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Abstract

This paper is devoted to characterize the shape of polynomial equa-
tion systems, viewed as polynomial ideal, with finitely many solutions
(counting their multiplicity) and the dual structure of the quotient
algebra. Our characterization links both the techniques for solving
polynomial systems (Gianni–Kalkbrener Theorem) and the inverse in-
terpolation problem (Möller Algorithm).

1 Introduction

In 1927 Macaulay [12] gave a construction which, to each monomial ideal

J ⊂ k[X1, . . . ,Xn] =: P,

associates a set X of distinct points in kn such that, using modern lingo, the
monomial ideal associated to each degree-compatible Gröbner basis of the
radical ideal

I := I(X) := {f ∈ k[X1, . . . ,Xn] : f(a1, . . . , an) = 0, for each (a1, . . . , qan) ∈ X}

is the given monomial ideal J, i.e. J = T(I); moreover Macaulay explicitly
stated a direct correspondence between the points of X and the monomials
τ /∈ J forming the “Gröbner souséscalier” N(I).
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In 1981 Möller [20] introduced Duality in Computer Algebra proposing
an algorithm – essentially a multivariate version of Newton Interpolation –
which, for each finite set of (distinct) points X ⊂ kn, computes the Gröbner
basis and the “Gröbner souséscalier” of I := I(X).
Möller’s Algorithm was later refined and generalized [7, 15] to any finite set
of functional L ⊂ P∗ := Homk(P, k) such that

P(L) := {f ∈ P : λ(f) = 0, for each λ ∈ L}

is an ideal, computing the Gröbner basis and souséscalier of N(P(L)).
In 1985 Lazard [11] gave a characterization of the Gröbner basis of any

ideal I ⊂ k[X1,X2] which is also a refinement of Macaulay’s result.
Lazard’s result was then subsumed by Gianni-Kalkbrener Theorem [8, 9]
describing the lexicographical reduced Gröbner basis of any zero-dimensional
ideal in P.

In 1990 Cerlienco–Mureddu [5] gave an algorithm which, for each finite
set of distinct points X ⊂ kn , computes the Gröbner souséscalier N(I) of I
:= I(X) and a direct correspondence between X and N(I).

Recently, we [17] merged Lazard’s result, Cerlienco–Mureddu Algorithm
and Möller Algorithm in order to give an enhanced Lazard Structural The-
orem for a zero-dimensional radical ideal.

Finding out later that Cerlienco and Mureddu [5] had extended (in 1995)
their results to cover any zero-dimensional ideal whose primary components
are translations of monomial primary ideals at the origin (CeMu-ideal), we
[18] generalized the Enhanced Lazard Structural Theorem to CeMu-ideals,
strongly improving its factorization results.

The aim of this paper is to extend to all zero-dimensional ideals both Cer-
lienco–Mureddu Algorithm and the Enhanced Lazard Structural Theorem;
as we will see, the factorization results don’t hold in the general setting.

We are therefore able to describe the structure of the lexicographical
Gröbner basis of any zero dimensional ideal I ⊂ k[X1, . . . ,Xn] in terms of
its Macaulay Representation (i.e. the set of the inverse systems at each root
of I).

In particular, denoting < the lexicographical ordering induced by X1 <
. . . Xn an easy combinatorial algorithm returns the “Gröbner souséscalier”
N(I) of I, thus allowing to deduce the minimal basis

{t1, . . . , tr}, t1 < t2 < . . . < tr

of its associated monomial ideal T(I) and (by interpolation) the unique re-
duced lexicographical Gröbner basis

G := {f1, . . . , fr},T(fi) = ti for each i.
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Moreover, for a CeMu-ideal, a variation of Cerlienco–Mureddu algorithm
allows to deduce a canonical “linear” factorization of each element of such
Gröbner basis in the following sense: for each ti := Xd1

1 · · ·Xdn
n , 1 ≤ i ≤ r,

a combinatorial algorithm and interpolation allow to deduce polynomials

γmδi = Xm − gmδi(X1, . . . ,Xm−1)

for each i,m, δ, 1 ≤ i ≤ r, 1 ≤ m ≤ n, 1 ≤ δ ≤ dm satisfying

fi =
∏

m

∏

δ

γmδi (mod (f1, . . . , fi−1) for each i.

At least in the radical ideal case, this combinatorial description subsumes
Giani–Kalkbrener Theorem as a corollary and gives a combinatorial justifi-
cation of their algorithm.

2 Notation

Let P := k[X1, . . . ,Xn], m = (X1, . . . ,Xn) the maximal ideal at the origin,
T := {Xa1

1 · · ·Xan
n : (a1, . . . , an) ∈ Nn}, < the lexicographical ordering on

T induced by X1 < · · · < Xn.
The algebraic closure of k is denoted k and for each zero-dimensional ideal
I ⊂ P, Z(I) := {a ∈ kn : f(a) = 0,∀f ∈ I} ⊂ kn; for any α = (b1, . . . , bd) ∈
kd, Φα is the projection Φα : P 7→ k[Xd+1, . . . ,Xn] defined by

Φα(f) = f(b1, . . . , bd,Xd+1, . . . ,Xn]∀f ∈ k[X1, . . . ,Xn].

Each element f ∈ P can be uniquely expressed either as

f =

deg(f)
∑

i=0

giX
i
n ∈ k[X1, . . . ,Xn−1][Xn],

gi ∈ k[X1, . . . ,Xn−1], gdeg(f) 6= 0, or as a linear combination

f =
∑

t∈T

c(f, t)t =
s
∑

i=1

c(f, ti)ti,

c(f, ti) 6= 0, ti ∈ T , t1 > · · · > ts of terms t ∈ T with coefficients c(f, t) in k;
and we will denote Lp(f) := gdeg(f) the leading polynomial of f , T(f) := t1
its maximal term, lc(f) := c(f, t1) its leading cofficient.
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For each subset G ⊂ P, T{G} := {T(g) : g ∈ G} and T(G) := {τT(g) : τ ∈
T , g ∈ G} is the monomial ideal it generates. For each ideal I ⊂ P, G(I) is
the minimal basis of the monomial ideal T(I) = T{I}, N(I) := T \T(I) and

B(I) := {Xht : 1 ≤ h ≤ n, t ∈ N(I)} \N(I)

= T(I) ∩ ({1} ∪ {Xht : 1 ≤ h ≤ n, t ∈ N(I)}, )

we set k[N(I)] := Spank(N(I)).
For each f ∈ P, there is [2, 3, 4] a unique canonical form

g := Can(f, I) =
∑

t∈N(I)

γ(f, t,<)t ∈ k[N(I)]

such that f − g ∈ I. A Gröbner basis [2, 3] of I is any set G ⊂ I such that
T(G) = T{I}, i.e. T{G} generates the monomial ideal T(I) = T{I}; the
reduced Gröbner basis [2, 3] of I is the set G(I) := {τ −Can(τ, I) : τ ∈ G(I)};
the border basis [15] of I is the set B(I) := {τ − Can(τ, I) : τ ∈ B(I)}.

Two sets L := {ℓ1, . . . , ℓs} ⊂ P∗ := Homk(P, k), and q = {q1, . . . , qs} ⊂
P are triangular if ℓi(qj) = 0, for each i < j.
Denoting, for each k-vector subspace L ⊂ P∗,

P(L) := {g ∈ P : ℓ(g) = 0, for each ℓ ∈ L}

and, for each k-vector subspace P ⊂ P,

L(P ) := {ℓ ∈ P∗ : ℓ(g) = 0, for each g ∈ P},

we recall [13, 14, 16, 1, 21] that the mutually inverse maps L(·) and P(·)
give a biunivocal, inclusion reversing, correspondence between the set of the
zero-dimensional ideals P ⊂ P and the set of ’certain’ finite k-dimensional
P-modules L ⊂ P∗.

3 Macaulay framework

For each τ ∈ T , letting

M(τ) := c(f, τ), for each f =
∑

t∈T

c(f, t)t ∈ P

one has a morphism M(τ) : P → k; letting M := {M(τ) : τ ∈ T },
Spank(M) ⊂ P∗ is the set of the Noetherian equations [13, 14, 21] of P.
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For each element

ℓ :=
∑

i

ciM(τi) ∈ Spank(M) : ci ∈ k \ {0}, τi ∈ T , τ1 < τ2 < · · · < τi < · · ·

T<(ℓ) := τ1 is the leading term of ℓ, ord(ℓ) := mini(deg(τi)) is the order (or
under-degree) of ℓ, deg(ℓ) := maxi(deg(τi)) is the degree of ℓ.
For a subset Λ ⊂ Spank(M), we set

T<{Λ} := {T<(ℓ), ℓ ∈ Λ}, N<(Λ) := T \T<{Λ}.

For each j = 1, . . . , n, σj := σXj
: Spank(M) 7→ Spank(M) is the linear

map such that

σXj
(M(τ)) =

{

M(ω) if τ = Xjω
0 if Xj 6| τ

∀τ ∈ T ;

since, for each i, j, σXj
σXi

= σXi
σXj

, a linear map σt : Spank(M) 7→
Spank(M) is inductively defined for each t ∈ M by σXjt := σXj

σt so that
for each τ, ω ∈ T we have

στ (M(ω)) =

{

M(υ) if ω = τυ
0 if τ 6| ω;

for each f :=
∑

τ∈T c(f, τ)τ ∈ P σf : Spank(M) 7→ Spank(M) is defined as

σf (ℓ) :=
∑

τ∈T

c(f, τ)στ (ℓ) for each ℓ ∈ Spank(M).

A vector subspace Λ ⊂ Spank(M) is called stable if for each ℓ ∈ Λ and each
f ∈ P, σf (ℓ) ∈ Λ.

Proposition 3.1 For any f, g ∈ P and ω ∈ T it holds

M(ω)(fg) =
∑

υ∈T

υτ=ω

M(υ)(f)M(τ)(g)

Proof: For

f =
∑

υ∈T c(f, υ)υ =
∑

υ∈T M(υ)(f)υ,
g =

∑

τ∈T c(g, τ)τ =
∑

τ∈T M(τ)(g)τ,
fg =

∑

ω∈T c(fg, ω)ω =
∑

ω∈T M(ω)(fg)ω
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and, for each ω ∈ T , we have

M(ω)(fg) = c(fg, ω) =
∑

υ∈T

υτ=ω

c(f, υ)c(g, τ)

=
∑

υ∈T

υτ=ω

M(υ)(f)M(τ)(g).⊓⊔

Denoting, for each k-vector subspace Λ ⊂ SpanK(M),

I(Λ) := {f ∈ P : ℓ(f) = 0, for each ℓ ∈ Λ}

and, for each k-vector subspace P ⊂ P,

M(P ) := {ℓ ∈ Spank(M) : ℓ(f) = 0, for each f ∈ P},

we recall [13, 14, 16, 21] that the mutually inverse maps I(·) and M(·)
give a biunivocal, inclusion reversing, correspondence between the set of
the m-closed ideals I ⊂ P and the set of the stable k-vector subspaces
Λ ⊂ SpanK(M), m-primary ideals being dual to finite-dimensional stable
spaces and we remark that, for each m-closed ideal I ⊂ P, M(I) consists of
all the Noetherian equations of I.

A basis {ℓ1, ℓ2, . . . , ℓi, . . .} of a stable vector subspace Λ ⊂ Spank(M) is
called the Macaulay basis [14, 21] of Λ w.r.t. < if

• T<{Λ} := {T<(ℓi)} ⊂ T is an order ideal1;

• ℓi = M(T<(ℓi))+
∑

v∈N<(Λ) ξ(v,T<(ℓi))M(v), for suitable ξ(v,T<(ℓi)) ∈
k and for each i.

If we set ℓ(τ) := M(τ) +
∑

t∈T(I) γ(t, τ,N(I))M(t) ∈ Spank(M), for each
m-closed ideal I ⊂ P and each τ ∈ N(I), then I can be characterized [13, 14,
16, 21] by the unique Macaulay basis {ℓ(τ) : τ ∈ N(I)} of M(I).

Therefore, each zero-dimensional ideal I ⊂ P can be considered as given
if we know the set Z := Z(I) and, for each a ∈ Z, the Macaulay basis of the
corresponding primary component of I.

For each a ∈ Z := Z(I), a := (a1, . . . , an), denote:

• λa : P 7→ P the translation λa(Xi) = Xi + ai, for each i,

• ma = (X1 − a1, . . . ,Xn − an),

1A subset N ⊂ T is called an order ideal if it satisfies st ∈ N =⇒ t ∈ N, for each

s, t ∈ T .
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• qa the ma-primary component of I,

• Λa := M(λa(qa)) ⊂ SpanK(M),

• ℓυa, ∀ υ ∈ N<(λa(qa)), the Macaulay equation ℓυa := ℓ(υ) so that

• {ℓυa : υ ∈ N<(λa(qa))} is the Macaulay basis of Λa.

Setting s :=
∑

a∈Z deg(qa) and

L := {λ1, . . . , λs} := {ℓυaλa : υ ∈ N<(λa(qa)), a ∈ Z},

we know that Spank(L) = L(I) and I = P(Spank(L)); moreover, wlog we can
assume L to be ordered so that, for each σ,

Iσ = P(Spank{λ1, . . . , λσ})

is an ideal [13, 14, 19, 21].
We also set

X := {x1, . . . , xs} := {(a, υ) : υ ∈ N<(qa), a ∈ Z}

enumerated so that xj = (a, υ) ⇐⇒ λj = ℓυaλa and ∀ j, 1 ≤ j ≤ s, we set
M(λj) := M(υ)λa where λj = ℓυaλa.

Under the following equivalent assumptions:

• λ = M(λ) for each λ ∈ L,

• ℓυa = M(υ), for each λ = ℓυaλa ∈ L,

• each λa(qa) is a monomial ideal,

Cerlienco–Mureddu Algorithm [5, 6] associates to each couple of sets L and
X as above, an order ideal N := N(L) and a bijection Φ := Φ(L) : L 7→ N,
which, as we will proof later, satisfies

N<(L) = N(P(Spank(L)))

for the lexicographical ordering induced by X1 < · · · < Xn.

Definition 3.2 The ordered sets L(I) := L and X(I) := X are called, re-
spectively, a Macaulay representation and a CeMu-skeleton of I := P(L);
each λ = ℓυaλa ∈ L is called a CeMu-functional and each x = (a, υ) ∈ X a
CeMu-card.

Moreover, if ∀λ = ℓυaλa ∈ L, λ = M(λ) = M(υ)λa, then I is called a
CeMu-ideal, X its CeMu-scheme, and each x = (a, υ) ∈ X a CeMu-condition.

⊓⊔
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We need also to consider, for each m < n, the sets

T [1,m] := T ∩ k[X1, . . . ,Xm]

= {Xa1
1 · · ·Xam

m : (a1, . . . , am) ∈ Nm},

M[1,m] := {M(τ) : τ ∈ T [1,m]}

and the projection

πm : kn 7→ km, πm(x1, . . . , xn) = (x1, . . . , xm),

which we freely use to denote also the projections

πm : T ≃ Nn 7→ Nm ≃ T [1,m], πm(Xα1

1 · · ·Xαn
n ) = Xα1

1 · · ·Xαm
m ,

πm : M 7→ M[1,m], πm(M(τ)) = M(πm(τ)),

and πm : kn × T 7→ km × T [1,m], πm(a, τ) = (πm(a), πm(τ)).
Recalling Macaulay’s notation [13, 14] for Noether equations as members

of k[X−1
1 , . . . ,X−1

n ], we remark that for each Noetherian equation

ℓ(τ) := M(τ) +
∑

t∈T(I)

γ(t, τ,N(I))M(t) = τ−1 +
∑

t∈T(I)

γ(t, τ,N(I))t−1,

τ = Xd1
1 · · ·Xdn

n , there are unique polynomials

fi(X
−1
1 , · · · ,X−1

i ) ∈ k[X−1
1 , . . . ,X−1

i ]

so that

ℓ(τ) =

(

(

· · ·
(

(1 +X−1
1 f1(X

−1
1 ))X−d1

1 +X−1
2 f2(X

−1
1 ,X−1

2 )
)

X−d2
2 · · ·

+ fn−1(X
−1
1 , · · · ,X−1

n−1)

)

X
−dn−1

n−1 +X−1
n fn(X

−1
1 , · · · ,X−1

n )

)

X−dn
n

and we set

πm(ℓ(τ)) :=

(

· · · (1 +X−1
1 f1(X

−1
1 ))X−d1

1 + · · ·

+ fm−1(X
−1
1 , · · · ,X−1

m−1)

)

X
−dm−1

m−1 +X−1
m fm(X−1

1 , · · · ,X−1
m )

= (σ
X

dm
m ···X

dn
n
(ℓ(τ)))(X−1

1 , . . . ,X−1
m , 0, . . . , 0)

∈ k[X−1
1 , . . . ,X−1

m ].

Finally, for a CeMu-functional λ = ℓυaλa we set

πm(λ) := πm(ℓυaλa) := πm(ℓυa)λπm(a).
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4 Lazard, Gianni–Kalkbrener and Cerlienco–Mureddu

results

Theorem 4.1 (Lazard Structural Theorem) [11]
Let P := k[X1,X2],, < the lexicographical ordering induced by X1 < X2, I ⊂
P an ideal and {f0, f1, . . . , fk} a Gröbner basis of I, ordered so that

T(f0) < T(f1) < · · · < T(fk).

Then

f0 = PG1 · · ·Gk+1,

fj = PHjGj+1 · · ·Gk+1, 1 ≤ j < k,

fk = PHkGk+1,

where

• P is the primitive part of f0 ∈ k[X1][X2];

• Gi ∈ k[X1], 1 ≤ i ≤ k + 1;

• Hi ∈ k[X1][X2] is a monic polynomial of degree d(i), for each i;

• d(1) < d(2) < · · · < d(k);

• Hi+1 ∈ (G1 · · ·Gi,H1G2 · · ·Gi, . . . ,HjGj+1 · · ·Gi, . . . ,Hi−1Gi,Hi),∀i.
⊓⊔

Theorem 4.2 (Gianni—Kalkbrener) [8, 9] Let I ⊂ P be an ideal, < the
lexicographical ordering induced by X1 < · · · < Xn and G := {g1, . . . , gs} a
Gröbner basis of I w.r.t. <, enumerated in such a way that

T(g1) < T(g2) < . . . < T(gs−1) < T(gs).

For each d, 1 ≤ d ≤ n, δ ∈ N, set

Gd := G ∩ k[X1, . . . ,Xd],

Gdδ := {g ∈ G, g ∈ k[X1, . . . ,Xd],degi(g) ≤ δ}

and remark that

G11 ⊆ G12 ⊆ . . . ⊆ G1 ⊆ . . . ⊆ Gd−1 ⊆ . . .

⊆ Gdδ ⊆ Gdδ+1 ⊆ . . . ⊆ Gd ⊆ . . . ,
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each Gdδ is a section of both Gdδ+1 and Gd.
Each Gd and Lpdδ(G) := {Lp(g), g ∈ Gdδ} are Gröbner bases w.r.t. < of,

respectively, Id := I ∩ k[X1, . . . ,Xd] and Lpdδ(I) := {Lp(g), g ∈ Id,degi(g) ≤
δ}.

Moreover, for each d, 1 ≤ d ≤ n and each α := (b1, . . . , bd) ∈ Z(Id),
denoting σ the minimal value such that Φα(Lp(gσ)) 6= 0 and j, δ the value
such that

gσ = Lp(gσ)X
δ+1
j + · · · ∈ k[X1, . . . ,Xj ] \ k[X1, . . . ,Xj−1]

it holds
j = d+ 1,
for each g ∈ Gd,Φα(g) = 0,
for each g ∈ Gd+1δ ,Φα(g) = 0,
Φα(gσ) = gcd (Φα(g) : g ∈ Gd+1) ∈ k[Xd+1],
for each b ∈ k,

(b1, . . . , bd, b) ∈ Z(Id+1) ⇐⇒ Φα(gσ)(b) = 0.

⊓⊔

Algorithm 4.3 (Cerlienco–Mureddu) [5, 6] Given a Macaulay repre-
sentation L consisting of CeMu-functionals, and a CeMu-skeleton X of an
unknown zero-dimensional CeMu-ideal I ⊂ P, determine it by assigning an
order ideal N := N(L) and a bijection Φ := Φ(L) : L 7→ N satisfying

N<(L) = N(P(Spank(L)))

for the lexicographical ordering induced by X1 < · · · < Xn.
The algorithm is inductive on s = #(L), the only possible solution for s = 1
being N = {1},Φ(λ1) = 1.
Let then L′ := {λ1, . . . , λs−1}, N

′ := N(L′), Φ′ := Φ(L′), and set

m := max (j : ∃i < s : πj(λi) = πj(λs)) ,

d := #{λi, i < s : πm(λi) = πm(λs),Φ
′(λi) ∈ T [1,m+ 1]},

W := {λi : Φ
′(λi) = ωiX

d
m+1, ωi ∈ T [1,m]} ∪ {λs},

V := πm(W),

ω := Φ(V)(πm(λs)),

ts := ωXd
m+1,
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where N(V) and Φ(V) are the result of applying the present algorithm to V,
which can be inductively done since #(V) ≤ s− 1. We then define

N := N′ ∪ {ts} and Φ(λi) :=

{

Φ′(λi) i < s
ts i = s.

⊓⊔

5 Cerlienco–Mureddu Correspondence

Let

L := {λ1, . . . , λs}, X := {x1, . . . , xs} ⊂ kn × T ,

xi = (ai, υi), ai := (ai1, . . . , ain), υi =
n
∏

l=1

Xαil

l

be the Macaulay representation and the CeMu-skeleton of an unknown zero-
dimensional ideal I ⊂ P. Our aim is to generalize Cerlienco–Mureddu Algo-
rithm removing the assumption I a CeMu-ideal.

The algorithm is inductive on s = #(X), the only possible solution for
s = 1 being N = {1},Φ(x1) = 1.

Let us therefore consider L′ := {λ1, . . . , λs−1}, the corresponding order
ideal N′ := N(L′) and the bijection Φ′ := Φ(L′).

Let us also denote, ∀ ν, 1 ≤ ν < n, δ ∈ N,

Yνδ := Spank{πν(λ) : λ ∈ L′, exists ω ∈ T [1, ν] : Φ′(λ) = ωXδ
ν+1}.

If P(Spank(L)) is radical, by abuse of notation, we simply identify each
xi = (ai, 1) and the corresponding λi = λai

with ai. With this notation, we
set

m := max (j : πj(λs) ∈ Spank(πj(L
′)),

d := min{δ : πm(λs) 6∈ Ymδ},

W := {πm(λ) : Φ′(λ) = ωXd
m+1, ω ∈ T [1,m]} ∪ {πm(λs)}

ω := Φ(W)(πm(λs)),

ts := ωXd
m+1
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where N(W) and Φ(W) result by applying the present algorithm to W,
which can be inductively done since #(W) ≤ s− 1. We then define

N := N′ ∪ {ts} and Φ(λi) :=

{

Φ′(λi) i < s
ts i = s.

Let

L := {λ1, . . . , λs}, X := {x1, . . . , xs} ⊂ kn × T ,

xi = (ai, υi), ai := (ai1, . . . , ain), υi =
n
∏

l=1

Xαil

l

be the Macaulay representation and the CeMu-skeleton of a zero-dimensional
ideal I ⊂ P and let N := N(L), Φ := Φ(L) be the result of Cerlienco–Mu-
reddu Correspondence. Then

Lemma 5.1 If Y = {λ1, . . . , λr} ⊂ L is an initial segment of L then

• Y is a CeMu-skeleton,

• N(Y) ⊂ N(L),

• for each j ≤ r < s,Φ(Y)(λj) = Φ(L)(λj).
⊓⊔

Remark 5.2 Let us remark that, by construction, we will have

P(Spank(πν(L)
′)) = Yν0 ⊃ Yν1 ⊃ · · · ⊃ Yνδ ⊃ Yνδ+1 ⊃ · · · ;

I ∩ k[X1, . . . ,Xν ] = P(Spank(πν(L
′)))

= P(Yν0) · · · ⊂ P(Yνδ) ⊂ P(Yνδ+1) ⊂ · · · .

The result is essentially a specialization of Kalkbrener’s Theorem [10]
⊓⊔

6 Lazard Structural Theorem

Let

L := {λ1, . . . , λs}, X := {x1, . . . , xs} ⊂ kn × T ,

xi = (ai, υi), ai := (ai1, . . . , ain), υi =
n
∏

l=1

Xαil

l

be the Macaulay representation and the CeMu-skeleton of a zero-dimensional
ideal I ⊂ P and let N := N(L), Φ := Φ(L) be the result of Cerlienco–Mu-
reddu Correspondence. Then
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Fact 6.1 It holds

(A) N := N(I).
⊓⊔

Since N is an order ideal, T := T \N is a monomial ideal whose minimal
basis G := {t1, . . . , tr} will be ordered so that t1 < t2 < . . . < tr.

Denoting further

B := ({1} ∪ {Xiτ : τ ∈ N}) \N

we obviously obtain

Corollary 6.2 It holds

(B) G(I) = G = {t1, . . . , tr}, t1 < t2 < . . . < tr;

(C) B(I) = B.
⊓⊔

Let us extend the ordering of L to N = {τ1, . . . , τs} enumerating it so
that τσ = Φ(λσ), for each σ and let us denote the ordering of L and N by
≺ so that

for each α, β, τα ≺ τβ, λα ≺ λβ ⇐⇒ α < β.

Denote for each τ ∈ N

• L(τ) := {λ ∈ L : λ ≺ Φ−1(τ)} = {λ ∈ L : Φ(λ) ≺ τ},

• X(τ) := {xj : λj ∈ L(τ)},

• I(L(τ)) := P(Spank(L(τ))),

and, for each τ ∈ N ∪B

• N(τ) := {ω ∈ N : ω ≺ τ},

so that

Corollary 6.3 It holds

(D) For each τ ∈ N there is a unique polynomial

fτ := τ −
∑

ω∈N(τ)

c(fτ , ω)ω

such that λ(fτ ) = 0, for each λ ∈ L(τ).

13



(E) For each τ ∈ G there is a unique polynomial

fτ := τ −
∑

ω∈N

c(fτ , ω)ω

such that λ(fτ ) = 0, for each λ ∈ L.

Proof: Since #L(τ) = #X(τ) = #N(τ) and #L = #X = #N, fτ can be
computed by interpolation. ⊓⊔

In the same mood, but interpolation is not sufficient to prove it, we can
state

Fact 6.4 It holds

(F) For each τ ∈ B there is a polynomial

fτ := τ −
∑

ω∈N(τ)

c(fτ , ω)ω

such that λ(fτ ) = 0, for each λ ∈ L.
⊓⊔

Corollary 6.5 It holds:

(G) The reduced Gröbner basis of I is

G(I) := {fτ : τ ∈ G};

moreover, for each τ ∈ N, T(fτ ) = τ.

(H) The border basis of I is

B(I) := {fτ : τ ∈ B}.

Proof: For each τ ∈ G ∪ B, τ is the only term in fτ which is not a
member of N so that T(fτ ) = τ.

For any τ ∈ N, T(fτ ) = τ because Cerlienco–Mureddu Correspondence
grants τ ∈ G(I(L(τ))) and N(I(L(τ))) = N(τ). ⊓⊔

Fact 6.6 It holds:

(I) For each ν, 1 ≤ ν < n,

let jν be the value such that tjν < Xν+1 ≤ tjν+1; then {ft1 , . . . , ftjν } is
a minimal Gröbner basis of P(Spank(πν(L))) and of I∩k[X1, . . . ,Xν ];

for each δ ∈ N, let j(νδ) be the value such that tj(νδ) < Xδ
ν+1 ≤

tj(νδ)+1; then {Lp(ft1), . . . ,Lp(ftjνδ )} is a Gröbner basis of I(Yνδ);

(L) for each j, 1 ≤ j ≤ s, λj(fτj ) 6= 0 so that L and {λj(fτj )
−1fτj , 1 ≤ j ≤

s} are triangular.
⊓⊔
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7 Intermezzo: factorization results

Let us now restrict ourserlves to a CeMu-ideal, assuming that

L := {λ1, . . . , λs}, X := {x1, . . . , xs} ⊂ kn × T ,

xi = (ai, υi), ai := (ai1, . . . , ain), υi =
n
∏

l=1

Xαil

l

are the Macaulay representation and the CeMu-scheme of a CeMu-ideal I,
so that, for each i,

λi = M(λ) = M(υi)λai
, for each i, 1 ≤ i ≤ s.

Under this assumption, for any term

τ := Xd1
1 · · ·Xdn

n ∈ T \N(L)

such that N ∪ {τ} is an order ideal, we define, for each m, 1 ≤ m ≤ n:

Nm(τ) := Nm(L, τ) := {ω ∈ T [1,m] : τ > ωX
dm+1

m+1 · · ·Xdn
n ∈ N},

Am(τ) := Am(L, τ) := {Φ−1(ωX
dm+1

m+1 · · ·Xdn
n ) : ω ∈ Nm(τ)} ⊂ L,

Bm(τ) := Bm(L, τ) := πm(Am(τ)) ⊂ (k[X1, . . . ,Xm])∗,

Cm(τ) := Cm(L, τ) := {πm(λ) ∈ Bm(τ) : πm−1(λ) 6∈ Bm−1(τ)},

Lm(τ) := Lm(L, τ) := {λ ∈ L : πm(λ) ∈ Cm(τ)} ⊂ L;

Dm(τ) := Dm(L, τ) := {xi ∈ X : πm(λi) ∈ Cm(τ)} ⊂ km × T [1,m];

Mm(τ) := Mm(L, τ) := {ω ∈ T [1,m] : ω < Xdm
m , ωX

dm+1

m+1 · · ·Xdn
n ∈ N},

Mm(τ) := {ω ∈ Mm(τ) : ω ≺ τ},

where, with slight abuse of notation, we have

Nn(τ) := {ω ∈ T : ω < τ},An(τ) := {λ : Φ(λ) < τ},C1(τ) := B1(τ).

Lemma 7.1 With the notation above, it holds

1. #(Bm(τ)) = #(Am(τ)) = #(Nm(τ));
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2. Cerlienco–Mureddu Correspondence associates to Bm(τ) the order ideal

N(Bm(τ)) = Nm(τ)

and the bijection Φ(Bm(τ)) defined by

Φ(Bm(τ))(πm(x))X
dm+1

m+1 · · ·Xdn
n = Φ(x), for each x ∈ Am;

3. #(Lm(τ)) = #(Cm(τ)) ≤ #(Mm(τ));

4. under Cerlienco–Mureddu Correspondence one has

N(Cm(τ)) ⊂ {ω ∈ T [1,m] : ω < Xdm
m };

5. L = ∪mLm(τ).

Proof:

1. is trivial;

2. Cerlienco–Mureddu Algorithm when applied to the ordered set L as-
sociates each element λ ∈ Am(τ) to the term

Φ(λ) = Φ(πm(Am(τ)))(πm(λ))X
dm+1

m+1 · · ·Xdn
n ;

3. in order to obtain Mm(τ) one has to remove from Nm(τ) the subset

{ωXdm
m ∈ Nm(τ) : ω ∈ T [1,m− 1]} = {ωXdm

m : ω ∈ Nm−1(τ)}

while for each ω ∈ Nm−1(τ) there are dm + 1 CeMu-conditions y =
(a, υ) ∈ km × T [1,m] for which

M(υ)λa ∈ Bm(τ) and Φ(Bm−1(τ))(πm−1(ℓυaλa) = ω.

4. In order that there is ω ∈ N(Cm(τ)) such that ω ≥ Xdm
m , Cerlien-

co–Mureddu Algorithm requires that at least dm+1 CeMu-conditions
x0, . . . , xdm , xi = (ai, υi) exist such that

πm(x0) = · · · = πm(xi) = · · · = πm(xdm),

so that πm−1(M(υi)λai
) ∈ Bm−1(τ).
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5. If λ ∈ L is such that Φ(λ) < τ , then there is a minimal value m ≤ n
for which λ ∈ Am(τ), πm(λ) ∈ Bm(τ), πm(λ) ∈ Cm(τ), λ ∈ Lm(τ).

If λ ∈ L is such that Φ(λ) = Xe1
1 · · ·Xen

n > τ , there is m ≤ n such
that em > dm, while ei = di, for each i > m; this implies that there is
ℓ ∈ Am(τ) such that πm(ℓ) = πm(λ) so that λ ∈ Dm(τ).

⊓⊔
As for (D-E) linear interpolation is all one needs to prove

Proposition 7.2 With the same notation as in Lemma 7.1, it holds

(V) for each τ := Xd1
1 · · ·Xdn

n ∈ G, and each m, 1 ≤ m ≤ n, there are
polynomials

gmτ := Xdm
m +

∑

ω∈Mm(τ)

c(gmτ , ω)ω

such that λ(gmτ ) = 0, for each λ ∈ Lm(τ);

(T) for each τ := Xd1
1 · · ·Xdn

n ∈ N and each m, 1 ≤ m ≤ n, there are
polynomials

gmτ := Xdm
m +

∑

ω∈Mm(τ)

c(gmτ , ω)ω

such that λ(gmτ ) = 0, for each λ ∈ Lm(τ), λ ≺ Φ−1(τ).

Proof:

(V) Since #(Cm(τ)) ≤ #(Mm(τ)), we can evaluate each c(gmτ , ω) by inter-
polation, so that ℓ(gmτ ) = 0,∀ℓ ∈ Cm(τ) and λ(gmτ ) = πm(λ)(gmτ ),∀λ ∈
Lm(τ).

(T) One has just to apply (V) to the set X(τ).
⊓⊔

For each τ := Xd1
1 · · ·Xdn

n ∈ N, let us denote ν := ν(τ) ≤ n the value
such that dν 6= 0 while dµ = 0 for each µ > ν so that τ ∈ T [1, ν], gmτ = 1
for m > ν, and, denoting

hτ :=
n
∏

m=1

gmτ ∈ k[X1, . . . ,Xν−1][Xν ],

lτ :=

ν(τ)−1
∏

m=1

gmτ ∈ k[X1, . . . ,Xν−1],

pτ := gντ ∈ k[X1, . . . ,Xν−1][Xν ],
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it holds
hτ = lτpτ = lτX

dν
ν + · · ·

so that lτ ∈ k[X1, . . . ,Xν−1] is the leading polynomial and the content of hτ
while the monic polynomial pτ is the primitive component of hτ .

Therefore we have2

Corollary 7.3 With the notation above, under the assumption I radical
ideal, it holds

(W) for each τ = Xd1
1 · · ·Xdν

ν ∈ N, there are

lτ ∈ k[X1, . . . ,Xν−1]

and a monic polynomial

pτ = Xdν
ν +

∑

ω∈Mν(τ)

c(pτ , ω)ω ∈ k[X1, . . . ,Xν−1][Xν ]

so that hτ := lτpτ are such that

• T(hτ ) = τ,

• Lp(hτ ) = lτ ,

• lτ (πν−1(a)) = 0, for all a ∈ X(τ),

• pτ (a) = 0, for each a ∈ Dν(τ),

• hτ (a) = 0, for each a ∈ X such that a ≺ Φ−1(τ).

(X) for each i, 1 ≤ i ≤ r there are

li ∈ k[X1, . . . ,Xν−1]

and a monic polynomial

pi = Xdν
ν +

∑

ω∈Mν(ti)

c(pi, ω)ω ∈ k[X1, . . . ,Xν−1][Xν ]

so that hi := lipi are such that

• T(hi) = ti = Xd1
1 · · ·Xdν

ν ∈ G ∩ T [1, ν],

• Lp(hi) = li,

2This justifies why we need to require that I is radical: in this restricted setting, each

functional λi is evaluation at a point and distributes with product.
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• li(πν−1(a)) = 0, for each a ∈ ∪ν−1
m=1Dm(ti),

• pi(a) = 0, for each a ∈ Dν(ti),

• hi(a) = 0, for each a ∈ X.

⊓⊔

While #(Cm(τ)) ≤ #(Mm(τ)), in general equality does not hold and
the polynomials gmτ are not unique. However, uniqueness can be forced via
Cerlienco–Mureddu Corespondence in such a way that the result does not
require the assumption I radical ideal.

We begin by remarking that

#(C1(τ)) = #(M1(τ)), for each τ := Xd1
1 · · ·Xdn

n ,

so that g1τ is actually unique. We can therefore set γ1τ := g1τ and compute
inductively, for m, 1 < m ≤ n,

• ζmτ :=
∏m−1

ν=1 γντ ,

• Qm(τ) := {M(ω)λa : ω ∈ T [1,m − 1], a ∈ Z := Z(I),M(ω)λa(ζmτ ) 6=
0},

• Pm(τ) := {M
(

πm
(

υi
ω

))

λai
: M(υi))λai

∈ Lm(τ),M(ω)λai
∈ Qm(τ)},

• Rm(τ) := {
(

πm(ai), πm
(

υi
ω

))

: M
(

πm
(

υi
ω

))

λai
∈ Pm(τ)},

• Em(τ) := N(Rm(τ)),

• Sm(τ) := {
(

πm(ai), πm
(

υi
ω

))

∈ Rm(τ) : (ai, υi) ≺ Φ−1(τ)},

• Fm(τ) := N(Sm(τ)).

This decomposition can be further refined if, for each τ := Xd1
1 · · ·Xdn

n

and each ν ≤ n, we iteratively compute, for deeasing δ ≤ dν ,

Yνδ(τ) := {πν(x) : ∃ω ∈ T [1, ν] : Φ(x) = ωXδ
ν+1, x ∈ Pνδ+1(τ)},

Eνδ(τ) := N(Yνδ(τ)),

Pνδ(τ) := {M

(

πν

(

υi
ω

))

λai
: M(υi))λai

∈ Lν(τ),M(ω)λai
∈ Yνδ(τ)},

Sνδ(τ) := {πν(x) ∈ Yνδ(τ) : x ≺ Φ−1(τ)},
Fm(τ) := N(Sm(τ)).

with initial value Pνdn+1(τ) := Pν−1 := Pν−1 2.
We then obtain:
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Corollary 7.4 [18] It holds

(M) For each τ := Xd1
1 · · ·Xdn

n ∈ N, and each m, 1 ≤ m ≤ n, there are
unique polynomials

γmτ := Xdm
m +

∑

ω∈Fm(τ)

c(γmτ , ω)ω

and
γmδτ := Xm +

∑

ω∈Fmδ(τ)

c(γmτ , ω)ω, 1 ≤ δ ≤ dm

such that

• πm(λ)(γmδτ ) = 0, for each λ ∈ Yνδ(τ), λ ≺ Φ−1(τ);

• πm(λ)(γmτ ) = 0, for each λ ∈ Lm(τ), λ ≺ Φ−1(τ);

• γmτ =
∏

δ γmδτ .

(N) For each τ := Xd1
1 · · ·Xdn

n ∈ G, and each m, 1 ≤ m ≤ n, there are
unique polynomials

γmτ := Xdm
m +

∑

ω∈Em(τ)

c(γmτ , ω)ω

and
γmδτ := Xm +

∑

ω∈Emδ(τ)

c(γmτ , ω)ω, 1 ≤ δ ≤ dm

such that

• πm(λ)(γmδτ ) = 0, for each λ ∈ Ymδ(τ),

• πm(λ)(γmτ ) = 0, for each λ ∈ Lm(τ),

• γmτ =
∏

δ γmδτ ;

(O) For each τ = Xd1
1 · · ·Xdν

ν ∈ N, there are

Lτ ∈ k[X1, . . . ,Xν−1]

and a unique monic polynomial

Pτ = Xdν
ν +

∑

ω∈Fν (τ)

c(Pτ , ω)ω ∈ k[X1, . . . ,Xν−1][Xν ]

so that Hτ := LτPτ are such that
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• T(Hτ ) = τ, Lp(Hτ ) = Lτ ,

• πν−1(λ)(Lτ ) = 0, for each λ ∈ L(τ),

• πν(λ)(Pτ ) = 0, for each λ ∈ Lν(τ),

• πν(λ)(Hτ ) = 0, for each λ ∈ L : λ ≺ Φ−1(τ).

(P) For each i, 1 ≤ i ≤ r there are

Li ∈ k[X1, . . . ,Xν−1]

and a unique monic polynomial

Pi = Xdν
ν +

∑

ω∈Eν(ti)

c(Pi, ω)ω ∈ k[X1, . . . ,Xν−1][Xν ]

so that Hi := LiPi are such that

• T(Hi) = ti = Xd1
1 · · ·Xdν

ν ∈ G ∩ T [1, ν], Lp(Hi) = Li,

• πν−1(λ)(Li) = 0, for each λ ∈ ∪ν−1
m=1Lm(ti),

• πν(λ)(Pi) = 0, for each λ ∈ Lν(ti),

• πν(λ)(Hi) = 0, for each λ ∈ L.

Proof: The only non trivial statements, i.e. the vanishing of πν−1(λ)(L)
and πν(λ)(H) are an elementary consequence of Leibniz Formula (Proposi-
tion 3.1). ⊓⊔

Fact 7.5 It holds

(Q) Li, Pi,Hi, 1 ≤ i ≤ r satisfy

{H1, . . . ,Hr} is a minimal Gröbner basis of I,

for each ν, 1 ≤ ν < n, {H1, . . . ,Hjν} is a minimal Gröbner basis of
I ∩ k[X1, . . . ,Xν ] and of I(πν(X));

for each ν, 1 ≤ ν < n, {L1, . . . , Ljνδ)} is a Gröbner basis of I(Yνδ).
⊓⊔

Clearly, if I is radical similar statements hold for

{h1, . . . , hr}, {l1, . . . , ljνδ)} and {h1, . . . , hjν}.
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Remark 7.6 Among the three bases

{f1, . . . , fr}, {h1, . . . , hr} and {H1, . . . ,Hr}

only the first one is reduced. On the other side, for each i, we have

T(fi) = T(hi) = T(Hi) = ti.

Therefore we have

• f1 = h1 = H1 and

• fi − hi ∈ (h1, . . . , hi−1), fi −Hi ∈ (H1, . . . ,Hi−1) for each i, 1 < i ≤ r,

whence

• fi ∈ (h1, . . . , hi), fi ∈ (H1, . . . ,Hi) for each i, 1 ≤ i ≤ r.
⊓⊔

Fact 7.7 It holds

(R) For each i, 2 ≤ i ≤ r, Pi ∈ (H1, . . . ,Hi) : Li.

(S) For each j, 1 ≤ j ≤ s, λj(Hτj ) 6= 0; L and {λj(Hτj )
−1Hτj , 1 ≤ j ≤ s}

are triangular.
⊓⊔

Corollary 7.8 Moreover, if I is radical

(Z) li, pi, hi, 1 ≤ i ≤ r satisfy

{h1, . . . , hr} is a minimal Gröbner basis of I;

for each ν, 1 ≤ ν < n, {h1, . . . , hjν} is a minimal Gröbner basis of
P(Spank(πν(L))) and I ∩ k[X1, . . . ,Xν ];

for each ν, 1 ≤ ν < n, {l1, . . . , ljνδ)} is a Gröbner basis of I(Yνδ);

for each i, 2 ≤ i ≤ r, pi ∈ (h1, . . . , hi) : li;

for each j, 1 ≤ j ≤ s, λj(hτj ) 6= 0;

L is triangular to {λj(hτj )
−1hτj , 1 ≤ j ≤ s}. ⊓⊔
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Figure 1: Möller Algorithm for Macaulay representation

(N,q,B, B) := Möller(L)

where

L = {ℓ1, . . . , ℓs} is a Macauly representation of a zero-dimensional
ideal I,

N := N(I),

q = {q1, . . . , qr} is triangular to L,

B := B(I),

B := B(I).

r := 1,B := ∅

t1 := 1,N := {t1}, q1 := t1, q := {q1},

For h = 1..n do

t := Xh, bt := Xh − ah1,B := B ∪ {t}

While r ≤ s do

Let t := min<{t ∈ B : λr+1(bt) 6= 0}

r := r + 1, B := B \ {t},

tr := t,N := N ∪ {tr}, qr := λr(bt)
−1bt,q := q ∪ {qr},

For each τ ∈ B do bτ := bτ − λr(bτ )qr,

For h = 1..n do

If Xhtr 6∈ B then

t := Xhtr,

f := Xhbtr −
∑

τ∈N

Xhτ∈B

c(btr , τ)bXhτ

bt := f − λr(f)qr

B := B ∪ {Xhtr, h = 1..n}

N,q,B{bτ : τ ∈ B}
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8 Proof

In order to complete the proof all we need is to directly apply Möller Algo-
rithm [20, 7, 15, 1, 21] (a simplified version of it in this setting is presented
in Figure 1).

The proof being by induction, we begin with

Lemma 8.1 If #L = 1 conditions (A), (F), (I), (L), (Q), (R), (S) hold.

Proof: When we have a single point (a1, . . . , an) ∈ kn, we have

• N = {1},

• B = G = {X1, . . . ,Xn},

• f1 = 1,

• fXi
= Xi − ai, for each i,

and the properties are obviously satisfied. ⊓⊔
Thus having a starting point for induction, let us assume we have a

Macaulay representation and the corresponding CeMu-skeleton

L := {λ1, . . . , λs}, X := {x1, . . . , xs} ⊂ kn × T ,

xi = (ai, υi), ai := (ai1, . . . , ain), υi =
n
∏

l=1

Xαil

l

of a zero-dimensional I, and let us denote

X′ := {x1, . . . , xs−1},L
′ := {λ1, . . . , λs−1} and I′ := P(Spank(L

′),

for which we assume conditions (A-L) hold. If moreover I (and so also I′)
is a CeMu-ideal, we also assume that conditions (M-S) hold for I′.

In particular:

Φ′ := N′ 7→ L′ is Cerlienco–Mureddu Correspondence,

G′ := G(I′) = {ω1, . . . , ωr}, ω1 < ω2 < . . . < ωr,

B′ := B(I′),

f ′
ω, ω ∈ B′, are the polynomials whose existence is implied by (F),

Fi := f ′
ωi

are the polynomials whose existence is implied by (E), so that
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{Fi : 1 ≤ i ≤ r} is the reduced Gröbner basis of I′,

L′
i, P

′
i ,H

′
i are the polynomials whose existence is implied by (P).

Setting
I := min

<
{j, 1 ≤ j ≤ r : λs(Fj) 6= 0},

then it holds

Lemma 8.2 If L′ satisfies conditions (A-L) then

Φ(L)(λs) = ωI .

Proof: Let ωI = Xd1
1 . . . Xdn

n and let m+ 1 := max(i : di 6= 0), so that

FI ∈ k[X1, . . . ,Xm+1].

Since, by (I), for each ν,

I′ ∩ k[X1, . . . ,Xν ] = P(Spank(πν(L
′))),

and
Fj ∈ k[X1, . . . ,Xν ], ν ≤ m =⇒ j < I

we deduce that

πν(λs)(Fj) = λs(Fj) = 0, for each Fj ∈ k[X1, . . . ,Xν ], ν ≤ m, while

πm+1(λs)(FI) = λs(FI) 6= 0.

This allows to deduce that

m = max
(

j : πj(λs) ∈ Spank(πj(L
′)
)

.

Therefore πm+1(λs) 6∈ Spank(πm+1(L
′); also

dm = min{δ : πm(λs) 6∈ Ymδ};

in fact, for each δ < dm, since

T(Fj) = ωj < Xδ
m < Xdm

m =⇒ j < I,

and πm(λs)(Fj) = 0, (I) allows to deduce that πm(λs) ∈ Ymδ and πm(λs) /∈
Ymdm .
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As a consequence we consider

W := {πm(λ) : Φ′(λ) = ωXdm
m+1, ω ∈ T [1, ν]} ∪ {πm(λs)};

in this setting Cerlienco–Mureddu Correspondence gives a relation between
each point πm(xi) and the corresponding term τi.

Moreover, since the argument is on the cardinality of the Macaulay rep-
resentation and #(W) < #(L), we directly deduce that the ideal P(πm(W))
has {Lp(ft1), . . . ,Lp(ftjmdm

)} as Gröbner basis. Also

πm(λs)(Lp(ftj )) = 0, for each j < I while πm(λs)(Lp(ftI )) 6= 0.

so that the same argument grants that Cerlienco–Mureddu Correspondence
returns Φ(πm((λs)) = Xd1

1 . . . Xdm
m . ⊓⊔

As a consequence, applying Möller Algorithm to L = L′ ∪ {λs} we get

qs := c−1FI , with c = λs(FI);

N := N′ ∪ {ωI};

B := B′ \ {ωI} ∪ {XiωI , 1 ≤ i ≤ n};

fτ := f ′
τ − λs(f

′
τ )qs for each τ ∈ B′ \ {ωI}, τ > ωI and

fτ := f ′
τ , for each τ ∈ B′ \ {ωI}, τ < ωI since λs(f

′
τ ) = 0;

for each τ := XiωI 6∈ B′

fτ := (Xi − ais)FI −
∑

Xiω∈B′

c(FI , ω)fXiω

where
FI = ωI +

∑

ω∈N′

c(FI , ω)ω.

Corollary 8.3 If L′ satisfies conditions (A-L) then L satisfies conditions
(A), (F), (I), (L), (Q), (R), (S).

Proof:

(A) and (F) are obvious;

(I) and (Q) are a direct consequence of the application of Cerlienco–Mureddu
Algorithm to P(πm(W));
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(L) λs(fωI
) 6= 0 for construction;

(R) on the basis of Remark 7.6 we know that FI ∈ (H ′
1, . . . ,H

′
I); also all

we need to prove is that, for each i,

Hi ∈ (H1, . . . ,Hi−1) = {Hj,T(Hj) < T(Hi)}.

Therefore

• if T(Hi) = ti ∈ G′, i < I, we have

Hi = H ′
i ∈ (H ′

1, . . . ,H
′
i−1) = (H1, . . . ,Hi−1);

• if T(Hi) = ti ∈ G′, i > I, we have

Hi = H ′
i − aFI ∈ (H ′

1, . . . ,H
′
i−1) = (H1, . . . ,Hi−1)

so that, also (H ′
1, . . . ,H

′
i) = (H1, . . . ,Hi).

• Finally, for τ = XitI we have Lτ = L′
I , and

LτPτ = Hτ ≡ fτ ≡ (Xi − ais)FI ≡ (Xi − ais)L
′
IP

′
I ≡ 0

modulo (H ′
1, . . . ,H

′
I) = (H1, . . . ,HI).

The same argument proofs the claim for {h1, . . . , hr}.

(S) λs(HωI
) 6= 0 and λs(hωI

) 6= 0 because both HωI
− fωI

and hωI
− fωI

have a representation in terms of {Fi, i < I} and λs(Fi) = 0, for each
i < I. ⊓⊔

In conclusion we have:

Theorem 8.4 For a zero-dimensional ideal I, given by a Macaulay repre-
sentation L, using the same notation as above, it holds

(A) N := N(I).

(B) G(I) = G = {t1, . . . , tr}, t1 < t2 < . . . < tr.

(C) B(I) = B.

(D) For each τ ∈ N there is a unique polynomial

fτ := τ −
∑

ω∈N(τ)

c(fτ , ω)ω

such that λ(fτ ) = 0, for each λ ∈ L(τ).
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(E) For each τ ∈ G there is a unique polynomial

fτ := τ −
∑

ω∈N

c(fτ , ω)ω

such that λ(fτ ) = 0, for each λ ∈ L.

(F) For each τ ∈ B there is a polynomial

fτ := τ −
∑

ω∈N(τ)

c(fτ , ω)ω

such that λ(fτ ) = 0, for each λ ∈ L.

(G) The reduced Gröbner basis of I is

G(I) := {fτ : τ ∈ G}.

moreover, for each τ ∈ N, T(fτ ) = τ.

(H) The border basis of I is

B(I) := {fτ : τ ∈ B}.

(I) For each ν, 1 ≤ ν < n,

let jν be the value such that tjν < Xν+1 ≤ tjν+1; then {ft1 , . . . , ftjν } is
a minimal Gröbner basis of P(Spank(πν(L))) and of I∩k[X1, . . . ,Xν ];

for each δ ∈ N, let j(νδ) be the value such that tj(νδ) < Xδ
ν+1 ≤

tj(νδ)+1; then {Lp(ft1), . . . ,Lp(ftjνδ )} is a Gröbner basis of I(Yνδ).

(L) For each j, 1 ≤ j ≤ s, λj(fτj ) 6= 0 so that L and {λj(fτj )
−1fτj , 1 ≤ j ≤

s} are triangular.

If I is a CeMu-ideal:

(M) For each τ := Xd1
1 · · ·Xdn

n ∈ N, and each m, 1 ≤ m ≤ n, there are
unique polynomials

γmτ := Xdm
m +

∑

ω∈Fm(τ)

c(γmτ , ω)ω

and
γmδτ := Xm +

∑

ω∈Fmδ(τ)

c(γmτ , ω)ω, 1 ≤ δ ≤ dm

such that
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• πm(λ)(γmδτ ) = 0, for each λ ∈ Yνδ(τ), λ ≺ Φ−1(τ);

• πm(λ)(γmτ ) = 0, for each λ ∈ Lm(τ), λ ≺ Φ−1(τ);

• γmτ =
∏

δ γmδτ .

(N) For each τ := Xd1
1 · · ·Xdn

n ∈ G, and each m, 1 ≤ m ≤ n, there are
unique polynomials

γmτ := Xdm
m +

∑

ω∈Em(τ)

c(γmτ , ω)ω

and
γmδτ := Xm +

∑

ω∈Emδ(τ)

c(γmτ , ω)ω, 1 ≤ δ ≤ dm

such that

• πm(λ)(γmδτ ) = 0, for each λ ∈ Ymδ(τ),

• πm(λ)(γmτ ) = 0, for each λ ∈ Lm(τ),

• γmτ =
∏

δ γmδτ ;

(O) For each τ = Xd1
1 · · ·Xdν

ν ∈ N, there are

Lτ ∈ k[X1, . . . ,Xν−1]

and a unique monic polynomial

Pτ = Xdν
ν +

∑

ω∈Fν (τ)

c(Pτ , ω)ω ∈ k[X1, . . . ,Xν−1][Xν ]

so that Hτ := LτPτ are such that

• T(Hτ ) = τ, Lp(Hτ ) = Lτ ,

• πν−1(λ)(Lτ ) = 0, for each λ ∈ L(τ),

• πν(λ)(Pτ ) = 0, for each λ ∈ Lν(τ),

• πν(λ)(Hτ ) = 0, for each λ ∈ L : λ ≺ Φ−1(τ).

(P) For each i, 1 ≤ i ≤ r there are

Li ∈ k[X1, . . . ,Xν−1]

and a unique monic polynomial

Pi = Xdν
ν +

∑

ω∈Eν(ti)

c(Pi, ω)ω ∈ k[X1, . . . ,Xν−1][Xν ]

so that Hi := LiPi are such that
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• T(Hi) = ti = Xd1
1 · · ·Xdν

ν ∈ G ∩ T [1, ν], Lp(Hi) = Li,

• πν−1(λ)(Li) = 0, for each λ ∈ ∪ν−1
m=1Lm(ti),

• πν(λ)(Pi) = 0, for each λ ∈ Lν(ti),

• πν(λ)(Hi) = 0, for each λ ∈ L.

(Q) Li, Pi,Hi, 1 ≤ i ≤ r satisfy

{H1, . . . ,Hr} is a minimal Gröbner basis of I,

for each ν, 1 ≤ ν < n, {H1, . . . ,Hjν} is a minimal Gröbner basis of
I ∩ k[X1, . . . ,Xν ] and I(πν(X));

for each ν, 1 ≤ ν < n, {L1, . . . , Ljνδ)} is a Gröbner basis of I(Yνδ).

(R) For each i, 2 ≤ i ≤ r, Pi ∈ (H1, . . . ,Hi) : Li.

(S) For each j, 1 ≤ j ≤ s, λj(Hτj ) 6= 0; L and {λj(Hτj )
−1Hτj , 1 ≤ j ≤ s}

are triangular.

(T) for each τ := Xd1
1 · · ·Xdn

n ∈ N and each m, 1 ≤ m ≤ n, there are
polynomials

gmτ := Xdm
m +

∑

ω∈Mm(τ)

c(gmτ , ω)ω

such that λ(gmτ ) = 0, for each λ ∈ Lm(τ), λ ≺ Φ−1(τ).

(V) for each τ := Xd1
1 · · ·Xdn

n ∈ G, and each m, 1 ≤ m ≤ n, there are
polynomials

gmτ := Xdm
m +

∑

ω∈Mm(τ)

c(gmτ , ω)ω

such that λ(gmτ ) = 0, for each λ ∈ Lm(τ).

Moreover, if I is radical:

(W) for each τ = Xd1
1 · · ·Xdν

ν ∈ N, there are

lτ ∈ k[X1, . . . ,Xν−1]

and a monic polynomial

pτ = Xdν
ν +

∑

ω∈Mν(τ)

c(pτ , ω)ω ∈ k[X1, . . . ,Xν−1][Xν ]

so that hτ := lτpτ are such that
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• T(hτ ) = τ,

• Lp(hτ ) = lτ ,

• lτ (πν−1(a)) = 0, for all a ∈ X(τ),

• pτ (a) = 0, for each a ∈ Dν(τ),

• hτ (a) = 0, for each a ∈ X such that a ≺ Φ−1(τ).

(X) for each i, 1 ≤ i ≤ r there are

li ∈ k[X1, . . . ,Xν−1]

and a monic polynomial

pi = Xdν
ν +

∑

ω∈Mν(ti)

c(pi, ω)ω ∈ k[X1, . . . ,Xν−1][Xν ]

so that hi := lipi are such that

• T(hi) = ti = Xd1
1 · · ·Xdν

ν ∈ G ∩ T [1, ν],

• Lp(hi) = li,

• li(πν−1(a)) = 0, for each a ∈ ∪ν−1
m=1Dm(ti),

• pi(a) = 0, for each a ∈ Dν(ti),

• hi(a) = 0, for each a ∈ X.

(Z) li, pi, hi, 1 ≤ i ≤ r satisfy

{h1, . . . , hr} is a minimal Gröbner basis of I;

for each ν, 1 ≤ ν < n, {h1, . . . , hjν} is a minimal Gröbner basis of
P(Spank(πν(L))) and I ∩ k[X1, . . . ,Xν ];

for each ν, 1 ≤ ν < n, {l1, . . . , ljνδ)} is a Gröbner basis of I(Yνδ);

for each i, 2 ≤ i ≤ r, pi ∈ (h1, . . . , hi) : li;

for each j, 1 ≤ j ≤ s, λj(hτj ) 6= 0;

L is triangular to {λj(hτj )
−1hτj , 1 ≤ j ≤ s}. ⊓⊔
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