33. Moller 11

In connection with his solution of Problem 23.3.1, Macaulay gave an algo-
rithm, which, given an order ideal

NcC7T:={X" - X:(a,...,a,) EN"}
prodices

a finite set of points,
X:= {31,...,as}Ck‘”, a; ‘= (a,-l,...,a,-n),

#(N) = #(X) and
a bijection @ : X — N,
a set of polynomials

gr € P :=k[X1,...,Xp], 7€{Xw:weN,1<i<n}
such that, denoting
{1} :=={f : f(air,...,ain) =0,1 <i<s}
and, for each 7 € N £, the functional defined by
0(f) = fai,...,ain), fE€P,a:=d"(r)
it holds

N = N(I),

{g- : 7 € G(I)} is the reduced Grobner basis of | w.r.t. the lexicographical
ordering induced by X; < -+ < X,,

{9- : 7€ G(I)} and {¢; : 7 € N} are inverse.

After presenting a slight generalization of this construction by Macaulay
(Section 33.1) I present some recent and interesting converse results

Lazard descriptio of the structure of the lexicographical Grébner basis of an
ideal in 2 variables (Theorem 33.1.1),

an algorithm by Cerlienco and Mureddu which, given a finite set X C k™ of
points computes, with the notionation above, the order ideal N(I) and
a bijection @ : X — N satisfying the properties granted by Macaulay’s
result (Section 33.2)
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I merge them into a description of both the Grébner structure and the inverse
system of any ideal of points (Section 33.3); the tool to prove this Structural
Theorem is a direct application of Moller Algorithm (Section 33.5).

33.1 Macaulay’s Trick

In connection with his solution of Problem 23.3.1, Macaulay needed to show,
for any function H(T') : N — N satisfying the formula of Lemma 23.3.2, the
existence of an ideal | C P satisfying H(T;1) = H(T), at least in the case
of a zero-dimensional ideal; if the ideal is assumed to be homogeneous, the
extremal monomial ideal L, for which "H(T;L) = "H(T), is the required
solution; but for the non-homogeneous case, Macaulay needed to produce an
ideal | such that H(l) = H(L) and therefore also the relation T(l) = L for
any degree-compatible term-ordering <.

We discuss here a slightly extension of his trick, which allows to solve the
following

Problem 33.1.1. Given a finite set of terms mq,...,m, € T and a term-
ordering < on 7, produce a set of elements g1, ..., g, € P such that

e T(g;) = my, for each i,
e G:={g1,...,9r} is a Grobner basis;

so that, denoting | the ideal generated by G, it holds
i T(I) = T(G) = (m17 s 7m1‘)'

Let
M = {nl,...,ns}CT

be a finite sequence! such that

for each 4,1 < i < r, exists J; C {1,...,s} such that m; = [] ny;
leJ;
for each i,7,1 <i < j <r lem(m;,my) = [[ .
leJ;UJ;
Clearly such a list M can be easily obtained, by repeated gcds. Now let us
choose, for each [,1 <1 < s, an element h; € P such that T(h;) < n; and let
us define

v :=ny — hy, foreach [,1 <1 < s,

gi:= [ v, foreachi,1<i<r.
leJ;

Y Caveat lector! A sequence and not just a set. If we have m; := X2, ms := XY,
we must return n; :=ng ;= X,n3 :=Y and J, := {1, 2}, J» := {1, 3}.
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With this notation, for each pair 7,j,1 <4 < j < r, it holds by construction
tij = I m, and t;; = T[] mu, where t;;,¢;; are the elements satifying
leJ;i\J; leJi\J;
ti; T(g:) = T(i,7) = lem(T(g:), T(g;)) = t;'T(g;)-
Proposition 33.1.1. G :={g¢1,...,9r} is a Grébner basis.

Proof. We have to prove, for each pair i,j,1 < i < j < r, that the S-pair
S(i,j) has a Grobner representation. To do so, let us define

Gij = H 7 | —tij and ¢j; = H Y| =t
ler\Ji leJi\Jj
Clearly, since
tij = T H Y and tji = T H Y,
lGJ]‘\Ji lGJi\JJ'
it holds T(¢;;) < t;; and T(¢;;) < tj;. Therefore we can claim that
S(i,4) = —¢ij9i + b5ig;

is the required standard representation. In fact we have

0 = — I »+ II ~

leJiUJj lEJ]'UJi
= - H "l gt H ") 95
ler\Ji lGJi\JJ'

= —(dij + tij)gi + (dji + ti)gj
= —0ij9i + ¢jig9; — (tijgi —tjig;)
= —0ij9i + ¢ji9; — S(i,]),

so that, the claim holds, since
T(¢ijg:) < ti;T(g:) = T(i,5) = t;;T(g;) > T(djig;)-
For any finite set X of points
X:= {31,...,as}Ckn, a; 1= (a“,...,am)

let us denote
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for each i, ¢; the linear functional ¢; € P* defined by
Li(f) = flan,...,ain) for each f(X,...,X,) € P;

L(X) := Span ({¢;,1 <i < s}) C P*,
I(X) :=={f €P: f(a;) =0, for each i} = P(L(X)).

With this notation we can now present Macaulay’s result: let N C T be
a finite order ideal of 7, and let

G:={my,...,my}, my =X X foreachl,

be the minimal basis of the monomial ideal 7 \ N.
Since N is finite, for each ¢ exists d; € N such that

X{i" € G and e; < d;, for each I.
Let us then take, for each i, 5, k, j # k, elements
aij € k,1 <1 <n,0<j<d;:ay # ai,

and let us define, for each [,1 <[ <r,

n
g = H
i=1

which is such that T(g;) = my.
Moreover, to each term t = X' --- X € N let us associate the affine
point

e;1—1
(Xi — aij),
j=0

a(t) := (arey,---ane, ) € k",
and let X := {a(t) : t € N}. Then:
Corollary 33.1.1 (Macaulay).

Under this notation, for any degree-compatible term-ordering, it holds
(1) N = N(I(X)),
(2) G(I(X)) :={g1,--.,9r} is the reduced Grobner basis of 1(X).

Since e; < d;, for each t = X' --- X € {X;7:1<j <n,7 € N} and
each ¢, it is natural to consider also the polynomials

n e —1
go=] [ (Xi—ay), t=X{"- X" e{X;7:1<j<n,7eN}
i=1 j=0

and investigate their relation with Lagrange Interpolation Formula (Corol-
lary 28.2.1).

Let us order N := {t1,...,ts} in such a way that t; < t2 < -+ < ts,
where < is the lexicographical ordering induced by X; < --- < X,,, and let
us write a; := a(¢;) in order to fix a suitable enumeration of X and L(X).
Moreover let us define g; := gy,, for each i,1 < i <'s. Then
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Lemma 33.1.1. For any degree-compatible term-ordering, it holds

(1) {g¢:t € B(I(X))}, is the border basis of 1(X);
(2) {g¢:t € G(I(X))}, is the reduced Grébner basis of 1(X);
(3) a:={q; : 1 <i<s}is a triangular set of L(X).

For n = 2, the structure of the Grébner basis constructed by Macaulay for
the ideal I(X) is an illustrating example of Lazard Theorem which describes
the structure of the lexicographical Grobner basis for any ideal | C k[X1, X»]:

Theorem 33.1.1 (Lazard). Let P := k[X1, X»] and let < be the lexico-
graphical ordering induced by X1 < Xs.

Let | C P be an ideal and let {fo, f1,..., fr} be a Grobner basis of |
ordered so that

T(fo) <T(f1) <--- <T(fi)
Then

° f():PGl"'Gk+17
° [j=PH;jGjq1- Gpy1,1 < j <Kk,
o fr =PHiGp41,

where

P is the primitive part of fo € k[X:1][X2];

G ek[X1,1<i<k+1;

H; € k[X1][X2] is a monic polynomial of degree d(i), for each i;

d(l) <d(2) < --- < d(k);

Hi+1 S (G1 st Gi, H1G2 T Gi, ey HjGj+1 - 'Gi, e ,Hi,lGi, Hz) fOT’ all

1.

Proof. Let P and Gy be, respectively, the primitive part and the content
of ged(fo, .- ., fr) in k[X1][X>]; since a set {go, - .., gn} is a manimal Grébner
basis if and only if the same is true for {ggo, . . ., ggn} we can divide by PG4
and assume wlog that P = Gy1 = 1 and ged(fo,--., fn) = 1.

Since, for each i, T(f;) < T(f;+1) necessarily we have d(i) < d(i + 1) but
d(i) = d(i + 1) would imply T(f;) | T(fi+1) so that we have d(i) < d(i + 1).

Setting g; := Lp(f;) for each i, both Xg(”l)_d(i)fi and f;11 are in the
ideal and have degree d(i + 1) in X»; therefore successive euclidean division
of the leading polynsomial leads to a polynomial f := Lp(f)Xg(iH) +---in
the ideal, where Lp(f) = ged(gs, giv1)-

Therefore T(f) is multiple of some T(f;). If gi+1 # ged(9s, git+1), nec-
essarily j < ¢+ 1 and T(f;) divides T(fi+1) getting a contradiction. As a
conclusion g;11 | ¢; and we can set G411 := £

gi+1"
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Since Gi41 fit1 —Xg(iﬂ)*d(i)f,- is a polynomial of degree less than d(i+1)
in Xy which reduces to zero by the Grébner basis, it follows that G411 fiy1 €
(fo,- .., fi); therefore, inductively

gi | fj for each j <i = g1 | fj for each j <i+1.

Therefore, ged(fo, .-, frn) = 1 implies that g, = 1 and each g; divides f;.
Setting H; := 4 for all i, from Giy1 fig1 € (fo,-- ., fi) diving by

Git19iv1 = gi = Giy1--- Gy

we obtain the last claim.

33.2 Cerlienco-Mureddu Correspondence

Cerlienco and Mureddu solved a partial converse of Macaulay’s result:

Problem 33.2.1. Given a finite set of points,
{31,...,as}Ckn, a; 1= (a“,...,am),

to compute N(I) w.r.t. the lexicographical ordering < induced by X; < --- <
X,, where

l:={feP:f(a;) =0,1<i<s}.

Remark that a zero-dimensional ideal | C P can be considered as given if
we know

e the set Z(l) and
e for each a € Z(I), a Macaulay basis of the corresponding primary compo-
nent of |.

Let us set

e < the lexicographical ordering < induced by X; < --- < X,,;
e | C P be a zero dimensional ideal;
e foreach a € Z:= Z(l), a := (a1,...,ap):
— A : P = P the translation \,(X;) = X; + a4, for each i,
- my = (Xl _ala---aXn_an)a
— (a the m,-primary component of |,
— Ay = M(Aa(ga)) C Spang (M),
— Lya, for each v € N.(A;(qa)), the Macaulay equation £,, := £(v) so that
— {lya 1 v € Nc(Aa(ga)) } is the Macaulay basis of A,, enumerated in order
to satisfy the properties of Corollary 32.3.12,

* 5= ) ez deg(qa);

2 Remark that in particular v = T<(us).
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o L:={\,...; s} = {lpars : v € Nc(Mi(qa)),a € Z} ordered as stated in
Corollary 32.3.2;
o X:={x1,...,%xs} :={(a,v) € Nc(Xa(qa)),a € Z} enumerated so that

xj = (a,v) <= Aj = lua)s;
e for each j,1 < j <s, M()\;) := M(v)\, where \j = £y,5),;
and let us remark that Cerlienco and Mureddu state their result under the
further assumption that
for each j,1 < j <'s, Lyada =1 Aj = M(Nj) = M(v)A; Le. Lya = M(v).

Therefore, with the notation above:

Definition 33.2.1. The ordered sets L(l) := L and X(I) := X are called,
respectively, a Macaulay representation and a CM-scheleton of I.

If, moreover, for each X\ = l,,A; € L, A = M(\) = M(v)\,, then | is
called a CM-ideal, X(l) its CM-scheme, and each x = (a,v) € X(I) a CM-

condition.

Lemma 33.2.1. The following holds:

(1) 1= ﬂaez 92 = P(Spany (L));

(2) for each j,1 < j <s,x; = (a,v) and each v' | v there is i < j such that
x; = (a,0');

(3) for each j,1 < j <s,x; =(a,v) € X, and each f € P

M(Aj)(f) = M(v)(Xa(f)) = (D(v)(£))(@) = c(v, Xa(£));

(4) for each 0,1 <o <'s, L, :={\,..., A} and X, := {x;,1 <i < o} are
a Macaulay representation and a CM-scheleton of 1, = P(Spany, (L, ));
5) hC...Cly Clyy1 C...1;

(6) 1 =1 < v =1for each (a,v) € X <= #X = #Z.

Cerlienco-Mureddu result consists in proposing an algorithm which to
each CM-scheme

n

X:= {Xl,---;xs} C k™ x T,X,' = (a,-,v,-),ai = (a,-l,...,a,-n),vl- = HXlail
=1

associates

e an order ideal N := N(X) and
e a bijection @ := $(X) : X = N,

which, as we will proof later, satisfies

Fact 33.2.1. For X = X(l) C k™ x T holds N(l) = N(X) for the lexico-
graphical ordering induced by X, < --- < X,,.
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Since they do so by induction on s = #(X) let us consider the subset
X' := {x1,...,%s—1}, and the corresponding® order ideal N’ := N(X’) and
bijection @' := ¢(X').

We need also to consider, for each m < n, the set

TA,m]:=TNk[Xy,...,Xn] ={X" - X3 :(a1,...,an,) € N}

and the projection
Tm 2 K" = K" (21, 2n) = (21,0, Tm),
which we freely use to denote also the projections
T T 2N = N ~T[1,m], m, (X X3")=X"---Xom
and
Tm K" X T = k™ x T[L,m], mna,7)=(mm@), Tn(7)).
Also, for a CM-condition x = (a,v) € k™ x T[1,m] we also set
T (A) = T (M (V) Ay) = M(Wm(v))A,Tm(a).

With a slight abuse of notation, if I(X) is radical, we simply identify each
X = (a,-, ].) with d;-
With this notation, let us set
m:=max (j : exists i < s:mj(x;) = mj(xs));
d = #{xi,i < s : (X)) = Tm (Xs), P (x;) € T[L,m + 1]};
W= {x; : &'(x;) = w; X% |, w; € T[1,m]} U {xs};
V= mp (W);
w = S(V) (T (xs));
ts = wX
where N(V) and &#(V) are the result of the application of the present algo-
rithm to V, which can be inductively applied since #(V) < s — 1. We then
define

o N:=N'U{t,},

o &(x;) := {i’(xz) z iz

Ezample 33.2.1. Let us consider the set Y := {a;,1 <i < 6} where

a; = (0, 0) dy = (0, ].) a3 = (2, 0)
dg (0,2) d; = (1,0) dg (1,1);

Cerlienco-Mureddu Algorithms returns:
(0,0) a1 :=(0,0),2(a1) :=t1 := 1;

3 If s = 1 the only possible solution is N = {1}, #(x;) = 1.
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(0,1) az:=(0,1),m =1,d = #{(0,0)} = 1, W = {(0, 1)},

w = 1,@(32) = t2 = X2,

(2,0) a3 :=(2,0),m =0,d = #{(0,0)} = 1,W = {(2,0)},

w = 1,@(33) =t3 = Xl,

(072) g 1= (072)7m =1,d= #{(070)7 (07 1)} =2,W= {(072)}7
w = 1,@(34) = t4 = XZQ,

(1,0) a5 :=(1,0),m =0,d = #{(0,0),(2,0)} =2,W = {(1,0)},
w = 1,(15(a5) = t5 = X12,

(171) a6 = (17 ),’ITL =1,d= #{(170)} =1LW= {(07 ]-)7 (17 1)}7
w = X1,45(a6) = 1lg = X1X2.

Ezample 33.2.2. Let us consider the set X := {b;,1 <1i <9} where

by = (0,0,1) by = (0,1,-2) by = (2,0,2)
by = (0727_2) bs = (17073) be = (17173)
b = (1,1,1) bs = (2,0,1) by = (2,0,0)

and let us set a; := ma(b;), for each i, so that m2(X) =Y, where Y is the set
of points discussed in Example 33.2.1.

Clearly Cerlienco-Mureddu Correspondence returns &(b;) = &(a;) for
each ¢ <6 and

t7 = X3, tg = X1X3, tg = X:)%

Let L :={A1,...,As} and
n
X = {Xl,...,Xs} C k™ x T,X,' = (a,-,vl-),ai = (a,-l,...,a,-n),vl- = HXlail
=1

be the Macaulay representation and the CM-scheme of a (zero-dimensional)
CM-ideal | C P so that, for each 1,

Ai = M(X) = M(v;)A,,, foreach 4,1 <i <s,

and let N := N(X) and & := &(X) the result of Cerlienco-Mureddu Corre-
spondence. Then

Lemma 33.2.2. If Y = {x1,...,%x,} C X is an initial segment of X then
e Y is a CM-scheme,

e N(Y) C N(X),

o for each j <r <s,8(Y)(xj) = P(X)(x;).
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Remark 33.2.1. Let us denote, for each v,1 < v < n, and each y € 7, (X),
uly) == #{xeX:y =m(x)},
and for each v,1 <v < n, and each § € N,
Yus = {m,(x) : exists w € T[L,v]: &(x) = wX) ]}
Then

L4 YI/(5 = {y € ’/TI/(X) 0 < H’(y)}a
° ’/T,,(X):Y,,()DY,A D---DYus DYus41 D5,
o 1(m, (X)) =1(Yuo) CI(Yu1) C-- Cl(Yus) CI(Yusp1) C -

The result is essentially a specialization of Theorem 26.2.2

Let 7 := X{*... X% ¢ T\ N(X) be any term such that N U {7} is an
order ideal and let us define, for each m,1 < m < n:
Ny, (7) := N (X, 7) = {w € T1, m] T > me"_;_Jrll o X e NY,
An(r) :=AX,7):={d! (me"fll s X3 i weN(T)} CXCE X T,

Bin(7) := B (X, 7) := mm (A (7)) C k™ x T[1,m],

Cn(1) == Cn(X,7) = {mm(x) € Bp(7) : mme1(X) &€ Bp—1(7)} C ™ x
TI1,m],

D (1) :==Dpp(X,7) :={x € X : mp(x) € Cin(7)} C X;

Lin(7) :==Lin(X,7) :={ X € L : w0 (%) = (7 (02), ’/Tm(’l)i)) € Cn(n)}CL;

My (1) i= My (X, 7) i= {w € T[1,m] s w < X wX I+t ... Xd» € N},

where, with slight abuse of notation, we have
Np(7) :=={w e T :w<1}hHALT) :=By(1) :={a: ®¥(a) < 7},Cy(7) := By (7).

Example 33.2.3. With respect to Example 33.2.2, if we choose 7 := X5 X3
we have

Ny =A; =B =C =Dy =M; =9,

and
N, = {1,X.}, N; = N\{X3},
Ay = {br,bs}, A; = {b;,1<i<8},
B, = {(17 1)7 (270)}7 Bs = {bia 1< < 8};
C = {(171)7(270)}7 G = {b17b27b4;b5};
Dy = {bs,bg,br,bsg,bg}, D3 = {by,bs,bs,bs},
My = {1,Xi}, My = {1, X1, X7, Xo, X1 Xo, X7}
If we instead choose 7 := X; X2 we have
Ny = {1}: N> = {1}: N; = N:
Ar = {bo}, Ay = {bo}, As = {b;,1<i<9},
B. = {2}, B, = {(20}, Bs = {b;,1<i<9}
C, = {2}, C, = @, CG = {b1;b2;b47b57b67b7})
Dl = {b37b87b9}, D2 = 0, D3 = {bl,bg,b4,b5,b6,b7},
Ml = {1}, M2 == (ZJ, M3 = N\{X§}
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Lemma 33.2.3. With the notation above, it holds
(1) #(Bm(1)) = #(An(1)) = #(Nn (7)),

(2) Cerlienco-Mureddu Correspondence associates to By, (T) the order ideal
N(Bn (7)) = Nin ()
and the bijection (B, (7)) defined by

B(Byy (7)) (1 (x)) X k1 . X = @(x), for each x € Ap;

(4) under Cerlienco-Mureddu Correspondence one has
N(Cp(r)) C{w e T[L,m] 1w < X}

(5) X =UpDp (7).

Proof.

(1) is trivial;

(2) Cerlienco-Mureddu Algorithm when applied to the ordered set X asso-
ciates each element x € A, (7) to the term

(x) = B(mm (A (7)) (Tom () X354 - Xl
(3) in order to obtain M,,(7) one has to remove form N,,(7) the subset
{wX& € Ny (1) :w € T[L,m — 1]} = {wX & 1w € Np_1 (1)}

while for each w € N,,,_1(7) there are d,,, + 1 elements y € B,,,(7) such
that

B(Bn—1 (7)) (Tm-1(y)) = w-

(4) In order that there is w € N(C,,(7)) such that w > X% Cerlienco—
Mureddu Algorithm requires the existence of at least d,,, + 1 elements
Yo,---,Yd,, such that

Tm(yo) =+ = mm(y:) = - = Tm(yd, )

so that m,,—1(yo) € By—1(7).

(5) If x € X is such that &(x) < 7, then there is a minimal value m < n for
which x € Ay (7), T (X) € By (7), T (x) € Cin (1), x € Dy (7).
If x € X is such that &(x) = X*--- Xt > 7, there is m < n such
that e,, > d,,, while e; = d;, for each ¢ > m; this implies that there is

y € A, (1) such that 7, (y) = 7,,(x) so that x € D, (7).
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33.3 Lazard Structural Theorem

Let | C P be a CM-ideal, and, using the same notation as above, L. :=
{A1,...,As} and

n
X = {Xl,...,Xs} C k™ x T,X,' = (a,-,vl-),ai = (a,-l,...,a,-n),vl- = HXla”
=1

a Macaulay representation and a CM-scheme of | so that, for each i,
Ai = M(Ni) = M(v;)A,,;, foreachi,1 <i<'s;

let us now denote N := N(X) and ¢ := ¢(X) the result of Cerlienco-Mureddu
Correspondence which satisfies

Fact 33.3.1. It holds
(A) N :=N().

Since N is an order ideal, T := 7 \ N is a monomial ideal whose minimal
basis G := {t1,...,t,.} will be ordered so that t; <ty < ... < t,.
Denoting further

B:={1}u{X;7:7e N} \N
we obviously obtain
Corollary 33.3.1. It holds

B) GH=G ={ty,...,tr},t1 <ta < ... < ty;
(C) B(l) =B.

Let us extend the ordering of X to N = {r,...,7s} enumerating it so
that 7, = ®(x, ), for each o and let us denote the ordering of X and N by <
so that

for each @, 8,Tq < 78,Xq < X3 <= a < f.

Denote for each 7 € N

e X(1) :={xeX:x<d )} ={xeX:d(x) <7},
o L(7) :={\; : x; € X(1)},

e I(X(r)) := B(Span,,(I(1))),

and, for each 7 € N U B:

e N(7) ={weN:w=<r71}

e My (1) ={weM, w1}

so that
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Corollary 33.3.2. It holds
(D) For each 7 € N there is a unique polynomial
fri=1— Z o(fr,w)w
weMN(T)

such that \(f;) =0, for each X € L(7).

(E) For each T € G there is a unique polynomial
fri=1— Z o(fr,w)w
weN

such that \(f;) =0, for each X € L.
Proof. Since #IL(7) = #X(1) = #MM(7) and #L = #X = #N, f, can be
computed by interpolation.

In the same mood, but interpolation is not sufficient to prove it, we can
state

Fact 33.3.2. It holds
(F) For each T € B there is a polynomial
fri=1— Z c(fT,w)w
weN(T)

such that \(f;) =0, for each X € L.

Corollary 33.3.3. It holds:
(G) The reduced Grébner basis of | is
G\ :={fr: 7€ G}

moreover, for each T € N, T(f,) =T.
(H) The border basis of | is

B(l) :={f: 7 € B}.

Proof. For each 7 € G U B, 7 is the only term in f; which is not a member
of N so that T(f,) = 7.
For any 7 € N, T(f,;) = 7 because Cerlienco-Mureddu Correspondence

grants 7 € G(I(X(r))) and N(I(X())) = N(7).
Linear interpolation, again, is all one needs to prove

Proposition 33.3.1. With the same notation as in Lemma 33.2.3, it holds
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(U) for each T := X{il - Xd € G, and each m,1 < m < n, there are
polynomials

Gmr = Xpr 4 Y g, w)w
WEM, (1)

such that gm.(a) =0, for each a € Dy, (7);
(T) for each 7 := X ... X% € N and each m,1 < m < n, there are
polynomials

gmr = X+ 3" g, w)w
WEM (1)

such that gm,-(a) =0, for each a € D,,(7),a < (7).

Proof.

(U) Since #(Cpn (1)) < #(My (7)), we can evaluate each ¢(gmr,w) by in-
terpolation, so that gm,,(b) = 0, foreach b € C,,(7) and gn-(a) =
gm+(mm(a)), for each a € D, (7).

(T) One has just to apply (U) to the set X(7).

For each 7 := X ... X% ¢ N, let us denote v := v(r) < n the value

such that d, # 0 while d, = 0 for each p > v so that 7 € T[1,v], gmr = 1

for m > v, and, denoting

I gm- € ElX0, .., Xu][X0),

he =
m=1
v(r)—1

I = H Imr € k[Xla' . '7X1/71]7
m=1

Pr = gur €KXy, .., X ][X0],

it holds
hT = lTpT = l-ngV + ..

so that I, € k[X1,...,X,_1] is the leading polynomial and the content of h,
while the monic polynomial p, is the primitive component of h.
Therefore we have?

Corollary 33.3.4. With the notation above, under the assumption that | is
radical, it holds

* This justifies why we need to require that | is radical: in this restricted setting,
each functional A; is evaluation at a point and distributes with product.
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(W) for each 7 = X" ... X% ¢ N, there are
I € k[ X1,...,Xu1]
and a monic polynomial

pr= X%+ Z c(pr,w)w € k[X1,...,X,_1][X)]
wEM, (1)
so that h; := l,;p; are such that
e T(h,)=r,
o [ (my—1(a)) =0, for all a € X(7),
e p-(a) =0, for each a € D, (1),
e h,(a) =0, for each a € X such that a < (7).
(X) for each i,1 < i <r there are

L € k[ Xq,..., X, 1]
and a monic polynomial

pi=X% 4+ Z c(pi,w)w € k[X1,..., X, 1][X,]
wEM, (t;)

so that h; := l;p; are such that
T(h)=t;=X" - X% ¢ GNT[L,v],

[ ]

e I;(m,_1(a)) =0, for each a € U’} D (t:),
e p;(a) =0, for each a € D, (t;),

e hi(a) =0, for each a € X.

While #(Cp, (7)) < #(My, (7)), in general equality does not hold and the
polynomials g,,, are not unique. However, uniqueness can be forced via Cer-
lienco-Mureddu Corespondence in such a way that the result does not require
the assumption that | is radical.

We begin by remark that, however, #(Cy (7)) = #(M1(7)) so that g1,
is unique. We therefore begin our construction by setting i, := g1, and,
inductively, for m,1 < m < mn,

hd Cm‘r = HT:ZI Yvrs
o Qu(r):={MWA:weT[l,m—1],ae Z:=Z(l), M(w)\a((nr) # 0},

o Pp(r) ={M (ﬂ'm (%)) Aa; : M (vi) s, € Lin(7), M(w) s, € Quu(T)}s
e Ry, (1) := {(ﬂ'm(ai),ﬂ'm (%)) M (ﬂ'm (%)) Aa; € Pn(7)},
® E,,(7) := N(Rp(7)),
e S, (1) := {(ﬂ'm(a,),ﬂ'm (%)) € Rn(1)(as,v;) < &7 1(1)},
o Fulr) i= N(S(r)
Then

Corollary 33.3.5. With this notation it holds
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(L) for each T := Xfl X € G, and each m,1 < m < n there are unique

polynomials
- de + Z 7mT:
WEE,(T)

such that mwy (Xi)(Ymr) = 0, for each x; € Dy, (7);
(I) for each T := X{il -+ Xdn € N, and each m,1 < m < n there are unique

polynomials
- Xd + Z 7mT7
wEF,, (7)

such that 7, (X)) (Ymr) = 0, for each x; € Dy (7),%x; < &71(7);
(M) for each 7= X" --- X% € N, there are
L, € k[Xy,..., X0 1]

and a unique monic polynomial

P, _Xd + Z w S k[Xla---aXu—l][XV]
weF, (1)

so that H, := L, P, are such that

b T(H‘I’) =T, Lp(H‘I’) =L,

e m,_1(AN)(L;) =0, for each A € L(1),

e 7, (A)(Pr) =0, for each X\ € L, (1),

o m,(\)(H,) =0, for each \; € L : x; < & (7).
(N) for eachi,1 <i <r there are

L; € k[Xl, ... ,X,,_l]
and a unique monic polynomial
Pi=X"+ > e(PhwwekXy,...,X,1][X,]
w€EE, (t;)

so that H; := L;P; are such that

T(H) =t;= X" .- X% € GNT[L,v], Lp(H;) = L;,
7, 1(A\)(L;) = 0, for each A € UYL (t:),

T (A)(P;) =0, for each X € L, (t )

m (A (H;) =0, for each \; € L.

Proof. The only non trivial statements, i.e. the vanishing of m,_1(\)(L)
and 7, (\)(H) are an elementary consequence of Leibniz Formula (Propo-

sition 31.4.1).

Corollary 33.3.6. It holds
(O) {Hi,...,H;} is a minimal Grébner basis of |;
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(Q) For each v,1 < v < n, and each 6 € N let j(vd) the value such that
tiws) < X,‘EH < tiwey41; then {Li,...,L; )} is a Grobner basis of
I(YVﬁ);

(P) For each v,1 < v < n let j, the value such that t;, < X,q41 < tj,41;
then {H.,...,H;,} is a minimal Grébner basis of INk[X4,...,X,] and

of 1(m, (X)).
Proof. (O) is obvious;

(Q) is a direct application of (O) to the set of points Y, via Remark 33.2.1
(P) is a particular instance of (Q); minimality is trivial.

Clearly, if | is radical similar statements hold for

{hl, .. -7h7‘}: {ll, . ,leS)} and {hl, . 7hjv}'
Remark 33.3.1. The only difference between the three bases

{fl;---;fr};{hly---;hr} and {Hl,...,Hr}

is that the first is reduced unlike the others. On the other side, for each i, we
have
T(f;) = T(h;) = T(H;) = t;.

Therefore we have

e fi =h; = H; and
° fi_hi € (hla---ahi—l);fi_Hi € (Hla---;Hi—l) for each i,1<i§7",

whence

o fie(hy,....h), fi € (Hy,...,H;) foreachi,1<i<r.
Fact 33.3.3. It holds

(R) Foreachi,2<i<r, P;e(Hj,j<i):L.

Fact 33.3.4. It holds

(S) for each j,1 < j <'s, X\j(fr;) # 0 and X\j(H;;) # 0 so that L(l) is
triangular to {\;(f;,)"" f-;,1 < j <s} and {\;j(H;,)" H;,1 < j <s}.

Corollary 33.3.7. If | is radical, moreover

(Z) liapiahi7 1 < i <r satisfy
{h1,...,h.} is a minimal Grébner basis of |;
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for each v,1 < v < n, {h1,...,hj,} is a minimal Grébner basis of
INE[X1,...,X,] and of I(7,(X));

for each v,1 <v <n, {li,...,1; )} is a Grébner basis of 1(Y,s);

for each i,2 <i<r, p;€ (hj,j<i):l;

for each j,1 <j <s, Aj(hr,;) #0;

(1) is triangular to {\j(h-;) " h;,1 < j < s}

The construction which led to Corollary 33.3.5 can be refined as follows:
for each 7 := X" ... Xd ¢ G, for each v < n, iteratively for increasing
0 <d,, with initial value P4, 4+1(7) := P,_1 := P,_12 we compute

Yos(r) == {m(x):3we T[Lv]: (x) =wX)1,x €Pysii(r)}

E,s(r) = N(YWS(T))U'

Pos(r) = {M (m (;)) Xyt M (i), € Lu(7), M(w)hs, € Yus(7)),
so that

Corollary 33.3.8. For each 7 := Xfl Xt e G, each m,1 <m <n, and
each § < d,, there is a unique polynomial

Ymsr = Xm + Z c('}/m'r: w)w
w€E,s(T)

such that m, (X)) (Ymr) = 0, for each A\; € Y,5(7).

Also Ymr = 15 Ymsr-

33.4 Some examples

Ezample 33.4.1. Let us consider the set Y introduced in Example 33.2.1.
A direct application of the Algorithm of Figure 28.1 returns

(0,0) t1 = ].,

Gy ={X1, X2}

(0,1) to = Xo,

G2 = {)(1,)(22 — XQ},

(2,0) t3 = Xl,

Gs = {X{ —2X1, X1 X5, X3 — Xb};

(0,2) ty = X3,

Gy = {X? —2X,, X1 X, X3 — 3X2 +2X,};
(1L,0) t5 = X2,

G5 = {X13 — 3X12 + 2X1,X1X2,X23 — 3X22 + 2X2},
(1,1) t6 = X1 X,
Ge = {X? —3X2 +2X), X2Xy — X1 X, X1 X2 — X1 Xy, X3 — 3X2 4 2X,}.
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Remark that we have

X3 -3X7+2X; = (X1 -2)(X;-1)X,
X2Xo - X1Xy = Xo(X; —1)Xy,
X1 X2-X1Xo = Xo(Xo—1)Xy,

X3 -3X2 42X, = Xo(Xp—1)(Xy—2),

illustrating Lazard Theorem and Corollary 33.3.8. The fact that Moller’s
Algorithm returns Cerlienco-Mureddu Correspondence is not a coincidence.

Example 33.4.2. The result of the application of the Algorithm of Figure 28.1
to the set X of Example 33.2.2 returns, again, Cerlienco-Mureddu Correspon-
dence and the Grobner basis Gg U { f1, f2, f3, fa} where

fi = XsXi—3XsX; +2X3 —3X5 —6X2X1 +9Xs — X7 43X, — 2,

fo = XsXo+4 X3X; —2X343X5 4+ XoX) — 7Xa — 2X7 4+ 3X; + 2,

fa = XiX);—2X]—4X3X) +8Xs —15X5 — 30X2X, +45Xs + 3X, — 6,
fi = X5 —3X7+3X3X) —4Xs —3X7 —6X2X) + 9Xs — 3X) +6,

and (modulo 1(Y))

= (-2 - DG - X+ 5% - 1)
f2 = (Xo+X1—2)(X54+3X, —2X, —1)
fs = (Xi—-2)(Xs5-1)(X5-5X1+2)

fi = (X3 —-1)X3(X3+3X]-8X; +2)

where

o (X?—-3X1+2,X5+X;—2,X;3—1) is the Grobner basis of the ideal whose
roots are {ma(br),m2(bs)},

e {beX:(X?-3X;+2)(b) # 0} = {by, by, by} to which Cerlienco-Mureddu
Correspondence associates {1, X2, X3}

e {beX:(Xy+X1—2)(b) # 0} = {by, by, bs} to which Cerlienco-Mureddu
Correspondence associates {1, X1, X»}

e {beX:(X;—2)(X5—1)(b) #0} = {bz,ba,bs,bs} to which Cerlienco—-
Mureddu Correspondence associates {1, X1, X2, X1 X5 }.

e {beX:(X2-X3))(b) #0} = {bz,bs,by,bs,bs} to which Cerlienco-Mu-
reddu Correspondence associates {1, X1, X7, X, X1 X»}.
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Ezample 83.4.3. Let us set a:=(0,0,0), b:=(1,0,1), c:= (0, -1, -1),

Aa(da) = (XT, X1X3, X7X,, X1 X5, X5 X3, X3)
Xo(ap) = (X1, X5, X1 X5, X3)
A(de) = (X1,X3,X3),

I = qaUqpUqc.

so that s := deg(l) =8 +4+4 = 16.
In the table below we properly list the sets X(I), L(l) and the result N(X)

of Cerlienco-Mureddu Correspondence.

i 1 2 3 4 ) 6 7 8
a a a a a a a
X, Xs X; X XX, X3 X3
X1 Xo X5 X2 XX, X2 X
10 11 12 13 14 15 16
a; b b b c C c C
U; 1 X2 X3 XZQ 1 X2 X3 X2X3
S\) | XE OX2X, X1Xs X X2 X Xi XoX; X2X;

The lex reduced Grobner basis of | 'is G(1) = {f;,1 <14 < 9} where

ISy
—~
>
<!
~
T Ol = W

i = X)-X{
fo = X)Xy - XX,
f3 = XIXZ-X, X2
f4 = X1X23
fs = X5+2X3+ X5
fe = X12X3 -X1X3
fr = XiXoX3— X12X2
fs = X3X3+2X2X3+ XoX3 —2X, X5 — X7 X,
fo = X3 —2XIX3—4XoX3 —2X X3 —3Xy +2X X5 +4X7 X, + X
and we have the following factorization of each f; modulo (fi,..., fi—1):
i = XX -1
fo = XX -1)X,
fr = Xi(X1-1)X2
fi = X1X3
fs = X3(X+1)°
fo = Xi(X1-1)X3
fr = XiXo(X3 - Xo)
fs = Xp(Xo+1)%(Xs - X7)
fo = (X3—X}?-2Xo— X2)(X3+3X3+2X5 — X?).

Remark that for

fo Qalta) = {M(X7?)Aa, M(X1)Xp, M(XT)Ac},
La(t2) = {As5, As},
Pa(t2) = {A1, A2},



fs

Ja

fs
fs

f7

fs

fo
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Eax(t2) = {1, X1 };

Qa(ts) = {M(X1)Aa, M(X1)Ap, M(X1)Ac},
|-2( 3) = {2, X5, As},

Py(ts) = {/\1;/\27/\5,)\3},

(t3) {1 X17X17X2}:

Qa(ta) = {M(X1)Aa, M(1)Xp, M (X1)Ac},

(t4) {)\2:>\5:>\8:)\9}

Pa(ts) = {>\1,>\2,>\5,)\3,)\9,>\10,>\12}
(t4) {1 X17X17X17X27X1X2;X2}7
Ra(ts) = {A1, A3, A7, Az, Aus b,

Qs (ts) = {M(X1)Aa, M(X1) Ao, M (X1)Ac},

Ls(ts) = {A2, A5, X6, As},
Ps(ts) = {>\1,>\2,>\5,)\3}
(tﬁ) {1 X17X17X2};

(t7) {M(X1)Aa, M(L) Ao, M(X1)Ac},
) {A27A57A87A9}7

t7) {>\1,>\2,>\5}

) {1 X17X1}

(t7) {M(X1X2)Aa, M(X2)Ap, M(X1)Ac},

Ls(t7r) = {6, A1o, A1z},
(t7) {Ala AQ; A10};
Es(tr) = {1, X1, Xo};

Qa(ts) = {M(1)Aa, M (1)Xo, M(1)Ac},

Lo(ts) = {1, A1, A1}y
Pa(ts) = {1, Az, Mg, |,
Es(ts) = {1, Xo, X3};

Qs(ts) = {M(X2)Aa, M (X2) Ao, M(X3)Ac},
) = {22, A3, X5, X6, A7, A, Ag, Avo, A1z},
Ps(ts) = {A1, A2, A3, Ao, A10},

(tg) {1 X17X27Xi27X1X2}

P3(to) = {Ai;i <16}},
Y32(tg) = {A1, 1o, A1z, A1a ),
E32(t9) = {].,Xl,XQ,Xg},
Yaar, = X3 — X1 — 2Xp — X3,
Psa(tg) = {N\;,i € {1,2,3,5,9,10,13,14} },
Y31(t9) = {)\“Z S {1,2,3,5,9, ].0, ].3, 14}},
E31(t9) = {17X17X27X127X1X27X§7X?7X23}7
Y31t = X3 — X7 +3X3 +2X3

)\17 = M(X??))\a @(}\17) - X3
Ais Mg  B(\s) = X1X3

the corresponding lex reduced Grébner basis is

557

and that each factor is obtained by interpolation as stated in Corollary 33.3.5.
Ezample 33.4.4. If, in the example above, we now add, where d = (1,0, 0),
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{fi,1 <i <8} U{fio, fi1}

where
fio = XoXZ42X5X3+2X3 +3X5 - 3X7X,
= Xp(X3—1—4Xy —2X3) (X3 — X7 +3X7 4 2X3);
fii = X5 —2X0 X5 +3X5X;5 + 6XaX5 + X1 X5

X3(Xs — X; —2X, — X2) (X3 — X2 4 3X2 +2X3).

The factorization is justified by
fio Q2(tio) = {M(1)As, M(1)Ap, M (1), M (1)Aa},

Lo(tio) = {M},
Pa(tio) = {\1},
Ex(tio) = {1},
V2t = Xo;

Qs (tio) = {M(X2)Aa, M(1)Ap, M (1), M (1)Ag},
L3(tio) = {Ai, i < 18,1 #14 # 4},
P3(t10) = {)‘lal ¢ {475767 7787 18}}7
Y32(t10) = { Ao, A13, A14, A1s},
Esz(ti0) = {1, X1, X», X3},
Y3t = Xz — 1 —4Xy — 2X3,
Ps2(tio) = {\i,yi € {1,2,3,9,10,13,14}},
Y31(t10) = {Alal € {17273797 ]-07 ]-37 14}}7
E31(t10) = {17X17X27X57X1X27X§7X23}7
Va1t = X3 — X + 3X3 +2X3,

fi1 P3(ti1) = {Ai, i < 18}},
Y33(tin) = {1, Ais},

Ess(tin) = {1, X1, },

V33t = X3,

Pas(tin) = {\i,i ¢ {6,7,8}},

Y32(tin) = {A1, Ao, A13, Aia},

E32(t11) = {1,X1,X2,X22}, ‘

Yoory = X3 — X1 — 2Xp — X7,

P32(t11) = {A“Z € {17273797 ]-07 ]-37 14}}7
Y31(t11) = {Alal € {17273797 ]-07 ]-37 14}}7
E31(t11) = {17X17X27X127X1X27X227X23}7
Y31, = X3 — X7 +3XJ +2X3.

33.5 An algorithmic proof

The fact that Moller’s Algorithm returns Cerlienco-Mureddu Correspondence
suggests that a proof can be obtained by a directly application of it®.

® of which a simplified version in this setting is presented in Figure 33.1.
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Fig. 33.1. Moller Algorithm for Macaulay representation

559

r:=1B:=0
ti:=1,N:={t1i},q1 :=t1, q:={q1},
For h =1..n do
t:=Xp,br :=Xp —ap1,B:=BU {t}
While r < s do
Let t :==min<{t € B : \,41(bs) # 0}
r:=r+1, B:=B\ {t},
t,:=t,N:=NU{t }, ¢ := A (b:) ‘b, q:= qU{q},
For each 7 € B do b, := b, — A+ (br)gr,
For h =1..n do
If X,t, ¢ B then

t:= Xpt,,

fi=Xnbe, — 3 (b, 7)bx,r
TEN
X,T€EB

b= = A (Par
B :=BU{Xt,, h =1.n}
q,{b- : 7 € B}

The proof being by induction, we begin with
Lemma 33.5.1. If #X =1 conditions (A), (F), (W), (X) hold.

Proof. When we have a single point (a1, ..., a,) € k™, we have
e N= {1}7

e B=G={X,...,X,},

L4 fl = ]-7

o fx, = X;— a;, for each i,

and the properties are obviously satisfied.

This giving a starting point for induction, let us assume we have a

Macaulay representation L := {A1,...,A;} and a CM-scheme

n

Xi={x1,..., %} CE" x T,x; = (a,vi),a; := (i1, .., 0in), 0 = HXla”

=1
of a CM-ideal I, so that, for each i,
Ai = M(X) = M(v;)Ay,,, foreachi;1 <i<s,
and let us denote
X i=Ax1,. ., xs—1 1, L i={A1,..., As—1} and |" := P(Span,, (L),

for which we assume conditions (A-Z) hold.
In particular:

@' := N' —~ X' is Cerlienco-Mureddu Correspondence,
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G :=G(IX)) ={wi,- .., wr}, w1 <ws < ... < wy,

B = B(I(X),

fl,w € B, are the polynomials whose existence is implied by (F),

F; := f!. are the polynomials whose existence is implied by (E), so that
{F; : 1 <i <r} is the reduced Grobner basis of I(X);

L}, P!, H] are the polynomials whose existence is implied by (N),

I}, p}, h} are the polynomials whose existence is implied by (X).

Setting
I::mgn{j,lfjfri)\s(Fj)#m’

then it holds
Lemma 33.5.2. If X' satisfies conditions (A-Z) then
U(X)(xs) = wr.
Proof. Let wr = X ... X% and let m 4 1 := max(i : d; # 0), so that
Fr e kX1, ., Xontal.
Since, by (P), for each v,
(X" NE[Xy, ..., X,] = I(m (X)),

and
FjEk[Xl,...,X,,],I/Sm = j<I

we deduce that

T (As)(Fj) = As(Fj) =0, for each Fj € k[X1,...,X,],v < m, while
Tmt1(As) (F1) = As(F1) # 0.

This allows to deduce that
m =max (j: exists { < s:m;(x;) = m;(Xs)) .
Therefore my,41(xs) € {mm+1(x),x € X'}; also
dm = #{xi,1 < s T (X;) = T (xs) };
in fact, for each § < d,,, since
T(Fj) =w; < X5 < XIm = j <1,

and 7, (As)(Fj) =0, (Q) allows to deduce that
Tm(Xs) € Yo i= {y emn(X):d<#{xeX  y= wm(x)}}

and 7 (xs) € Y, -
As a consequence we consider the sets of points
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W= {x;: &'(x;) = X0 1,7 € T[L,m]} U {xs} and V := 7., (W);

in this setting Cerlienco-Mureddu Correspondence gives a relation between
each point m,(x;) and the corresponding term 7;; also, by (Q), the ideal
(41 (W)) has the Grobner basis {l},...,l. ~} where

> VImdoy,
Tm(As) (1)) = 0,¥j < I while 5, (A,) (1)) # 0.

So the same argument grants that Cerlienco-Mureddu Correspondence
returns &(m,, ((x5)) = X" ...Xg{'fll.

As a consequence, the application of Moller Algorithm to X = X' U {x,}

produces

qs = ¢ LFy, with ¢ = X\;(F));

N:=NU{wr};

B =B\ {wr} U{Xwr,1<i<n};

fri=fL = As(fl)gs for each 7 € B' \ {wr}, 7 > wr and

fr = fL, for each 7 € B'\ {wr}, T < wr since As(f]) =0;

for each 7 := X;w; € B’

fri=(Xi—aw)Fr— > c(Fr,w)fxw
X;,weB’

where
Fr =wr + Z c(Fr,w)w.
weN'

Proposition 33.5.1. If X' satisfies conditions (A-Z) then X satisfies con-
ditions (A), (F), (R), (S).

Proof. (A) is obvious;

(F) is obvious.

(R) On the basis of Remark 33.3.1 we know that Fr € (h{,...,h}); also all
we need to prove is that, for each 1,

H; € (Hy,... Hi_y) = {H; T(H,) < T(H;)}.

Therefore
o if T(H;) =t; € G',i < I, we have

H,=H e (H{,...,H]_))=(Hy,...,Hi_1);
e if T(H;) =t; € G',i > I, we have
Hi :HZ{—G,F[ € (H{,...,H;il) = (Hl,...,H,'_l)

so that, also (Hy,...,H}) = (Hy,...,H;).
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e Finally, for 7 = X;t; we have L, = L/, and
L P, = H, = fr = (Xi — ais) Ff = (Xi — ais) Ly P = 0

modulo (Hi,...,H};) = (Hy,...,Hj)
The same argument proofs the claim for {hy,...,h,}.
(S) As(fw,) # 0 for construction; As(H,,) # 0 and As(hy,,) # 0 because both
H,, — fu, and hy,, — f,, have a representation in terms of {Fj;,i < I}

and \s(F;) =0, for each i < I.
In conclusion we have:

Theorem 33.5.1. For a CM-ideal |, given by a CM-scheme X of CM-
conditions, using the same notation as above, it holds

(A) N :=N(l).
B) GH=G ={ty,...,tr ), t1 <ta < ... < ty;
(C) B(l) =B.

(D) For each 7 € N there is a unique polynomial
fri=1— Z o(fr,w)w
weMN(T)

such that \(f;) =0, for each X € L(7).
(E) For each T € G there is a unique polynomial

fri=1— Z o(fr,w)w

weN

such that \(f;) =0, for each \ € L.
(F) For each T € B there is a polynomial

fri=1— Z o(fr,w)w
weMN(T)
such that \(f;) =0, for each X € L.
(G) The reduced Grébner basis of | is
G(1) :==A{fr: 7€ G}

moreover, for each T € N, T(f,) =T.
(H) The border basis of | is

B(l):={f, : 7€ B}

(I) for each T := Xfl - X € N, and each m,1 < m < n there are unique
polynomials

Ymr = ng,m + Z c(Ymr,w)w
WEFm (T)

such that 7, (X)) (Ymr) = 0, for each x; € Dy, (7),x; < &71(7);
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(L) for each T := Xfl < X € G, and each m,1 < m < n there are unique

polynomials
- de + Z 7mT:
WEE,(T)

such that mwm (Xi)(Ymr) = 0, for each x; € Dy, (7);
(M) for each 7= X" --- X% € N, there are

L. e k[Xy,...,X,_1]
and a unique monic polynomial

P, _Xd + Z w S k[Xla---aXu—l][XV]
weF, (1)

so that H, := L. P, are such that

i T(H‘I’) =T, Lp(H‘I’) =L,

e T,—_1(A)(L;) =0, for each A € L(1),

e 7, (A)(Pr) =0, for each X € L, (1),

o m,(N)(H,;) =0, for each \; € L : x; < &7 1(7).
(N) for eachi,1<i < r there are

L; € k[Xl,...,X,,_l]

and a unique monic polynomial

P, = Xd + Z wEk[XI; -->XV71][XV]
w€E, (ti)

so that H; .= L;P; are such that

e T(H)=t;=X"-- X% € GNT[L,v], Lp(H;) = Li,
o 7, 1(N)(L;) =0, for each A € U’ 1 L, (1),

e 7, (A)(FP;) =0, for each XA € L, (t )

e 7, (A)(H;) =0, for each A\; € L.

(O) {Hy,...,H,} is a minimal Grébner basis of |;

(P) For each v,1 < v < n let j, the value such that t;, < X,q41 < tj,41;
then {H.,...,H;,} is a minimal Grébner basis of INk[X4,...,X,] and
of 107y (X)):

(Q) For each v,1 < v < n, and each 6 € N let j(vd) the value such that
tiws) < X,‘f_H < tiwey41; then {Li,...,L;j .} is a Grobner basis of
I(YV5)7'

(R) Foreachi,2<i<r, P;e(Hj,j<i):L.

(S) for each j,1 < j <'s, A\j(fr;) # 0 and X\j(H;;) # 0 so that L(l) is
triangular to {\;(f-;)~ 1fT ,1<j <s} and {)\j( ) H 1< j < s}
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(T) for each 7 := X... X% € N and each m,1 < m < n, there are

polynomials
- Xd + Z ng:
wEM,, (T)

such that g.,-(a) = 0, for each a € D,,(7),a < (7).
(U) for each T := X{il - Xd € G, and each m,1 < m < n, there are

polynomials
=Xgm+ D> c(gmrsw
WEM, (1)
such that gm.(a) =0, for each a € Dy, (7);

If moreover | is radical:
(W) for each 7 = X --. X% € N, there are

I € k[Xq,...,X,1]
and a monic polynomial

pT—Xd + Z pT7 wek[Xla"WXV*l][X”]
weM, (1)

so that h; := l,;p; are such that

b T(hT) = T;

o I (my_1(a)) =0, for all a € X(7),

e p-(a) =0, for each a € D, (1),

e h,(a) =0, for each a € X such that a < ®~1(7).
(X) for each i,1 < i <r there are

l; € k[Xl, . ,X,,_l]
and a monic polynomial

=X+ > clpiww € k[Xy,..., X, 1][X,]
wEM, (t;)

so that h; := l;p; are such that
T(h)=t;=X" - X& ¢ GNT[L,v],
li(my—1(a)) = 0, for each a € UY ! D,y (t;),
pi(a) =0, for each a € D, (t;),
hi(a) =0, for each a € X.
(Z) 1;,pi, hi, 1 <i <r satisfy
{h1,...,h} is a minimal Grébner basis of |;
for each v,1 < v < n, {h1,...,hj,} is a minimal Grébner basis of
INk[X1,...,X,] and of I(7,(X));
for each v,1 <v <n, {l1,...,1; )} is a Grébner basis of 1(Y,s);
for each i,2 <i<r, p; € (hj,j <i):l;;
for each j,1 < j <s, \j(hs;) #0;

(1) is triangular to {\j(h-;) " h;,1 < j < s}



