M(X3

1 ),
`5 := M(X1X3) + M(X2

2 ) + M(X2
1X2) + M(X4

1 ),
`6 := M(X2X3) + M(X2

1X3) + M(X1X
2
2 ) + M(X3

1X2) + M(X5
1 ),

`7 := M(X2
3 ) + M(X1X2X3) + M(X3

1X3) + M(X3
2 ) + M(X2

1X2
2 )+

+M(X4
1X2) + M(X6

1 );
as a consequence we have

ρ1(`1) := M(X1),
ρ2(`1) := M(X2),
ρ3(`1) := M(X3),
ρ1(`2) := M(X2

1 ),
ρ1(`3) := M(X1X2) + M(X3

1 ),
ρ2(`3(2)) := M(X2

2 ),
ρ1(`4) := M(X1X3) + M(X2

1X2) + M(X4
1 ),

ρ2(`4(≥2)) := M(X2X3),
ρ3(`4(3)) := M(X2

3 ),
ρ1(`5) := M(X2

1X3) + M(X1X
2
2 ) + M(X3

1X2) + M(X5
1 ),

ρ2(`5(2)) := M(X3
2 ),

ρ1(`6) := M(X1X2X3) + M(X3
1X3) + M(X2

1X2
2 ) + M(X4

1X2) + M(X6
1 ),

ρ2(`6(2)) := M(X2
2X3),

ρ1(`7) := M(X1X
2
3 ) + M(X2

1X2X3) + M(X4
1X3) + M(X1X

3
2 ) + M(X3

1X2
2 )+

+M(X5
1X2) + M(X7

1 ),
ρ2(`7(≥2)) := M(X2X

2
3 ) + M(X4

2 ),
ρ3(`7(3)) := M(X3

3 ).

This information (and others which will be deduced during the following discussion) can be subma-
rized in the following tables:
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λ λ(1) λ(2) λ(3) σ1(λ) σ2(λ) σ3(λ)

1 `1 M(1) 0 0 0

X1 `2 ρ1(`1) `1 0 0

X2
1 ρ1(`2) `2 0 0

X2 ρ2(`1) 0 `1 0

`3 ρ1(`2) + ρ2(`1) `2 `1 0

X1X2 ρ1(`3) `3 `2 0

X2
2 ρ2(`

(2)
3 ) 0 `

(2)
3 0

X3 ρ3(`1) 0 0 `1
`4 ρ1(`3) + ρ3(`1) `3 `2 `1

X1X3 ρ1(`4) `4 `
(1)
3 `2

`5 ρ1(`4) + ρ2(`
(2)
3 ) `4 `3 `2

X2X3 ρ2(`
(3)
4 ) 0 `

(3)
4 `

(2)
3

`6 ρ1(`5) + ρ2(`
(3)
4 ) `5 `4 `3

X2
3 ρ3(`

(3)
4 ) 0 0 `

(3)
4

`7 ρ1(`6) + ρ2(`
(2)
5 ) + ρ3(`

(3)
4 ) `6 `5 `4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X1Xi
3 ρ1(`3i+1) `3i+1 `

(1)
3i

`
(1)
3i−1

`3i+2 ρ1(`3i+1) + ρ2(`
(≥2)
3i

) `3i+1 `3i `3i−1

X2Xi
3 ρ2(`

(≥2)
3i+1) 0 `

(≥2)
3i+1 `

(≥2)
3i

`3i+3 ρ1(`3i+2) + ρ2(`
(≥2)
3i+1) `3i+2 `3i+1 `3i

X
i+1
3 ρ3(`

(3)
3i+1) 0 0 `

(3)
3i+1

`3i+4 ρ1(`3i+3) + ρ2(`
(≥2)
3i+2) + ρ3(`

(3)
3i+1) `3i+3 `3i+2 `3i+1

λ σ1(λ) σ2(λ) σ3(λ) λ(f1)(0) λ(f2)(0) T(λ)

`1 = M(1) 0 0 0 0 0 1
`2 = ρ1(`1) `1 0 0 0 0 X1

`
(2)
3 = ρ2(`1) 0 `1 0 1 0 X2

`
(3)
4 = ρ3(`1) 0 0 `1 0 1 X3

`
(1)
3 = ρ1(`2) `2 0 0 -1 0 X2

1
`
(1)
4 = ρ1(`3) `3 `2 0 0 -1 X1X2

`
(2)
5 = ρ2(`3

(≥2)) 0 `3
(≥2) 0 0 0 X2

2
`
(1)
5 = ρ1(`4) `4 `3

(1) `2 0 0 X1X3

`
(2)
6 = ρ2(`4

(≥2)) 0 `4
(≥3) `3

(≥2) 0 0 X2X3

`
(3)
7 = ρ3(`4

(≥3)) 0 0 `4
(≥3) 0 0 X2

3
`
(1)
6 = ρ1(`5) `5 `4

(1) `
(1)
3 0 0 X2

1X3

`
(2)
7 = ρ2(`5

(≥2)) 0 `5
(≥2) 0 0 0 X3

2
`
(1)
7 = ρ1(`6) `6 `5

(1) `
(1)
4 0 0 X3

1X3

`
(2)
8 = ρ2(`6

(≥2)) 0 `6
(≥2) `5

(≥2) 0 0 X2
2X3

`
(1)
8 = ρ1(`7) `7 `6

(1) `
(1)
5 0 0 X1X2

3
`
(2)
9 = ρ2(`7

(≥2)) 0 `7
(≥2) `6

(≥2) 0 0 X2X2
3

`
(3)
10 = ρ3(`7

(≥3)) 0 0 `7
(≥3) 0 0 X3

3
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

`
(1)
3i+3 = ρ1(`3i+2) `3i+2 `

(1)
3i+1 `

(1)
3i

0 0 X1Xi
3

`
(2)
3i+4 = ρ2(`

(≥2)
3i+2) 0 `

(≥2)
3i+2 `

(≥2)
3i+1 0 0 X2Xi

3

`
(1)
3i+4 = ρ1(`3i+3) `3i+3 `

(1)
3i+2 `

(1)
3i+1 0 0 X1X2Xi

3

`
(2)
3i+5 = ρ2(`

(≥2)
3i+3) 0 `

(≥2)
3i+3 `

(≥2)
3i+2 0 0 X2

2Xi
3

`
(1)
3i+5 = ρ1(`3i+4) `3i+4 `

(1)
3i+3 `

(1)
3i+2 0 0 X1X

i+1
3

`
(2)
3i+6 = ρ2(`

(≥2)
3i+4) 0 `

(≥2)
3i+4 `

(≥2)
3i+3 0 0 X2X

i+1
3

`
(3)
3i+7 = ρ3(`

(≥3)
3i+4) 0 0 `

(≥3)
3i+4 0 0 X

i+2
3

Definition 14.5 The corner set of V is the set

C(V ) := {τ ∈ T : M(τ) ∈ N(V ), σi(M(τ)) ∈ T{V } ∀ i}
= {τ ∈ T(P(V )) : all its predecessors ω ∈ N(P(V ))}
= G(P(V ))

Any element
` := M(T(`)) +

∑
ω∈T

cωM(ω) ∈ Spank(M) \ V such that

c1) T(`) ∈ C(V ),
c2) σj(`) ∈ V for each j,
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c3) cω 6= 0 =⇒ ω /∈ T{V };
is called a continuation of V at τ := T(`).

An elementary continuation of V at τ ∈ C(V ) is a continuation

` := M(T(`)) +
∑
ω∈T

cωM(ω)

which, moreover, satisfies

c4) if M(ω) ∈ C(V ), cω 6= 0, then there is no continuation of V at ω.

Lemma 14.6 [15] The following conditions are equivalent:
1. U is stable and Λ ∪ {`} is its Macaulay basis,
2. τ := T(`) ∈ C(V ) and ` is a continuation of V at τ.

Example 14.7 For instance, for ρ = 3, we have

V := M(a3) = Spank(`1, `2, `3), and C(V ) := {X2
1 , X1X2, X

2
2 , X3}.

The elementary continuation of V
at X2

1 is λ := aρ1(`2), a ∈ k \ {0},
at X1X2 is λ := aρ1(`3), a ∈ k \ {0},
at X3 is λ := aρ3(`1), a ∈ k \ {0},
and the continuation of V
at X2

1 is λ := aρ1(`2), a ∈ k \ {0},
at X1X2 is λ := aρ1(`3) + bρ1(`2), a, b ∈ k, a 6= 0,
at X3 is λ := aρ3(`1) + bρ1(`3) + cρ1(`2), a, b, c ∈ k, a 6= 0.
On the other side there is no continuation at X2

2 as for each λ : T(λ) = X2
2 we necessarily have

σ2(λ) = a`3
(2) + b`2 + c`1, a, b, c ∈ k, a 6= 0

so that σ2(λ) /∈ V.

The relation between continuations and elementary ones is clarified (see [15]) by the following list
of results

Lemma 14.8 Let `′ and `′′ be two different continuations of V at τ . Then `′ − `′′ is a continuation
of V at some ω > τ , ω ∈ C(V ).

Corollary 14.9 If continuations of V at t exist, then there is exactly a single elementary continuation
` of V at t, which we will denote CV,t.

Theorem 14.10 The following conditions are equivalent:
1. U := {λ + a` : λ ∈ V, a ∈ k} is stable and ∆ ∪ {`} is its Macaulay basis.
2. ∃ t0 < · · · < tv, M(ti) ∈ C(V ) and ci ∈ k \ {0}, 1 ≤ i ≤ v, such that

` = CV,t0 +
v∑

i=1

ciCV,ti
.
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Fig. 1 Macaulay basis from any basis

(Λ,M) := MacaulayBasis(F, <)
where

F := {f1, . . . , ft} ⊂ P,
a := (F ) an m-primary ideal,
< an inf-limited ordering,
Λ := {`1, . . . , `s} the Macaulay basis of M(a)

M = {
“
b
(h)
ij

”
∈ ks2

, 1 ≤ h ≤ n} the set of the square matrices
“
b
(h)
ij

”
defined by σh(`i) =

Ps
j=1 b

(h)
ij `j .

i := 1, `1 := Id, Λ := {Id} V := Spank(Λ), C := C := ∅,
B := G := {Xj , 1 ≤ j ≤ r},
For 1 ≤ j, h ≤ n compute σh(M(Xj)).
Repeat

t := max<(G \C),B := B \ {t}
Compute (if it exists) CU,t

If CU,t exists then
If exist cτ such that ev(CU,t) =

P
τ∈C cτ ev(CU,τ ) then

i := i + 1, `i := CU,t −
P

τ∈C cτCU,τ

For 1 ≤ h ≤ n, 1 ≤ j < i do

Compute b
(h)
ij : σh(`i) =

Ps
j=1 b

(h)
ij `j ;

B := B ∪ {T(ρj(`
(≥j)
i )), 1 ≤ j ≤ r}

G be the minimal basis of the monomial ideal generated by B ∪C

For 1 ≤ j, h ≤ n compute σhρj(`
(≥j)
i )

else
C := C ∪ {CU,t} C := C ∪ {t}

until G \C := ∅

Lemma 14.11 Let M(t) ∈ C(V ) ∩M[κ, n] and let `ι
(κ) be such that

ρκ(T(`(κ)
ι ) = M(t).

For κ ≤ j ≤ n let J(j) denote the set of indices i such that
a) T(ρj(`

(j)
i )) 6∈ T{V },

b) T(ρj(`
(j)
i )) > M(t),

c) if T(ρj(`
(j)
i )) ∈ C(V ) then there is no elementary continuation of V at T(ρj(`

(j)
i )).

The following conditions are equivalent:
1. the elementary continuation CV,t exists;
2. there are values aji ∈ k, such that, for each µ

σµρκ(`(κ)
ι ) +

n∑
j=1

∑
i∈J(j)

ajiσµρj(`
(j)
i ) ∈ V.

Finally, if the above conditions are satisfied,

CV,t = ρκ(`(κ)
ι ) +

n∑
j=1

∑
i∈J(j)

ajiρj(`
(j)
i ).

We can now present, in Figure 1, the algorithm proposed in [15] which uses the structure of the
continuations of m-primary ideals in order to compute the Macaulay basis (w.r.t. an inf-limited ordering
<) of any m-primary ideal given by means of a set of generators F := {f1, . . . , ft} ⊂ m; as it essentially
consists of linear algebra reduction of sn vectors in ksn+t, its complexity is O(s3n3).

The auxiliary tools needed by the algorithm are the following:



28 Alonso, Marinari, Mora

– The structure described in Corollary 13.3 and Theorem 14.3 implies that one can easily iteratively
compute, for each 1 ≤ j, h ≤ n, 1 ≤ i ≤ s, σh(`i) and σh(ρj(`

(≥j)
i )) = ρjσh(`(≥j)

i ), since

`i =
n∑

j=1

i−1∑
ι=1

cιjiρj(`(≥j)
ι ) =⇒ σh(`i) =

n∑
j=1

i−1∑
ι=1

cιjiσhρj(`(≥j)
ι ),

and

σh(`i) =
i−1∑
ι=1

cι`ι =⇒ σh(ρj(`
(≥j)
i )) =


0 if h < j

`
(≥j)
i ) if h = j∑i−1

ι=1 cιρj(`
(≥j)
ι ) if h > j.

For instance, in the Ex. 14.7 we have

σ1(`7) = σ1ρ1(`6) + σ1ρ2(`
(2)
5 ) + σ1ρ3(`

(3)
4 ) = `6 + 0 + 0 = `6,

σ2(`7) = σ2ρ1(`6) + σ2ρ2(`
(2)
5 ) + σ2ρ3(`

(3)
4 ) = `

(1)
5 + `

(2)
5 + 0 = `5,

σ3(`7) = σ3ρ1(`6) + σ3ρ2(`
(2)
5 ) + σ3ρ3(`

(3)
4 ) = `

(1)
4 + 0 + `

(3)
4 = `4,

σ2ρ1(`7) = ρ1(`5) = `
(1)
6 ,

σ3ρ1(`7) = ρ1(`4) = `
(1)
5 ,

σ3ρ2(`
(≥2)
7 ) = ρ2(`

(≥2)
4 ) = ρ2(`

(3)
4 ) = `

(2)
6 .

In fact the complete table is obtained by means of this recursive evaluation.
– Since we can compute the values of

σh(ρj(`
(≥j)
i )), for each 1 ≤ j, h ≤ n, 1 ≤ i ≤ s , to determine all the continuations of V at each

element t in the corner set of V requires nothing more than efficient book-keeping.
For instance in the cases we discussed in Ex. 14.7 we have
at X2

1 =⇒ λ := ρ1(`2) is a contination since σh(λ) ∈ V, for each h;
at X1X2 =⇒ λ := ρ1(`3) is a contination for the same reason;
at X2

2 =⇒ λ := ρ2(`3(2)) is not a continuation since, for each a, b ∈ k

σ2(λ) = σ2(λ + aρ1(`2) + bρ1(`3)) = `3
(2) /∈ V ;

at X3 =⇒ λ := ρ3(`1) is a contination since σh(λ) ∈ V for each h;
– Finally, if for each ` ∈ Spank(M) we denote

ev(`) := (`(f1), · · · , `(ft)) ∈ kt,

and if {`1, `2, . . . , `s} is the ordered Macaulay basis of a (wrt <), which we aim to compute, setting
for any i < s
• Vi := {`1, `2, . . . , `i}
• Ci := {τ ∈ C(Vi) : there is an elementary continuation of Vi at τ},
we know that, for all i, ∃ cτ ∈ k such that `i+1 =

∑
τ∈Ci

cτCVi,τ .
Moreover, as

`i+1 ∈ M(a) ⇐⇒ ev(`i+1) =
∑
τ∈Ci

cτ ev(CVi,τ ) = 0,

`i+1 can be obtained by solving this linear equation, as each ev(CVi,τ ) can be computed by the
scheme described in Section 14.1.

We end remarking that, given any finite set of polynomials F := {f1, . . . , ft} and the ideal a ⊆ P
generated by F , in order to obtain the Macaulay basis (w.r.t. <) of the m-primary ideal a+mρ for any
ρ ∈ N, we have to enlarge F by adding all monomials of degree ρ and to apply the algorithm presented
in Figure 1, thus producing, “at least in imagination” (as Macaulay put it), the infinite Macaulay basis
of the m-closed ideal ∩ρa + mρ.
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Example 14.12 We may verify the structure of Example 14.4 mainly checking its presentation in the
included table and deducing that the algorithm performs the following computations:
t := X1X

i
3

`
(1)
3i+2 = ρ1(`3i+1),

σ2(`
(1)
3i+2) = σ2ρ1(`

(1)
3i+1) = `

(1)
3i ,

`
(2)
3i+2 = ρ2(`

(≥2)
3i ),

σ2(`3i+2) = `3i,

σ3(`
(1)
3i+2 + `

(2)
3i+2) = σ3ρ1(`

(1)
3i+1) + σ3ρ2(`

(≥2)
3i ) = `

(1)
3i + `

(≥2)
3i = `3i,

`3i+2 = ρ1(`
(≥1)
3i+1) + ρ2(`

(≥2)
3i );

t := X2X
i
3

`
(1)
3i+3 = ρ1(`3i+2),

σ2(`
(1)
3i+3) = σ2ρ1(`

(1)
3i+2) = `

(1)
3i+1,

`
(2)
3i+3 = ρ2(`

(≥2)
3i+1),

σ2(`3i+3) = `3i+1,

σ3(`
(1)
3i+3 + `

(2)
3i+3) = σ3ρ1(`

(1)
3i+2) + σ3ρ2(`

(≥2)
3i+1) = `

(1)
3i + `

(≥2)
3i = `3i,

`3i+3 = ρ1(`
(≥1)
3i+2) + ρ2(`

(≥2)
3i+1);

t := Xi+1
3

`
(1)
3i+4 = ρ1(`3i+3),

σ2(`
(1)
3i+4) = σ2ρ1(`

(1)
3i+3) = `

(1)
3i+2,

`
(2)
3i+4 = ρ2(`

(≥2)
3i+2),

σ2(`3i+4) = `3i+2,

σ3(`
(1)
3i+4 + `

(2)
3i+4) = σ3ρ1(`

(1)
3i+3) + σ3ρ2(`

(≥2)
3i+2) = `

(1)
3i+1 + `

(2)
3i+1,

`
(3)
3i+4 = ρ3(`

(3)
3i+1),

σ3(`3i+4) = `3i+1,

`3i+4 = ρ1(`
(≥1)
3i+2) + ρ2(`

(≥2)
3i+1) + ρ3(`

(3)
3i+1).

14.3 Cerlienco–Mureddu Correspondence

Each zero-dimensional ideal I ⊂ P can be considered as given if we know the set Z(I) of its roots and,
for each a ∈ Z(I), the Macaulay basis of the corresponding primary component of I.

For each a ∈ Z(I), a := (a1, . . . , an), let us therefore denote:

– λa : P 7→ P the translation λa(Xi) = Xi + ai, for all i,
– ma = (X1 − a1, . . . , Xn − an),
– qa the ma-primary component of I,
– Λa := M(λa(qa)) ⊂ Spank(M),
– `υa, for each υ ∈ N<(λa(qa)), the Macaulay equation `υa := `(υ) so that
– {`υa : υ ∈ N<(λa(qa))} is the Macaulay basis of Λa.
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Setting s :=
∑

a∈Z(I) deg(qa) and

L := {λ1, . . . , λs} := {`υaλa : υ ∈ N<(λa(qa)), a ∈ Z(I)},

we know that Spank(L) = L(I) and I = P(Spank(L)); moreover (Corollary 12.2) we can assume L to
be ordered so that, for each σ,

Iσ = P(Spank{{λ1, . . . , λσ})
is an ideal.

We also set
X := {x1, . . . , xs} := {(a, υ) : υ ∈ N<(qa), a ∈ Z}

enumerated so that xj = (aj , υj) ⇐⇒ λj = `υjaj λaj and we set, for each j, 1 ≤ j ≤ s, M(λj) :=
M(υj)λaj

where λj = `υjaj
λaj

.
Under the following equivalent assumptions:

– λ = M(λ) for each λ ∈ L,
– `υa = M(υ), for each λ = `υaλa ∈ L,
– each λa(qa) is a monomial ideal,

Cerlienco–Mureddu8 Algorithm [5,6] associated to each such sets L and X(Λ), an order ideal N := N(L)
and a bijection Φ := Φ(L) : L 7→ N, which satisfies

N<(L) = N(P(Spank(L)))

for the lexicographical ordering induced by X1 < · · · < Xn.
Cerlienco–Mureddu result has been generalized to each zero-dimensional ideal in [18] where it is

proved:
For each m < n, denote

– πm the projection
πm : kn 7→ km, πm(x1, . . . , xn) = (x1, . . . , xm);

– for each Noetherian equation

`(τ) := M(τ) +
∑

t∈T(I)

γ(t, τ, <)M(t) = τ−1 +
∑

t∈T(I)

γ(t, τ, <)t−1,

τ = Xd1
1 · · ·Xdn

n , denote

πm(`(τ)) := (σXdm
m ···Xdn

n
(`(τ)))(X−1

1 , . . . , X−1
m , 0, . . . , 0) ∈ k[X−1

1 , . . . , X−1
m ];

– finally for each λ = `υaλa set

πm(λ) := πm(`υaλa) := πm(`υa)λπm(a).

Let

L := {λ1, . . . , λs}, X := {x1, . . . , xs} ⊂ kn × T ,

xi = (ai, υi), ai := (ai1, . . . , ain), υi =
n∏

l=1

Xαil

l

be the Macaulay representation of a zero-dimensional ideal I ⊂ P.
By induction on s = #(X), consider L′ := {λ1, . . . , λs−1} and the corresponding order ideal N′ :=

N(L′) and bijection Φ′ := Φ(L′).
Denote, for each ν, 1 ≤ ν < n, and each δ ∈ N,

Yνδ := Spank{πν(λ) : λ ∈ L′,∃ω ∈ T ∩ k[X1, . . . , Xν ] : Φ′(λ) = ωXδ
ν+1}.

With this notation, let us set
8 Note that in [7] another nice algorithm is given for solving the problem, apparently adding a new point to

the given set of points one has to repeat this algorithm while Cerlienco-Mureddu’s one works automatically
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m := max (j : πj(λs) ∈ Spank(πj(L′)),
d := min{δ : πm(λs) 6∈ Ymδ},
W := {πm(λ) : Φ′(λ) = ωXd

m+1, ω ∈∈ T ∩ k[X1, . . . , Xm]} ∪ {πm(λs)}
ω := Φ(W)(πm(λs)),
ts := ωXd

m+1

where N(W) and Φ(W) are the result of the application of the present algorithm to W, which can be
inductively applied since #(W) ≤ s− 1. We then define

N := N′ ∪ {ts} and Φ(λi) :=
{

Φ′(λi) i < s
ts i = s.

Proposition 14.13 It holds N := N<(I).

14.4 The Axis-of-Evil Theorem

A series of three papers [16–18] merged Lazard Theorem [11], Möller’s Algorithm [4,1] Gianni–Kalkbrener
Theorem [8,10] and Cerlienco–Mureddu Correspondence giving a strong description of the structure
of the Gröbner basis and of the dual basis of a zero-dimensional ideal.

We quote here just

Theorem 14.14 Let

X := {x1, . . . , xs} ⊂ kn be a finite set of points
I ⊂ P the radical ideal whose roots are the elements in X
N := N<(I) the result of Cerlienco–Mureddu Correspondence
G<(I) := {t1, . . . , tr}, the minimal basis of T<(I) := T \N,
t1 =: Xd1i

1 · · ·Xdνi
ν for each i

Then there is a combinatorial algorithm which for each i,m, δ, 1 ≤ i ≤ r, 1 ≤ m ≤ ν, 1 ≤ δ ≤ dmi

returns a partition X = tmδiXmδi such that denoting, for each i,m, δ,

Nmδi := N(Xmδi) the result of Cerlienco–Mureddu Correspondence
γmδi := Xm +

∑
ω∈Nmδi

c(γmτ , ω)ω the unique polynomial (computable by interpolation) s.t. γmδi(x) =
0 for all x ∈ Xmδi

and

γmi :=
∏

δ γmδi for each m, i
Pi := γνi for each i
Li :=

∏ν−1
j=1 γji ∈ k[X1, . . . , Xν−1] for each i

Hi := L1Pi for each i

it holds:

1. {H1, . . . ,Hr} is a (not-reduced) minimal Gröbner basis of I
2. let jν be the value such that tjν

< Xν+1 ≤ tjν+1; then {Ht1 , . . . ,Htjν
} is a minimal Gröbner basis

of I ∩ k[X1, . . . , Xν ];
3. for each δ ∈ N, let j(νδ) be the value such that tj(νδ) < Xδ

ν+1 ≤ tj(νδ)+1; then {L1, . . . , Ljνδ
} is a

Gröbner basis of I(Yνδ).
4. for each i, 2 ≤ i ≤ r, Pi ∈ (Hj , j < i) : Li.
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