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1 Introduction

This paper is the second in a series of survey articles on results which introduced duality tools in
computer algebra and follows [1], reported on Méller’s Algorithm. Its aim is to present some interesting
computational applications of Macaulay’s notions of inverse systems and Noether equations.

After introducing general notation (§ 2), we recall Macaulay’s ideas, his notion of Noether equations
as a tool for describing m-closed ideals (§ 3) and the module structure imposed on inverse systems
(5 4).

We then discuss Macaulay’s duality between m-closed ideals and modules of Noether equations
(§ 5), together with Grébner’s interpretation of Macaulay’s results in terms of differential equations
(§ 7) and we deduce the relations with Leibniz’s (§ 6) and Taylor’s Formulas (§ 8)

We formalize and specialize the duality discussed in the previous paper [1], proposing a characteri-
zation of zero-dimensional ideals in a polynomial ring in terms of what we label Macaulay Bases (§ 9),
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i.e. the collections of the Noether equations of the primary components. We also discuss a compact
representation of them (§ 13), which is already implicitly presented in Macaulay’s book (cf. [13],§ 69),
and the relations between Macaulay Bases and Grobner Bases (§ 10).

In order to illustrate the most relevant applications of Macaulay’s ideas, we need to recall (§ 11)
a forgotten idea by Emmy Noether, namely she proved a stronger version of the well-known Lasker—
Noether Decomposition Theorem, that is: each ideal has an irredundant reduced primary decomposition
(see Rem 11.2, VIII); such irredundant reduced decomposition can be characterized also for embedded
primary ideals, unfortunately strongly depending on the frame of coordinates, so no uniqueness result
can be stated. Grobner (cf. [9], pp. 177-178) explicitly suggested to apply an improved version of an
algorithm by Macaulay (§ 12) in order to successfully compute the irreducible reduced decomposition
of an ideal: both the examples by Hentzel and the approach used by Grébner clarify that such notion
strongly depends on a frame of coordinates.

We conclude this survey pointing, without proofs, to some further results:

a good complexity algorithm which allows to evaluate a polynomial into a Macaulay basis (§ 14.1)

a good complexity algorithm which allows to compute Noether equations of a primary ideal (§ 14.2)

a combinatorial algorithm which deduces the (finite) Grobner éscalier (i.e. the set of terms which are
not maximal terms of members of the given ideal) of a zero-dimensional ideal from its Macaulay
basis. (§ 14.3)

a theorem which merges Lazard Theorem [11], Moller’s Algorithm [4,1] Gianni-Kalkbrener Theorem
[8,10] and Cerlienco-Mureddu Correspondence [5,6] giving a strong description of the structure of
the Grobner basis and of the dual basis of a zero-dimensional ideal (§ 14.3).

2 General notation

Throughout the paper

k is a field,

for all n € N, {X1,..., X,,} is a (finite) set of indeterminates,

P = k[Xl, ‘e ,Xn] C k[[Xl, ce 7Xn” = S,

a C P is an ideal and

m:= (Xy,...,X,) C P is the maximal ideal at the origin O.
Moreover, we let 7 := {X{*... X% : (a1,...,a,) € N} and, for all d € N,
To:={1 €T :deg(r) =d}tand T (d) := {7 € T : deg(r) < d}.

T

For any 7 € 7 and 1 < h < n with X | 7, the term = is called h-predecessor of 7 and for all

Xn
j€{1,...,n} the term X;7 is called j-successor of T.
Each (non-zero) f € P can be uniquely expressed either as polynomial in X, over k[ X7, ..., X,,_1]
deg(f) _
f: Z ng:wgl ek[Xla"'7X7l—1]v(gdeg(f) #0)7 (1)
i=0

or, if B is any k-basis of P, as linear combination of elements in B

S

F=>cf,B)B=>clfB:)B::c(f,3) € k*, 3 € B. (2)

BEB i=1

The B-support of f is the finite set
Se(f) :={B eB:c(f.B) # 0}
In particular, if B = 7 instead of Sz (f) we simply write S(f) and also consider
S(f):={teT:t|, for somer € S(f)}.

For any f =% . c(f,7)7 € S is called support of f also the, possibly infinite, set
S(f) = {r € T : e(f,7) # 0},
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If < is a semigroup ordering on 7, then, for any f € P, the t; € S(f) can be chosen so that
t1 > --- >t and call

T (f):=t1 is called mazimal term of f, lc(f)< :=c(f,t1) leading cofficient of f.
For each set G C P we consider the set

T A{G}:={T«(g9): 9 € G}, and
T (G):={7T(g9):7€7T,9€ G}

the monomial ideal it generates.
For each ideal a C P, the minimal basis of the monomial ideal T<(a) = T<{a} is denoted G(a).
Moreover,

Nc(a):=T\T(a),

Bo(a):={Xnt: 1 <h<nteN(a)}\Nc(a)
= To(@)N({1}U{Xnt: 1 <h<n,teN(a)}),

C(a) := {t € N(a) : Xpt € T (q), for allh},

are respectively called Gréobner éscalier (or souséscalier), border set and corner set of a w.r.t. <;
we also set k[N (a)] := Span, (N (a)) and k[[N.(a)]] C S the vector subspace consisting of all the
series f € S with S(f) € N(a).
If no confusion can arise, we will usually omit the dependence on <, simply writing T{-}, T(-), N(-), k[N(-)],
etc.
For each f € P, there is [2,3] a unique canonical form

g=Can(fa. )= Y Afr<r= Y A(tmN@)r € kIN() Q
TEN(a) T7EN(a)
such that
f—g€aand,ifteT, t<7= ~(t,7,<)=0. (4)

A Grébner basis [2,3] of a is any set G C a such that T(G) = T(a), i.e. T{G} generates the monomial
ideal T(a); the reduced Gréobner basis [2,3] of a is the set G(a) := {7 —Can(r,a) : 7 € G(a)}; the border
basis [14] of a is the set B(a) := {7 — Can(r,a) : 7 € B(a)}.

Finally, for each O-dimensional ideal a C P, its degree or multiplicity is:

deg(a) := #N(a).

Denoting P* := Homy (P, k) the k-vector space of k-linear functionals, each ¢ € P* is characterized
by its values on any k-basis B of P, namely for each f € P we have, by the k-linearity of £ € P* :

0f) =Y c(f. B)UB).

BeB

In particular if B = 7, then, each £ € P* can be encoded by means of the series ), £(t)t € S in
such a way that to each series ) .., y(t)t € S is associated the k-linear functional £ € P* defined, on
each f =3, ., c(f,t)t € P by:

()= el f (D).

teT

P* has a natural P-module structure associating to each £ € P* and f € P
(¢f) € P* defined by (£f)(g) :=£(fg), for all g € P.

Two sets L :={¢1,...,4s} CP*and q = {q1,...,qs} C P are said to be:

! Note that N (a) is an order ideal, i.c. a subset N C 7 satisfying st € N =t € N for all s,t € T; we also
note that N C 7 is an order ideal iff I := 7 \ N is a semigroup ideal, and conversely I C 7 is a semigroup
ideal iff N := 7 \ I is an order ideal. Moreover, if I C 7 is a semigroup ideal with a slight abuse of language,
it may happen that we use the same letter I to denote the monomial ideal it generates in P.
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o triangular if ¢;(g;) = 0, for each i < j;
o Dbiorthogonal if ¢;(g;) = 0, for each ¢ # j.

For k-vector subspaces L C P* and P C P, see ([14,15,1]) we let:
P(L):={geP:lg)=0,Vle L} (5)
L(P):={teP*:¥lg)=0,Vge P}, (6)

having:
P CP(L(P)) (resp. L L(P(L)),

and, more precisely, it holds P = PB(£(P)), without any assumption on P, while L = £(B(L)), only if
L is finite dimensional.
Moreover, for k-vector subspaces P, Py, P, C P and L, Ly, Ly C P* it holds:
1. P is an ideal iff £(P) is a P-module, L is a P-module iff P(L) is an ideal.
2. P C Py implies £(P;) D £(P2) and L; C Ly implies P(L1) D P(L2).
3. £(P1 + PQ) = S(Pl) N E(PQ) and m(Ll + LQ) = &B(Ll) N S13([/2)
4. L(PiNPy) D L(P)+ L£(P) and PB(L1 N La) DP(L1) + P(La).

If P, P, C P are O-dimensional ideals and Lq, Lo C P* are finite dimensional, then in 4. equalities
hold. Actually, also hold:
5. £(32,a,) = N,L(a,) and P(3_, L) = N,P(L,), with no assumption on a,ey C P and Lyen C P,
6. £(Npay) 2 >, £(a,) and P(N,L,) 2 >°, P(L,), where strict inclusion can hold also if ayen C P
are zero-dimensional ideals and L,eny C P* finite k-dimensional P-modules.

3 Macaulay notation

For any polynomial (or series) f € S,
o L(f)isits lowest degree non-zero homogeneous component,
o ord(f) :=deg(L(f)) is its order or underdegree.
Moreover, {¢; : 7 € T} is an (infinite) set of indeterminates and k[(;],e7 C k[[(+]]re7-
A dialytic equation of a is any linear combination

Z a,Cr € K[(]rer satisfying Z a;T € a.

T€T T€T

For each v € 7, the v — derivative of the dialytic equation ) __, a-(; is the dialytic equation
> rer @rGry corresponding to the ideal member

ZaTTv:vZaTTEa.

TeT TeT

The modular equations or inverse functions of a are the equations identically satisfied by the
coefficients of each and every member of a, i.e. the elements

Z ¢ Cr € K[[¢r]]reT with Z crar =0 for all Z a.T€aCP.

TeT TeT TeT

The notions of lowest degree component, under-degree (or order) etc. are implicitly extended to dialytic
equations and inverse functions.

If a is an ideal (resp. homogeneous ideal), then the set of all inverse functions up to (resp. of) degree
d and the set consisting of all dialytic equations up to (resp. of) the same degree are conjugate systems
of linear equations (i.e. the solutions of either system give the coefficients of the other one).

To each inverse function ) ., c;(; € K[[(;]];e7 We can associate the linear functional v € P*
defined by (1) = ¢, (encoded, see previous §, by the series ), c,7 € k[[X1,..., X,]]), conversely
each series ZTGT ¢, T is associated to the inverse function ZTeT crCr.



The big Mother of all Dualities 2 5

Macaulay proposed a more illuminating notation and expressed such modular equation as the Laurent

series
ZCTT_l = Z Cal...anX;al "'Xn_an € k[[Xfl""7XT:1]}'
T€T (a1,...,an)EN™

The inverse system of the ideal a is the set of all negative power series > c;7~1 which are
inverse functions of a.
Note that, in contrast to dialytic equations (involving only a finite number of variables (;), in general
the inverse functions ZTGT (= ZTGT ¢-7~! can have an infinite number of variables ¢, with
nonzero coefficient c;.

In the set of inverse functions, Laurent series which are just polynomials are characterized, as
follows:

Definition 3.1 (Macaulay) An inverse function ). ., ¢,7~! for which there exists 7 € N such that
if deg(7) > v = ¢, =0, is called Noetherian equation.

For any inverse function F, representing a Noetherian equation of degree d, and every f € P we have:

e ord(f) >d = E(f) =0 and, more generally,

e FE(f) = E(g) for g = Can(f,m?*1) € Span, (7 (d)), so that E is a modular equation for mé+?
and the set of all modular equations of a having degree bounded by d coincides with the set of all
modular equations of a + m?*t1,

Since for each m-primary ideal q C P there exists some p € N* (the characteristic number of q)
such that ¢ D m?, for each 7 € T with deg(7) > p it results 7 € m? C ¢, therefore each inverse function
Yorer e, lofqhasc, = 0forall T € 7,deg(r) > p, i.e. it is a Noetherian equation of degree bounded

by p— 1.
For each 7 € 7, a k-linear functional M(7) € P* is defined by:

M(7)(f) =c(f,7) forall f=> c(f,t)t €P. (7)
teT
) : 7 € T} C P* and we consider Span, (M) C P*, denoting, for each ¢ :=
> ez c(m, )M () € Spany (M), support of £ the finite set:
SW):={reT:c(r,t) #0}.
For every f:=) ,crait € Pand £ := ) ¢, M(T) € Span, (M) we have:
g(f) = Z aiCy = Z QA¢Cy.
teT teS(0)NS(f)

Therefore Span, (M) C P* is the set of all the Noetherian equations. In particular for each m-primary
ideal q, we have £(q) C Span, (M).

Denote, for each vector subspace A C Span, (M),
J(A)?2:={feP:Lf)=0,VLec A}
and, for each vector subspace P C P,
M(P) := L£(P) N Spany, (M) = {¢ € Span, (M) : (f) =0, V f € P}. (8)
Any semigroup ordering® < on P induces an ordering on M defined by:
M) < Mw) < 7<w.

Notice that whenever dialytic equations (i.e. polynomials) are ordered according to their degree, the
corresponding inverse functions are ordered according to their order (or under-degree) and conversely.

In order to extend the notation of Buchberger Theory to inverse functions one can consider any
semigroup ordering and not just well-orderings.

2 Remarking that Span, (M) C P* we also note the equality J(A) = B(A) and point out that in the sequel
mostly this second notation will be used.

3 Not necessarily a termordering!
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Definition 3.2 For every

E::ZciM(Ti) € Span, (M) with ¢; € k\{0}, m €T, m << <7 <---

T (¢) := 7 is the leading term of ¢ ,
ord(?) := min;(deg(r;)) is the order (or under-degree) of ¢ ,
deg(¥) := max;(deg(7;)) is the degree of £.
For any A C Span, (M), we set
T {A}:={T<(0),f € A}, N{A}:=T\TA{A}

and again, when no confusion can arise, we will omit < .

For a degree-compatible term-ordering <, ord(¢) = deg(T<(¢)), V¢ € Span, (M).

4 Stability

For each j € {1,...,n}, 0j, pj, A\; € Endyx(Span,(M)) are defined as follows:

0y (M(7)) = o, (M(7)) = {é”(“’) iy vreT:

pi(M(7)) := px; (M (7)) = M(X;7) V71eT;

)\j(M(T))—{éW(T) g%“ VreT.

Remark that
0jp; = Ida v j7
pio; =AY 7,
OkPj = Pj0k, v jvkaj 7& k.
As for each ¢, j we have 00, = 0,05, for each t € 7 is inductively defined a o; € Endy(Span, (M)),
by ox,: 1= 0x,0¢, so that for each 7,w € T we have:

or (M(w)) = {é” W

Therefore, for each f = >, ¢;t; € P, also a of € Endy(Spany (M)) is uniquely defined by o¢(¢) :=

Zi CiOt; (f)
Letting, for all f € P, ¢ € Span, (M),

Lf ==05(0),

the k-vector space Span, (M) is naturally endowed with a P-module structure.
Remark also that, for each ¢ € Span, (M) and each f € P, o;(¢) is exactly the f-derivative of £.

Lemma 4.1 Given any ¢ € Span, (M), f € P and i, it holds:

UXif) = oi(0)(f)-

Proof.  Notice that for each t € 7 we have S(tf) = ¢S(f) := {tr : 7 € S(f). Writing f :
Yueratand £ = 3 c.M(7), we have that for all t € S(X;f) it holds X; | t and c(t, X; f)
a-, where 7 is the i-predecessor of t.

Since each t € S(/)NS(X, f) is the i-successor of some 7 € S(f)NS(0;(¢)), and X;7 € S(X,; f)NS(¥)
holds for all 7 € S(f) N S(0;(¢)), we have our contention because

UXif) = Xies@ns(x, ) €t Xif)e(t, £) and
oi(O)(f) = Zfes(m(z))msm o(r, fe(r, oi(0)).
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]
Definition 4.2 A k-vector subspace A C Spany, (M) is called:
o Xj-stable if o;(¢) € A, for each { € A;
o stable if of(¢) € A, for each £ € A and f € P. ]
Lemma 4.3 Given vector subspaces A, Ay, As C Span, (M) we have:
1. for any change of coordinates {Y1,...,Y,}, are equivalent conditions:
o /A is stable,
o A is X;-stable, for each j,
o /A is Y;-stable, for each 1i;
2. if A#{0} is stable then M(1) € A,
3. if Ay and Ay are stable, then also Ay N As and Ay + Ay are so.
]

Theorem 4.4 For any finite dimensional vector subspace A C Spany (M) C P*, are equivalent condi-
tions:

1. A is stable,

2. the vector space P(A) is an ideal and P(A) C m.

Proof. 1. = 2. For each ¢ € A, f € P(A) and i, we have 0;(¢) € A and by Lemma 4.1 /(X f) =
o;(€)(f) = 0. This proves that

Xif € B(A), V f € PB(A) andi, ie. P(A) is an ideal.
Moreover, since A is stable, by Lemma 4.3 we have M (1) € A so that
F(0) = M(1)(f) =0, ¥ f € B(A) ie. B(A) C m.

2. = 1. Since A C P* is finite dimensional we have A = £3(A).
For each f € P(A), £ € A and i, since P(A) is an ideal we have X;f € PB(A) so that o;(0)(f) =
(X;f) =0 and
o;(€) € £P(4) = A.

5 Grobner Duality

Proposition 5.1 Given vector subspaces a C P and A C Spany, (M), it holds:
1. ACIMP(A) and, if A is finite dimensional, then equality holds;
2. a CPM(a).

Proof. 1. We have A C £J3(A) so that
A = AN Span, (M) C £B(A) N Span, (M) =
= L(B(4)) N Spany (M) = M(P(A)).

If A is finite dimensional, then A = £33(A4) and so equality substitutes inclusion.
2. Since M(a) C L£(a) we have P(MWi(a)) D P(L(a)); so that

a CPL(a) C PM(a).

For each p € N, denoting V, := Span, ({M(7)(-) : 7 € T(p — 1)}), we have:

Lemma 5.2 For each p € N it holds:

°m(vp) =m’,
e M(m”) = L£(m”) =V,.
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Proof. Trivially we have
PB(V,) Dm?  and £(m”) D M(m”) D V,,

and the equalities follow since dimk(V,) = (7)) = deg(m”). ]

Corollary 5.3 For each m-primary ideal q it holds:
*M(q) = £(q),
*q = PM(q);

Proof. Since q is m-primary we have ¢ D m” for some p € N and
£(q) C £&(m”) =V, C Spany (M),

so that 9(q) = £(q). Hence
q=BL(a) = PM(q).

Proposition 5.4 Given a finite-dimensional stable vector subspace A C Spany (M):
o PB(A) C m is an m-primary ideal,
o dimy (A) = deg(P(A)).

Proof. From Theorem 4.4 P(A) C m is an ideal, A finite dimensional implies that there exists p € N
with A C V,, thus P(A) D m” is a primary ideal.
Also dimy (A) = deg(P(A)). ]

Proposition 5.5 For each m-primary ideal q it holds:
e M(q) is stable;
o dimy (M(q)) = deg(q).

Proof. As q = PM(q) by 5.3, Theorem 4.4 grants that 9M(q) is stable. Also, since M(q) = £(q) we

have
dimk (M(q)) = dimk(£(q)) = deg(PL(q)) = deg(q).
]

Lemma 5.6 Given m-primary ideals q1 and qo and finite dimensional stable vector subspaces Ay, As C
Span, (M), it holds:

l.g1 C e = Em(ql) D) M(CIQ) and A1 C Ay — ‘13(/11) D) ‘B(AQ),

2.0 (a1 +g2) = M(q1) NDM(q2)  and P(A + Az) = P(A1) N P(A2);

3.M(q1 Ngz) = M(q1) +M(q2)  and P(A N Az) = P(A1) + P(A2). u

All the above facts can be summarized as follows:

Remark 5.7 The maps P(-) and M(-) (respectively restriction of P(-) to m-primary ideals and L£(-)
to finite dimensional stable k-vector subspaces) are mutually inverse by 5.1 and 5.3. They actually
giwe a biunivocal, inclusion reversing, correspondence between the set of the m-primary ideals ¢ C P
and the set of the finite dimensional stable vector subspaces A C Spany (M).

Moreover, for each m-primary ideal ¢ C P we have deg(q) = dimx(M(q)) and, for any finite
dimensional stable vector subspace A C Span, (M) we have dimy(A4) = deg(P(4)). ]

Proposition 5.8 For p € N, let q, be m-primary ideals and A, C Span, (M) be finite dimensional
stable vector subspaces. Then

L. W(Zp dp) = NpM(qp) and “B(Zp Ap) =N, PB(Ay);

2.(N,q,) = Ep M(q,) and P(N,4,) = Zp B(A,).
Proof. Clearly 1. is a consequence of 5. of §2, as for 2. it follows from of 6. of §2, by definition of
Span, (M) and 9t(—). ]
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Lemma 5.9 Given a (not necessarily finite-dimensional) stable vector subspace A C Spany(

each p €N, let A, := ANV ,. Then we have:
LA C--CAyCAppq---C A and so

P(A) O > P(A,) D BlAyi1) S -+ > B(A),
2. A= Zp Ap, and so P(A) = N,P(A,),

3. P(A) is an m-closed ideal and A= IMP(A).
Proof. Clearly 1. and 2. are trivial. Ad 3., we have B(A4) = N,(P(A) + m”), namely
P(A) = mpm(/lp) = ﬁp‘ﬁ(/l n Vp)
= Mp(B(A) +P(V,)) = N (P(A) + m?);

on the other hand
A=A, = MP(4,) = M(N,P(4,) = MP(A).
p p

Proposition 5.10 For each m-closed ideal a C P C S, it holds:

e a = PM(a);
o N(a) is stable.

Proof. Considering, for every p € N, the m-primary ideal a, := a + m”, we have

a=nNya, =N, PN(a,) (Zsm a, ) = PN (N,a,) = PM(a).

Let £ € M(a) and let p — 1 = deg(¥), we have £ € V, = M(m”) and therefore
L€ M(a) NM(m?) = M(a + m?);

since M(a + m”) is stable, for each f € P,
of(€) € M(a) NM(m?) C M(a).

M), for

Theorem 5.11 The mutually inverse maps P(-) and M(-) give a biunivocal, inclusion reversing, cor-
respondence between the set of m-closed ideals a C P C S and the set of stable vector subspaces

A C Spany (M).

6 Leibniz Formula

Proposition 6.1 For any f,g € P and w € T it holds:

= > M@)()M(r)(9).

veT
vT=w

Proof. Let
f= Yiesipclfsv)v =2 es f)M( v)(f)v,
9= Zfes(g)CQJ)T :Zfes(g) M(r)(g)T,
fg= ngs(fg) o(fg,ww = Zues(fg M(w)(fg)w

> e(f.v)elg, )

veS(f)

VT=w

= Y M@)(HM(7)(9)-

vES(f)

VT=w

for each w € 7, we have

M(w)(fg) = c(fg,w)
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Corollary 6.2 (Leibniz-type Formula) For any f,g € P and £ € Span, (M) it holds:

Ufg)= Y M)(fou(0)(9)

veS(f)

We point out that Lemma 4.1 is nothing but a particular case of Corollary 6.2.

Proposition 6.3 (Moller—Stetter) Given any k-basis {{1,...,4s} of a finite dimensional stable vec-
tor space A C Spany (M) and any finite basis {g1,...,9:} of an ideal a C P. Then

li(g;) =0,Vi,j = U(f) =0,V0 € A, f € a.

Proof. Let f = 22:1 fjg; € aand let £ € A. Then, for each v € T, 0, (¢) € A as A is stable. Therefore,
for all jandv € T,0,(¢)(g;) = 0 and by the Leibniz-type Formula

t

0 =D Ufg) =Y Y. M@)(f)ou(0)(g;) =0

j=1 J=1veS(f;)
]
Corollary 6.4 With the same notation as above
Ei(gj) =0, Vl,j == A C Em(a)
]

7 Differential inverse functions at the origin

A nice interpretation of the set Span, (M) of all the Noetherian equations at the origin* in terms
of differential operators was proposed by Grébuer, assuming (as we will do throughout the section)
char(k) = 0.

For each (i1, ...,i,) € N”, setting 7 := XI' ... X/», we denote by

D(7):=D(i1,...,in): P—>P
the differential operator:
1 irttin
il i OXI L OX

D(7) :==D(i1,...,i,) =
Also, for 7 := X ... X4 € T, and t := X' --- X € T such that 7 | ¢ so that d; < e;, we will

use the following shorthand
ty _ f(ea €n
T o d1 dn '

Proposition 7.1 [1f] Let 7 := X" .. X € T, and t :== X' --- X € T. Then

t e;—d; en—dn ;fr
D(7)(t) := { (6) X ij?% il .

4 Noetherian equation at a point means ‘at the maximal ideal corresponding to the point’.
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Denoting D := {D(7) : 7 € T}, for each ¢ := ) ¢, D(7)(-) € Span, D we set S(9) := {r € T :
¢y # 0} and S(0) := {t € T : t | 7, for someT € S(8)}.
Remark that, for each 7 € 7, D(7)(-)(0,...,0) = M(7), so that if we set ev : Span, (D) — Span, (M)
the morphism defined by ev(D(7)) = M(7) for each 7 € T we have

ev(8)(-) = 8(-)(0,...,0) = 3 e, M(7)() V8 := ¥ e, D(r)() € Spany, D
T€T TET

so that the set
{6(:)(0,...,0) : § € Span, (D)} C P*

coincides with the set of all the Noetherian equations at the origin and, in particular, for each m-primary
ideal q, we have

£(q) € {6(-)(0,...,0) : 6 € Span, (D)}.
We impose on D the same semigroup ordering < induced on M so that
D(r) < D(w) <= M(1) < Mw) < 7<w

and we set
T.(5) :=T<(ev(d)), ord(d):=ord(ev(d)), deg(d):=deg(ev()).

Letting D(7y) - D(72) := D(1172) we impose on D also a semigroup structure which is isomorphic
to the one of 7

Proposition 7.2 [14] Forv:= X% ... X% and 1:= X .- X, we have

n n

D) (D)) = (7)) Dlwr) )

(]
Setting,
o (Dw)) = OD(U) if (:J(ZWTU for each T, w € T
of(0) =), ¢io4,(0) for each f =3, ¢;it; € P,6 € Spany (D)
we get oy : Spany (D) — Span, (D) for all f € P.
Definition 7.3 A vector subspace A C Spany (D) is called
o X -stable if for each 6 € A,0;(d) € A;
o stable if for each § € A and each f € P,os(0) € A. |

8 Taylor Formula and Grobner Duality
Letting b := (by,...,b,) € k™, mp := (X1 — b1,..., X, — b,) C P,
Ab : P — P the translation \y(X;) = X; + b;, for all i; we have Ap(mp) = m and, for each my-closed
ideal ap, a := Ap(ap) is an m-closed ideal. Therefore
{€Xp(+) : £ € Span, (M)} = {6(-)(b) : § € Span, (D)} C P*
is the set of all the Noetherian inverse equations w.r.t. my-closed ideals and, in particular

£(g) C {€Ap(+) : £ € Spany (M)},

for each mp-primary ideal qp.
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Remark 8.1 [15] Let p C P be an (n-r)-dimensional prime ideal, up to a suitable change of coor-
dinates, we may assume p NK[X,11,...,X,] = {0}, i.e. p := pk(Xpp1,..., X0)[ X1, ..., X;] mazimal
ideal. Let pQ = N{_yn; be a prime decomposition in Q := 2(k)[X1,. .., X,] (where £2(k) is the universal
field of k), with p = n; NP, for each i. If a; := (a;1,...,ain) € (k)" is the root for which

n, = (Xl 7ai1,...,Xn *ain%

then, via the translation \,, : Q — Q, we are in the situation discussed above. In particular

o the set {€A,,(+) : £ € Span, (M)} C Q* consists of all the Noetherian inverse equations w.r.t.
n;-closed ideals;

e if q C P is p-primary, then q := qk(X,41,...,Xn)[X1,..., X;] is a p-primary ideal and
qQ = Ni_;s; is a decomposition into simple® primary components satisfying:

- \/5 = ny,

—q=s;NP for each i,

— £L(si) C {€As, () : £ € Spany (M) };

o ifjis ap-closed ideal, then for J :=ik(X,41,...,Xn)[X1,..., Xy] one has JQ = N5_,J; where
Ji is n;-closed and j = J; NP, for each i. [

Lemma 8.2 For each b := (by,...,b,) € k™ and f:= Y, ¢(f,t;)t; € P, it holds:
(7, A6(f)) = M(T) Ao (f) = D(T) A (f)(0, ..., 0) = D(7)(f)(b).

(]
Corollary 8.3 (Taylor formula) For each b:= (b1,...,b,) € k™ and each f:= ', c(f,t;)t; € P,
it holds
M(f) = fF(X1+0b1,..., X0+ by)
= > D)) (b).
TET
[

Let us denote, for each vector subspace A C Span, (D),
3o(4) = {f € P:6(f)(b) = 0, ¥6 € A}
and, for each vector subspace P C P,
Du(P) := {0 € Spany (D) : 6(f)(b) =0, V f € P}.

We point out that if b = 0, then we will simply write J(A) and ©(P), noticing also that D (a) = M(a)
for all a C P C S, m-closed ideal.

Corollary 8.4 Let A C Spany (D) be any vector subspace.
Then, the following conditions are equivalent:
o A is stable,
o A:=ev(A) is stable,
e the vectorspace Jp(A) is an ideal and J,(A) C my,.

Proof. Clearly 1. <— 2..
The equivalence with 3. is a consequence of the obvious equality

5(f)(b) = 6Au(f)(0,...,0) = ev(d)As(f)

and Theorem 4.4 [ |

Lemma 8.5 For any stable vector space A C Spany (D), it holds Jp(A) = A, ' (B(ev(A))).

5 A primary ideal is called simple if its corresponding maximal ideal is linear.
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Proof. Denoting A := ev(A), we have

To(A) = {f € P:8(f)(b) = 0,Y6 € A}
={feP:ev(d)(f) =0,V0 € A}
={\'(9): g€ Pev()(g) = 0,¥5 € A}

=N"({g:9€P,llg)=0,7l€ A})
=X (B(4)
= A [ (Blev(4)))
|
Lemma 8.6 For P C P, it holds Dp(\, *(P)) = ev_1(M(P)).
Proof. Tt holds
Dp(X, ' (P)) = {0 € Span (D) : 6(f)(b) = 0,¥f € A (P)}
= {0 € Spany (D) : 5); ' (g)(b) = 0,Vg € P}
= {6 € Spany (D) : ev(8)Ap (N, ' (g)) = 0,Vg € P}
= {6 € Spany (D) : ev(6)(-) € £(P)}
= {6 € Spany (D) : ev(d)(-) € £(P) N Span, (M)}
= {6 € Span, (D) : ev(d)(-) € M(P)}
= ev L (M(P)).
|

Corollary 8.7 Each my-closed ideals a, C P and each stable vector subspaces A C Spany (D) satisfy
Jbi)b(ab) = ap and @bjb(ﬂ) = A.
Proof. We have

and

DpTp(4) = Dp(A; ' (B(ev(4))) = ev™ H(M(P(ev(4Q)))) = ev ' ev(4) = A.

This allows to conclude that

Theorem 8.8 (Grobner) The mutually inverse maps Jp(-) and Dp(-) give a biunivocal, inclusion
reversing, correspondence between the set of the my-closed ideals ap, C P and the set of the stable vector
subspaces A C Spany (D).

Moreover, to any my-primary ideals q, C P corresponds a finite dimensional stable k-vector sub-
space so that deg(qy) = dimk(Dp(qp)); and to any finite dimensional stable vector subspaces A C
Spany (D) corresponds an mp-primary ideal so that dimy(A) = deg(Ty(A4)). [

We recall here the classical Leibniz Formula in order to stress how applying ev one can motivate
the use of this name for Proposition 6.1 and its corollary
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Lemma 8.9 (Leibniz Formula) For any f,g € P and w € T it holds

Dw)(fg)= Y D()(f)D(r)(9)

veS(f)

VT=w

Proposition 8.10 For any f,g € P and any § € Spany (D) it holds

5(fg)= Y D(©)(f)ou(5)(9)-

veS(f)

Corollary 8.11 For all f € P,0 € Span,(D),1 < ¢ <r, it holds

6(Xif) = Xid(f) +ox,(0)(f)-
Corollary 8.12 Given any b € k™ and my, C P, for any ¢ € Span, (D), it holds

§(Xif)(b) = b:id(f)(b) + 0(3)(f)(b).

Notice that by applying ev to Corollary 8.11 and Proposition 8.10 we get exactly what stated in
Lemma 4.1 and Corollary 6.2.

Corollary 8.13 (Moller—Stetter) Given
any k-basis {1,...,9s} of a stable vector subspace A C Span, (D),
b:=(b,...,bn) €K™ and m, CP,
an ideal a C P and any finite basis {g1,...,g+} of a.

If 6;(g;)(b) = 0Vi, j, then 6(f)(b) =0,V6 € A, f € a.
Corollary 8.14 With the same notation as above.

If 6;(g;j)(b) = 0Vi, j, then A C Dp(a).

9 Macaulay Bases

Given a semigroup ordering < on 7 and an m®-closed ideal a C P C S, for each t € T let (¢, 7, <) be
the coefficient corresponding to 7 € N(a) in the canonical form Can(t,a, <) of t (see (3)).
Labelling the elements in N(a), for each 7; € N(a), we let

E(Ti) = M(Ti) + Z V(ta Tis <)M(t)7
teT(a)

and we will show that 9(a) = Span, {¢(7;), 7 € N(a)}.
Notice that £(7) € M(a) requires in particular £(7) € k[(M]) which holds iff #{t : v(t,7, <) # 0,7; €
N(a)} < R, by (4) clearly this is granted if the set {¢t € 7 : ¢ > 7} is finite.

In order to have duality between P(—) and M(—) (i.e. to deal with functionals which are poly-
nomials (in Span, (M) = k[M] and not series in k[[M]]) we may choose on 7 a Hironaka/standard

5 Where, as usual, m = (X1,...,X,)) so that, in particular, 1 € N(a).
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inf-limited” ordering <. In this setting to Grobner bases correspond the so-called Hironaka/standard
bases (which deal with series instead of polynomials) and the notion of leading term is the one related
to standard (and not Grobner) bases.

Remark that in this context the ideal we obtain results to be given in terms of a standard (not
Grobner) basis. Note that, as a Hironaka’s basis of an ideal returns its m-closure, the restrictions on
both m-closed ideals and inf-limited ordering are quite natural and strictly related in the theory we
have developped here.

Finally, notice that, letting f; ==t — ZTj<t v(t, 75, <)7j, for all t € T(a), the set {f; : t € T(a)} is
a dialytic array (i.e. a k-linear basis of a) and we have:

Proposition 9.1 With the notation above, it holds:

Ur)(f2) = 0,% € T(a),7 € N(a).

Proof. Our contention is true as for all ¢ € T(a),7 € N(a) = M(7)(t) = 0, and similarly for all
v € T(a), 7 € N(a) = M(7)(v) = 0, moreover M(7)(r;) = 0 for all 7; # 7 € N(a), so that

Un)(fo) = M) (f) + Y Ao,m <M (0)(fi)

vET(a)
= M(r)(t— > y(t,75, <)1) +
T <t
>y QM) (= > At T, <))
veT(a) i<t

= _FY(thv <) + ,Y(t77-7 <) =0

Corollary 9.2 With the notation above, it holds:
M(a) = Span, {¢(7;), 7 € N(a)}.

Moreover, restricting ourselves (as done in most of our examples) either to m-primary ideals, or to
ideals homogeneous w.r.t. the valuation v,, associated to the weight function w := (wy,...,w,) €
R™ w; > 0, we have:

Corollary 9.3 Given p € N, for each 7;, deg(7;) < p, denoting

0P(1;) := M(7;) + Z y(t, 7, <)M (t), then
dteegﬁ()cgp
e N(a+m?) = {7 € N(a),deg(r;) < p},
e M(a+ mP) = Span, {¢°(7;), 7 € N(a),deg(r;) < p}.
]

Definition 9.4 Referring to Definition 3.1 a basis {l1,0s,...,4;,...} of a stable vector subspace
A C Spany, (M) is called Macaulay basis of A w.r.t. < if
o T{A}:={T(¢)} C T is an order ideal;
oli=M(T:))+ > &, T))M(v), Vi and suitable £(v, T(¢;)) € k. |
vEN(A)

" i.e. an ordering on 7 such that

- X, <1,Vi
— for each decreasing infinite sequence in 7,71 > 72 > ... > 7 > ... and each 7 € T there is r € N such that
T < T.
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Corollary 9.5 With the notation above, if we set A := 9M(a) it holds
o {{(7;),7; € N(a)} is a Macaulay basis of A,
e T{A} = N(a). |

Proof. For each i and each t € T(a), we have
v, 1, <) 0=t > T,

and so T(4(r;)) = 7. [

Example 9.6 Given the m-closed ideal a := (Xo — X?, X3— X3,..., X,, — X7"), which is homogeneous
w.r.t. the valuation

vw : T — R, such that vy (X;) =i, Vie{l,...,n},
letting £;:= >, M(7), VjeN, itis easy to verify that, for each p € N :

T€T
vw (T)=3

a+m? = (X0, Xo— X7, X3 — X3, X, — X)),
deg(a + m”) = p,
M(a+m”) = Spany {£;,0 < j < p},
M(a) = Spany {¢;,j € N}.

Moreover, if < denotes the refinement of vy, by the lexicographical ordering induced by X1 < --+ <
Xn,

o foreachpeN, (XV X9, X35,...,X,) = T(a+m);

o foreachpe N, {X} Xo— X2 X3—X3,...,X,, — X7}, is the Grobner basis of a+m? w.r.t. <;
e foreachi€N, T((;) = X{;

o foreach pe N, T{M(a+m~)} = {1,X,,..., X'}

e the Grébner basis of a w.r.t. < is {Xo — X2, X5 — X3,..., X, — X7}

o N(a) ={Xj,j € N} = T{M(a)}. u

10 Macaulay Bases and Grobner Representations

Proposition 10.1 If A C Span, (M) is any stable vector subspace, then also Span, (M (T{A})) (where
M(T{A}) :={M(7): 7 € T{A}}) is so.

Moreover, if {€;,1 < i < s} is a Macaulay basis of A, then {M(T(¢;)),1 < i < s} is a Macaulay basis
of Spany (M (T{A})).

Proof. For each ¢ € A either 0;(T(¢)) = 0 or 0;(T(¢)) = T(0;(¢)) as, by assumption, A is stable. m

Proposition 10.2 Given a stable vector subspace A C Spany (M), let:
o {l1,0s,...,4; ...} be its Macaulay basis w.r.t. <, where, for each i,
bi=M(r)+ > &,m)M(v), 7 =T();
vEN(A)
o {t1,...,ts} be the minimal basis of the monomial ideal N(A) C P;
o g;ji=t;— ZneT{A} &(t;, )T, for each j.
Then (g1,.-.,gs) is the Grobner basis of P(A) w.r.t. <.

Proof. 1t is sufficient to show that

li(gy) = M(r)(g;) + > &v,m)M(v)(g;)

veEN(A)
= —&(ty, 7)) M(7:) (i) + &(Ly, 7)) M (t5)(t5) = 0.



The big Mother of all Dualities 2 17

Let < be any semigroup ordering on 7,

g C P an m-primary ideal,

N(q) :={m,...,7s}, and

i i=U(1;) == M(73) + 3 em(q) Yt 7o, <)M () € Spany (M) as above;
then:

Proposition 10.3 With the above notation, A := Spany, {¢1,...,¢s} and N(q) are biorthogonal. |

Note, (see also Corollary 12.2), that 7; < 7;, for all i < j, does not imply A; := Spany {¢1,...,4;}
is a P-module for each i. For instance consider the following:

Example 10.4 Let P :=k[X;, Xo],
< any termordering on T such that Xy > X2,
a:= (X3 — X}, X1 X5, X}), so that N(a) := {1, X1, X?, Xo}, and
0 = 1(1) = M(1), b = 0(Xy) = M(X1), b = 0(X3) = M(X?) + M(X3),
g = 0(Xs) = M(X>).
Then Az := Spany {¢1, 42,03}, is not a P-module as P(As) is not an ideal, namely:

(3(X3) =1,X3 ¢ P(A3), while Xy € P(43).

11 Reminds on Primary Decomposition

Every handbook in Commutative Algebra contains the so called Lasker-Noether decomposition theorem:

Theorem 11.1 (Lasker-Noether) In a noetherian ring R, every ideal a C R has an irredundant
primary decomposition a=nNj_;q; such that:
e q; is a primary ideal, for all j € {1,... 7}, with p; = \/q;,

-
e q; b () qi forallje{1,...,r},
i=1
i
o p;Fp;, foralli#je{l,...,r}
If a=nN_1q; = ﬂj.:lq; are two irredundant primary representations of a (where for each i,j we
have p; = \/q; and p'; = \/d’;), then:
-r=s,
~forallie{l,...,r}, 3j€{1,...,s}: pi =p);
~forallje{l,...,s}, Fie{l,....r}:p}=p;.
For eachi € {1,...,r}, the prime ideal p; is called associated prime ideal of a and the primary ideal
q; is called primary component of a; each minimal element in {p; : 1 < i < r} is called isolated prime
of a, while associated prime ideal which are not isolated are called embedded, a primary component q;
is called isolated or embedded according to what is its radical.
The isolated primary components of a are uniquely determined. ]

Remark 11.2 We briefly recall here the iter followed by E. Noether in [20] for proving the above
facts, in order to emphasize a result of Macaulay/Grobner which will be proved in the next section.

I In a commutative ring R, an ideal which is not a finite intersection of ideals strictly containing
it is called #rreducible.

II In a commutative ring R, every prime ideal p C R is irreducible.

IIT In a noetherian ring R, every irreducible ideal is primary (but not conversely).

IV (Lasker-Noether) In a noetherian ring R, every ideal a C R is a finite intersection of irreducible
ideals.

V' (Noether) In a noetherian ring R, reduced representation of an ideal a is a representation of a
as intersection a = N7_,i; of finitely many irreducible ideals s.t.

—forallje{l,...;r},i; B ) in,
h=1

j#h
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T
~ there is no irreducible ideal i;" D i; such that a = | ) in | Ni;.
o
VI (Noether) In a noetherian ring R, each ideal a C R has a reduced representation as intersection
of finitely many irreducible ideals.

VII A primary component q; of an ideal a contained in a noetherian ring R, is called reduced if

,
there is no primary ideal q;/ O q; such that a= | () q; | Ng;’.
i=1

i
VIII In an irredundant primary decomposition of an ideal of a noetherian ring, each primary
component can be chosen to be reduced.

We recall here some well-known examples which show that the statements about uniqueness of
representation cannot be improved.
Example 11.3 (Hentzelt) All the examples live in the polynomial ring Q[X,Y].
1. The decomposition (X2, XY) = (X)N (X2, XY, YY), for all \ € Ny\ > 1, where \/(X2, XY, Y?) =
(X,Y) D (X), shows that embedded components are not unique; however, since
(X2, XY,)Y)=(X%Y)D (X% XY,Y?), for each A > 1,

(X2)Y) is a reduced embedded irreducible component and
(X2, XY) = (X)N(X?Y) is a reduced representation.
2. The decompositions (X2, XY)=(X)N(X2Y +aX),asa€Q
(where \/(X2,Y +aX) = (X,Y) D (X), and (X2,Y + aX) is reduced) show that also reduced
representations are not unique; note that, setting a = 0, we find again (X2, XY) = (X)N(X2,Y).

Example 11.4 We also recall the reduced representation
(X%, XY, YY) = (X2Y)N (X, YY)

of the primary ideal ay := (X2, XY,Y?) into reduced irreducible components.
Neither such decomposition is unique since we also have

ay = (X2Y +aX)N (X, YN asa € Q.

Let us also remark that these reduced irreducible components give the irredundant primary repre-
sentations

(X%, XY) = (X)Nay
= (X)N(X%Y +aX)N (X, Y
= (X)N (XY +aX)

in terms of reduced primary components. ]

Example 11.5 (Noether) In the same context it is worthwhile to recall the decompositions in Q[X,Y, Z]

ax = (X27XYa Y27YZ) n (XDYA)a
(X2, XY, Y2 YZ) = (X%Y)N(X,Y?, 2),

whence
ay = (X%, XY, Y2 YZ)N (X, YY)
= (X2Y)Nn (X, Y
because (X,Y?2,7Z) D (X,Y?) for all A > 2. ]

We will show in Section 12 that in an irredundant primary decomposition of an ideal, for each
embedded associated prime p it is possible to determine a reduced primary component g associated to
it, together with a reduced decomposition of q into irreducible components associated to p.
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12 Macaulay Bases and Primary Decompositions

Consider:

a noetherian inf-limited ordering < on 7,

an m-closed ideal a C P C S,

the (finite) corner set C(a) := {w1,...,ws},

the (not-necessarily finite) set N(a),

the Macaulay basis {¢(7) : 7 € N(a)} and

the vector subspace A C Span, (M) it generates.
For each j,1 < j < s, denote

Aj = Span {vl(w;) v € T,w; € C(a)} and q; :=P(A4;).

Note that

4 Cqy <= A; D Ay
Moreover, let J C {1,...,s} be the subset of indices corresponding to the minimal elements of {q; :
1<j<s)

Lemma 12.1 (Macaulay) With the above notation, for each j, denoting
A% = Spany {vl(w;) v € T Nm}

we have:

1. dlmk(/l;) = dlmk(/lj) — 1,

2. U(wy) & A} =M(g; : m),

3. for each m-primary ideal ¢’ O q; = M(q’) C 4.

Proof. For each h,1 < h < n, denoting l;, := X,{(w;), we have
Al C ZSpank{vlh vweT} = me(qj : Xn)
h h

=M (Nn(d; : Xn))
= M(q; : m).

As qj : m # q; we have dimy(A;) > dimy(M(q; : m)) > dimy(A;) > dimy(A;) — 1, whence the first
claim. |

Corollary 12.2 With the notation above, if a is an m-primary ideal, then it is possible to enumerate
the set N(a) := {r1,...,7s} so that, for all o:

L, := Spany ({£(71),...,4(15)}) is a P-module, a, = P(L,) is a zero-dimensional ideal and there is
a chain ag Das D -+ D dg = a.

Proof. The proof can be done by induction on s := #N/(a), being trivial if #N(a) =1 (i.e. N(a) = {1}).
Choose any element w; € C(a), j € J, and set

Ts == wj, Lg_1:=Span ({{(w),w € N(a),w # 74}

Then ¢(w;) ¢ Ls—_1,
dimy(Ls—1) = s — 1,
#N(as_1) = s — 1, so that
N(as—1) = {w € N(a),w # 75}

and the claim follows by induction. ]
Corollary 12.3 For a zero-dimensional ideal a, with deg(a) = s, there is a finite ordered set of
Li. k-linear functionals L = {{1,...,4s} such that: L := Span, (L) = £(a), each vector subspace
L, := Spany ({f1,...,45}), 1 < 0o < s, is a P-module each a, = PB(L,) is a zero-dimensional ideal,

and there is a chain ap Dag D -+ D ag = a.
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Proof. Fix any term-ordering < and consider the irredundant primary decomposition a = N} _;q.
For each i, let us denote a; := (a;1,...,ain) € K™ and m; := /q; = (X1 —a1,...,Xp — ain). Let
Ai : P — P, be the translation \;(X;) = X; + a,j, for all j, and let {71,...,7iu, } = N(Xi(q:)) be
enumerated so that Corollary 12.2 holds.
Setting

L= {(rij)Ni(-),1 < i <t,1 < j < ey = {b,..., Ls},

we have deg(a) = >/, pu; = >.._, deg(q;) and L := Spany (L) = £(a). The claim is obtained, by
Corollary 12.2, enumerating the set L so that for each o, 3, £o = £(7i, ;. )i, (), € = L(Tizj,) Nip (1) We
have i, = ig,jo0 < jg = o < . |

Theorem 12.4 (Grobner) With the above notation, for an m-primary ideal a, it holds:
1. each Aj is a finite-dimensional stable vectorspace,

each q; is an m-primary ideal,

each m-primary ideal q; is reduced,

each m-primary ideal q; is irreducible,

a:=Njesq; s a reduced representation of q.

U W

Proof. 1. is trivial by construction; 2. is a direct consequence of 1.; 3. if q; is not reduced, then
exists g D q; such that a = Nix;q:(q" and Lemma 12.1 implies £(w;) ¢ A} 2 9M(q'). Then, looking
to the leading terms of the ¢(w;)s, it is easy to see that

Uwi) €D A+ 9(q') = M(a) = 4;
i#]

4. if q; = q’Nq” is reducible, Lemma 12.1 implies £(w;) ¢ M(q")+M(q"), i.e., again, the contradiction
lw;) € A; 5. since M(a) = A =3 A; =3 . ;A; =3, ;MM(q;), the representation a := Njcq;
is reduced being the components reduced by 3., moreover, redundant components have been removed
by restricting the indices to J. ]

Example 12.5 If a=m?= (X2 XY,Y?) Ck[X,Y], then
Cla) = 1, ], 4 = Span {M(1), M(X), M(YV)], and
w1 = X7 Al == Spank{M(l) ( )}a qi1 = ( Y)7
wa =Y, Ay = Span (M (1), M(Y)}. g = (X, Y?);
whence (X2, XY,Y?) = (X2,Y)N(X,Y?). N

Example 12.6 In Ex. 10.4 a= (X3 — X, X1X2,X7?), C(a) = {X?, X»}
A = Span (M (1), M(Xy), M(X?) + M(X3), M(X2)} = Spany{£1, Lo, €s, (s}
and w1 = XQ, /12 = Spank{M(l),M(XQ)}, q1 = (Xl,Xg),

w2 Z:)(127 /12 Z/L 2 = a,
namely, X2£3 = M(X2)7 leg = M(Xl), X%fg = X22€3 = ]\4(1)7
thus a is irreducible.

In connection with Corollary 12.2 we have to set
74 = Xi, L3 := Span {M (1), M(X1), M (X2)},

obtammg as = (X17X1X2,X2) (X17X22)Q(X12,X2)
There are therefore two possible orderings of N(a), satisfying Corollary 12.2:

N(a) = {1, X1, X2, X?}, which returns the chain

(X1,X3) D (X2, X5) DazDa, and
N(a) = {1, X2, X1, X?} which returns the chain
(Xl,Xg) D) (Xl,XQQ) Daz>Oa
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If a is not m-primary, let

C(a) ={w1,...,wi}
pi= max{deg(w]) +1:w; € C(a)} + 1 so that q' := a + m” is an m-primary component of a, and

AﬂV =M(q),

a=nN_; q1 an irredundant primary representation of a, with \/q; = m,
b:=a:m>*® =nN]_,q, and b=nN}",9Q; areduced representation of it,

C(q) ={w1,...,wp,wrs1,...,ws} O C(a)
for each j,1 < j <s, A;:= Spank{vﬂ(wj) cv €T}, and qj == PB(4;)
q:=MNj_14;

Then

Corollary 12.7 With the notation above, it holds:
1. qCq is a reduced m-primary component of a,
q":=Nt_yq; is a reduced representation of ¢,
q =Nj_19; is a reduced representation of q,
i Db <<= i>1t,
a =N, QiN%_,0q; is a reduced representation of a. |

U W

Example 12.8 In Ez. 11.3.1. we have a:= (X? XY), C(a)={X},
A = Span, {M (1), M(X)} U{M(Y"),i € N}, then
b=a:m> = (X)

p= 3 —atm = (X2 XV, Cl) = (X.17)
= A = Span M.} a1 (67,
= Y2, Ay = Spany {M(1), M(Y), M(Y?)}, a1 = (X,Y?) > (X);

whence (X2 XY)=(X)n(X%Y).
Moreover if Ex. 11.8.2. shows that reduced representation (and even the notion of Macaulay basis)
strongly depend on the choice of a frame of coordinates. In fact, choosing, for each a € Q,a # 0,
A = Span, {M(1), M(X) —aM(Y)} U{M(Y?),i € N}, we obtain
p=3, ANV, = {M(1), M(X) — aM(Y), M(Y), M(Y?)},
wp =X, Ay = {M(l)vM(X) - LLM(Y)}, 91 = (X27Y + (IX),
wy =YY% Ay ={M(1),M(Y)}, g2 = (X,Y3) D (X),
whence (X%, XY) = (X)N (X% Y + aX).
Let us now perform a generic change of coordinates in Fx. 11.3.1.
$: QX,Y] - QX,Y], &(X)=aX +bY,P(Y) =cX +dY, ad —bc # 0 # a,
we obtain:
a=(aXY +bY? a’X?% - bY?),
A = Span, {M (1), M(X), M(Y),a?M(Y?) — abM (XY) + b>M(X?),...},
b:=(aX +bY)
p=3,q=a+m? C(q)={X,V?},
ANV, =Span {M(1), M(X),M(Y),a®?M(Y?) — abM (XY) + b>M(X?)},
wy =X, A ={M(Q1),M(X)}, q1 = (X2,Y),
wy i=Y2% Ay ={M(1),aM(Y) —bM(X),a’M(Y?) — abM (XY) + b>M (X?)},
g2 = (aX +bY,Y3) D (aX +bY),
whence (aXY +bY?,a2X?—bY?) = (aX +bY)N(X2,Y). So far we have chosen {M (1), M(X), M(Y)}
as basis of V3 however what we need to do is to extend the basis {M(1),aM (X)—bM (Y )} of M(6)NV3
to a basis of V3, of course any choice eM(Y) + fM(X),ae — fb # 0 is acceptable giving the reduced
primary ideal B{M(1),eM(Y) + fM(X)}) = (X2,eX — fY) and the irredundant reduced primary
decomposition a = (aX +bY) N (X%, eX — fY). [

Example 12.9 One naturally should expect that irredundance should be preserved by change of coor-
dinates; it does as shown by this example.

If we consider the irreducible m-primary ideal q := (X?2,Y?) we know that the generic initial ideal
has the shape gin(q) = (X3, XY,Y?2); thus we could fear to obtain a decomposition (X3, XY,Y?) =
(X3,Y) N (X,Y?); this is not what happens; in fact if we perform a generic change of coordinates

$: Q[X,Y] — QIX,Y], B(X) = aX +bY,B(Y) = cX +dY, ad —bc £ 0 # a,
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we obtain

a= ((aX 4 bY)?,2bdXY + bcX? + adX?, X?3)

A =Span, {M(1),aM(X) + BM(Y),yM(X) + éM(Y), ¢}, A:=ad — 7 #0

where £ := —(ad + be) M (XY) + 2bdM (X?) + 2acM (Y?); we thus obtain

(X = —(ad + be) M(Y) + 26dM (X),£Y := —(ad + be) M (X) + 2acM(Y), (XY = M(1)

with A = (ad + bc)? — 4abed = (ad — be)?, thus proving irreducibility. ]

13 Horner representation of Macaulay Bases

The description of the Noether equations necessarily requires a compact and less-consuming form, as
Example 9.6 shows.

If we denote, for each j,1 < j <mn,
M[j,n] :={M(r):7=X{"---X;"€T,a1 =---=aj_1=0#a;} CM,
then each element ¢ € Span, (M \ {Id}) can be uniquely expressed, (see [15]), as
=0 o0 ™) € Spany (M[], n]) V4,

we will also introduce the notation

n
(23 .— Zg(i)_
=j

Lemma 13.1 [15] Let £ = (V) 4 ... 4 ¢(") € Spany (M \ {Id}). The following hold:
LA (0) = N(EM) 4o 2\ (007D) 4 0@
N(ED) if j <,
2. (X()9 = { ) if j =1,
0 if j > i;
340 = (X (0)=) = N (¢=9).

We can thus formulate

Corollary 13.2 (Macaulay) Given a finite dimensional stable vector subspace A C Spany, (M) with
k-basis B 1= {l1,...,4s}, {1 = Id, let £ € Spany, (M) be such that the vector subspace generated by
BU{¢} is stable.

Then there are c;; € k,1 < j <7, 1 <1< s such that

(9 =3 cypy (677,

i=1

Corollary 13.3 If A C Spany, (M) is a finite dimensional stable vector subspace with dimy(A) = s,

then there are % elements cijn € k,1 <7 <n,1 <i < h < s such that, setting
51 = Id,
6,(5]) = Z?;l cijhpj(él(z])), 1<h<s1<j<n
=30 0, 1<h<s,

it holds
A = Spany {¢},,1 < h < s}.
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Example 13.4 In Fxample 9.6 we have
ly :=1d,
0 = {Z?:l Pj(fgf_zj), 1<h<n,
2= Pj(égfzj)a n < h.

14 Four pointers
14.1 Polynomial Evaluation at Macaulay Basis

We recall that, via recursive Horner representation, each polynomial f € P can be uniquely represented
as

F(X1,. 0 X0) = $90(f) + ZXjﬁj(f),

where $o(f) = f(0) € k, 9;(f) € k[X1,...,X;], for all j and each 9;(f) has recursively a similar
Horner representation.

Assume we are given, via recursive Horner representation, a polynomial f € P and the Macaulay
basis of a primary ideal at the origin {¢1, ..., ¢} through the elements ¢;;;, € k,1 < j<m,1<i<h<s
such that, for each h and j

h—1
. .
6 =3 cinp (€57, (9)
i=1

Proposition 14.1 [15] For each h,j,1 < j <n,1 < h < s there are polynomials fr; € k[X1,...,X]]
such that

Irj = Y2000 Yo cign i (f);

g&lj)(f) = fn;(0) = Z?;ll > o= Cijn($9;(fin))(0) or, equivalently,

6 (F) = 90(fns) = X2 X0 ciin$0(9;(fa)-

Corollary 14.2 [15] With the notation and assumptions above, it is possible to compute égbj)(f) for
each h,j,1 <j<n,1 <h<s, with complezity O(n?s?).

Proof. We need to compute each $o(fs;) where each element fj; is a Horner component of the
recursive Horner representation of f, each f3; is a combination of Horner components of f;,,¢ < h and

j
fij = $90(f)+ D Xi$u(f)
=1

for each j, because /1 = Id. [ |

14.2 Computing a Macaulay basis

Let < be an inf-limited ordering, a C P an m-primary ideal, V := 9(a), A := {¢1,...,¢s} a Macaulay
basis of V. Then, by Corollary 13.3, the k-basis

Ie={p;((F7),1<j<r1<i<s)
satisfies the following:

Theorem 14.3 For any £ € Span, (M) \ V' such that U := {\+al : A\ € V,a € k} is stable, { €
Spany (I7). ]
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We are now going to discuss the structure both of V' and of each stable extension
U={A+al:XeV,ack}

in view of Corollary 13.3 and Theorem 14.3; for that we will sistematically study the example introduced
in Ex. 9.6 in the case r = 3 (varying the ordering).

Example 14.4 Letting fi:= Xo — X2, fo:= X3 — X3, a:= (f1, f2), let us consider the refinement
< of vy by the reverse lexicographical ordering induced by X1 = Xo >= X3. Then we have
o the Grébner basis of a w.r.t. < is {X? — X9, X1 Xo — X3, X2 — X1 X3};
o { X2, X1 X5, X2} = T(a);
eN(a) = {1} U{X  Xi™' XoXi1 XE i € N} = T{M(a)}.
o Foralli € N, T(f3;_0) = X5 ', T(lgi—1) = X1 X571, T(ls;) = Xo X47H
o forall pe N, (X2, X1 X0, X3, X1 X571 Xo X471, X8) = T(a + m?);
o forallpe N, {X? — Xy, X1 Xo — X3, X3 — X, X3, X1 X571 Xo X471, X8}
is the Grobner basis of a +m? w.r.t. <;
eN(a) = {1} U{X 1 X4, Xo X271 XL i < p} = T{M(a)}.
In particular

51 = M(l),

62 = M(Xl),

l3 := M(X3) + M(X?),

ly = M(X3) + M(X1 Xz) + M(X}),

U5 = M(X1X5) + M(X3) + M(X?X5) + M(X7),

o := M(XoX3) + M(X7X3) + M(X1X3) + M(X}?X2) + M(X7),
by == M(X§)+M(X1X2X3)+M(X13X3) M(X3)+ M(X2X3)+

+M(X{Xo) + M(X9);
as a consequence we haUe
p1(1) := M(Xy),

p2(l1) == M(X2),
ps(&) = M(X3),
p1(f2) :M(Xf)
p1(ls) == M(X1X2) + M(X?),
pa(ts?) = M(X3),
,01(64) :M(Xng)—I—M(X XQ)"’M(X%),
p2(ls5?) = M (X, X3),
ps(ls) = M(X3),
p1(¢s5) ZM(X1X3)+M(X1X2)+M(X3X2)+M(X5)
pa(ls)) == M(X3),
pr(le) i= M(X1XaXs) + M(X3X5) + M(X2X2) + M(X4X5) + M(X9),
pa(ls®)) := M(X3X3),
pi(lr) == M(X1X3) + M(X?X2X3) + M(X{X3) + M(X1X3) + M (X7 X3)+
FM(X3X,) + M(XT),

p2(6:5Y) = M(X2X3) + M(X3),
pa(tr¥) = M(X3).

This information (and others which will be deduced during the following discussion) can be subma-
rized in the following tables:
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‘ ‘ N ‘ A1) A(2) A(3) a1(N) oo (N) o3(N\)
1 o M(1) 0 0 0
X1 L2 p1(£1) L1 0 0
x?2 r1(£2) L2 0 0
X p2(£1) 0 £y 0
43 p1(£2) +  p2(ly) 12 21 0
X1X2 p1(£3) 23 2 0
x2 p2(z(2)) 0 eg2> 0
X3 p3(£1) 0 0 £
£y P1(£3) +  p3(l1) £3 2 £
X1X3 p1(£4) L4 eél’ L2
5 P1(£4) + p2(5§2)) oy £3 2
X2X3 02(5513)) 0 2513) 252)
L6 r1(L5) + 92(54(13)) L5 Ly L3
x32 PG 0 0 o3
Lo p1(€g) + ﬂz(ﬂé2)) + ﬂa(ﬁ(3)> Lg L5 L4
X1X§ p1(€3i41) 3541 géi) 451)71
2342 P1(€3i41) + 92(‘5;(;'22)) 23541 L34 2351
2y ) oAy
£3i+3 p1(€3742) + 92(5(14_%) £3i42 £3i4+1 £34
xgtt "3(5(12¢-1> 0 0 eéﬂ-l
£3i+4 p1(€374-3) + p2 (e 7+;) + 03("311_1) £3i+3 £3i4+2 £3i4+1
A a1 (N) a2(X) o3(N) A(f1)(0) A(f2)(0) T(X)
2 = M(D) 0 0 0 0 0 1
25 = p1(e1) £ 0 0 0 0 X1
o = pa(ty) 0 o 0 1 0 Xo
o) = p3(ty) 0 0 o 0 1 X5
oM ) . 0 0 -1 0 x2
oD = p1(e3) 5 5 0 0 1 X1 X
o2 = o322y | 0 ;522 0 0 x32
e = Pt oy 3D 5 0 0 X1 X3
géQ) = pas(EDy | 0 04(23) 45(22) 0 0 X X3
&3 = p3sE¥) | 0 0 2, (23) 0 0 x32
oM = pi(ey) 5 ne oM 0 0 X2Xg
D e |0 ey o ’ o | X
oM = p1lte) g o5(D oV 0 0 X3Xg =
(éz) - po(£g(22)) 0 16(22) 05(22) 0 0 X%XS
oM = 1) o7 gD o1 0 0 X1 x2
(E(f) - po(£7(22)) 0 0,(22) 16(22) 0 0 X2X§
Eg%) = p3;(Z3)y | 0 0 07(23) 0 0 x3
6y = mi | 6D, 4D 0 0 X1X4
giha = eaUgE) | o “2h ae 0 0| Xax}
féﬂr‘L = ri1(€3i43) £3i43 Z(Brg thll 4 4 X1 XX}
s = ealgE | o G 1) 0 0 x3x}
s = e taiva g A 0 0 xpxptt
e = ealgZ | o S 0 0 x4t
K = esgED | o 0 22 0 0 X+

Definition 14.5 The corner set of V is the set

C(V):={reT:M(r) e N(V),0,(M(7)) € T{V} ¥V i}

={TeT(PV)):
= G(B(V))

{:=M +ZC‘”

weT

Any element

cl) T¥) e C(V),
c2) o;(f) €V for each j,

all its predecessors w € N(PB(V))}

) € Span, (M) \ V' such that
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3) c, #F0=w¢ T{V}
is called a continuation of V' at 7 := T(¥).
An elementary continuation of V at 7 € C(V) is a continuation

0= M(T(0)+ > coM(w)

which, moreover, satisfies
cd)  if M(w) € C(V),c, #0, then there is no continuation of V at w. ]

Lemma 14.6 [15] The following conditions are equivalent:
1. U is stable and AU {l} is its Macaulay basis,
2. 7:=T() € C(V) and ¢ is a continuation of V at T.

Example 14.7 For instance, for p = 3, we have
V :=M(az) = Spany ({1, 4o, 3), and C(V):={X7 X1 Xo, X3, X3}.

The elementary continuation of V

at X2 is X :=api(l2),a € k\ {0},

at X1X5 is A :=ap1(¢3),a € k\ {0},

at X3 is X :=ap3(€1),a € k\ {0},

and the continuation of V.

at X7 is X\ :=ap1(2),a € k\ {0},

at X1Xo is A :=ap1(€3) +bp1(La),a,b € k,a # 0,

at Xz is X :=aps(l1) + bp1(ls) + cp1(l2),a,b,c € k,a # 0.

On the other side there is no continuation at X2 as for each X : T(\) = X3 we necessarily have

o2(N) = als® 4+ bly + cly,a,b,c € k,a#0

so that oo(\) ¢ V.

The relation between continuations and elementary ones is clarified (see [15]) by the following list
of results

Lemma 14.8 Let ¢ and ¢" be two different continuations of V at 7. Then £ — {" is a continuation
of V at some w > 1, w € C(V). |

Corollary 14.9 If continuations of V at t exist, then there is exactly a single elementary continuation
¢ of V att, which we will denote Cly ;. [ |

Theorem 14.10 The following conditions are equivalent:
1.U={ +al: e V,a €k} is stable and AU {{} is its Macaulay basis.
2. 3tg < <ty, M(t;) € C(V) and ¢; € K\ {0},1 < i <w, such that

{= CV,to + Z ciCV,tlw

=1
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Fig. 1 Macaulay basis from any basis

(A, M) := MacaulayBasis(F, <)
where
= {f17"'7ft}cp7
a:= (F) an m-primary ideal,
< an inf-limited ordering,
A= {ly,..., L} the Macaulay basis of M(a)

M= {(bijh)) € kSQ7 1 < h < n} the set of the square matrices (bi?)) defined by o (€:) =3

i:=1, ¢ :=1d, A:={Id} V := Span, (A), C:=C :=0,
B :IGI: {Xj,l S] S’f’},
For 1 < j,h < n compute o, (M(Xj;)).
Repeat
t:=max<(G\C),B:=B\ {t}
Compute (if 1t exists) Cu,¢
If Cy,: exists then
If exist ¢, such that ev(Cyy+) = Zrec ¢ ev(Cy,-) then
i:=1+1,4;:=Cuy — ZTEC c-Cu,r
For1<h<n, 1<j<ido
Compute bg?) von(l) =320, bl(-;l)éj;
B :=BU{T(p;(t"")),1 < j <r}

G be the minimal basis of the monomial ideal generated by BU C
For 1 < j, h < n compute o,p;(£%7)
else
C:=CU{Cuy+} C:=CuU{t}
until G\ C:=0

Lemma 14.11 Let M(t) € C(V) NM]k,n] and let £, be such that

pr(T (L)) = M(1).

For k <j <nlet J(j) denote the set of indices i such that
a) Tp;(¢")) ¢ T{V},
b) T(py (1)) > M(2).

c) if T(pj(ZEj))) € C(V) then there is no elementary continuation of V' at T(p, ((Ej))).

The following conditions are equivalent:
1. the elementary continuation Cv 4 exists;
2. there are values aj; € k, such that, for each

Tup () + 37 3" ajioup; () e V.
j=1lieJ(j)
Finally, if the above conditions are satisfied,

Cve = pu(£{™) + Z Z ajip; ().

J=1ieJ(j)

We can now present, in Figure 1, the algorithm proposed in [15] which uses the structure of the
continuations of m-primary ideals in order to compute the Macaulay basis (w.r.t. an inf-limited ordering
<) of any m-primary ideal given by means of a set of generators F := {f1,..., fr} C m; as it essentially

consists of linear algebra reduction of sn vectors in k*" Tt its complexity is O(s3n?).
The auxiliary tools needed by the algorithm are the following:

s oMy,

=14

e
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— The structure described in Corollary 13.3 and Theorem 14.3 implies that one can easily iteratively

compute, for each 1 < j,h <n,1<i<s, op(¢;) and gh(pj(gl(Zj))) _ PjUh(ﬁl(Zj)), e
n il , n i—1 ‘
=303 iy (639) = oull) = 303 cugionpy (¢77),
j=1:=1 o
and
— 0 ifh<j
, y : '
O'h(éi) :ZCLEL :>O'h(pj(£§2']))) — 65_])1) y 1fh:J
- S e (6FV) it h> g

For instance, in the Ex. 14.7 we have

01(07) = a1p1(ls) + o1p2(67) + 01ps(€8)) = b6 +0 + 0 = L,

7o (tr) = 02p1(€s) + o2pa(057)) + 0apa (65 = £ + 62 + 0 = 5,

In fact the complete table is obtained by means of this recursive evaluation.
— Since we can compute the values of
Uh(pj(éz(-zj))), for each 1 < j,h < n,1 < i < s, to determine all the continuations of V' at each
element ¢ in the corner set of V requires nothing more than efficient book-keeping.
For instance in the cases we discussed in Ex. 14.7 we have
at X7 = X\ := p1({2) is a contination since o,,(\) € V, for each h;
at X1 Xo = X\ :=p1(¢3) is a contination for the same reason;
at X2 = X := py(£3?) is not a continuation since, for each a,b € k

o2(N) = a2 (A + ap1(ba) + bp1 (€3)) = 15D ¢ V;

at X5 = X\ := p3(¢1) is a contination since o, (\) € V for each h;
— Finally, if for each ¢ € Span, (M) we denote

ev(€) = (L(fr), - U f2) € K,

and if {¢1, s, ..., s} is the ordered Macaulay basis of a (wrt <), which we aim to compute, setting
for any ¢ < s

(] Vz = {61,[2, ce ,éi}

o C; := {7 € C(V;) : there is an elementary continuation of V; at 7},

we know that, for all 4, 3 ¢; € k such that ¢; 1 = ZTGCi c:Cy, -

Moreover, as

€i+1 S E)J?(a) — ev(&-ﬂ) = Z Cr eV(CVi’T) =0,
T€C;

l;+1 can be obtained by solving this linear equation, as each ev(Cly; r) can be computed by the
scheme described in Section 14.1.

We end remarking that, given any finite set of polynomials F := {f1,..., f;} and the ideal a C P
generated by F', in order to obtain the Macaulay basis (w.r.t. <) of the m-primary ideal a+m” for any
p € N, we have to enlarge F' by adding all monomials of degree p and to apply the algorithm presented
in Figure 1, thus producing, “at least in imagination” (as Macaulay put it), the infinite Macaulay basis
of the m-closed ideal N,a 4+ m”.
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Example 14.12 We may verify the structure of Example 14.4 mainly checking its presentation in the
included table and deducing that the algorithm performs the following computations:
t:= X1X§

1
Eéil—Q = p1(£zi+1),
1 1 1
02(5;‘12) = JQpl(eéiz‘rl) = géi)v
2 >2
Eéil—Q = 02(5:(),7 ))a

o2(l3it2) = {3,
1 2 1 >2 1 >2
03(65(%2&-2 + géilz) = 03P1(£§,il1) +ospa(0577) = 5] + 0577 = s,

>1 >2
l3iyo = p1 (6;(31_4,_%) + P2(€§,i— ));

t:= XQX%
6505 = p1(Lsisz),
1 1 1
02@%1‘13) = 0201 (Egzlz) = féilp
2 >2
e:(%)+3 = P2(€:(3?+i)a
o2(l3i13) = l3i41,
o355 + 150 ) = aapr (65 0) + oapa(6570)) = €87 + €37 = b3,
U343 = p1 (ggil;) + p2 (ﬁgﬂ)v
t:= X;Jrl

féli)H = p1(£3i43),

02 (f;)ﬂ) = 02/)1(@%23) = féﬁlg,

2 >2
Egizﬂl = P2 (€§,;+%),

2(ziva) = l3i42,

1 2 1 >2 1 2
03 (Z:(aizs-zl + ﬂi(%izi-zl) = 0301 (Z:(ali-s) + o3p2 (@1%) = Ei(iizk—l + E;(gilla

Eg?;l-z; = pP3 (fgll),

03(l3i14) = L3i41,
l3ita = m(ﬁéil%) +p2 (féifi) + :03(55521)-

14.3 Cerlienco-Mureddu Correspondence

Each zero-dimensional ideal | C P can be considered as given if we know the set Z(I) of its roots and,
for each a € Z(I), the Macaulay basis of the corresponding primary component of I.
For each a € Z(l), a := (a1, ..., an), let us therefore denote:

— A : P+ P the translation A;(X;) = X; + a4, for all ¢,

— my = (Xl_ala"'vXn_an)v

— (a the m,-primary component of |,

A, :=M(Xa(qa)) C Spany (M),

— Lya, for each v € N (A;(qa)), the Macaulay equation £, := £(v) so that
— {lya: v € Nc(Aa(ga))} is the Macaulay basis of A,.
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Setting s := . z(j) deg(da) and
L:={A1,..., A} = {luara : v € Nc(Aa(qa)),2 € Z(1)},

we know that Spany (L) = £(I) and | = PB(Spany (L)); moreover (Corollary 12.2) we can assume L to
be ordered so that, for each o,

l, = B(Span, {{A1,..., A })

is an ideal.

We also set
Xi={x1,...,xs} :=={(a,v) : v € Nc(qa),a € Z}

enumerated so that x; = (aj,v;) <= \j = fy;a;As; and we set, for each j,1 < j < s, M()\;) :=
M (vj)Aa; where A\j = £y,a, s, -
Under the following equivalent assumptions:

— A= M(\) for each A € L,
— Lya = M(v), for each A = .\, €L,
— each A;(qa) is a monomial ideal,

Cerlienco-Mureddu® Algorithm [5,6] associated to each such sets L and X(A), an order ideal N := N(IL)
and a bijection @ := &(L) : L — N, which satisfies

N (L) = N(B(Spany(L)))

for the lexicographical ordering induced by X; < --+ < X,,.

Cerlienco-Mureddu result has been generalized to each zero-dimensional ideal in [18] where it is
proved:

For each m < n, denote

— 7, the projection
. n m i .
71-m-k =k aﬂ-m(x17"'7xn)_(x17"'7$m)7

— for each Noetherian equation

7=X{"... X% denote
T (U(7)) 1= (Ot xean (LT (X7, X000 0,00,0) € KX X001
— finally for each A = £,,;\; set
Tm(A) = T (loala) = T (loa) Ar,, (a)-
Let
L:i={A1,..., A}, Xi={xq,...,x:} CEk" x T,

n
xi = (a5,vi),a; = (@i1s .- Qin), U = ]___[Xla”
=1

be the Macaulay representation of a zero-dimensional ideal | C P.

By induction on s = #(X), consider L' := {\1,...,A\s_1} and the corresponding order ideal N’ :=
N(L) and bijection ¢ := P(L).

Denote, for each v,1 < v < n, and each § € N,

Y5 := Spany {m,(A\) : A €L, 3w € TNk[X1,..., X, ] : & (\) =wX] 4}

With this notation, let us set

8 Note that in [7] another nice algorithm is given for solving the problem, apparently adding a new point to
the given set of points one has to repeat this algorithm while Cerlienco-Mureddu’s one works automatically
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m :=max (j : m;(As) € Spany (m;(L")),

d:=min{0 : 7 (Xs) & Yims},

W= {mn(\) : &'(\) = wXq,0 €€ TNk[X1,. .., X)) U {mn(Xe)}
w = @(W)(ﬂ'm(As))a

ts := WXgH—l

where N(W) and &(W) are the result of the application of the present algorithm to W, which can be
inductively applied since #(W) < s — 1. We then define

@I(AZ) 1< s

ts 1= 8.

N :=N'U{ts} and &(\;) := {

Proposition 14.13 It holds N := N(I). ]

14.4 The Axis-of-Evil Theorem

A series of three papers [16-18] merged Lazard Theorem [11], Moéller’s Algorithm [4,1] Gianni-Kalkbrener
Theorem [8,10] and Cerlienco-Mureddu Correspondence giving a strong description of the structure
of the Grobner basis and of the dual basis of a zero-dimensional ideal.

We quote here just

Theorem 14.14 Let

X:={x1,...,xs} C k™ be a finite set of points

| C P the radical ideal whose roots are the elements in X

N := N_(I) the result of Cerlienco-Mureddu Correspondence
Go():={t1,...,t.}, the minimal basis of T(l) :==T \ N,
t = Xf“ - X4 for each i

Then there is a combinatorial algorithm which for each i,m,6,1 <i<r, 1<m<v, 1 <6 <dpn;
returns a partition X = Ups:Xmsi such that denoting, for each i,m,d,

Ninsi := N(Xpnsi) the result of Cerlienco—Mureddu Correspondence
Ymsi 1= m—"_ZwGNmM (Ymr,w)w the unique polynomial (computable by interpolation) s.t. Ymei(X) =
0 for all x € Xnsi

and

Ymi = H5 Yméi fOT’ each m77;

P; :=~,; for each i

L, = H;:ll vji € k[X1,...,Xy_1] for each i
H; := L1 P; for each i

it holds:
1. {Hy,...,H,} is a (not-reduced) minimal Gréobner basis of |
2. let j, be the value such that t;, < X, 41 <tj, 41; then {Htl,...,Hth} 1s a minimal Grobner basis

of INK[X1,...,X,];

3. for each § € N, let j(vd) be the value such that tj,s) < X011 < tjws)+1; then {L1,...,L;,;} is a
Grébner basis of 3(Yys).

4. foreachi,2<i<r, P,e(H;,j<i):L.
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