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Abstract

Gröbner bases are the computational method par excellence for studying poly-
nomial systems. In the case of parametric polynomial systems one has to deter-
mine the reduced Gröbner basis in dependence of the values of the parameters.
In this article we present the algorithm GröbnerCover which has as input
a finite set of parametric polynomials and outputs a finite partition of the pa-
rameter space into locally closed subsets together with polynomial data, from
which the reduced Gröbner basis for a given parameter point can immediately
be determined. The partition of the parameter space is intrinsic and particularly
simple if the system is homogeneous.
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4 The GröbnerCover algorithm 38
4.1 The case of arbitrary ideals . . . . . . . . . . . . . . . . . . . . . 39
4.2 The ExtendPoly algorithm . . . . . . . . . . . . . . . . . . . . 40
4.3 Some remarks on implementation issues . . . . . . . . . . . . . . 42

5 Example 44

Introduction

Let K be a field and K an algebraically closed extension of K (e.g. K = Q
and K = C). A parametric polynomial system over K is given by a finite set of
polynomials p1, . . . , pr ∈ K[a, x] in the variables x = x1, . . . , xn and parameters
a = a1, . . . , am and one is interested in studying the solutions of the algebraic
systems {p1(a, x), . . . , pr(a, x)} ⊂ K[x] which are obtained by specializing the
parameters to concrete values a ∈ K

m
.

The computational approach par excellence for studying algebraic systems
is the method of Gröbner bases and several articles have already been dedicated
to the application of the ideas of Gröbner bases in the parametric setting, e. g.
[Gi87, We92, Be94, Kap95, Du95, Ka97, HeMcKa97, Mor97, De99, GoTrZa00,
Gom00, FoGiTr01, Mo02, OS02, GaWa03, We03, SaSu03, Sa05, GoTrZa05,
Na05, MaMo06, Na06, SuSa06, Wi07, CGLMP07, InNaSa07, InSa07, Ma08,
MaMo09].

The first very important step was the proof of the existence of a Compre-
hensive Gröbner Basis together with an algorithm to obtain one via Gröbner
systems in [We92]. To explain this fundamental concept we fix a monomial
order Âx on the variables and an ideal I ⊂ K[a][x] = K[a, x] (with generating
set {p1, . . . , pr}). For a ∈ K

m
we denote by Ia ⊂ K[x] the ideal generated by

all p(a, x) ∈ K[x] for p ∈ I.
A Gröbner system for I and Âx is a finite set of pairs {(S1, B1), . . . , (Ss, Bs)}

such that

(i) The Si’s are locally closed subsets of K
m

such that K
m

= ∪Si.
(ii) The Bi’s are finite subsets of K[a][x] and Bi(a) = {p(a, x) : p ∈ Bi} is a

Gröbner basis of Ia with respect to Âx for every a ∈ Si.
(iii) For p ∈ Bi the function a 7→ lpp(p(a, x)) is constant on Si. In particular,

a 7→ lpp(Ia) is constant on Si because of (ii), and so lpp(Si) = lpp(Ia) for
some a ∈ Si is well-defined. (Here lpp denotes the leading power products
with respect to Âx.)
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The Si’s are called the segments of the Gröbner system. Depending on the con-
text one can also assume that the segments are arbitrary constructible subsets
(as e.g. in [MaMo09]), or locally closed subsets of the special form

{a ∈ K
m

: f1(a) = 0, . . . , fs(a) = 0, g1(a) 6= 0, . . . , gt(a) 6= 0}

= V(f1, . . . , fs)rV(
∏

gj)

with f1, . . . , fs, g1 . . . , gt ∈ K[a] as in [We92]. In a more algorithmic context one
usually replaces Si with some polynomial data in the parameters that determines
Si. Some authors (e.g. [SuSa06]) also drop condition (iii). If one requires Bi ⊂ I
then the Gröbner system is called faithful. From a faithful Gröbner system one
can obtain a comprehensive Gröbner bases B simply by B = ∪Bi. Our focus is
on Gröbner systems rather than on comprehensive Gröbner bases because we
think that the decomposition of the parameter space is very important in the
applications.

After [We92], the effort has gone in two directions. Weispfenning [We03]
and other authors [MaMo09] worked in the direction of obtaining a canonical
discussion only associated to the given ideal and monomial order, focusing on
nice properties of the discussion. Other authors ([Kap95, Ka97, SuSa06, SuSa07,
Na06]) fixed their objective on effectiveness and speed.

A common problem with algorithms for the computation of Gröbner systems
is that, mainly due to the large number of segments generated, the interpretation
of the output can become quite tedious for the user.

Therefore the main focus of this article is not on the efficiency of the algo-
rithm but on computing a Gröbner system that has as few segments as possible
and satisfies some additional nice properties, so that the compact output allows
an easy interpretation and the algorithm is easy to use in applications. Thus for
us the crucial topic is how to actually represent all the reduced Gröbner bases
for varying a ∈ K

m
in the most simple and canonical way on the computer.

There is a certain difficulty with (reduced) Gröbner systems: Let S ⊂ K
m

be
a locally closed subset such that a 7→ lpp(Ia) is constant on S and t an element
of the minimal generating set of lpp(S). For a ∈ S let g(a) denote the element
of the reduced Gröbner basis of Ia with lpp(g(a)) = t. It is in general not
possible to describe the function g on S by a single polynomial p ∈ K[a, x]. One
reason for this can be that p might specialize to zero at a certain point a ∈ S,
in other words, if we normalize p and consider it as element in K(a)[x] then
p(a, x) might not be defined for all a ∈ S because some denominator specializes
to zero. To avoid this kind of “singularities” we propose to use regular functions
as in [Wi07]. We illustrate the above described phenomena with an example.

Example 1. Let I = 〈ax+by, cx+dy〉 ⊂ C[a, b, c, d][x, y]. We use a term order
with x > y. It is easy to see how the parameter space is partitioned according
to lpp:
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Segment lpp Basis
S1 C4 rV(ad− bc) {y, x} {y, x}
S2 V(ad− bc)rV(a, c) {x} {x +

{
b
a , d

c

}
y}

S3 V(a, c)rV(a, b, c, d) {y} {y}
S4 V(a, b, c, d) { } { }

There are four locally closed subsets of C4 with constant lpp. On S2 neither
ax + by or cx + dy alone is sufficient to describe the element of the reduced
Gröbner bases of the specialized ideals because one of the leading coefficients
always specializes to zero at a certain point in S2. In fact the reader may
convince himself that there does not exist a polynomial p ∈ K[a, b, c, d][x, y]
such that p(ã, x, y) is a Gröbner basis of Iã for every ã ∈ S2. This means that
every Gröbner system necessarily decomposes S2 in more than one segment (at
least if (iii) is required or the Gröbner system is reduced). We think that it is
undesirable to break up S2 because intuitively the Gröbner basis structure of
Iã is the same for every ã ∈ S2 and we want to keep the number of segments
as small as possible. Furthermore it seems that such a breaking up of S2 can
only be made in a canonical way if one uses some additional structure, like a
term-oder in a, b, c, d as in [We03]. We note that if f : S2 → C is the regular
function given by f(a, b, c, d) = b

a if a 6= 0 and f(a, b, c, d) = d
c if c 6= 0 then the

polynomial x + fy ∈ O(S2)[x] gives us precisely what we need.

In [We03] Weispfenning proposed a canonical form of comprehensive Gröbner
bases along with a canonical Gröbner system. His recursive construction de-
pends on an auxiliary well-quasi-order on the parameter ring K[a] and the
number of segments in the canonical Gröbner system is not minimal. For exam-
ple if I = 〈ax, bx〉 ⊂ C[a, b][x] and we use the well-quasi order on C[a, b] induced
from the lexicographic order with a > b. Then the canonical Gröbner system is

{(
C2 rV(b), {bx}) , (V(b)rV(a, b), {ax}) , (V(a, b), {})} .

Also the fact that the segments in the canonical Gröbner system are required to
be irreducible causes more segments than strictly necessary and the segments
need not be disjoint.

Here we will use a slightly different approach. We don’t use bases Bi that
are subsets of K[a][x] but we use bases Bi that are subsets of O(Si)[x], where
O(Si) denotes the ring of regular functions on Si. To emphasize this difference
we call the resulting concept analogous to that of a Gröbner system a Gröbner
cover. (See Section 1 for a precise definition.) In addition to the phenomena
described in example 1 the advantage of Gröbner covers is that the bases Bi are
uniquely determined (by I,Âx and Si). Even though this uniqueness is quite
tautological we think it is preferable to have then an uniquely defined object
of which we are computing a maybe non-unique representation than to have no
uniqueness or only some weak kind of uniqueness (uniqueness under additional
hypothesis) as in [We03].

Following [Wi07] we also propose a canonical form of Gröbner covers. The
precise definition of the canonical Gröbner cover is given in Section 1. The
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canonical Gröbner cover is uniquely determined by I and Âx and it is intrinsic in
the sense that it does not depend on any algorithm. At all events if I ⊂ K[a][x]
is homogeneous with respect to the variables then the canonical Gröbner cover
of K

m
with respect to I and Âx is a set of pairs {(S1, B1), . . . , (Ss, Bs)} with

the following properties:

(i) The Si’s are pairwise disjoint, locally closed subsets of K
m

with K
m

=⋃
Si.

(ii) For a, b ∈ K
m

we have lpp(Ia) = lpp(Ib) if and only if there exists an i
such that a, b ∈ Si.

(iii) The Bi’s are finite subsets of O(Si)[x] where O(Si) denotes the ring of
regular functions on Si.

(iv) For a ∈ Si it holds that lpp(Bi) is the minimal generating set of lpp(Ia)
and evaluating every element of Bi at a ∈ Si yields the reduced Gröbner
basis of Ia with respect to Âx.

In the above simple example the canonical Gröbner cover is
{(
C2 rV(a, b), x

)
, (V(a, b), {})} .

The table in Example 1 also gives the canonical Gröbner cover. The canonical
Gröbner cover has the nice property that it groups together all the values of the
parameters for which the system of equations has the same type of solutions.
This is in general not possible when one only uses polynomials instead of regular
functions.

For non-homogeneous ideals a result as above is in general not obtainable
(see Example 2 below), but using a process of homogenizing and dehomogenizing
our algorithm GröbnerCover will give a similar result only that condition (ii)
is not necessarily satisfied.

Example 2. Consider the non-homogeneous ideal I = 〈ax + 1, bx + 1〉 ⊂
C[a, b][x]. It is easy to see what we get if we somewhat inconsiderately sim-
ply partition the parameter space with respect to the lpp:

Segment lpp Basis
1

(
C2 rV(a− b)

) ∪ V(a, b) {1} {1}
2 V(a− b)rV(a, b) {x} {x + 1

a}

The first segment with basis {1} is not locally closed, i.e. it is not the
difference of two closed sets. So condition (i) is not realized. But it is the
union of the two disjoint locally closed sets C2 r V(a − b) and V(a, b) and the
reasons why we have basis {1} over the point V(a, b) and why we have basis {1}
over C2 r V(a − b) are fundamentally different. This difference can easily be
detected using homogenization with respect to a new variable t. Homogenizing
the system leads to 〈ax + t, bx + t〉. Now segment 1 splits into two segments 1a
and 1b with distinct lpp as follows:
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Segment lpp Basis Dehomogenized basis
1a C2 rV(a− b) {x, t} {x, t} {1}
1b V(a, b) {t} {t} {1}
2 V(a− b)rV(a, b) {x} {x + t

a} {x + 1
a}

Now all segments are locally closed but if we dehomogenize the segments 1a
and 1b will of course have again the same lpp.

In 2006 Sato and Suzuki introduced a new very simple algorithm [SuSa06,
SuSa07] to obtain a (comprehensive) Gröbner system. It seems very efficient
in some problems but it is not a priori predicted which Gröbner system the
algorithm will compute. Also the segments are not assumed to be disjoint and
the algorithm might produce more segments than necessary. There are also
concrete problems where these algorithms have been applied successfully (see
e.g. [GoRe93, Mo98, Em99, Ry00, YHX01, Co04, MoRe07]).

The GröbnerCover algorithm is the outcome of a fruitful combination of
the Minimal Canonical Comprehensive Gröbner System algorithm [MaMo09]
and the more theoretical results presented in [Wi07]. Depending on the point of
view one can see this article as an intrinsic version of [MaMo09] or an algorithmic
version of [Wi07].

Our algorithm has a long history (which is detailed in a series of papers
of the first author [Mo02, MaMo06, MaMo09]), and many improvements have
been made to fix the algorithms (see [Ma08]).

In fact, the GröbnerCover algorithm is the latest in a long line of algo-
rithms (DisPGB, BuildTree, MCCGS) which have been introduced by the
first author. The GröbnerCover algorithm uses some parts of these earlier
algorithms. Since these parts are scattered over several articles and the results
are not always present in exactly the way we would need it, we choose to give
a new completely self contained presentation. The very basic idea of the algo-
rithm is still the same as in [We92] and the previous work of the first author.
One uses a Buchberger like algorithm which branches whenever one needs to
decide if a certain leading coefficient encountered in Buchberger’s algorithm is
zero or non-zero.

The essentially new contribution of this article starts when the Buchberger
like algorithm BuidTree ends. New routines are LCUnion, Combine and Ex-
tend, as well as the method of homogenizing and de-homogenizing for non-
homogeneous ideals that preserves the canonical character of the Gröbner cover.
The global new thing is the complete algorithm that produces the Gröbner cover
predicted in [Wi07]. Nevertheless we have also improved previous algorithms.

A critical point for a canonical description of a parametric ideal is the need
of computing the radical of some sets of leading coefficients as was pointed out
in [We03]. Even the prime-decomposition of these ideals in the parameters is
needed. The first algorithm to compute prime-decomposition of ideals was given
in [GTZ88], and since there it has been improved. The interesting references
for this are [GiHe90, AlRa90, EiHuVa92, CaCoTr95]. For further reading on
the subject see [Mo05] and references therein. It is known that this is a difficult
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problem [HeMo93], and so its use has been avoided by many authors. Never-
theless, in the discussion of parametric polynomial systems, the ideals in the
parameters occurring in the computations are in general much simpler than the
general ideals involved, and so the computation of prime-decompositions is feasi-
ble. The algorithms involving radicals and primary decomposition are described
in Section 2.1. There avoid the abusive use of primary decomposition. We also
comment in Section 4.3 some details on how the routines involving radicals and
primary decomposition should be implemented.

We now describe the content of the paper. Section 1 is purely theoretical
and accurately defines the objects which will be computed in the subsequent
sections. In particular the existence and uniqueness of a canonical partition of
the parameter space is discussed. The main tool is a theorem for homogeneous
ideals which, roughly speaking, states that in this case, the reduced Gröbner
basis of Ia depends on a in an algebraic way as long as a is varied in subsets
over which the lpp is constant. Most of the results of Section 1 have already
been presented in [Wi07] in a more general but maybe less accessible form.

In Section 2 we explain how the abstract concepts of Section 1 can be rep-
resented in a way feasible for computations. In 2.1 we first describe how we
can represent locally closed sets. We introduce the canonical representation
(C-representation) and the canonical prime representation (P-representation).
Then, for the special locally closed sets used in BuildTree we introduce the
reduced representation (R-representation). Then in 2.1.1 we describe the algo-
rithm called Locally Closed Union (LCUnion) which computes the union of
locally closed sets if their union is locally closed.

Then in the subsections 2.2 and 2.3 we explain how we represent regular
and I-regular functions respectively and how we can effectively perform the
corresponding operations. We introduce the full and the generic representation.

In Section 3 we describe the algorithm GCover, which is the heart of
GröbnerCover algorithm. It computes the canonical Gröbner cover of a ho-
mogeneous ideal. After introducing some auxiliary algorithms (subsection 3.1),
we explain the BuildTree algorithm (subsection 3.2) that yields a first disjoint
reduced Gröbner System. Then GCover uses LCUnion to join together all
the segments obtained by BuildTree with the same lpp to obtain the locally
closed lpp-segments. Finally in 3.3 we describe the algorithm Basis that yields
generic representations of the basis elements in the canonical Gröbner cover.

In Section 4 we present the main algorithm GröbnerCover. It distin-
guishes the two cases, wether the ideal under consideration is homogeneous or
not. If it is not homogeneous the algorithm first homogenizes the ideal be-
fore calling GCover and then dehomogenizes, minimizes and reduces the bases
in the output of GCover. At the end GröbnerCover converts the generic
representations obtained by Gcover into full representations. Finally, in sub-
section 4.3, we make some comments about some strategies that can be used in
practical problems and in the implementation.

In Section 5 we give an illustrative example.
The full GröbnerCover algorithm is currently being implemented in Sin-
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gular and will be available freely.

1. Existence and uniqueness of the canonical partition of the param-
eter space

We first fix some notation which will be used throughout the paper: With K
we denote a computable field and with K an algebraically closed field extension
of K. (We do not insist that K is the algebraic closure of K.) We fix m,n ≥ 1
and an ideal I ⊂ K[a1, . . . , am, x1, . . . , xn] = K[a, x] = K[a][x]. We call a =
a1, . . . , am the parameters and x = x1, . . . , xn the variables. We also fix a term-
order Âx on the variables. If p is a polynomial in the variables with coefficients
in some ring (e.g. p ∈ K[a][x], p ∈ K[x]) then lpp(p) and lc(p) denote its leading
power product (=leading monomial) and leading coefficient with respect to Âx

respectively. A polynomial is called monic if its leading coefficient is equal to
one.

The parameter space is K
m

. We consider it as a topological space by means
of the K-Zariski topology. So a subset S of K

m
is closed if and only if it is of

the form
S = V(N) := {a ∈ K

m
: g(a) = 0 ∀ g ∈ N}

for some subset N of K[a] = K[a1, . . . , am].
If N is a subset of a ring we denote with 〈N〉 the ideal generated by N .

For N ⊂ K[a] of course V(N) = V(〈N〉). If a is an ideal of some ring then
√

a
denotes the radical of a.

Each point a ∈ K
m

defines a morphism of K-algebras σa : K[a][x] → K[x]
by sending the variables x to themselves and specializing the parameters with
the concrete values given by a. We call σa the specialization corresponding to
a.

Our goal is to describe the reduced Gröbner basis of Ia := 〈σa(I)〉 ⊂ K[x]
(with respect to Âx) in dependence of a ∈ K

m
.

We stress the point that although, for geometric purposes, we consider points
a ∈ K

m
, on the algebraic side everything will be done over K (and not over

K). In particular all the polynomials we use have coefficients in K (and not in
K) and our algorithms (which will be detailed in the later sections) only use
computations over K. Also it is important to notice that we always consider
the K-Zariski topology on K

m
(and never the K-Zariski topology). We need to

consider points in K
m

to be able to use Hilbert’s Nullstellensatz ([BeWe93] p.
313) which asserts that for every ideal a of K[a]

I(V(a)) =
√

a,

where for a subset V of K
m

we define

I(V ) = {g ∈ K[a] : g(a) = 0 for all a ∈ V }.

From this it follows that V defines a bijection between the set of radical ideals
of K[a] and the closed subsets of K

m
, the inverse mapping is given by I. Under
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this bijection prime ideals correspond to irreducible closed subsets of K
m

in the
K-Zariski topology.

A subset S of K
m

is called locally closed if it is open in its closure, or
equivalently if it is the intersection of an open and a closed set. A function
f : S → K is called regular if for every a ∈ S there exists an open neighborhood
U ⊂ S of a (i.e. U = S r V (M), with a ∈ U) such that

f(b) =
p(b)
q(b)

for all b ∈ U

where p, q ∈ K[a] and q(b) 6= 0 for all b ∈ U . We denote the ring of regular
functions on S by O(S).

Coarsely speaking, the ultimate goal of our algorithm GröbnerCover is to
describe the function, that assigns to each a ∈ K

m
the reduced Gröbner basis of

Ia (with respect to Âx) in “the most simple and natural way”. Of course we will
describe this function by using polynomials in some way or another and it seems
reasonable to split K

m
into segments Si such that for all a ∈ Si the reduced

Gröbner bases of Ia are of the same type, where we still need to make precise
what we mean by “of the same type”. It should mean firstly that T := lpp(Ia)
does not depend on a ∈ Si. As demonstrated in Example 2 (see also Example
3 in [Wi07]) this first requirement is not enough and so we demand secondly
that for each minimal generator t of T , the function that assigns to a ∈ Si the
element of the reduced Gröbner basis of Ia with leading power product equal to
t, depends on a ∈ Si in an algebraic way. The following two definitions make
precise this idea.

Definition 3 (I-regular function). Let S be a locally closed subset of K
m

.
We call a function f : S → K[x] regular with respect to I (or simply I-regular
for short) if the following holds:

For each a ∈ S there exists an open subset U of S with a ∈ U and

f(b) =
p(b, x)
q(b)

∈ K[x]for all b ∈ U, (1)

where p ∈ I and q ∈ K[a] such that q(b) 6= 0 for all b ∈ U .

The set of all I-regular functions on S is denoted by I(S). Obviously we can
interpret I(S) as an ideal in the polynomial ring O(S)[x]. In particular the
leading power product and leading coefficient is defined for an element of I(S).
Intuitively we can think of I(S) as being the restriction of I = I(K

m
) to S.

Definition 4 (Parametric set). A locally closed subset S of K
m

is called
parametric for I (with respect to Âx) if there exist monic I-regular functions
g1, . . . , gr ∈ I(S) such that {g1(a), . . . , gr(a)} is the reduced Gröbner basis of
Ia for every a ∈ S.
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From the uniqueness of reduced Gröbner bases it follows immediately that
if S ⊂ K

m
is parametric then the monic I-regular functions g1, . . . , gm ∈ I(S)

of Definition 4 are uniquely determined. We call them the reduced Gröbner
basis of I over S (with respect to Âx). Also the definition immediately implies
that if a, b lie in a parametric set S then lpp(Ia) = lpp(Ib). So we may define
lpp(S) = lpp(Ia) and call lpp(S) the leading power products of I over S.

The reader is referred to [Wi07] for basic properties of parametric sets.

Remark 5. Let S be a locally closed subset of K
m

such that lpp(Ia) = lpp(Ib)
for all a, b ∈ S and let t1, . . . , tr be the minimal generating set of lpp(Ia) =
lpp(Ib). For each i ∈ {1, . . . , r} consider the function gi : S → K[x] which sends
a ∈ S to the unique element of the reduced Gröbner basis of Ia with lpp equal
to ti. Then S is parametric if and only if for each i = 1, . . . , r the function gi

has the following natural property:
For each a ∈ S there exists an open neighborhood U of a in S and a poly-

nomial p ∈ I such that coef(p, ti)(b) 6= 0 for all b ∈ U and

gi(b) =
p(b, x)

coef(p, ti)(b)
∈ K[x]

for all b ∈ U .

Definition 6 (Gröbner cover). By a Gröbner cover of K
m

with respect to I
and Âx we mean a finite set of pairs {(S1, B1), . . . , (Sr, Br)} such that

• the Si’s are parametric and Bi is the reduced Gröbner basis of I over Si

for i = 1, . . . , r and

• the union of all Si’s equals K
m

.

The Si’s are called the segments of the Gröbner cover. The Gröbner cover is
called disjoint if the Si’s are pairwise disjoint.

Our main algorithm GröbnerCover will compute a disjoint Gröbner cover
of K

m
. But of course we want to specify a priori which Gröbner cover it will

compute and surely this should be a particularly simple one. To give the defi-
nition of this unique canonical Gröbner cover the following theorem which was
proved in [Wi07] is essential.

Theorem 7. Let I ⊂ K[a][x] be a homogeneous ideal (with respect to the vari-
ables) and a ∈ K

m
. Then the set

S := {b ∈ K
m

: lpp(Ib) = lpp(Ia)}

is parametric. In particular S is locally closed.

From Theorem 7 the definition of the canonical Gröbner cover is quite ob-
vious if I is a homogeneous ideal:
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Theorem 8 (canonical Gröbner cover). If I ⊂ K[a][x] is homogeneous (with
respect to the variables) then there exists a unique Gröbner cover of K

m
with

minimal cardinality which we call the canonical Gröbner cover of K
m

(with
respect to I and Âx). It is disjoint and two points a, b ∈ K

m
lie in the same

segment if and only if lpp(Ia) = lpp(Ib). The segments of this Gröbner cover
will be called lpp-segments.

1.1. The case of arbitrary ideals
For non-homogeneous ideals the situation is somewhat more complicated.

But as we will see below we can use the method of homogenization to exploit
Theorem 7 also in this case. For the rest of this section our focus is on the case
that I is a non-homogeneous ideal. Our aim is to generalize the definition of
the canonical Gröbner cover to arbitrary ideals.

For homogenization we introduce a new variable x0 and extend Âx to the
monomials in x0, x1, . . . , xn by setting

xαxi
0 Âx,x0 xβxj

0

if xα Âx xβ or xα = xβ and i > j. If p is a homogeneous polynomial in the
variables x, x0 with coefficients in some ring then the dehomogenization of p is
denoted with τ(p), i.e. τ(p) = p(x, 1).

It is immediately seen that Âx,x0 is a monomial order with the property that
τ(lpp(p)) = lpp(τ(p)) and lc(τ(p)) = lc(p) for every homogeneous polynomial p.

Lemma 9 (cf. [Ei94], Exercise 15.39, page 375 ). Let I ′ ⊂ K[x] be an ideal
and J ′ ⊂ K[x, x0] a homogeneous ideal such that τ(J ′) = I ′. If {g1, . . . , gr} is
a Gröbner basis of J ′ with respect to Âx,x0 and the gi’s are homogeneous then
{τ(g1), . . . , τ(gr)} is a Gröbner basis of I ′ with respect to Âx.

Proof. Let p ∈ I ′. Then there exists q ∈ J ′ homogeneous such that τ(q) = p.
Since q ∈ J ′ there exists an i such that lpp(gi) divides lpp(q), say lpp(q) =
tlpp(gi). But then

lpp(p) = lpp(τ(q)) = τ(lpp(q)) = τ(tlpp(gi)) = τ(t)lpp(τ(gi)),

so that lpp(p) is divisible by lpp(τ(gi)) and τ(g1), . . . , τ(gr) is a Gröbner basis
of I ′.

Nevertheless it is not true that τ preserves reduced Gröbner bases. Consider,
for example, the homogeneous ideal F = 〈x2y − yt2 + t3, x2 − t2〉. Its reduced
Gröbner basis with respect to grevlex(x, y) · lex(t) is G = {t3, x2 − t2}, that
specializes to G = {1, x2 − 1} for t = 1. This is really a Gröbner basis of Ft=1

but not the reduced one which is G0 = {1}.
Proposition 10. Let J ⊂ K[a][x, x0] be a homogeneous ideal such that τ(J) = I
and S ⊂ K

m
parametric with respect to J and Âx,x0 . Then S is parametric with

respect to I and Âx.

11



Proof. Let h1, . . . , hr ∈ O(S)[x, x0] be the reduced Gröbner bases of J over
S. We note that since J is homogeneous also Ja ⊂ K[x, x0] is homogeneous for
every a ∈ S. The reduced Gröbner basis of a homogeneous ideal is homogeneous
and so also h1, . . . , hr are homogeneous. Because lc(τ(p)) = lc(p) for homoge-
neous polynomials p we see that τ(h1), . . . , τ(hr) ∈ O(S)[x] are monic polyno-
mials. Because h1, . . . , hr are J-regular, also τ(h1), . . . , τ(hr) are I-regular. Let
f1, . . . , fs denote the monic I-regular functions obtained from τ(h1), . . . , τ(hr)
by discarding those τ(hi)’s whose leading power product is divisible by some
lpp(τ(hj)) for i 6= j. Further let g1, . . . , gs ∈ O(S)[x] be the monic I-regular
functions obtained by reducing fi modulo {f1, . . . , fs}r{fi}. To finish the proof
we will show that g1(a), . . . , gs(a) is the reduced Gröbner basis of Ia for every
a ∈ S. So choose a ∈ S. Since h1(a), . . . , hr(a) is Gröbner basis of Ja it follows
from Lemma 9 that τ(h1(a)), . . . , τ(hr(a)) is a Gröbner basis of τ(Ja) = Ia.
Therefore

〈lpp(Ia)〉 = 〈lpp(τ(h1)(a)), . . . , lpp(τ(hr)(a))〉 = 〈lpp(τ(h1)), . . . , lpp(τ(hr))〉 =

〈lpp(f1), . . . , lpp(fs)〉 = 〈lpp(g1), . . . , lpp(gs)〉.
This shows that g1(a), . . . , gs(a) is a Gröbner basis of Ia and since the gi’s
are mutually reduced also the gi(a)’s are mutually reduced. Consequently
g1(a), . . . , gs(a) is the reduced Gröbner basis of Ia.

Definition 11 (Canonical Gröbner cover). Let I ⊂ K[a][x] be an arbi-
trary ideal and let J ⊂ K[a][x, x0] denote its homogenization. By Proposition
10 the segments of the canonical Gröbner cover of K

m
with respect to J and

Âx,x0 are parametric with respect to I and Âx. The disjoint Gröbner cover of
K

m
with respect to I and Âx thus obtained will be called the canonical Gröbner

cover of K
m

with respect to I and Âx.

In general homogenization does not commute with specialization. For ex-
ample if we homogenize the polynomial a1x1 +1 and then evaluate at a1 = 0 we
get x0, but if we first evaluate and then homogenize we get 1. However, since
the homogenization of a homogeneous polynomial is of course just the polyno-
mial itself, there is no such problem if we only have to deal with homogeneous
polynomials. So if I ⊂ K[a][x] already was homogeneous we immediately see
that for a ∈ K

m
the reduced Gröbner basis of Ja with respect to Âx,x0 equals

the reduced Gröbner basis of Ia with respect to Âx. From this observation it
follows that the definition of the canonical Gröbner cover is unambiguous. I.e.
if the ideal I in Definition 11 is already homogeneous then Definition 11 agrees
with the definition in Theorem 8.

2. Representations and some associated computations

In Section 1 we defined the canonical Gröbner cover (see Theorem 8 and
Definition 11). But before explaining the algorithm to compute this object, we
need to know how we can actually represent all the objects (locally closed sets,

12



regular functions, I-regular functions) appearing in the definitions. And we also
need to be able to perform the evident operations (e.g. boolean combinations of
locally closed sets, addition and multiplication of regular functions, reduction
modulo I-regular functions) with this representations. This is the objective of
this second chapter.

2.1. Representation of locally closed sets
In this section we introduce the canonical representation (C-representation)

and the prime representation (P-representation) of locally closed sets. We also
present the reduced representation (R-representation) which only applies to a
special class of locally closed sets which will be used during the BuildTree
algorithm. We recall that a subset S ⊆ K

m
is called locally closed if it is open

in its closure. This is equivalent to saying that S is of the form S = V(a)rV(b)
for subsets a, b of K[a].

Definition 12 (C-representation). Let S ⊂ K
m

be a locally closed set.
There exist uniquely determined radical ideals a, b of K[a], with S = V(a)rV(b)
and a ⊂ b, such that

• S = V(a) and

• S r S = V(b).

The pair (a, b) is called the C-representation of S.

Proof. Since S is open in S we see that SrS is closed. Existence and unique-
ness now follows from the one to one correspondence between closed sets and
radical ideals.

Remark 13. A locally closed set is closed if and only if b = 〈1〉.

Definition 14 (P-representation). Let S ⊂ K
m

be a locally closed set.
There exists uniquely determined prime ideals

{(pi, {pij : 1 ≤ j ≤ ri}) : 1 ≤ i ≤ r} (2)

of K[a], with S =
⋃

i

(
V (pi)r

⋃
j V(pij)

)
and pi ⊂ pij for all i, j, such that

• S = V(p1) ∪ . . . ∪ V(pr) and

• (S r S) ∩ V(pi) = V(pi1) ∪ · · · ∪ V(piri)

are the minimal decompositions into irreducible closed sets. We call (2) the
P-representation of S. The pi’s are called the components of S and the pij are
called the holes of pi (with respect to S).

Proof. Since S r S is closed the existence and uniqueness follows from the
existence and uniqueness of the minimal decomposition of a closed set into
irreducible closed sets.

13



In the the first step BuildTree of the GröbnerCover algorithm, ap-
pear a special kind of locally closed sets for which the following definition and
representation is needed.

Definition 15 (R-representation). Let S ⊂ K
m

be a locally closed subset
of the form

S = S((a, h)) = V(a)rV(h),

where a ⊂ K[a] is an ideal and h ∈ K[a]. We say that the pair (a, h) is an
R-representation of S if

• a is radical,

• S = V(a),

• h is square-free (radical).3

Remark 16. For a locally closed set allowing an R-representation, the ideal a in
the R-representation is the same as in the C-representation, but the polynomial
h is not unique. For example consider the locally closed set S defined by the R-
representation (〈a−b2〉, a2−b). It is easy to see that (〈a−b2〉, b(b−1)(b2+b+1))
is also a (better) R-representation representing S.

Proposition 17. Let (a, h) be an R-representation of the locally closed set S,
and let f ∈ K[a] be such that f 6∈ a. Then, the algorithm RrepNN of Table 1
computes an R-representation of the locally closed set S1 = V(a)rV(hf).

Proof. We can decompose the proof in simpler steps. Let a, b, p be ideals of
K[a] and g ∈ K[a]. Then

a) If g ∈ b then b : 〈g〉 = 〈1〉.
b) If p is prime and g 6∈ p then p : 〈g〉 = p.

c) If a is radical and a = ∩ipi is its prime decomposition then a : 〈h〉 =⋂
h6∈pi

pi = a′ (also radical).

d) If a is radical and S = V(a) r V(h) then S = V(a : 〈h〉). Thus setting
a′ = a : 〈h〉 the R-representation of S is (a′, h).

Proposition 17 follows from d). We let the proofs as an exercise.

Proposition 18. Let (a, h) be an R-representation of the locally closed set S,
and let f ∈ K[a] be such that f 6∈ a. Then, the algorithm RrepN of Table 2
computes an R-representation of the locally closed set S0 = V(a + 〈f〉)rV(h).

3In practical implementation h should be reduced modulo a, but this is not needed for
theoretical purposes.
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(a′, h′) ← RrepNN(a, h, f)
Input:

(a, h) an R-representation
f ∈ K[a] assumed to be non null on the restriction of S = V(a)rV(h).

Output:
(a′, h′): the R-representation of S1 = V(a)rV(hf)

begin
h1 := hf
a′ := a : 〈h1〉
h′ := squarefree(h1)

enda

aIn practical implementation h1 should be reduced modulo a and a′.

Table 1: RrepNN algorithm

Proof. The proof of Proposition 18 follows as the proof of Proposition 17, and
we let it as an exercise.

The usefulness of reduced representations comes from the following

Proposition 19 (Split). Let (a, h) be the R-representation of the locally closed
set S = V(a)rV(h) ⊂ K

m
and f ∈ K[a]. Then

(i) f(a) = 0 for all a ∈ S if and only if f ∈ a.

(ii) f(a) 6= 0 for all a ∈ S if and only if RrepN(a, h, f) = (〈1〉, h′).
(iii) If neither f(a) = 0 nor f(a) 6= 0 holds for all a ∈ S then S is the disjoint

union of the two non empty disjoint locally closed sets

S0 = S (RrepN(a, h, f)) and S1 = S (RrepNN(a, h, f))

and f(a) = 0 for all a ∈ S0 whereas f(a) 6= 0 for all a ∈ S1.

(iv) If f 6∈ a then the algorithm Split in Table 3 outputs two new R-representations
(a0, h0) and (a1, h1) that splits S into two disjoint sets S0 = V(a0)rV(h0)
and S1 = V(a1)rV(h1) such that

– S0 ∪ S1 = S and S0 ∩ S1 = ∅,
– f(a) = 0 for all a ∈ S0 and f(a) 6= 0 for all a ∈ S1,

– a0 = 〈1〉 if and only if S0 = ∅, so that no splitting is necessary.

Proof.
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(a′, h′) ← RrepN(a, h, f)
Input:

(a, h) an R-representation
f ∈ K[a] assumed to be null on the restriction of S = V(a)rV(h).

Output:
(a′, h): the R-representation of S0 = V(a + 〈f〉)rV(h)

begin
a1 :=

√
a + 〈f〉

a′ := a1 : 〈h〉
end

Table 2: RrepN algorithm

(i) Obviously, if f ∈ a then f(a) = 0 for all a ∈ S((a, h)). For the reciprocal, if
f(a) = 0 for all a ∈ S((a, h)) then f also vanishes on the closure S((a, h)) =
V(a). Thus, as a is radical, by Hilbert’s Nullstellensatz it follows that
f ∈ a.

(ii) The set of all points of S = V(a)\V(h) where f vanishes is V(a+〈f〉)\V(h).
Thus f(a) 6= 0 for all a ∈ S((a, h)) if and only if V(a + 〈f〉) \ V(h) = ∅
and this is equivalent to RrepN(a, h, f) = (〈1〉, 1).

(iii) Obvious from Definition 15.

(iv) Follows from (iii).

As it is described later, GröbnerCover builds the first Gröbner system
using BuildTree that uses R-representations, but when it finishes one needs
to transform them into P-representations. The algorithm RtoPrep in Table
4 will do it. It uses the PrimeDecomp algorithm. PrimeDecomp computes
the minimal prime ideals of the radical of a given ideal of K[a] (see [GTZ88,
Mo05]). We have already commented in the Introduction the complexity of the
prime decomposition [HeMo93]. Nevertheless it should be noted that RtoPrep
needs only 2 special types of prime decompositions. In the first one, we already
know that the given ideal is radical, and in the second we compute the prime
decomposition of a prime ideal plus a square-free polynomial (and non-reducible
modulo the prime ideal). These operations are simpler as the general prime-
decomposition, and special algorithms for this should be designed.

A further observation is that the ideals involved in parametric polynomial
discussions are usually not very complex and so the operations involved are not
so time consuming.

2.1.1. Computing the union of locally closed sets
Let S1, . . . , Sr be locally closed subsets of K

m
. In this subsection we present

the algorithm LCUnion (see Table 5) which computes their union S = S1 ∪
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((a0, h0), (a1, h1)) ← Split(f, (a, h))
Input:

(a, h): an R-representation of S = V(a)rV(h)
f ∈ K[a]: a new polynomial not in a

Output:
(a0, h0): R-representation of the points a ∈ S with f(a) = 0
(a1, h1): R-representation of the points a ∈ S with f(a) 6= 0

begin
(a0, h0) := RrepN(a, h, f)
if a0 = 〈1〉 then

(a1, h1) := (a, h)
else

(a1, h1) := RrepNN(a, h, f)
end if

end

Table 3: Split algorithm

· · · ∪Sr under the assumptions that S is locally closed and the Si’s are pairwise
disjoint. In our main algorithm GröbnerCover such a situation will occur
when Buildtree has finished, because of Theorem 7. The computational as-
pects of boolean operations with locally closed sets have already been treated
in the literature (see e.g. [OS02], [CLLMPX09], [MaMo09]). But in general
the union of locally closed sets need not be locally closed and the above men-
tioned two assumptions can be used to significantly simplify and speed up the
computation.

The first while loop in AddPart is present for efficiency reasons as it will
do, in a simple way, “most of the work”, but the true algorithm is the second
while loop. These routines use SelectMinIdeals that from a set of prime
ideals selects the minimal ideals that do not contain each others.

Proposition 20. Let S1, . . . , Sr be pairwise disjoint, locally closed subsets of
K

m
such that their union S = S1 ∪ · · · ∪ Sr is locally closed. Then LCUnion

computes the P-representation of S.

Proof. As in the algorithm we assume that Si is given in the P-representation
{(

pi
j , {pi

jk : 1 ≤ k ≤ ri
j}

)
: 1 ≤ j ≤ ri

}
.

Since S = S1 ∪ · · · ∪ Sr = V(∩i,jp
i
j) it is clear that the minimal elements

of the set
{
pi

j : 1 ≤ i ≤ r, 1 ≤ j ≤ rj

}
are the components of S. Therefore

we already see that LCUnion yields the correct components. It remains to
prove that LCUnion yields the correct holes. For this we fix a component

17



T ← RtoPrep(a, h)
Input:

(a, h) an R-representation.
Output:

T = {(pi, {pij : 1 ≤ j ≤ si}) : 1 ≤ i ≤ s}: the P-representation of
V(a)rV(h)

begin
T := ∅
D := PrimeDecomp(a)
for p ∈ D do

Tp := PrimeDecomp(p + 〈h〉)
T := T ∪ {p, Tp}

end for
end

Table 4: RtoPrep algorithm

p of S. As seen above p is also a component of some Si0 . Since the Si’s
are pairwise disjoint this Si0 is uniquely determined. We have to show that
algorithm AddPart transforms the holes H = {q1, . . . , qs} of p with respect
to Si0 into the holes of p with respect to S. More precisely, let as in the
algorithm C be the set whose elements are of the form

(
pi

j , {pi
j1, . . . , p

i
jri

j
})

with i ∈ {1, . . . , r}r {i0} and 1 ≤ j ≤ ri and {q′1, . . . , q′s′} = AddPart(H,C).
Then, according to Definition 14 we have to show that V(q′1)∪· · ·∪V(q′s′) is the
minimal decomposition of (S r S) ∩ V(p) into irreducible closed sets. Because
of the usage of SelectMinIdeals there are no inclusions between the q′j ’s and
therefore it suffices to show that

(S r S) ∩ V(p) = V(q′1) ∪ · · · ∪ V(q′s′). (3)

During algorithm AddPart the set Q of prime ideals gets modified in every
step. When a new element, say p′, is being added to Q then it always satisfies
p′ % q for some q which is being deleted from Q. In particular in every step
the closed set ∪q∈QV(q) gets strictly smaller. This shows that AddPart will
terminate. Also as we have p $ qi for the “initial” holes {q1, . . . , qs} of p with
respect to Si0 we obtain p $ q for every q ∈ Q in every step. In particular
V(q′i) ⊂ V(p) for i = 1, . . . , s′.

Dually the set V(p) r (∪q∈QV(q)) gets strictly larger in every step of Ad-
dPart and the algorithm works in such a way that V(p)r(∪q∈QV(q)) will always
be a subset of S because in every step the set V(p)r(∪q∈QV(q)) is only enlarged
with elements contained in some Si. In particular V(p)r(V(q′1)∪· · ·∪V(q′s′)) ⊂ S
or equivalently

(S r S) ∩ V(p) = V(p)r S ⊂ V(q′1) ∪ · · · ∪ V(q′s′).
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T ← LCUnion(S1, . . . , Sr)
Input:

S1, . . . , Sr; pairwise disjoint locally closed subsets of K
m

such that
their union is locally closed

Output:
The P-representation of S = S1 ∪ · · · ∪ Sr

begin
Assume that the Si’s are given in the P-representation

{(
pi

j , {pi
jk : 1 ≤ k ≤ ri

j}
)

: 1 ≤ j ≤ ri
}

.

P := SelectMinIdeals
({pi

j : 1 ≤ i ≤ r, 1 ≤ j ≤ ri})
T := ∅
for p ∈ P do

Let H = {q1, . . . , qs} be the holes of p.

C := {(pi
j , {pi

j1, . . . , p
i
jri

j
}) : 1 ≤ i ≤ r, p is not a component of Si,

for 1 ≤ j ≤ ri}

T := T ∪ {
(p,AddPart(H, C))

}
end for

end

Table 5: LCUnion algorithm

It remains to prove the inclusion “⊃” of equation (3). We have already
observed above that V(q′i) ⊂ V(p). So suppose for a contradiction that there
exists q′ ∈ {q′1, . . . , q′s′} such that V(q′) is not contained in SrS, or equivalently
V(q′)∩S 6= ∅. But then, as S is locally closed, V(q′) is a non empty open subset
of V(q′) and therefore

V(q′) = V(q′) ∩ S =
r⋃

i=1

V(q′) ∩ Si.

Since V(q′) is irreducible we must have V(q′) = V(q′) ∩ Si for some i ∈ {1, . . . , r}.
As V(q′) ⊂ V(qj) for some hole qj of p with respect to Si0 we have V(q′)∩Si0 = ∅
and therefore i 6= i0. Furthermore since

Si =
ri⋃

j=1

(
V(pi

j)rV
(
pi

j1 ∩ · · · ∩ pi
jri

j

))
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Q ← AddPart(H,C)
Input:

H = {q1, . . . , qs} set of prime ideals (the holes of some component p
of some Si)

C = {Cj : 1 ≤ j ≤ l} where Cj = (pj , {pjk : k = 1 . . . rj})
are the P-representations which will be used to “fill the holes”.

Output:
Q = {q′1, . . . , q′s′} the holes of the component p of S = S1 ∪ · · · ∪ Sr

begin
Q := H
while there exists q ∈ Q and j ∈ {1, . . . , l} with q = pj do

Q := SelectMinIdeals
(
(Qr {q}) ∪ {pj1, . . . , pjrj

})

end while
while there exists q ∈ Q and j ∈ {1, . . . , l}

with q ⊃ pj and q + pjk for k = 1, . . . , rj do

Q := SelectMinIdeals

(
(Qr {q})

rj⋃

k=1

PrimeDecomp(q + pik)

)

end while
end

Table 6: AddPart algorithm

it follows

V(q′) =
ri⋃

j=1

(V(q′) ∩ V(pi
j))rV(pi

j1 ∩ · · · ∩ pi
jri

j
)

and again by irreducibility of V(q′) we obtain

V(q′) = (V(q′) ∩ V(pi
j))rV(pi

j1 ∩ · · · ∩ pi
jri

j
) (4)

for some j ∈ {1, . . . , ri}. In particular V(q′) ⊂ V(q′) ∩ V(pi
j) so that pi

j ⊂ q′.
Furthermore V(q′) * V(pi

jk) for k = 1, . . . , ri
j because else the righthand side of

equation (4) would be the empty set. Summarily we have found i, j, (i 6= i0) such
that q′ ⊃ pi

j and q′ + pi
jk for k = 1, . . . , ri

j . This contradicts our assumption
that AddPart has terminated.

2.2. Representation of regular functions
In this section we will explain how we represent regular functions and how

we can add and multiply them effectively. We also present two algorithms

20



(Combine and Extend) which facilitate the conversion between different types
of representations of regular functions.

Let S ⊂ K
m

be a locally closed set and f : S → K a regular function.
By the very definition of a regular function (and quasi-compactness of locally
closed sets) there exists a finite open covering {U1, . . . , Ur} of S and polynomials
p1, . . . , pr, q1, . . . , qr ∈ K[a] such that f(a) = pi(a)

qi(a) for a ∈ Ui and i = 1, . . . , r.
Since we already know (see Section 2.1) how to represent the locally closed sets
Ui we see that the data

{(
U1,

p1

q1

)
, . . . ,

(
Ur,

pr

qr

)}
(5)

determines the regular function f . But this representation can be significantly
improved. We can avoid to make the U ′

is explicit because the fractions pi

qi
∈

K(a) can be chosen in such a way that they have the correct value on every point
of S where they are defined (i.e. where the denominator qi does not vanish).

Definition 21 (Full representation of regular functions). Let f : S →
K be a regular function on the locally closed set S. Let p1, . . . , pr, q1, . . . , qr ∈
K[a]. We say that (p1, . . . , pr; q1, . . . , qr) is a full representation of f if the
following conditions are satisfied.

(i) f(a) = pi(a)
qi(a) for every a ∈ S with qi(a) 6= 0,

(ii) for every a ∈ S there exists j ∈ {1, . . . , r} such that qj(a) 6= 0 and
(iii) pi(a)qj(a) = qi(a)pj(a) for all a ∈ S and 1 ≤ i, j ≤ r.

It follows from (ii) and (iii) that pi(a) = 0 if qi(a) = 0 for some a ∈ S. Note
that it is not required that S r V(qi) is dense in S. We will see later in this
section that every regular function admits a full representation as defined above.
Conversely, it is obvious that if p1, . . . , pr, q1, . . . , qr ∈ K[a] satisfy conditions
(ii) and (iii) then there exists a unique regular function f : S → K such that
(p1, . . . , pr; q1, . . . , qr) is a full representation of f . In the examples we usually
write the full representation more intuitively as {p1

q1
, . . . , pr

qr
}.

Definition 22 (Full representation of I-regular functions). Let S ⊂ K
m

be a locally closed set and f : S → K[x] an I-regular function. We say that a
polynomial

∑
α cαxα is a full representation of f if for every α the coefficient

cα is a full representation of coef(f, α) ∈ O(S).

In practice we will only have to deal with monic I-regular functions with cα0 = 1.

Definition 23 (Generic representation of regular functions). Let S be
a locally closed set, f : S → K a regular function and p, q ∈ K[a]. We say
that the pair (p; q) is a generic representation of f if

(i) S rV(q) is dense in S and
(ii) f(a) = p(a)

q(a) for all a ∈ S rV(q).
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If (p; q) is a generic representation of f : S → K and a ∈ S with q(a) = 0
then also p(a) = 0. To see this we observe that by the very definition of
regular functions we can find polynomials p′, q′ ∈ K[x] such that q′(b) 6= 0 and
f(b) = p′(b)

q′(b) for all b in an open neighborhood U of a in S. For b ∈ U∩(SrV(q))
we have

p(b)
q(b)

= f(b) =
p′(b)
q′(b)

so that (pq′ − qp′)(b) = 0 for all b ∈ U ∩ (S rV(q)). Since S rV(q) is dense in
S also U ∩ (SrV(q)) is dense in U and so (pq′− qp′)(b) = 0 for all b ∈ U . Since
a ∈ U, q(a) = 0 and q′(a) 6= 0 we must have p(a) = 0.

Unfortunately it is not always possible to find a full representation (p; q)
of the regular function f : S → K given by a single pair of polynomials (cf.
Example 1). However, as we will see below, one can always find a generic
representation of f . Also a generic representation (p; q) of f already uniquely
determines f . This is because if a regular function g which is defined on a
dense open subset U of S can be extended to a larger open subset of S then
this extension is unique. (short proof: Let g1, g2 be extensions of g to an open
subset V of S. Since U is dense in S the closure of U in V equals V . But U
is contained in the closed subset V ′ = {a ∈ V : g1(a) = g2(a)} of V so that
V = V ′, i.e. g1 and g2 agree on all of V .)

The advantage of the generic representation is that it is very convenient for
computations, the disadvantage is that one can not immediately determine the
value of f at a ∈ S if the denominator q vanishes at a.

For an I-regular function we can give a similar definition.

Definition 24 (Generic representation of I-regular functions). Let F :
S → K[x] be a monic I-regular function on the locally closed set S. We say
that P ∈ K[a][x] is a generic representation of F if

(i) S rV(q) is dense in S, where q = lc(P ) ∈ K[a]

(ii) F (a, x) = P (a,x)
q(a) for all a ∈ S rV(q).

(iii) P (a, x) = 0 for all a ∈ V(q) ∩ S.

The purpose of algorithm Combine is to compute a generic representation.
And the task of algorithm Extend is to compute a full representation from a
generic representation.

Computing a generic representation of a regular function f : S → K is a
special case of the computation of a generic representation of a monic I-regular
function F : S → K[x]. So the algorithm Combine is designed for the second
option, and is nothing else than a Chinese remainder method [BeWe91].

Before using Combine, a previous algorithm Delta must be applied.

Lemma 25 (Delta). Let {p1, . . . , ps} be a minimal prime decomposition. Then
the algorithm Delta of Table 7 computes polynomials {δ1, . . . , δs, δ} ⊂ K[a]
such that
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{δ1, . . . , δs, δ} ← Delta(p1, . . . , ps)
Input:

p1, . . . , ps ⊂ K[a] prime ideals
It is assumed that p1 ∩ · · · ∩ ps is a minimal prime decomposition.

Output:
{δ1, . . . , δs, δ} ⊂ K[a] such that δi(a) = 0 on

⋃
j 6=iV(pj),

δ(a) = δi(a) 6= 0 on Ui ⊂ V(pi) with Ui = V(pi)

begin
a1 := p1; bs := ps

for i = 2 . . . s− 1 do ai := ai−1 ∩ pi

for i = s− 1 . . . 2 do bi := pi ∩ bi+1

h1 := b2; hs := as−1

for i = 2 . . . s− 1 do hi := ai−1 ∩ bi+1

for i = 1 . . . s choose δi an element of gb(hi) that does not lie in pi

δ :=
∑s

i=1 δi

end

Table 7: Delta algorithm

(i) δi(a) 6= 0 for all a in an open subset a ∈ Ui ⊂ V(pi), i.e. Ui = V(pi),

(ii) δi(a) = 0 for all a ∈ (V(pi)r Ui)
⋃ (⋃

j 6=i V(pj)
)
,

(iii) δ(a) 6= 0 for all a in an open and dense subset a ∈ U =
⋃

j Uj ⊂
⋃

j V(pj),
and δ(a) = δi(a) for all a ∈ Ui,

(iv) δ(a) = 0 for all a ∈
(⋃

j V(pj)
)
r U .

Proof. The algorithm computes hi =
⋂

j 6=i pj . Thus if h ∈ hi then h(a) = 0
for all a ∈ ⋃

j 6=i V(pj). Then it chooses a δi of gb(hi) that does not lie in pi,
so that we have δi(a) 6= 0 on an open subset Ui ⊂ V(pi), and δi(a) = 0 for all
a ∈ (V(pi) r Ui)

⋃ (⋃
j 6=iV(pj)

)
. Finally δ is the sum of all the δi and thus it

has the desired properties.

Now we are prepared to present algorithm Combine (see Table 8), whose
action is summarized in the following

Lemma 26 (Combine). Let F : S → K[x] be a monic I-regular function on the
locally closed segment S whose components are {p1, . . . , ps}. Let {δ1, . . . , δr, δ} ⊂
K[a] be the output functions of Delta applied to S, and assume that we are
given polynomials Pi ∈ K[a][x], i = 1 . . . s such that

lt(Pi) = qi(a)xα0 ,
where qi = lc(Pi), xα0 = lpp(Pi) = lpp(F ),
Pi(a, x)/qi(a) = F (a, x) for all a ∈ V(pi) ∩ S
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P ← Combine ((p1, P1, δ1), . . . , (ps, Ps, δs), δ)
Input:

p1, . . . , ps ⊂ K[a] are the components of the locally closed segment S,
(i.e. S = V (

⋂
i pi)),

P1, . . . , Ps ∈ K[a][x] with lt(Pi) = qix
α0 and qi(a) 6= 0 on a non empty

open subset of V(pi) where Pi(a, x)/qi(a) = F (a, x),
and F is a monic I-regular function F : S → K[x],

δ1, . . . , δs, δ ∈ K[a] are the output of the algorithm Delta.
Output: P ∈ K[a][x] a generic representation of F on S

begin
For i ∈ {1, . . . , s} set

qi := lc(Pi)
Ji := {k ∈ {1, . . . , s} : qi ∈ pk}
q̃i = qi +

∑
j∈Ji

δj

P̃ :=
P1δ1

q̃1δ
+ · · ·+ Psδs

q̃sδ
P = eliminate denominators(P̃ )

end

Table 8: Combine algorithm

Then the algorithm Combine on Table 8 computes a generic representation
P ∈ K[a][x] of F on S with lc(P ) = q so that P (a, x)/q(a) = F (a, x) on each
point a of an open and dense subset of S.

Proof. Let Ui and U =
⋃

j Uj be the segments where the δi(a) have the de-
sired properties. Taking into account the properties of δi(a), the polynomial q̃i

verifies:
q̃i(a) = qi(a) if a ∈ V(pi)
q̃i(a) = qi(a) if a ∈ V(pk) and qi 6∈ pk

q̃i(a) = δi(a) if a ∈ V(pk) and qi ∈ pk

Thus
Pi(a, x)δi(a)

q̃i(a)δ(a)
has a denominator that is non-null for all a ∈ U ′ = S ∩ U ⊂

S, where U ′ is an open and dense subset of S and is null on S r U ′. For
a ∈ U ′

i = Ui ∩ S there is q̃i(a) = qi(a) and δi(a) = δ(a) and thus

Pi(a, x)δi(a)
q̃i(a)δ(a)

=
Pi(a, x)
qi(a)

and for a ∈ U ′
k for k 6= i is δi(a) = 0 and the denominator is non-zero, so that

Pi(a, x)δi(a)
q̃i(a)δ(a)

= 0

24



Thus adding together all these terms and eliminating denominators, the poly-
nomial will be non-zero on U ′ and 0 on S r U ′ and the result follows.

Example 27. Let a = p1 ∩ p2 ⊂ K[a1, a2] with p1 = 〈a1〉, p2 = 〈a2〉 and

S = V(a1a2)r (V(a1, a2 − 1) ∪ V(a1 − 4, a2) ∪ V(a1, a2)).

Define a monic I-regular function F : S → K[x] by P1 = (a2 − 1)x + (a2
2 − 4)

on V(a1) \ (V(a1, a2− 1)∪V(a1, a2)) and P2 = (a1− 4)x+(a3
1− 16) on V(a2)r

(V(a1−4, a2)∪V(a1, a2)). We compute first Delta and obtain δ1 = a2, δ2 = a1,
δ = a1 + a2. Then we apply Combine and obtain:

P̃ = a2
a1+a2

(a2−1)x+(a2
2−4)

a2−1 + a1
a1+a2

(a1−4)x+(a3
1−16)

a1−4

= (a1a2
2−5a1a2−4a2

2+4a2+a2
1a2+a2

1+4a1)x+a4
1a2−a4

1+a1a3
2−20a1a2+16a1−4a3

2+16a2
(a1+a2)(a1−4)(a2−1)

Eliminating denominators and reducing modulo a we obtain

P = (−a2
1 + 4a1 − 4a2

2 + 4a2)x + (−a4
1 + 16a1 − 4a3

2 + 16a2).

We observe that P specializes to non nul in all V(a) except the points (0, 0),
(0, 1), (4, 0), and when normalized, specializes to the normalized P1 on V(a1)
and to the normalized P2 on V(a2), and is 0 on the excluded points (0, 0), (0, 1),
(4, 0).

If the generic representation (p; q) of f : S → K
m

obtained by Combine
algorithm does not satisfy q(a) 6= 0 for all a ∈ S, then we can use the following
algorithm Extend to compute a complete representation (p1, . . . , ps; q1, . . . , qs)
of f .

We note that the K[a]-module defined in algorithm Extend on Table 9 can
be computed using standard Gröbner bases techniques.

Proposition 28 (Extend algorithm). Let S ⊂ K
m

be locally closed and f :
S → K a regular function. Let p, q ∈ K[a] such that S r V(q) is dense in S

and f(a) = p(a)
q(a) for all a ∈ S rV(q). Then algorithm Extend computes a full

representation of f .

Proof. We have to show that (p1, . . . , ps; q1, . . . , qs) = Extend(S, p, q) is a
representation of f . Let i ∈ {1, . . . , s}. By construction piq − qip ∈ a so that
pi(a)
qi(a) = p(a)

q(a) for all a ∈ S r V(qqi). Since S r V(q) is dense in S we see that
(S r V(q)) ∩ (S r V(qi)) = S r V(qqi) is dense in S r V(qi). Therefore, if the
regular function defined by p

q on SrV(qqi) can be extended to SrV(qi) then this
extension is unique. But both f and pi

qi
define such extensions. Consequently

f(a) = pi(a)
qi(a) for all a ∈ S rV(qi) and (i) of Definition 21 is proved.

To verify (ii) fix a ∈ S. The open subsets of S of the form S r V(q′) with
q′ ∈ K[a] are a basis of the topology of S. Thus there exists polynomials
q′, p̃, q̃ ∈ K[a] such that a ∈ S r V(q′) and f(b) = p̃(b)

q̃(b) for all b ∈ S r V(q′). In
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(p1, . . . , ps; q1, . . . , qs) ← Extend(S, p, q)
Input:

S ⊂ K
m

locally closed
p, q ∈ K[a] such that

• S rV(q) is dense in S,

• there exists a regular function f : S → K such that f(a) = p(a)
q(a) for

every a ∈ S rV(q).

Output: A full representation of f

begin
Let a ⊂ K[a] be the radical ideal such that V(a) = S, and(

p1

q1

)
, . . . ,

(
ps

qs

)
a generating set of the K[a]-module

{(
g
h

)
∈ K[a]2 : gq + h(−p) ∈ a

}

which describes the syzygies of (q,−p) modulo a.
end

Table 9: Extend algorithm

particular q̃(b) 6= 0 for all b ∈ S rV(q′). This means that V(q̃)∩ S ⊂ V(q′)∩ S.
If a ⊂ K[a] is the radical ideal with V(a) = S then V(a + 〈q̃〉) ⊂ V(a + 〈q′〉).
Therefore q′ ∈

√
a + 〈q̃〉. So we can find n ≥ 1, h ∈ K[a] and g ∈ a such that

q′n = hq̃ + g. Then we have for b ∈ S rV(q′)

f(b) =
p̃(b)
q̃(b)

=
p̃(b)h(b)
q̃(b)h(b)

=
p′(b)
q′(b)n

with p′ = p̃h.
We claim that (p′q − q′np)q′ lies in a. Because S r V(q) is dense in V(a) it

suffices to see that (p′(b)q(b) − q′n(b)p(b))q′(b) = 0 for all b ∈ S r V(q). But if
b ∈ S ∩V(q′) this is trivial and if b ∈ S rV(q′q) then p′(b)q(b)− q′(b)np(b) = 0
because

p′(b)
q′(b)n

= f(b) =
p(b)
q(b)

.

Consequently there exist h1, . . . , hs ∈ K[a] such that
(

p′q′

q′n+1

)
= h1

(
p1

q1

)
+ · · ·+ hs

(
ps

qs

)
.

Now if qi(a) was equal to zero for every i ∈ {1, . . . , r} then also q′(a) would be
equal to zero which is not the case as a ∈ S rV(q′). Therefore (ii) is proved.
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Finally to verify (iii) of Definition 21 let i, j ∈ {1, . . . , s}. Multiplying the
equation piq−qip ∈ a with qj and replacing qjp with pjq we obtain qjpiq−qipjq ∈
a so that

q(piqj − qipj) ∈ a = p1 ∩ · · · ∩ pr.

Since q /∈ p1, . . . , pr we see that piqj − qipj ∈ a and (iii) is proved.

Example 29. To understand the power of Extend algorithm, we apply it to
the result of Example 27, even if it was not necessary. Applying Extend to the
generic representation obtained for f : S → K we obtain the pair of syzygies:

(
a3
2 − 4a2, a

3
1 + 4a2

2 − 16; a2
2 − a2, a1 + 4a2 − 4

)
.

Observe that whether the first pair is zero on V(p1), the second one is non-null
in all points of S and it extends f to S′ = S ∪ {(0, 0)}, as it assigns to f(0, 0)
the value 4, as expected by the initial data. So we only need the second syzygy.

p

q
=

a3
1 + 4a2

2 − 16
a1 + 4a2 − 4

This provides the full representation of the I-regular function

P = (a1 + 4a2 − 4)x + (a3
1 + 4a2

2 − 16)

showing that f can be defined as regular function in the larger set S′ ⊃ S.

2.3. Computations with I-regular functions
For performing computations with I-regular functions the generic represen-

tation is very practical as the addition and multiplication of the regular functions
can be performed by the usual computations in K(a).

If P is a generic representation of f : S → K[x] and a ∈ S with lc(P )(a) = 0
then P (a, x) = 0. This follows immediately from Definition 24.

Using generic representations it is very easy to perform computations like
reduction with monic I-regular functions. The disadvantage of the generic rep-
resentation is that the value of f at a ∈ S can not immediately by determined
from p if lc(p)(a) = 0. However we only need to apply Extend to the coefficients
to convert a generic representation into a full representation. I.e.

∑
α

Extend(S, pα, lc(p))xα

is a full representation of f .
Computations (like reduction) with monic I-regular functions are most easily

performed using the generic representation. The actual computations take place
in K[a, x] and the operations with the I-regular functions simply correspond to
the usual operations in K[a, x] only that we occasionally have to multiply with
the leading coefficient of a generic representation to avoid denominators.
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G = ((Si, Bi) : i = 1, . . . , s) ← GCover(F,Âx).
Input: F ⊂ K[a][x]: finite set of homogeneous polynomials generating

the ideal I
Output: G = ((Si, Bi) : i = 1, . . . , s): the canonical Gröbner cover of I,

the basis elements are given in generic representation

begin
BT := the terminal vertices of BuildTree(F )
L := the list of all lpp’s occurring in BT
G := ∅
for each T ∈ L do

M := the list of all segments ((a, h), B) given in BT with lpp equal T
H := M without the bases
S := LCUnion(H)
Let p1, . . . , pr denote the components of S.
For i = 1, . . . , r let ((ai, hi), Bi) denote the unique segment in M

such that ai has component pi. #{This has already been computed
internally by LCUnion}

B := Basis(((p1, B1), . . . , (pr, Br)))
G := G ∪ {(S, B)}

end do
end

Table 10: GCover algorithm

3. The GCover algorithm

In this section we describe the algorithm GCover. It is the heart of the
main algorithm GröbnerCover. Algorithm GCover takes as input a finite
set of homogeneous polynomials (with respect to the variables) which generate
the ideal I and computes the canonical Gröbner cover of I as given in Theorem
8. The I-regular functions in the bases are given in generic representation.

Throughout Section 3 we assume that I ⊂ K[a][x] is a homogeneous ideal
given by a finite set of homogeneous generators. The case of non-homogeneous
ideals will be treated in Section 4. Of course we also have a fixed term-order
Âx on the variables but it will usually not be indicated.

We now describe the action of GCover. It has three main steps: BuildTree,
LCUnion and Basis. We start with the call to BuildTree. Algorithm
BuildTree (described in Theorem 30 in Section 3.2) is the first part of our
main algorithm. It builds a discussion tree, whose terminal vertices contain a
disjoint, reduced comprehensive Gröbner system. This reduced Gröbner system
can equivalently be interpreted as a Gröbner cover where the elements of the
bases are given in a generic representation. The lpp-segments are partitioned
into smaller segments and in each of these segments the I-regular functions in
the Gröbner basis can be fully represented by a single polynomial. More explic-
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itly the result of BuildTree consists of a set of pairs {(Si, Bi) : 1 ≤ i ≤ s},
where the Si are parametric subsets of K

m
given in R-representation (see Sec-

tion 2.1), and the Bi are subsets of K[a][x] such that, lpp(Bi) is the minimal
generating set of lpp(Si) and evaluating the elements of Bi at a ∈ Si yields the
reduced Gröbner basis of the specialized ideal Ia up to normalization.

In the next step we group together all the segments Si with the same leading
power products: From Theorem 7 we know that the union of all Si’s with the
same lpp is locally closed and parametric. Thus we can use algorithm LCUnion
to compute this union. First we transform the R-representations of the Si’s
into P-representations and then we apply algorithm LCUnion to obtain the
complete lpp-segments in P-representation. Thus we have already found the
segments of the canonical Gröbner cover.

It remains to compute the generic representations of the basis elements. This
is the task of algorithm Basis which is described in Subsection 3.3.

3.1. Auxiliary algorithms
In this subsection we discuss two algorithms that are used throughout the

whole computations: Pdiv and PNormalForm.
Pdiv is the Hironaka reduction of a polynomial p ∈ K[a][x] modulo {p1, . . . , ps}

over a locally closed segment S = V(a) r V(b). For details see [Mo02]. It is
assumed that, for all a ∈ S and for all i, lc(pi)(a) 6= 0. The reduction is:

hp = q1p1 + · · ·+ qsps + r (6)

satisfying

1. q1, . . . , qs, r ∈ K[a][x],
2. h ∈ K[a] is a power product in lc(p1), . . . , lc(ps),
3. lpp(qipi) ≤ lpp(p) for i = 1, . . . , s,
4. no power product in the support of r is divisible by lpp(pi) for i = 1, . . . , s.

It is easy to prove ([Mo02]) that the specialization of the Pdiv reduction for
any a ∈ S

h(a)p(a, x) = q1(a, x)p1(a, x) + · · ·+ qs(a, x)ps(a, x) + r(a, x)

is the usual division of p(a, x) by {p1(a, x), . . . , ps(a, x)} on K[x]. The input-
output scheme of algorithm Pdiv is

r ← Pdiv(p, {p1, . . . , ps}).
Given a polynomial p ∈ K[a][x] and the R-representation (a, h) of a locally

closed subset S the second algorithm PNormalForm computes a “normal-
form” r ∈ K[a, x] of p on S. It first reduces the coefficients of p modulo a and
then eliminates all factors of p that are elements of K[a] and are non-null on all
points of S.

The input-output scheme is

r ← PNormalForm(p, (a, h)).
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3.2. The BuildTree algorithm
We begin now the discussion of the first crucial part of our algorithm GCover,

namely the algorithm BuildTree.
This subsection is organized in descending design. So we present first the

main algorithm BuildTree, then the recursive algorithm RecBuildTree
called by BuildTree, and finally the two sub-algorithms DiscussPolys and
DiscussSPolys used by RecBuildTree. At the end we also detail the aux-
iliary algorithms ReduceGB. It is recommended to read this section first in
the given order (without regarding the proofs) and then read the proofs in the
opposite order: DiscussPolys, DiscussSpolys and finally BuildTree.

BuildTree is a Buchberger like algorithm for computing a Gröbner basis.
As here the coefficients of the polynomials are polynomials in the parameters,
the algorithm branches every time when it has to deal with a polynomial of the
basis or an S-polynomial whose leading coefficient vanishes at some, but not at
all points of the locally closed set under consideration. It builds up a dichotomic
binary tree, whose branches at each vertex correspond to the annihilation or not
of a new polynomial of K[a]. So, at a vertex, some polynomials, say N ⊂ K[a]
have been assumed to be null and some others, say W ⊂ K[a], have been
assumed to be non-null. This determines a locally closed subset S of K

m
, of

the special kind for which R-representations can be used (see subsection 2.1 ).
I.e.

S = V(N)rV(h) ⊂ K
m

, with h =
∏

w∈W

w ∈ K[a].

A vertex of the tree is given by a list of zeros and ones which describes its
position in the tree. At each vertex of the tree BuildTree stores the vertex
data ((a, h), B, l, P ). Where

• (a, h) is an R-representation of S = V (a)rV(h),

• B is a finite list of polynomials in K[a, x] such that for every a ∈ S the
polynomials obtained from B by specialization are a generating set of Ia.
The i-th element in this list will be denoted with B[i].

• 0 ≤ l ≤ |B| is an integer such that for i = 1, . . . , l we have lc(B[i])(a) 6= 0
for all a ∈ S and so far the algorithm has not obtained information about
the vanishing behavior of lc(B[l + 1]) on S,

• P is a list of pairs of elements of {1, . . . , l} such that for each pair (i, j) ∈ P
the S-polynomial of B[i] and B[j] has not yet been considered in the
algorithm.

Using R-representations it is very easy to split recursively into two di-
chotomic branches when the algorithm has to decide if a new polynomial f ∈
K[a] is null or non-null on the given locally closed set S. This is done by the
recursive algorithm RecBuildTree that uses the algorithm Split (see Table
3) already discussed in section 2.
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T ← BuildTree(F )
Input: F ⊂ K[a][x] a finite set of homogeneous polynomials generating

the ideal I
Output: T : the tree where all data are stored. At the terminal vertices

these data form a disjoint Gröbner cover.

begin
T := a global empty tree
((a, h), B, l, P ) := ((〈0〉, 1), F, 0, ∅)
Let r be the root node of the initially empty tree T .
RecBuildTree(r, (a, h), B, l, P )

end

Table 11: BuildTree algorithm

Theorem 30 (BuildTree algorithm). Given a finite set F ⊂ K[a][x] of homo-
geneous polynomials generating the ideal I, the algorithm BuildTree builds a
finite binary tree T with root such that at each terminal vertex v of T the data
((av, hv), Bv) with the following properties is stored.

(i) (av, hv) is an R-representation of the locally closed set Sv = S((av, hv))
and Bv is a finite subset of K[a, x].

(ii) Sv is parametric, lpp(Bv) is the minimal generating set of lpp(Sv) and
Bv specializes to the reduced Gröbner basis of Ia (up to normalization) for
every a ∈ Sv.

(iii) The Sv’s are pairwise disjoint and cover the whole K
m

(as v ranges over
all terminal vertices).

So in essence the terminal vertices of BuildTree give a disjoint Gröbner cover
of K

m
with respect to I.

Proof. The algorithm BuildTree only creates the root vertex of the tree T
and then calls the recursive algorithm RecBuildTree.

If RecBuildTree is called at vertex v with the vertex data ((a, h), B, l, P )
then either v becomes a terminal vertex or the algorithm has to split, so that v
has two successor vertices v0 and v1 and RecBuildTree calls itself at v0, v1

with the new vertex data ((a0, h0), B0, l0, P0), ((a1, h1), B1, l1, P1) respectively.
We note that in the second case we have a0 6= 〈1〉 and a0 % a by Lemmas 31
and 32.

If we follow RecBuildTree along a path from the root down the tree
then we find that it essentially performs the usual Buchberger algorithm: First
RecBuildTree repeatedly calls DiscussPolys until we obtain a basis B such
that the leading coefficient of every polynomial in B is non-zero at every point
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RecBuildTree(v, (a, h), B, l, P )
Input:

v: current vertex of the global tree T at which RecBuildTree is called
((a, h), B, l, P ): the vertex data of v

Output:
Builds recursively the tree T , storing the vertex data at the vertices.

begin
Store ((a, h), B, l, P ) in v.
B′ := B
if l < |B| then

(B′, (a0, h0), l0, P0, (a1, h1), l1, P1) :=
DiscussPolys((a, h), B, l, P )

l := l0
end if
if l = |B′| and B′ 6= ∅ then

(B′, (a0, h0), l0, P0, (a1, h1), l1, P1) :=
DiscussSPolys(B′, (a, h), l, P )

end if
if a0 6= 〈1〉 then

Create two new vertices v0 and v1 descending from v
RecBuildTree(v0, (a0, h0), B′, l0, P0)
RecBuildTree(v1, (a1, h1), B′, l1, P1)

else # {then P = ∅}
B′ := RedGB(MinGB(B′))
Store ((a, h), B′) in v.

end if
end

Table 12: RecBuildTree algorithm

of the current locally closed set S (i.e l = |B|). Then we call DiscussSPolys
and advance in the Buchberger algorithm. If at some vertex v we take the
right branch to v0 when DiscussSPolys has found a splitting, then the new
vertex data (a0, h0), B0, l0, P0) at v0 satisfies l0 = |B0| − 1 and DiscussPolys
will be called. If we take the right branch to v1 then the new vertex data
((a1, h1), B1, l1, P1) satisfies l1 = |B1| and DiscussSPolys will advance in the
Buchberger algorithm.

We now prove that the tree is finite, i.e. the algorithm terminates. Suppose
that BuildTree creates an infinite tree. Then there is an infinite path starting
from the root. At a vertex v of the path, the path can either turn left to v1 or
right to v0. If the path would turn right an infinite number of times then we
would obtain an infinite strictly increasing sequence of ideals in K[a] which is
not possible. Thus from a certain vertex onwards the path always keeps left,
making only new non-null assumptions. But then the finiteness follows from
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(B′, (a0, h0), l0, P0, (a1, h1), l1, P1) ← DiscussPolys((a, h), B, l, P )
Input:

((a, h), B, l, P ): the current vertex data
Output:

((a0, h0), B′, l0, P0): a new vertex data making a new null assumption
((a1, h1), B′, l1, P1): a new vertex data making a new non-null assumption

begin
B′ := B
split := false
while split = false and l < |B′| do

f := PNormalForm(B′[l + 1], (a, h))
if f = 0 then B′ := B′ with B′[l + 1] deleted
else B′ := B′ with B′[l + 1] replaced by f

((a0, h0), (a1, h1)) := Split(lc(f), (a, h))
if a0 6= 〈1〉 then split := true
l0 := l; l1 := l + 1;
P1 := P ∪ {(j, l1) : 1 ≤ j < l1, (B[j], B[l1]) ∈ Buchberger pair selection}
P0 := P
else l := l + 1
P := P ∪ {(j, l) : 1 ≤ j < l, (B[j], B[l]) ∈ Buchberger pair selection}
end if

end if
end while
if split = false then

(a1, h1) := (a, h); (a0, h0) := (〈1〉, h); l0 := |B′|; l1 := |B′|; P0 := P ; P1 := P
end if

end

Table 13: DiscussPolys algorithm

the termination of the usual Buchberger algorithm.
Suppose the algorithm eventually reaches a terminal vertex v. This can only

happen if the current list P is empty and we see from Lemma 32 that for each a
in the current locally closed subset S = Sv the current basis B′ specializes to a
Gröbner basis of Ia. Now for RecBuildTree it only remains to minimize and
to reduce the basis. The algorithm stores the new basis in v and quits. Thus, as
claimed in (ii), we see that lpp(Bv) is the minimal generating set of lpp(Ia) and
that Bv specializes, up to normalization, to the reduced Gröbner basis of Ia for
every a ∈ Sv. Next we will prove that Sv is parametric. In general the elements
of Bv need not lie in I, because we have reduced them modulo the assumed
null-conditions. But by construction for every p ∈ Bv there are polynomials
p′ ∈ I and q′ ∈ K[a] such that q′(a) 6= 0 and q′(a)p(a, x) = p′(a, x) for all
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a ∈ Sv and so

p(a, x)
lc(p)(a)

=
q′(a)p(a, x)
q′(a)lc(p)(a)

=
p′(a, x)

coef(p′, lpp(p))(a)

for all a ∈ Sv and we see that Sv is parametric (cf. Remark 5).
Claim (i) is obvious and Claim (iii) is immediate from the algorithm and

Lemmas 31 and 32.

If we are given the vertex data ((a, h), B, l, P ) then we already know that, for
all a ∈ S((a, h)) and i = 1, . . . , l, is lc(B[i])(a) 6= 0 . The task of DiscussPolys
is to obtain new information about the vanishing behavior of the leading coef-
ficients of the next polynomials B[l + 1], B[l + 2], . . . in the list until a splitting
is necessary. The result of DiscussPolys is summarized in the following

Lemma 31 (DiscussPolys algorithm). Suppose that DiscussPolys is called
with the vertex data ((a, h), B, l, P ). Then two new vertex data ((a0, h0), B′, l0, P0)
and ((a1, h1), B′, l1, P1) with the following properties are obtained:

(i) S = S0 ] S1 where S = S((a, h)), S0 = S((a0, h0)) and S1 = S((a1, h1)),

(ii) – either a0 = 〈1〉, i.e. S0 = ∅, S1 = S and then l1 = |B′|, which means
that all the leading coefficients of polynomials in B′ have been tested
and are non-null on all of S = S1,

– or a0 6= 〈1〉 and then a0 % a, l0 = l1 − 1.

(iii) P1 and P0 are updated using the standard strategy and the Buchberger
criterium of eliminating the pairs with disjoint set of variables of their
lpp4.

Proof. First of all we note that DiscussPolys will only be called with l < |B|.
The list B′ of polynomials is initially equal to B. The algorithm starts with
testing if B[l + 1] specializes to zero for every point of S. If this is the case
we can simply delete B[l + 1] from our list of polynomials and continue with
considering the next polynomial B[l +2] = B′[l +1] in the list. If we eventually
find a polynomial which does not vanish identically on S, i.e. f 6= 0, then we
use algorithm Split to test if there is an a ∈ S with lc(f)(a) = 0, i.e. a0 6= 〈1〉.
If this is the case we have found a proper splitting, and the two appropriate new
vertex data are returned. If lc(f)(a) 6= 0 for all a ∈ S, i.e. a0 = 〈1〉, then no
splitting is necessary and we continue with the next polynomial in the list.

If it happens that we reach the end of the list then we must have split = false
and the last “if”-statement guarantees that we get back the correct result.

So (i) is a direct consequence of Proposition 19 and the remaining claims are
immediate from the algorithm.

4This is what is done in the present implementation, but this should be improved using
better strategies as those developped in [GeMo88, Gi91, Fau02].

34



(B′, (a0, h0), l0, P0, (a1, h1), l1, P1) ← DiscussSPolys((a, h), B, l, P )
Input:

(B, (a, h), l, P ): the current vertex data
Output:

((a0, h0), B′, l0, P0): a new vertex data making a new null assumption
((a1, h1), B′, l1, P1): a new vertex data making a new non-null assumption

begin
B′ := B; P1 := P
split := false
while split = false and P1 6= ∅ do

Pick (i, j) ∈ P1 #{standard choice}
P1 := P1 \ {(i, j)}
f := lc(B[j])B[i]− lc(B[i])B[j]
f := PNormalForm(Pdiv(f, B′), (a, h))
if f 6= 0 then

B′ := B′ ∪ {f}
((a0, h0), (a1, h1)) := Split(lc(f), (a, h))
if a0 6= 〈1〉 then split := true

l0 := |B′| − 1; P0 := P1

l1 := |B′|; P1 := P1 ∪ {(j, l1) : 1 ≤ j < l1, (B[j], f) ∈ BPS}
else l := l + 1; P1 := P1 ∪ {(j, l) : 1 ≤ j < l, (B[j], f) ∈ BPS}
end if

end if
end while
if split = false then

(a1, h1) := (a, h); (a0, h0) := (〈1〉, h); l0 := |B′|; l1 := |B′|; P0 := ∅; P1 := ∅
end if

end

Table 14: DiscussSPolys algorithm

The algorithm DiscussSPolys has some similarities with DiscussPolys.
However DiscussPolys is always called with a vertex data ((a, h), B, l, P )
satisfying l < |B| whereas the vertex data for DiscussSPolys always sat-
isfies l = |B|. In other words if DiscussSPolys is called with vertex data
((a, h), B, l, P ) then lc(p)(a) 6= 0 for all p ∈ B and a ∈ S = S((a, h)). The task
of DiscussSPolys is simply to carry on with the usual Buchberger algorithm
until the next splitting is necessary, i.e until we encounter a leading coefficient
which vanishes on some but not at all points of S.

The action of DiscussSPolys is summarized in Table 14.

Lemma 32 (DiscussSPolys algorithm). Suppose that DiscussSPolys is called
with the vertex data ((a, h), B, l, P ). Then two new vertex data ((a0, h0), B′, l0, P0)
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and ((a1, h1), B′, l1, P1) with the following properties are obtained:

(i) S = S0 ] S1 where S = S((a, h)), S0 = S((a0, h0)) and S1 = S((a1, h1)),

(ii) – Either a0 = 〈1〉, i.e. S0 = ∅, S1 = S and then lc(p)(a) 6= 0 for all
a ∈ S = S1 and p ∈ B′. Also P1 = ∅, so that all the S-polynomials
of pairs of elements of B′ reduce to zero over S = S1. In particular
B′ specializes to a Gröbner basis of Ia for every a ∈ S.

– Or a0 6= 〈1〉 and then a0 % a, l0 = |B′| − 1, l1 = |B′|.
(iii) P1 and P0 are updated using the current strategies.

Proof. We recall that lc(p)(a) 6= 0 for all p ∈ B and a ∈ S = S((a, h)).
The algorithm starts with picking a pair of polynomials of B′ = B specified in
P1 = P . This pair is removed from the list and we test if the reduction of the
corresponding S-polynomial modulo B′ vanishes identically on S, i.e. if f = 0.
If this is the case the algorithm continues by picking the next pair from P1.
Otherwise, i.e. if f 6= 0 we add f to the basis and use algorithm Split to test
if there is an a ∈ S with lc(f)(a) = 0, i.e. a0 6= 〈1〉. If this is the case we have
found a proper splitting, and the two appropriate new vertex data are returned.
If lc(f)(a) 6= 0 for all a ∈ S, i.e. a0 = 〈1〉, then no splitting is necessary and we
continue by picking the next pair in P1.

If it happens that we remove the last element from P1 then we must have
split = false and the last “if”-statement guarantees that we return the correct
result. We note that only in this case we will have a0 = 〈1〉. That the list P1

is empty means that for each pair from the current basis B′ = {p1, . . . , pr} the
corresponding S-polynomial reduces to zero modulo B′ over S. In other words
for every a ∈ S the polynomials {p1(a, x), . . . , pr(a, x)} satisfy Buchberger’s
criterion and thus are a Gröbner basis of Ia.

Finally, we give the details for algorithm ReduceGB. It is the obvious gen-
eralization of the final steps in the usual Buchberger algorithm. It is described
in Table 15. First it minimizes the Gröbner basis and then fully reduces the
minimized Gröbner basis.

3.3. Computing the Bases
The last main step in algorithm GCover is Basis. The algorithm Basis

determines generic representations of the monic I-regular functions in the bases
of the canonical Gröbner cover. It is called by GCover for each lpp-segment.

When Buildtree has finished GCover has already obtained a finite par-
tition of K

m
into parametric subsets S1, . . . , Ss and bases B1, . . . , Bs ⊂ K[a, x]

such that lpp(Bi) is the minimal generating set of lpp(Si) and evaluating Bi

at a ∈ Si yields the reduced Gröbner basis of Ia (up to normalization) for
i = 1, . . . , s.

The next step is to compute the lpp-segments (see Theorem 8). For a fixed
occurring set T of leading power products the corresponding lpp-segment

S =
⋃

lpp(Si)=T

Si
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B′ ← ReduceGB(B)
Input: B: a finite subset of K[a][x] such that for every a in a certain

locally closed subset S of K
m

we have lc(p)(a) 6= 0 for all p ∈ B
and B(a) ⊂ K[x] is a Gröbner basis.

Output: B′: a finite subset of K[a][x] such that B′(a) is (up to normaliza-
tion) the reduced Gröbner basis of 〈B(a)〉 ⊂ K[x] for every a ∈ S.

begin
Let B′ ⊂ B be the set of all polynomials in B with minimal lpp.
for p ∈ B′ do

B′ := B′ r {p}
p := Pdiv(p,B′)
B′ := B′ ∪ {p}

end do
end

Table 15: ReduceGB algorithm

is computed with algorithm LCUnion which was already explained in subsec-
tion 2.1.1. If p1, . . . , pr are the components of S (see Definition 14) then for
each i ∈ {1, . . . , r} there exists a unique j = j(i) such that lpp(Sj) = T and Sj

has pi as component (cf. the beginning of the proof of Proposition 20). This Sj

is already determined by LCUnion. The input for algorithm Basis then is

((p1, Bj(1)), . . . , (pr, Bj(r))).

Proposition 33 (Basis algorithm). Let I ⊂ K[a][x] be a homogeneous ideal and
S an lpp-segment with respect to I. Then algorithm Basis computes generic
representations of the elements in the reduced Gröbner basis of I over S.

Proof. From the theoretical point of view the while loop in algorithm Basis
is not necessary. Algorithm Combine would give the desired result in any case.
So we only need to explain the while loop.

As in the algorithm fix t ∈ T and for i = 1, . . . , r let pi ∈ Bi denote the
unique element of Bi with lpp(pi) = t. Let f denote the monic I-regular function
in the reduced Gröbner basis of I over S with lpp(f) = t. The purpose of the
while loop is simply to test if already one of the pi’s is a generic representation
of f . Fix i ∈ {1, . . . , r}.

We claim that pi is a generic representation of f if and only if for each
j ∈ {1, . . . , r} we have lc(pi) /∈ pj and the coefficients of lc(pi)pj − lc(pj)pi lie in
pj .

But lc(pi) /∈ pj for j = 1, . . . , r is equivalent to saying that S r V(lc(pi)) is
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B ← Basis(H)
Input:

H = ((p1, B1), . . . , (pr, Br)): The pi’s are pairwise distinct prime ideals
of K[a] and they are the components of an lpp-segment S. The Bi’s

are
subsets of K[a][x] all having the same lpp T .

Output:
B: a finite subset of K[a][x] with lpp(B) = T and such that each
element of B is a generic representation of the corresponding element
in the Gröbner Basis of I over S

begin
B := ∅
for each t ∈ T do

For i = 1, . . . , r let pi denote the polynomial of Bi with lpp(pi) = t.
i := 1; generic := false
while generic = false and i ≤ r do

if lc(pi) /∈ pj and the coefficients of lc(pi)pj − lc(pj)pi lie in pj

for j = 1, . . . , r
then generic := true; p := pi

end if
i := i + 1

end while
if generic = false then

p := Combine(((p1, p1), . . . (pr, pr)))
end if
B := B ∪ {p}

end do
end

Table 16: Basis algorithm

dense in S and that the coefficients of lc(pi)pj − lc(pj)pi lie in pj means that

pi(a, x)
lc(pi(a))

=
pj(a, x)
lc(pj(a))

= f(a)

for every a ∈ S ∩ V(pj) r V(lc(pi)lc(pj)) and j = 1, . . . , r. Thus the claim is
immediate from Definition 24.

4. The GröbnerCover algorithm

In this section we present our main algorithm GröbnerCover. It takes as
input a finite generating set of the ideal I ⊂ K[a, x] (and of course the term-
order Âx on the variables) and computes the canonical Gröbner cover of K

m
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with respect to I and Âx (Definition 11). The monic I-regular functions in the
bases are given in full representation. The ideal I need not be homogeneous but
nevertheless GröbnerCover will distinguish the two cases whether or not the
generators are homogeneous.

If the generators are homogeneous then GröbnerCover calls algorithm
Gcover to obtain the canonical Gröbner cover. In this case it only remains to
convert the generic representations of the basis elements given by Gcover into
full representations. This is done by algorithm ExtendPoly.

If not all the generators are homogeneous we first need to compute the ho-
mogenization J of I. Then we apply Gcover to a finite generating set of J
and obtain the canonical Gröbner cover of K

m
with respect to J . By defi-

nition the segments of the canonical Gröbner cover with respect to I are the
segments of the canonical Gröbner cover with respect to J . And the bases in
the canonical Gröbner cover with respect to I are obtained from the bases in
the canonical Gröbner cover with respect to J by dehomogenizing, minimizing
and reducing (as demonstrated in the proof of Proposition 10). Thus we only
have to apply algorithm ReduceGB (see Table 15) to obtain the generic rep-
resentaions of the basis elements in the canonical Gröbner cover with respect
to I. As in the homogeneous case we apply ExtendPoly in the end to obtain
full representations.

The GröbnerCover algorithm is given in Table 17.

4.1. The case of arbitrary ideals
As explained above, if the ideal I is not homogeneous then algorithm Gröb-

nerCover will need to compute its homogenization. The purpose of this short
subsection is to show how this can be done. Throughout this subsection we
suppose that I ⊂ K[a][x] is an arbitrary ideal and as always we also have a
fixed monomial order Âx on the variables. As in Section 1 we consider the ring
K[a][x, x0] with the extended monomial order Âx,x0 defined by

xαxd
0 Âx,x0 xβxe

0

if xα Âx xβ or xα = xβ and d > e. For a polynomial P ∈ K[a][x] we denote
with deg(P ) its total degree with respect to x and with η(P ) ∈ K[a][x, x0] its
homogenization, i.e. η(P ) = x

deg(P )
0 P

(
x1
x0

, . . . , xn

x0

)
. With J we denote the

homogenization of I, i.e.

J =
〈
η(P ) : P ∈ I

〉 ⊂ K[a][x, x0].

Proposition 34 (Basis of homogenization). Let I ⊂ K[a][x] be an arbitrary
ideal, >x a graded term-order on x and >x,a a product order considering also
the parameters a as variables. If g1, . . . , gm is a Gröbner basis of I with respect
to >x,a. Then η(g1), . . . , η(gm) is a generating set of the homogenization J ⊂
K[a][x, x0] of I.
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G ← GröbnerCover(F,Âx)
Input:

F : a finite generating set of the ideal I ⊂ K[a][x]
Output:

G: the canonical Gröbner cover of K
m

with respect to I
begin

if all the elements in F are homogeneous then
((S1, B1), . . . , (Sr, Br)) := GCover (F,Âx)

else
let f1, . . . , fs ∈ K[a][x, x0] be a generating set of the

homogenization of I
((S1, B1), . . . , (Sr, Br)) := GCover ({f1, . . . , fs},Âx,x0)
for i = 1, . . . , r do

Bi := ReduceGB(Bi(x, 1))
end do

end if
G := ∅
for i = 1, . . . , r do B := ∅

for p ∈ Bi do
B := B ∪ {ExtendPoly(Si, p)}

end do
G := G ∪ {(Si, B)}

end do
end

Table 17: Algorithm GröbnerCover

Proof. Let g ∈ I ⊂ K[a, x]. Since g1, . . . , gm is a Gröbner basis there ex-
ist polynomials f1, . . . , fm ∈ K[a, x] such that g = f1g1 + . . . + fmgm with
lppx,a(g) ≤x,a lppx,a(figi) for every i. Since >x,a is a product order this im-
plies lppx(g) ≤x lppx(figi) for every i, and thus, >x being a graded order also
deg(figi) ≤ d = deg(g). Therefore

η(g) = x
d−deg(f1g1)
0 η(f1g1) + . . . + x

d−deg(fmgm)
0 η(fmgm)

= x
d−deg(f1g1)
0 η(f1)η(g1) + . . . + x

d−deg(fmgm)
0 η(fm)η(gm)

∈ 〈η(g1), . . . , η(gm)〉.
Consequently J = 〈η(g1), . . . , η(gm)〉.

4.2. The ExtendPoly algorithm
The task of the ExtendPoly algorithm is to convert a generic representa-

tion of a monic I-regular function into a full representation.
So let S ⊂ K

m
be a locally closed subset, f : S → K[x] a monic I-regular

function and p =
∑

α pαxα ∈ K[a][x] a generic representation of f (see Defini-
tion 24). Generic representations are very practical to handle on the computer

40



q ← ExtendPoly(S, p)
Input:

S: a locally closed subset of K
m

p =
∑

α pαxα ∈ K[a][x]: a generic representation of a monic I-regular
function f on S

Output:
q: a full representation of f on S

begin
Let (a, b) be the C-representation of S.
if b ⊆

√
a + 〈lc(p)〉 then q :=

∑
α(pα; lc(p))xα

else
q :=

∑
α Extend(S, pα, lc(p))xα

end if
end

Table 18: Algorithm ExtendPoly

and allow us to manipulate with monic I-regular function easily, however they
have the drawback that the value f(a) of f at a point of a ∈ S can not imme-
diately be determined if lc(p)(a) = 0. This is why ExtendPoly is applied at
the very end in GröbnerCover algorithm.

If lc(p)(a) 6= 0 for all a ∈ S there is no need to take action, and formally
the polynomial

∑
α(pα; lc(p))xα is a full representation of f . Otherwise we

simply apply Extend algorithm to the coefficients: We know that (pα; lc(p))
is a generic representation of coef(f, α) ∈ O(S) and so Extend(S, pα, lc(p))
provides a full representation of coef(f, α) and

∑
α

Extend(S, pα, lc(p))xα

is a full representation of f .
To test if lc(p)(a) 6= 0 for all a ∈ S we can use the following simple lemma.

Lemma 35. Let q ∈ K[a], a, b ideals of K[a] and S = V(a) r V(b). Then
q(a) 6= 0 for all a ∈ S if and only if

b ⊆
√

a + 〈q〉.

Proof. q(a) 6= 0 for all a ∈ S if and only if V(q) ∩ S = ∅. We have:

V(q) ∩ S = ∅ ⇔ V(q) ∩ (V(a)rV(b)) = ∅ ⇔ V(a) ∩ V(q) ∩ (V(a)rV(b)) = ∅
⇔ V(a + 〈q〉) ∩ (V(a)rV(b)) = ∅ ⇔ V(a + 〈q〉) ⊆ V(b) ⇔ b ⊆

√
a + 〈q〉

The correctness of ExtendPoly algorithm given in Table 18 is immediate
from the above explanations.
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4.3. Some remarks on implementation issues
When presenting our algorithms in this article we have tried to keep things

as simple as possible. Our goal was to clearly state what the algorithm does
without giving too much technical details. For the sake of a clear exposition
and to keep this paper at a reasonable length we have sometimes left out im-
provements that are present in the actual implementation. The purpose of this
subsection is to give some hints on this improvements and to give some insights
into the practical performance of the GröbnerCover algorithm.

A critical aspect for the efficiency of the whole GröbnerCover algorithm
is the use of primary decomposition, that is essential in every algorithm that
tries to obtain a canonical discussion of parametric polynomial systems. At this
effect, it should be noted, that in the first BuildTree part of the algorithm
where most of the computation is done, the incremental algorithms RrepNN
and RrepN avoid the complete use of primary decomposition, and only simple
incremental radicals are used (in RrepN). Only after BuildTree is finished,
the R-representations must be transformed into P-representations, and then the
routine RtoPrep involves primary decomposition. An appropriate design of the
special primary decompositions involved there is mandatory for effectiveness.

There is another critical problem inside Buildtree, namely the computa-
tion of the “generic” case, i.e. when the algorithm follows the path to the left
most terminal vertex making only new non-null assumptions. There is some
work in progress to speed up the computation in the generic case.

For example, when the generic basis is {1}, and this is usual in automatic
theorem discovering, we can use an alternative strategy. Computing the Gröbner
basis with respect to to the product of a graded order in x and an order in
the parameters (what is needed to compute the homogenized ideal) we obtain
also the elimination ideal in the parameters I0 = I ∩ K[a]. If I0 is non-null,
then the generic basis is {1} and the generic segment can be obtained, in P-
representation by simply compute the prime decomposition of I0, and taking the
whole parameter space minus V (I0). Let {p1, · · · , pr} be the minimal primes
of I0. Then, we can compute separately the particular trees for each of the
components with the restriction of V(pi), which will be much simpler to do, and
then summarize the result.

We note that in the implementation one can optionally specify a certain
locally closed subset S of K

m
and then GröbnerCover will only compute the

canonical Gröbner cover of S.
Practical experiments show that if the generators p1, . . . , pr of our ideal I

under consideration are not homogeneous then Buildtree applied to genera-
tors of the homogenization of I usually has a much longer running time then
Buildtree applied to p1, . . . , pr. This seems to be due mainly to the fact that
in general one has many generators of the homogenization of I.

Thus in computationally hard problems it is recommended to avoid the com-
putation of the homogenization but to simply apply our algorithms to the ho-
mogenizations η(p1), . . . , η(pr) of p1, . . . , pr. We note that Buildtree(p1, . . . , pr)
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and Buildtree(η(p1), . . . , η(pr)) essentially perform the same computations.
This way one is not guaranteed to obtain the canonical Gröbner cover with
respect to I but the result will be reasonably simple.

Concerning memory consumption we remark that it is not necessary that
algorithm Buildtree stores the vertex data of intermediate (i.e. non-terminal)
vertices. This has been done historically for didactic purposes, but it is unnec-
essary.

The algorithm Combine tends to produce rather complicated polynomials
but one can always reduce them modulo a where a ⊂ K[a] is the radical ideal
with S = V(a) and S is the locally closed set over which we are working. In
algorithm Combine one can collect together all the components of the lpp-
segment which are coming from the same Buildtree segment to simplify and
speed up the computation.

On the contrary Extend often produces quite simple polynomials which
sometimes are even simpler and more “generic” then those originally found by
Buildtree. For example it might happen that on a certain lpp-segment S
none of the polynomials found by Buildtree gives the correct value on all
points of S but with Extend respectively ExtendPoly we are able to obtain
a polynomial with this property (cf. Examples 27, 29 and Example in Section
5).

One could also consider the possibility of replacing Buildtree with an alter-
native algorithm such as Suzuki-Sato Algorithm ([SuSa06]) in case Buildtree
is not able to finish within reasonable time. One would only need to trans-
form the output of Suzuki-Sato algorithm into a disjoint reduced comprehensive
Gröbner system to be able to apply our algorithms.

The full representation of an I-regular function as given in Definition 22 is a
bit awkward to handle in a computer algebra system. One can use instead the
representation given in the following definition.

Definition 36 (Complete representation). Let S ⊂ K
m

be locally closed
and f : S → K[x] a monic I-regular function. Let p1, . . . , pr ∈ K[a][x]. We say
that (p1, . . . , pr) is a complete representation of f if

(i) f(a) = pi(a,x)

lc(pi)(a)
for every a ∈ S with lc(pi)(a) 6= 0,

(ii) for every a ∈ S there exists i ∈ {1, . . . , r} such that lc(pi)(a) 6= 0 and
(iii) lc(pi)(a)pj(a, x) = lc(pj)(a)pi(a, x) for all a ∈ S and 1 ≤ i, j ≤ r.

We note that (ii) and (iii) imply that pi(a, x) = 0 for a ∈ S with lc(pi)(a) = 0.

From the theoretical point of view the usage of I-regular functions instead
of just polynomials in K[a][x] is very important. The results about I-regular
functions in the first section are needed to establish the main algorithms in the
sections three and four. However in the practical examples it appears that most
of the time the monic I-regular functions in the bases of the canonical Gröbner
cover can be completely represented by a single polynomial, although it is not
difficult to construct examples where several polynomials will be needed.
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C(a, b)

A(−1, 0) B(1, 0)

P3(x3, y3)

P2(x2, y2)

P1(x1, y1)

Figure 1: Orthic triangle

There is an obvious way of converting a full representation into a complete
representation by clearing denominators. This seems to create a large number
of polynomials in the complete representation, since one has to consider all
possible combinations. However we can drastically reduce this number. It
suffices to take a subset {p1, . . . , pr} with the property that for every a ∈ S
there exists i ∈ {1, . . . , r} with lc(pi)(a) 6= 0, i.e V(〈lc(p1), . . . , lc(pr)〉) ∩ S = ∅,
or equivalently b ⊂

√
a + 〈lc(p1), . . . , lc(pr)〉. One can also attempt to find such

subsets by using the segments obtained by Buildtree.
In this way one usually never finds more then two or three polynomials in

a complete representation in the final output of GröbnerCover, (except in
examples which have been cooked up for this purpose).

5. Example

To fix ideas, let us give an application using the GröbnerCover algo-
rithm. We present the problem, the concise answer obtained by the algorithm
and its geometrical interpretation. We also comment on the complexity of the
computations during the algorithm.

We consider the following problem: Find the points C = (a, b) on the plane
for which the triangle ABC of Figure 1 has an orthic triangle (the triangle
P1P2P3 through the foots of the heights) that is isosceles (with sides P1P2 =
P1P3).

We have P1 = (a, 0). Joining the equations defining the points P2 and P3

and the condition for the orthic triangle to be isosceles, we have the following
ideal representing the system of equations:

I = 〈(a− 1)y2 − b(x2 − 1), (a− 1)(x2 + 1) + by2,
(a + 1)y3 − b(x3 + 1), (a + 1)(x3 − 1) + by3,
(x3 − a)2 + y2

3 − (x2 − a)2 − y2
2〉.

44



Applying the full GröbnerCover algorithm, using Âx= grevlex(x2, x3, y2, y3),
we obtain the following very concise result:

1. Segment with lpp = {1} Generic segment
Basis: {1}.
P-representation of the segment:

(〈0〉, (〈a2 − b2 − 1〉, 〈a2 + b2 − 1〉, 〈a〉)) .

2. Segment with lpp = {y3, y2, x3, x2}
Basis:

{(a2 + b2 + 2a + 1)y3 + (−2ab− 2b),
(a2 + b2 − 2a + 1)y2 + (2ab− 2b),
(a2 + b2 + 2a + 1)x3 + (−a2 + b2 − 2a− 1),
(a2 + b2 − 2a + 1)x2 + (a2 − b2 − 2a + 1)}.

P-representation of the segment:
(〈a2 + b2 − 1〉, (〈b, a− 1〉, 〈b, a + 1〉)) ;(〈a2 − b2 − 1〉, (〈b, a− 1〉, 〈b, a + 1〉, 〈b2 + 1, a〉)) ;(〈a〉, (〈b2 + 1, a〉))

3. Segment with lpp = {y3, x3, x
2
2}

Basis: {y3, x3 − 1, x2
2 + y2

2 − 2x2 + 1}.
P-representation of the segment: (〈b, a− 1〉, (〈1〉))

4. Segment with lpp = {1}
Basis: {1}.
P-representation of the segment:

(〈b2 + 1, a〉, (〈1〉))

5. Segment with lpp = {y2, x2, x
2
3}

Basis: {y2, x2 + 1, x2
3 + y2

3 + 2x3 + 1}.
P-representation of the segment: (〈b, a + 1〉, (〈1〉)) .

We observe that there are only 5 segments in the canonical Gröbner cover
and the single repeated lpp corresponds to segments 1 and 4.

The bases of the segments 1 and 4 are {1}, showing that there does not
exists any solution in those segments. The important segment for our problem
is segment 2 with lpp = {y3, y2, x3, x2} (i.e. the set of variables), as it shows
that in this segment it exists a unique solution for the points P2 and P3 (that
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are determined by the basis). We obtain three branches of the solution, namely

1) a = 0
2) a2 + b2 − 1 = 0
3) a2 − b2 − 1 = 0

except the points A = (−1, 0) and B = (1, 0) corresponding to degenerate
triangles, and two complex points M = (i, 0), N = (−i, 0). Branch 1) represents
isosceles triangles and is an obvious solution. Branch 2) (circle) represents
rectangular triangles for which the orthic triangle is isosceles with basis of length
0 and is also obvious. But branch 3) gives points on a hyperbola for which the
given triangle ABC is neither isosceles nor rectangle but has an orthic triangle
that is isosceles and is not an obvious solution.

Segments 3 and 5 correspond respectively to the degenerate triangles with
C = A = (1, 0) and C = B = (−1, 0). Finally segment 4 represents the two
imaginary points C = M(0, i) and C = N(0,−i) for which no solution exists as
for the points in segment 1), but these points are not summarized into a single
segment by the canonical Gröbner cover. The fundamental reason for this is that
they come from two segments of the homogenized ideal with different lpp. We
also remark that the union of segment 1 and segment 4 is not locally closed. This
is another good reason why the canonical Gröbner cover does not summarize
them into a single segment.

Let us now give some clarifying details about the development of the al-
gorithm and its complexity. Even if the final output of the discussion with
GröbnerCover is very simple and concise, the computations to obtain it are
not so simple. In fact, we choose this example because all the resources of the
powerful algorithm are used.

First of all, the given ideal I is non-homogeneous. So to compute the
canonical Gröbner cover we first need to homogenize it. To compute the ho-
mogenization J of I we need a graded order in the variables. We use the
graded order >x= grevlex(x2, x3, y2, y3) and grevlex(a, b) for the parameters.
We must first compute a Gröbner basis of I with respect to the product order
(>x ·grevlex(a, b)) and then homogenize it using the new variable x0. The result
is a basis with 22 homogeneous polynomials.

Now begins the algorithm GCover for homogeneous ideals. We must now
use the product order of Âx (that we take also to be Âx= grevlex(x2, x3, y2, y3))
and grevlex(x0), resulting in Âx,x0= (Âx ·grevlex(x0)). We could also use an-
other discussion order Âx, for example lex(x2, x3, y2, y3), but we expect that the
discussion will be simpler with this choice. We apply BuildTree, then select
the terminal vertices, group them by lpp and transform the reduced represen-
tations of the segments into P-representations.

BuildTree obtains 16 little segments for the first lpp-segment of the canon-
ical Gröbner cover with lpp = {1}, 7 little segments for the second lpp-segment
with lpp = {y3, y2, x3, x2} and a single segment for each of the three remaining
lpp-segments. The fourth lpp-segment having lpp = {t, y2

2 , x3, x2} reduces to
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basis {1} after dehomogenization producing two final segments with lpp = {1}.
Buildtree also obtains full representations of the bases for segments 1,3,4,5,
and the algorithm doesn’t need to use neither Combine nor Extend algorithm
for these.

LCUnion must be used to compute the P-representation of the union of
the 16 respectively 7 little segments obtained by Buildtree. The result is the
simple description of the final output given above.

Now let us detail what happens with the bases in the 7 little segments
forming segment 2 of the canonical Gröbner cover with lpp = {y3, y2, x3, x2}.
The segment has three components, corresponding to p1 = 〈a2 + b2 − 1〉, p2 =
〈a2− b2−1〉 and p3 = 〈a〉, with bases obtained by BuildTree as follows: Basis
B1 = {p1, p2, p3, p4} for p1 and p2 where

p1 = 2b(2a + b2 + 1)y3 + (a3 + a2b2 − a2 − 3ab2 − a− b4 − 4b2 + 1)x0,
p2 = 2b(2a + b2 + 1)y2 + (3a3 + a2b2 + 3a2 − ab2 − 3a− b4 − 3)x0,
p3 = 2(2a + b2 + 1)x3 + (a3 − 2a2 − ab2 − 3a + 2b2 − 2)x0,
p4 = 2(2a + b2 + 1)x2 + (a3 − 2a2 − ab2 − 3a + 2b2 − 2)x0,

and B2 = {q1, q2, q3, q4} for p3, where

q1 = (b2 + 1)y3 + (−2b)x0,
q2 = (b2 + 1)y2 + (−2b)x0,
q3 = (b2 + 1)x3 + (b2 − 1)x0,
q4 = (b2 + 1)x2 + (−b2 + 1)x0.

We shall only discuss what happens with the first polynomial of the bases,
the other three having the same comportment. First the algorithm verifies that
neither p1 specializes to q1 on an open set of V(p3) nor q1 specializes to p1 on
an open set of V(p1 ∩ p2). So the algorithm continues applying:

Combine((p1, p1), (p2, p1), (p3, q1)) = h

where

h = (2a5b3 + 2a5b + a4b5 + 6a4b3 + 5a4b + 2a3b5 − 2a3b− 2a2b5

−8a2b3 − 6a2b− 2ab7 − 4ab5 − 2ab3 − b9 − 2b7 + 2b3 + b)y3

+(a6b2 + a6 + a5b4 − 4a5b2 − a5 − 5a4b4 − 7a4b2 − 2a4 − a3b6

−6a3b4 + 5a3b2 + 2a3 + 7a2b4 + 8a2b2 + a2 + 5ab6 + 5ab4 − ab2

−a + 2b8 + 2b6 − 2b4 − 2b2)x0,

is know to specialize well in an open and dense subset of V(p1)∪V(p2)∪V(p3).
Nevertheless one can verify that h reduces to zero on some points of the segment,
so we will need to use Extend algorithm. But before this, we dehomogenize,
minimize and reduce the bases.

Then we apply Extend on the corresponding segment. The result are 3
polynomials h1, h2, h3, where

h1 = (a2 + b2 + 2a + 1)y3 + (−2ab− 2b),
h2 = (2ab2 − 2b2 − 2a− 2)y3 + (a3b− ab3 − 2a2b + ab + 4b),
h3 = (−2b3 − 4ab− 2b)y3 + (a4 − a2b2 − a3 + 3ab2 − a2 + 4b2 + a),
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that are known to form a full representation of the I-regular function on the
whole segment. The algorithm continues analyzing for all the 6 little segments
if the polynomials h1, h2, h3 remain non-null on them. It realizes that h1 alone is
non-null on all the 6 little segments, so that h2 and h3 are unnecessary. Finally
it outputs the full representation of the I-regular function f1 consisting of the
single polynomial h1, even if Extend has been used.

References

[AlRa90] Alonso M.E., Raimondo M., Local Decomposition Algorithms,
L.N.C.S., 508 (1990), 208–221, Springer.
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without reducing to zero (F5), Proc. ISSAC’02 (2002), 75–83, ACM.

[FoGiTr01] E. Fortuna, P. Gianni and B. Trager (2000). Degree reduction under
specialization. Jour. Pure and Applied Algebra, 164:1-2, (2001), 153–164.
Proc of MEGA 2000.

[GaWa03] X.S. Gao, D.K. Wang, (2003). Zero decomposition theorems for
counting the number of solutions for parametric equation systems. In Pro-
ceedings of the 6th Asian Symposium on Computer Mathematics, Ed.
Ziming Li & William Sit. Lecture notes series on computing, 10, (2003),
129-144. World Scientific.
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Parameters. Jour. Symb. Comp. 33:1-2 (2002), 183–208.

[Mo05] T. Mora, (2005). Solving Polynomial Equation Systems II: Macaulay’s
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d’Éxtensions Simples et Résolution des Systèmes d’Équations Algebriques.
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