
Factoring Large Numbers with the TWIRL

Device

Adi Shamir and Eran Tromer

Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot 76100, Israel

{shamir,tromer}@wisdom.weizmann.ac.il

Abstract. The security of the RSA cryptosystem depends on the dif-
ficulty of factoring large integers. The best current factoring algorithm
is the Number Field Sieve (NFS), and its most difficult part is the siev-
ing step. In 1999 a large distributed computation involving hundreds of
workstations working for many months managed to factor a 512-bit RSA
key, but 1024-bit keys were believed to be safe for the next 15-20 years.
In this paper we describe a new hardware implementation of the NFS
sieving step (based on standard 0.13µm, 1GHz silicon VLSI technology)
which is 3-4 orders of magnitude more cost effective than the best previ-
ously published designs (such as the optoelectronic TWINKLE and the
mesh-based sieving). Based on a detailed analysis of all the critical com-
ponents (but without an actual implementation), we believe that the
NFS sieving step for 512-bit RSA keys can be completed in less than
ten minutes by a $10K device. For 1024-bit RSA keys, analysis of the
NFS parameters (backed by experimental data where possible) suggests
that sieving step can be completed in less than a year by a $10M device.
Coupled with recent results about the cost of the NFS matrix step, this
raises some concerns about the security of this key size.

1 Introduction

The hardness of integer factorization is a central cryptographic assumption and
forms the basis of several widely deployed cryptosystems. The best integer factor-
ization algorithm known is the Number Field Sieve [12], which was successfully
used to factor 512-bit and 530-bit RSA moduli [5,1]. However, it appears that a
PC-based implementation of the NFS cannot practically scale much further, and
specifically its cost for 1024-bit composites is prohibitive. Recently, the prospect
of using custom hardware for the computationally expensive steps of the Number
Field Sieve has gained much attention. While mesh-based circuits for the matrix
step have rendered that step quite feasible for 1024-bit composites [3,16], the
situation is less clear concerning the sieving step. Several sieving devices have
been proposed, including TWINKLE [19,15] and a mesh-based circuit [7], but
apparently none of these can practically handle 1024-bit composites.

One lesson learned from Bernstein’s mesh-based circuit for the matrix step [3]
is that it is inefficient to have memory cells that are ”simply sitting around,

twiddling their thumbs” — if merely storing the input is expensive, we should
utilize it efficiently by appropriate parallelization. We propose a new device that
combines this intuition with the TWINKLE-like approach of exchanging time
and space. Whereas TWINKLE tests sieve location one by one serially, the new
device handles thousands of sieve locations in parallel at every clock cycle. In
addition, it is smaller and easier to construct: for 512-bit composites we can
fit 79 independent sieving devices on a 30cm single silicon wafer, whereas each
TWINKLE device requires a full GaAs wafer. While our approach is related
to [7], it scales better and avoids some thorny issues.

The main difficulty is how to use a single copy of the input (or a small
number of copies) to solve many subproblems in parallel, without collisions or
long propagation delays and while maintaining storage efficiency. We address
this with a heterogeneous design that uses a variety of routing circuits and
takes advantage of available technological tradeoffs. The resulting cost estimates
suggest that for 1024-bit composites the sieving step may be surprisingly feasible.

Section 2 reviews the sieving problem and the TWINKLE device. Section 3
describes the new device, called TWIRL1, and Section 4 provides preliminary
cost estimates. Appendix A discusses additional design details and improve-
ments. Appendix B specifies the assumptions used for the cost estimates, and
Appendix C relates this work to previous ones.

2 Context

2.1 Sieving in the Number Field Sieve

Our proposed device implements the sieving substep of the NFS relation collec-
tion step, which in practice is the most expensive part of the NFS algorithm [16].
We begin by reviewing the sieving problem, in a greatly simplified form and after
appropriate reductions.2 See [12] for background on the Number Field Sieve.

The inputs of the sieving problem are R ∈ Z (sieve line width), T > 0 (thresh-
old) and a set of pairs (pi,ri) where the pi are the prime numbers smaller than
some factor base bound B. There is, on average, one pair per such prime. Each
pair (pi,ri) corresponds to an arithmetic progression Pi = {a : a ≡ ri (mod pi)}.
We are interested in identifying the sieve locations a ∈ {0, . . . ,R − 1} that are
members of many progressions Pi with large pi:

g(a) > T where g(a) =
∑

i:a∈Pi

logh pi

for some fixed h (possibly h > 2). It is permissible to have “small” errors in this
threshold check; in particular, we round all logarithms to the nearest integer.

In the NFS relation collection step we have two types of sieves: rational and
algebraic. Both are of the above form, but differ in their factor base bounds (BR

1 TWIRL stands for “The Weizmann Institute Relation Locator”
2 The description matches both line sieving and lattice sieving. However, for lattice

sieving we may wish to take a slightly different approach (cf. A.8).

2

vs. BA), threshold T and basis of logarithm h. We need to handle H sieve lines,
and for sieve line both sieves are performed, so there are 2H sieving instances
overall. For each sieve line, each value a that passes the threshold in both sieves
implies a candidate. Each candidate undergoes additional tests, for which it is
beneficial to also know the set {i : a ∈ Pi} (for each sieve separately). The most
expensive part of these tests is cofactor factorization, which involves factoring
medium-sized integers.3 The candidates that pass the tests are called relations.
The output of the relation collection step is the list of relations and their corre-
sponding {i : a ∈ Pi} sets. Our goal is to find a certain number of relations, and
the parameters are chosen accordingly a priori.

2.2 TWINKLE

Since TWIRL follows the TWINKLE [19,15] approach of exchanging time and
space compared to traditional NFS implementations, we briefly review TWIN-
KLE (with considerable simplification). A TWINKLE device consists of a wafer
containing numerous independent cells, each in charge of a single progression Pi.
After initialization the device operates for R clock cycles, corresponding to the
sieving range {0 ≤ a < R}. At clock cycle a, the cell in charge of the progression
Pi emits the value log pi iff a ∈ Pi. The values emitted at each clock cycle are
summed, and if this sum exceeds the threshold T then the integer a is reported.
This event is announced back to the cells, so that the i values of the pertaining
Pi is also reported. The global summation is done using analog optics; clocking
and feedback are done using digital optics; the rest is implemented by digital
electronics. To support the optoelectronic operations, TWINKLE uses Gallium
Arsenide wafers which are small, expensive and hard to manufacture compared
to silicon wafers, which are readily available.

3 The New Device

3.1 Approach

We next describe the TWIRL device. The description in this section applies to
the rational sieve; some changes will be made for the algebraic sieve (cf. A.6),
since it needs to consider only a values that passed the rational sieve.

For the sake of concreteness we provide numerical examples for a plausible
choice of parameters for 1024-bit composites.4 This choice will be discussed
in Sections 4 and B.2; it is not claimed to be optimal, and all costs should
be taken as rough estimates. The concrete figures will be enclosed in double
angular brackets: 〈〈x〉〉R and 〈〈x〉〉A indicate values for the algebraic and rational
sieves respectively, and 〈〈x〉〉 is applicable to both.

We wish to solve H 〈〈≈ 2.7 · 108〉〉 pairs of instances of the sieving problem,
each of which has sieving line width R 〈〈= 1.1 · 1015〉〉 and smoothness bound

3 We assume use of the “2+2 large primes” variant of the NFS [12,13].
4 This choice differs considerably from that used in preliminary drafts of this paper.

3

)(

+0(

) +0(

) +0(

) +0() +1(

) +1(

) +1(

) +1(

+1() +2(

) +2(

) +2(

) +2(

) +2(

) +1(

) +1(

) +1(

) +1(

) +1(

)

)+0t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

−3

−4

−1

−2

−3

−4

−1

−2

s

s

s

s

s

−3

−4

−1

−2

s

s

s

s

s

−3

−4

−1

−2

s

s

s

s

s

−3

−4

−1

−2

s

s

s

s

s

p1

p3

p5

p2

p4

p1

p3

p5

p2

p4

(a) (b)

s()−1

s()−1

s()−1

s()−1

s()−1

Fig. 1: Flow of sieve locations through the device in (a) a chain of adders and (b)
TWIRL.

B 〈〈= 3.5 · 109〉〉
R
〈〈= 2.6 · 1010〉〉

A. Consider first a device that handles one sieve lo-
cation per clock cycle, like TWINKLE, but does so using a pipelined systolic
chain of electronic adders.5 Such a device would consist of a long unidirectional
bus, log2T 〈〈= 10〉〉 bits wide, that connects millions of conditional adders in se-
ries. Each conditional adder is in charge of one progression Pi; when activated
by an associated timer, it adds the value6 blog pie to the bus. At time t, the z-th
adder handles sieve location t − z. The first value to appear at the end of the
pipeline is g(0), followed by g(1), . . . ,g(R), one per clock cycle. See Fig. 1(a).

We reduce the run time by a factor of s 〈〈= 4,096〉〉R〈〈= 32,768〉〉A by handling
the sieving range {0, . . . ,R − 1} in chunks of length s, as follows. The bus is
thickened by a factor of s to contain s logical lines of log2T bits each. As a first
approximation (which will be altered later), we may think of it as follows: at
time t, the z-th stage of the pipeline handles the sieve locations (t − z)s + i,
i ∈ {0, . . . ,s − 1}. The first values to appear at the end of the pipeline are
{g(0), . . . ,g(s− 1)}; they appear simultaneously, followed by successive disjoint
groups of size s, one group per clock cycle. See Fig. 1(b).

Two main difficulties arise: the hardware has to work s times harder since
time is compressed by a factor of s, and the additions of blog pie corresponding to
the same given progression Pi can occur at different lines of a thick pipeline. Our
goal is to achieve this parallelism without simply duplicating all the counters and
adders s times. We thus replace the simple TWINKLE-like cells by other units
which we call stations. Each station handles a small portion of the progressions,
and its interface consists of bus input, bus output, clock and some circuitry for
loading the inputs. The stations are connected serially in a pipeline, and at the
end of the bus (i.e., at the output of the last station) we place a threshold check
unit that produces the device output.

An important observation is that the progressions have periods pi in a very
large range of sizes, and different sizes involve very different design tradeoffs. We

5 This variant was considered in [15], but deemed inferior in that context.
6 blog pie denote the value logh pi for some fixed h, rounded to the nearest integer.

4

thus partition the progressions into three classes according to the size of their pi

values, and use a different station design for each class. In order of decreasing pi

value, the classes will be called largish, smallish and tiny.7

This heterogeneous approach leads to reasonable device sizes even for 1024-
bit composites, despite the high parallelism: using standard VLSI technology, we
can fit 〈〈4〉〉R rational-side TWIRLs into a single 30cm silicon wafer (whose man-
ufacturing cost is about $5,000 in high volumes; handling local manufacturing
defects is discussed in A.9). Algebraic-side TWIRLs use higher parallelism, and
we fit 〈〈1〉〉A of them into each wafer.

The following subsections describe the hardware used for each class of pro-
gressions. The preliminary cost estimates that appear later are based on a careful
analysis of all the critical components of the design, but due to space limitations
we omit the descriptions of many finer details. Some additional issues are dis-
cussed in Appendix A.

3.2 Largish Primes

Progressions whose pi values are much larger than s emit blog pie values very
seldom. For these largish primes 〈〈pi > 5.2 · 105〉〉

R
〈〈pi > 4.2 · 106〉〉

A, it is benefi-
cial to use expensive logic circuitry that handles many progressions but allows
very compact storage of each progression. The resultant architecture is shown
in Fig. 2. Each progression is represented as a progression triplet that is stored
in a memory bank, using compact DRAM storage. The progression triplets are
periodically inspected and updated by special-purpose processors, which iden-
tify emissions that should occur in the “near future” and create corresponding
emission triplets. The emission triplets are passed into buffers that merge the
outputs of several processors, perform fine-tuning of the timing and create de-

livery pairs. The delivery pairs are passed to pipelined delivery lines, consisting
of a chain of delivery cells which carry the delivery pairs to the appropriate bus
line and add their blog pie contribution.

Scanning the progressions. The progressions are partitioned into many
〈〈8,490〉〉R〈〈59,400〉〉A DRAM banks, where each bank contains some d progression
〈〈32 ≤ d < 2.2 · 105〉〉

R
〈〈32 ≤ d < 2.0 · 105〉〉

A. A progression Pi is represented by a
progression triplet of the form (pi, `i, τi), where `i and τi characterize the next
element ai ∈ Pi to be emitted (which is not stored explicitly) as follows. The
value τi = bai/sc is the time when the next emission should be added to the
bus, and `i = ai mod s is the number of the corresponding bus line. A processor
repeats the following operations, in a pipelined manner:8

7 These are not to be confused with the ”large” and ”small” primes of the high-level
NFS algorithm — all the primes with which we are concerned here are ”small”
(rather than ”large” or in the range of “special-q”).

8 Additional logic related to reporting the sets {i : a ∈ Pi} is described in Ap-
pendix A.7.

5

Cache

Pr
oc

es
so

r

D
R

A
M

Cache

Pr
oc

es
so

r

D
R

A
M

B
uf

fe
r

D
el

iv
er

y
lin

es

Fig. 2: Schematic structure of a largish station.

1. Read and erase the next state triplet (pi, `i, τi) from memory.

2. Send an emission triplet (blog pie, `i, τi) to a buffer connected to the processor.

3. Compute `′ ← (` + p) mod s and τ ′

i ← τi + bp/sc+ w, where w = 1 if `′ < `
and w = 0 otherwise.

4. Write the triplet (pi, `
′

i, τ
′

i) to memory, according to τ ′

i (see below).

We wish the emission triplet (blog pie, `i, τi) to be created slightly before time
τi (earlier creation would overload the buffers, while later creation would pre-
vent this emission from being delivered on time). Thus, we need the processor to
always read from memory some progression triplet that has an imminent emis-
sion. For large d, the simple approach of assigning each emission triplet to a
fixed memory address and scanning the memory cyclically would be ineffective.
It would be ideal to place the progression triplets in a priority queue indexed
by τi, but it is not clear how to do so efficiently in a standard DRAM due to
its passive nature and high latency. However, by taking advantage of the unique
properties of the sieving problem we can get a good approximation, as follows.

Progression storage. The processor reads progression triplets from the mem-
ory in sequential cyclic order and at a constant rate 〈〈of one triplet every 2 clock
cycles〉〉. If the value read is empty, the processor does nothing at that iteration.
Otherwise, it updates the progression state as above and stores it at a different
memory location — namely, one that will be read slightly before time τ ′

i . In this
way, after a short stabilization period the processor always reads triplets with
imminent emissions. In order to have (with high probability) a free memory loca-
tion within a short distance of any location, we increase the amount of memory
〈〈by a factor of 2〉〉; the progression is stored at the first unoccupied location,
starting at the one that will be read at time τ ′

i and going backwards cyclically.

If there is no empty location within 〈〈64〉〉 locations from the optimal des-
ignated address, the progression triplet is stored at an arbitrary location (or a
dedicated overflow region) and restored to its proper place at some later stage;

6

when this happens we may miss a few emissions (depending on the implementa-
tion). This happens very seldom,9 and it is permissible to miss a few candidates.

Autonomous circuitry inside the memory routes the progression triplet to
the first unoccupied position preceeding the optimal one. To implement this
efficiently we use a two-level memory hierarchy which is rendered possibly by
the following observation. Consider a largish processor which is in charge of a set
of d adjacent primes {pmin, . . . ,pmax}. We set the size of the associated memory
to pmax/s triplet-sized words, so that triplets with pi = pmax are stored right
before the current read location; triplets with smaller pi are stored further back,
in cyclic order. By the density of primes, pmax−pmin ≈ d · ln(pmax). Thus triplet
values are always stored at an address that precedes the current read address by
at most d·ln(pmax)/s, or slightly more due to congestions. Since ln(pmax) ≤ ln(B)
is much smaller than s, memory access always occurs at a small window that
slides at a constant rate of one memory location every 〈〈2〉〉 clock cycles. We may
view the 〈〈8,490〉〉R〈〈59,400〉〉A memory banks as closed rings of various sizes, with
an active window “twirling” around each ring at a constant linear velocity.

Each sliding window is handled by a fast SRAM-based cache. Occasionally,
the window is shifted by writing the oldest cache block to DRAM and reading the
next block from DRAM into the cache. Using an appropriate interface between
the SRAM and DRAM banks (namely, read/write of full rows), this hides the
high DRAM latency and achieves very high memory bandwidth. Also, this allows
simpler and thus smaller DRAM.10 Note that cache misses cannot occur. The
only interface between the processor and memory are the operations “read next
memory location” and “write triplet to first unoccupied memory location before
the given address”. The logic for the latter is implemented within the cache,
using auxiliary per-triplet occupancy flags and some local pipelined circuitry.

Buffers. A buffer unit receives emission triplets from several processors in
parallel, and sends delivery pairs to several delivery lines. Its task is to convert
emission triplets into delivery pairs by merging them where appropriate, fine-
tuning their timing and distributing them across the delivery lines: for each
received emission triplet of the form (blog pie, `, τ), the delivery pair (blog pie, `)
should be sent to some delivery line (depending on `) at time exactly τ .

Buffer units can be be realized as follows. First, all incoming emission triplets
are placed in a parallelized priority queue indexed by τ , implemented as a small

9 For instance, in simulations for primes close to 〈〈20,000s〉〉R, the distance between
the first unoccupied location and the ideal location was smaller than 〈〈64〉〉R for all
but 〈〈5 · 10−6〉〉R of the iterations. The probability of a random integer x ∈ {1, . . . ,x}
having k factors is about (log log x)k−1/(k−1)! log x. Since we are (implicitly) sieving
over values of size about x ≈ 〈〈1064〉〉R〈〈10101〉〉A which are “good” (i.e., semi-smooth)
with probability p ≈ 〈〈6.8 · 10−5〉〉R〈〈4.4 · 10−9〉〉A, less than 10−15/p of the good a’s
have more than 35 factors; the probability of missing other good a’s is negligible.

10 Most of the peripheral DRAM circuitry (including the refresh circuitry and column
decoders) can be eliminated, and the row decoders can be replaced by smaller stateful
circuitry. Thus, the DRAM bank can be smaller than standard designs. For the
stations that handle the smaller primes in the “largish” range, we may increase the
cache size to d and eliminate the DRAM.

7

mesh whose rows are continuously bubble-sorted and whose columns undergo
random local shuffles. The elements in the last few rows are tested for τ match-
ing the current time, and the matching ones are passed to a pipelined network
that sorts them by `, merges where needed and passes them to the appropriate
delivery lines. Due to congestions some emissions may be late and thus discarded;
since the inputs are essentially random, with appropriate choices of parameters
this should happen seldom.

The size of the buffer depends on the typical number of time steps that an
emission triplet is held until its release time τ (which is fairly small due to the
design of the processors), and on the rate at which processors produce emission
triplets 〈〈about once per 4 clock cycles〉〉.
Delivery lines. A delivery line receives delivery pairs of the form (blog pie, `)
and adds each such pair to bus line ` exactly b`/kc clock cycles after its receipt.
It is implemented as a one-dimensional array of cells placed across the bus, where
each cell is capable of containing one delivery pair. Here, the j-th cell compares
the ` value of its delivery pair (if any) to the constant j. In case of equality, it
adds blog pie to the bus line and discards the pair. Otherwise, it passes it to the
next cell, as in a shift register.

Overall, there are 〈〈2,100120〉〉R〈〈14,900〉〉A delivery lines in the largish stations,
and they occupy a significant portion of the device. Appendix A.1 describes
the use of interleaved carry-save adders to reduce their cost, and Appendix A.6
nearly eliminates them from the algebraic sieve.

Notes. In the description of the processors, DRAM and buffers, we took the
τ values to be arbitrary integers designating clock cycles. Actually, it suffices
to maintain these values modulo some integer 〈〈2048〉〉 that upper bounds the
number of clock cycles from the time a progression triplet is read from mem-
ory to the time when it is evicted from the buffer. Thus, a progression occu-
pies log2pi + 〈〈log22048〉〉 DRAM bits for the triplet, plus log2pi bits for re-
initialization (cf. A.4).

The amortized circuit area per largish progression is Θ(s2(log s)/pi + log s +
log pi).

11 For fixed s this equals Θ(1/pi +log pi), and indeed for large composites
the overwhelming majority of progressions 〈〈99.97%〉〉R〈〈99.98%〉〉A will be handled
in this manner.

3.3 Smallish Primes

For progressions with pi close to s, 〈〈256 < pi < 5.2 ·105〉〉
R
〈〈256 < pi < 4.2 ·106〉〉

A,
each processor can handle very few progressions because it can produce at most
one emission triplet every 〈〈2〉〉 clock cycles. Thus, the amortized cost of the
processor, memory control circuitry and buffers is very high. Moreover, such
progression cause emissions so often that communicating their emissions to dis-
tant bus lines (which is necessary if the state of each progression is maintained

11 The frequency of emissions is s/pi, and each emission occupies some delivery cell
for Θ(s) clock cycles. The last two terms are due to DRAM storage, and have very
small constants.

8

Fu
nn

el
Fu

nn
el

Fu
nn

el
Fu

nn
el

Fu
nn

el

Fu
nn

el

Emitter

Emitter

Emitter

Emitter

Emitter

Emitter

Emitter

Emitter

Emitter

Emitter

Emitter

Emitter

Fig. 3: Schematic structure of a smallish station.

at some single physical location) would involve enormous communication band-
width. We thus introduce another station design, which differs in several ways
from the largish stations (see Fig 3).

Emitters and funnels. The first change is to replace the combination of the
processors, memory and buffers by other units. Delivery pairs are now created
directly by emitters, which are small circuits that handle a single progression
each (as in TWINKLE). An emitter maintains the state of the progression using
internal registers, and occasionally emits delivery pairs of the form (blog pie, `)
which indicate that the value blog pie should be added to the `-th bus line some
fixed time interval later. Appendix A.2 describes a compact emitters design.

Each emitter is continuously updating its internal counters, but it creates a
delivery pair only once per roughly

√
pi (between 〈〈8〉〉R and 〈〈512〉〉R clock cycles —

see below). It would be wasteful to connect each emitter to a dedicated delivery
line. This is solved using funnels, which “compress” their sparse inputs as follows.
A funnel has a large number of input lines, connected to the outputs of many
adjacent emitters; we may think of it as receiving a sequence of one-dimensional
arrays, most of whose elements are empty. The funnel outputs a sequence of much
shorter arrays, whose non-empty elements are exactly the non-empty elements of
the input array received a fixed number of clock cycle earlier. The funnel outputs
are connected to the delivery lines. Appendix A.3 describes an implementation
of funnels using modified shift registers.

Duplication. The other major change is duplication of the progression states,
in order to move the sources of the delivery pairs closer to their destination and
reduce the cross-bus communication bandwidth. Each progression is handled
by ni ≈ s/

√
pi independent emitters12 which are placed at regular intervals

across the bus. Accordingly we fragment the delivery lines into segments that
span s/ni ≈

√
pi bus lines each. Each emitter is connected (via a funnel) to a

different segment, and sends emissions to this segment every pi/sni ≈
√

p clock
cycles. As emissions reach their destination quicker, we can decrease the total

12 〈〈ni = s/2
√

pi〉〉 rounded to a power of 2 (cf. A.2), which is in the range
〈〈{2, . . . ,128}〉〉R.

9

E
m

itt
er

E
m

itt
er

E
m

itt
er

Fig. 4: Schematic structure of a tiny station, for a single progression.

number of delivery lines. Also, there is a corresponding decrease in the emission
frequency of any specific emitter, which allows us to handle pi close to (or even
smaller than) s. Overall there are 〈〈501〉〉R delivery lines in the smallish stations,
broken into segments of various sizes.

Notes. Asymptotically the amortized circuit area per smallish progression is
Θ((s/

√
pi +1) (log s+log pi)). The term 1 is less innocuous than it appears — it

hides a large constant (roughly the size of an emitter plus the amortized funnel
size), which dominates the cost for large pi.

3.4 Tiny Primes

For very small primes, the amortized cost of the duplicated emitters, and in
particular the related funnels, becomes too high. On the other hand, such pro-
gressions cause several emissions at every clock cycle, so it is less important
to amortize the cost of delivery lines over several progressions. This leads to a
third station design for the tiny primes 〈〈pi < 256〉〉. While there are few such
progressions, their contributions are significant due to their very small periods.

Each tiny progression is handled independently, using a dedicated delivery
line. The delivery line is partitioned into segments of size somewhat smaller
than pi,

13 and an emitter is placed at the input of each segment, without an
intermediate funnel (see Fig 4). These emitters are a degenerate form of the ones
used for smallish progressions (cf. A.2). Here we cannot interleave the adders in
delivery cells as done in largish and smallish stations, but the carry-save adders
are smaller since they only (conditionally) add the small constant blog pie. Since
the area occupied by each progression is dominated by the delivery lines, it is
Θ(s) regardless of pi.

Some additional design considerations are discussed in Appendix A.

4 Cost estimates

Having outlined the design and specified the problem size, we next estimate
the cost of a hypothetical TWIRL device using today’s VLSI technology. The
hardware parameters used are specified in Appendix B.1. While we tried to
produce realistic figures, we stress that these estimates are quite rough and rely
on many approximations and assumptions. They should only be taken to indicate

13 The segment length is the largest power of 2 smaller than pi (cf. A.2).

10

the order of magnitude of the true cost. We have not done any detailed VLSI
design, let alone actual implementation.

4.1 Cost of Sieving for 1024-bit Composites

We assume the following NFS parameters: BR = 3.5 · 109, BA = 2.6 · 1010,
R = 1.1 · 1015, H ≈ 2.7 · 108 (cf. B.2). We use the cascaded sieves variant of
Appendix A.6.

For the rational side we set sR = 4,096. One rational TWIRL device requires
15,960mm2 of silicon wafer area, or 1/4 of a 30cm silicon wafer. Of this, 76% is
occupied by the largish progressions (and specifically, 37% of the device is used
for the DRAM banks), 21% is used by the smallish progressions and the rest (3%)
is used by the tiny progressions. For the algebraic side we set sA = 32,768. One
algebraic TWIRL device requires 65,900mm2 of silicon wafer area — a full wafer.
Of this, 94% is occupied by the largish progressions (66% of the device is used
for the DRAM banks) and 6% is used by the smallish progressions. Additional
parameters of are mentioned throughout Section 3.

The devices are assembled in clusters that consist each of 8 rational TWIRLs
and 1 algebraic TWIRL, where each rational TWIRL has a unidirectional link to
the algebraic TWIRL over which it transmits 12 bits per clock cycle. A cluster
occupies three wafers, and handles a full sieve line in R/sA clock cycles, i.e.,
33.4 seconds when clocked at 1GHz. The full sieving involves H sieve lines,
which would require 194 years when using a single cluster (after the 33% saving
of Appendix A.5.) At a cost of $2.9M (assuming $5,000 per wafer), we can build
194 independent TWIRL clusters that, when run in parallel, would complete the
sieving task within 1 year.

After accounting for the cost of packaging, power supply and cooling systems,
adding the cost of PCs for collecting the data and leaving a generous error
margin,14 it appears realistic that all the sieving required for factoring 1024-
bit integers can be completed within 1 year by a device that cost $10M to
manufacture. In addition to this per-device cost, there would be an initial NRE
cost on the order of $20M (for design, simulation, mask creation, etc.).

4.2 Implications for 1024-bit Composites

It has been often claimed that 1024-bit RSA keys are safe for the next 15 to
20 years, since both NFS relation collection and the NFS matrix step would be
unfeasible (e.g., [4,21] and a NIST guideline draft [18]). Our evaluation suggests
that sieving can be achieved within one year at a cost of $10M (plus a one-time
cost of $20M), and recent works [16,8] indicate that for our NFS parameters the
matrix can also be performed at comparable costs.

14 It is a common rule of thumb to estimate the total cost as twice the silicon cost; to
be conservative, we triple it.

11

With efficient custom hardware for both sieving and the matrix step, other
subtasks in the NFS algorithm may emerge as bottlenecks.15 Also, our estimates
are hypothetical and rely on numerous approximations; the only way to learn
the precise costs involved would be to perform a factorization experiment.

Our results do not imply that breaking 1024-bit RSA is within reach of
individual hackers. However, it is difficult to identify any specific issue that may
prevent a sufficiently motivated and well-funded organization from applying the
Number Field Sieve to 1024-bit composites within the next few years. This should
be taken into account by anyone planning to use a 1024-bit RSA key.

4.3 Cost of Sieving for 512-bits Composites

Since several hardware designs [19,15,10,7] were proposed for the sieving of 512-
bit composites, it would be instructive to obtain cost estimates for TWIRL with
the same problem parameters. We assume the same parameters as in [15,7]:
BR = BA = 224 ≈ 1.7 · 107, R = 1.8 · 1010, 2H = 1.8 · 106. We set s = 1,024 and
use the same cost estimation expressions that lead to the 1024-bit estimates.

A single TWIRL device would have a die size of about 800mm2, 56% of which
are occupied by largish progressions and most of the rest occupied by smallish
progressions. It would process a sieve line in 0.018 seconds, and can complete
the sieving task within 6 hours.

For these NFS parameters TWINKLE would require 1.8 seconds per sieve
line, the FPGA-based design of [10] would require about 10 seconds and the
mesh-based design of [7] would require 0.36 seconds. To provide a fair comparison
to TWINKLE and [7], we should consider a single wafer full of TWIRL devices
running in parallel. Since we can fit 79 of them, the effective time per sieve line
is 0.00022 seconds.

Thus, in factoring 512-bit composites the basic TWIRL design is about 1,600
times more cost effective than the best previously published design [7], and 8,100
times more cost effective than TWINKLE. Adjusting the NFS parameters to
take advantage of the cascaded-sieves variant (cf. A.6) would further increase
this gap. However, even when using the basic variant, a single wafer of TWIRLs
can complete the sieving for 512-bit composites in under 10 minutes.

4.4 Cost of Sieving for 768-bits Composites

We assume the following NFS parameters: BR = 1 · 108, BA = 1 · 109, R = 3.4 ·
1013, H ≈ 8.9 ·106 (cf. B.2). We use the cascaded sieves variant of Appendix A.6,
with sR = 1,024 and sA = 4,096. For this choice, a rational sieve occupies
1,330mm2 and an algebraic sieve occupies 4,430mm2. A cluster consisting of 4
rational sieves and one algebraic sieve can process a sieve line in 8.3 seconds,
and 6 independent clusters can fit on a single 30cm silicon wafer.

15 Note that for our choice of parameters, the cofactor factorization is cheaper than
the sieving (cf. Appendix A.7).

12

Thus, a single wafer of TWIRL clusters can complete the sieving task within
95 days. This wafer would cost about $5,000 to manufacture — one tenth of the
RSA-768 challenge prize [20].16

4.5 Larger composites

For largish progressions, the amortized cost per progression is Θ(s2(log s)/pi +
log s+log pi) with small constants (cf. 3.2). For smallish progressions, the amor-
tized cost is Θ((s/

√
pi + 1) (log s + log pi)) with much larger constants (cf. 3.3).

For a serial implementation (PC-based or TWINKLE), the cost per progression
is clearly Ω(log pi). This means that asymptotically we can choose s = Θ̃(

√
B) to

get a speed advantage of Θ̃(
√

B) over serial implementations, while maintaining
the small constants. Indeed, we can keep increasing s essentially for free until
the area of the largish processors, buffers and delivery lines becomes comparable
to the area occupied by the DRAM that holds the progression triplets.

For some range of input sizes, it may be beneficial to reduce the amount of
DRAM used for largish progressions by storing only the prime pi, and comput-
ing the rest of the progression triplet values on-the-fly in the special-purpose
processors (this requires computing the roots modulo pi of the relevant NFS
polynomial).

If the device would exceed the capacity of a single silicon wafer, then as long
as the bus itself is narrower than a wafer, we can (with appropriate partitioning)
keep each station fully contained in some wafer; the wafers are connected in a
serial chain, with the bus passing through all of them.

5 Conclusion

We have presented a new design for a custom-built sieving device. The device
consists of a thick pipeline that carries sieve locations through thrilling adven-
tures, where they experience the addition of progression contributions in myriad
different ways that are optimized for various scales of progression periods. In
factoring 512-bit integers, the new device is 1,600 times faster than best previ-
ously published designs. For 1024-bit composites and appropriate choice of NFS
parameters, the new device can complete the sieving task within 1 year at a cost
of $10M, thereby raising some concerns about the security of 1024-bit RSA keys.

Acknowledgments. This work was inspired by Daniel J. Bernstein’s insight-
ful work on the NFS matrix step, and its adaptation to sieving by Willi Geisel-
mann and Rainer Steinwandt. We thank the latter for interesting discussions
of their design and for suggesting an improvement to ours. We are indebted to
Arjen K. Lenstra for many insightful discussions, and to Robert D. Silverman,

16 Needless to say, this disregards an initial cost of about $20M. This initial cost can be
significantly reduced by using older technology, such as 0.25µm process, in exchange
for some decrease in sieving throughput.

13

Andrew “bunnie” Huang and Michael Szydlo for valuable comments and sug-
gestions. Early versions of [14] and the polynomial selection programs of Jens
Franke and Thorsten Kleinjung were indispensable in obtaining refined estimates
for the NFS parameters.

References

1. F. Bahr, J. Franke, T. Kleinjung, M. Lochter, M. Böhm, RSA-160, e-mail an-
nouncement, Apr. 2003, http://www.loria.fr/~zimmerma/records/rsa160

2. Daniel J. Bernstein, How to find small factors of integers, manuscript, 2000,
http://cr.yp.to/papers.html

3. Daniel J. Bernstein, Circuits for integer factorization: a proposal, manuscript, 2001,
http://cr.yp.to/papers.html

4. Richard P. Brent, Recent progress and prospects for integer factorisation algo-
rithms, proc. COCOON 2000, LNCS 1858 3–22, Springer-Verlag, 2000

5. S. Cavallar, B. Dodson, A.K. Lenstra, W. Lioen, P.L. Montgomery, B. Murphy,
H.J.J. te Riele, et al., Factorization of a 512-bit RSA modulus, proc. Eurocrypt
2000, LNCS 1807 1–17, Springer-Verlag, 2000

6. Don Coppersmith, Modifications to the number field sieve, Journal of Cryptology
6 169–180, 1993

7. Willi Geiselmann, Rainer Steinwandt, A dedicated sieving hardware, proc. PKC
2003, LNCS 2567 254–266, Springer-Verlag, 2002

8. Willi Geiselmann, Rainer Steinwandt, Hardware to solve sparse systems of linear
equations over GF(2), proc. CHES 2003, LNCS, Springer-Verlag, to be published.

9. International Technology Roadmap for Semiconductors 2001,
http://public.itrs.net/

10. Hea Joung Kim, William H. Magione-Smith, Factoring large numbers with pro-
grammable hardware, proc. FPGA 2000, ACM, 2000

11. Robert Lambert, Computational aspects of discrete logarithms, Ph.D. Thesis, Uni-
versity of Waterloo, 1996

12. Arjen K. Lenstra, H.W. Lenstra, Jr., (eds.), The development of the number field
sieve, Lecture Notes in Math. 1554, Springer-Verlag, 1993

13. Arjen K. Lenstra, Bruce Dodson, NFS with four large primes: an explosive exper-
iment, proc. Crypto ’95, LNCS 963 372–385, Springer-Verlag, 1995

14. Arjen K. Lenstra, Bruce Dodson, James Hughes, W. Kortsmit, Paul Leyland, Fac-
toring estimates for 1024-bit RSA modulus, to be published.

15. Arjen K. Lenstra, Adi Shamir, Analysis and Optimization of the TWINKLE Fac-
toring Device, proc. Eurocrypt 2002, LNCS 1807 35–52, Springer-Verlag, 2000

16. Arjen K. Lenstra, Adi Shamir, Jim Tomlinson, Eran Tromer, Analysis of Bern-
stein’s factorization circuit, proc. Asiacrypt 2002, LNCS 2501 1–26, Springer-
Verlag, 2002

17. Brian Murphy, Polynomial selection for the number field sieve integer factorization
algorithm, Ph. D. thesis, Australian National University, 1999

18. National Institute of Standards and Technology, Key manage-
ment guidelines, Part 1: General guidance (draft), Jan. 2003,
http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html

19. Adi Shamir, Factoring large numbers with the TWINKLE device (extended ab-
stract), proc. CHES’99, LNCS 1717 2–12, Springer-Verlag, 1999

14

http://www.loria.fr/~zimmerma/records/rsa160
http://cr.yp.to/papers.html
http://cr.yp.to/papers.html
http://public.itrs.net/
http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html

20. RSA Security, The new RSA factoring challenge, web page, Jan. 2003,
http://www.rsasecurity.com/rsalabs/challenges/factoring/

21. Robert D. Silverman, A cost-based security analysis of symmetric and asymmetric
key lengths, Bulletin 13, RSA Security, 2000,
http://www.rsasecurity.com/rsalabs/bulletins/bulletin13.html

22. Web page for this paper, http://www.wisdom.weizmann.ac.il/~tromer/twirl

A Additional Design Considerations

A.1 Delivery Lines

The delivery lines are used by all station types to carry delivery pairs from
their source (buffer, funnel or emitter) to their destination bus line. Their basic
structure is described in Section 3.2. We now describe methods for implementing
them efficiently.

Interleaving. Most of the time the cells in a delivery line act as shift registers,
and their adders are unused. Thus, we can reduce the cost of adders and registers
by interleaving. We use larger delivery cells that span r 〈〈= 4〉〉R adjacent bus lines,
and contain an adder just for the q-th line among these, with q fixed throughout
the delivery line and incremented cyclically in the subsequent delivery lines. As
a bonus, we now put every r adjacent delivery lines in a single bus pipeline
stage, so that it contains one adder per bus line. This reducing the number of
bus pipelining registers by a factor of r throughout the largish stations.

Since the emission pairs traverse the delivery lines at a rate of r lines per
clock cycle, we need to skew the space-time assignment of sieve locations so that
as distance from the buffer to the bus line increases, the “age” ba/sc of the sieve
locations decreases. More explicitly: at time t, sieve location a is handled by
the b(a mod s)/rc-th cell17 of one of the r delivery lines at stage t − ba/src −
b(a mod s)/rc of the bus pipeline, if it exists.

In the largish stations, the buffer is entrusted with the role of sending de-
livery pairs to delivery lines that have an adder at the appropriate bus line; an
improvement by a factor of 2 is achieved by placing the buffers at the middle
of the bus, with the two halves of each delivery line directed outwards from the
buffer. In the smallish and tiny stations we do not use interleaving.

Note that whenever we place pipelining registers on the bus, we must delay
all downstream delivery lines connected to this buffer by a clock cycle. This can
be done by adding pipeline stages at the beginning of these delivery lines.

Carry-save adders. Logically, each bus line carries a log2T 〈〈= 10〉〉-bit integer.
These are encoded by a redundant representation, as a pair of log2T -bit integers
whose sum equals the sum of the blog pie contributions so far. The additions at the
delivery cells are done using carry-save adders, which have inputs a,b,c and whose
output is a representation of the sum of their inputs in the form of a pair e,f such
that e + f = a + b + c. Carry-save adders are very compact and support a high

17 After the change made in Appendix A.2 this becomes brev(a mod s)/rc, where rev(·)
denotes bit-reversal of log

2
s-bit numbers and s,r are powers of 2.

15

http://www.rsasecurity.com/rsalabs/challenges/factoring/
http://www.rsasecurity.com/rsalabs/bulletins/bulletin13.html
http://www.wisdom.weizmann.ac.il/~tromer/twirl

clock rate, since they do not propagate carries across more than one bit position.
Their main disadvantage is that it is inconvenient to perform other operations
directly on the redundant representation, but in our application we only need to
perform a long sequence of additions followed by a single comparison at the end.
The extra bus wires due to the redundant representation can be accommodated
using multiple metal layers of the silicon wafer.18

To prevent wrap-around due to overflow when the sum of contributions is
much larger than T , we slightly alter the carry-save adders by making their
most significant bits “sticky”: once the MSBs of both values in the redundant
representation become 1 (in which case the sum is at least T), further additions
do not switch them back to 0.

A.2 Implementation of Emitters

The designs of smallish and tiny progressions (cf. 3.3, 3.4) included emitter

elements. An emitter handles a single progression Pi, and its role is to emit the
delivery pairs (blog pie, `) addressed to a certain group G of adjacent lines, ` ∈ G.
This subsection describes our proposed emitter implementation. For context, we
first describe some less efficient designs.

Straightforward implementations. One simple implementation would be
to keep a dlog2pie-bit register and increment it by s modulo pi every clock
cycle. Whenever a wrap-around occurs (i.e., this progression causes an emission),
compute ` and check if ` ∈ G. Since the register must be updated within one
clock cycle, this requires an expensive carry-lookahead adder. Moreover, if s and
|G| are chosen arbitrarily then calculating ` and testing whether ` ∈ G may also
be expensive. Choosing s, |G| as power of 2 reduces the costs somewhat.

A different approach would be to keep a counter that counts down the time to
the next emission, as in [19], and another register that keeps track of `. This has
two variants. If the countdown is to the next emission of this triplet regardless
of its destination bus line, then these events would occur very often and again
require low-latency circuitry (also, this cannot handle pi < s). If the countdown
is to the next emission into G, we encounter the following problem: for any set G
of bus lines corresponding to adjacent residues modulo s, the intervals at which
Pi has emissions into G are irregular, and would require expensive circuitry to
compute.

Line address bit reversal. To solve the last problem described above and use
the second countdown-based approach, we note the following: the assignment of
sieve locations to bus lines (within a clock cycle) can be done arbitrarily, but the
partition of wires into groups G should be done according to physical proximity.
Thus, we use the following trick. Choose s = 2α and |G| = 2βi ≈ √pi for some
integers α 〈〈= 12〉〉R〈〈= 15〉〉A and βi. The residues modulo s are assigned to bus
lines with bit-reversed indices; that is, sieve locations congruent to w modulo s

18 Should this prove problematic, we can use the standard integer representation with
carry-lookahead adders, at some cost in circuit area and clock rate.

16

are handled by the bus line at physical location rev(w), where

w =

α−1
∑

i=0

ci2
i , rev(w) =

α−1
∑

i=0

cα−1−i2
i for some c0, . . . ,cα−1 ∈ {0,1}

The j-th emitter of the progression Pi, j ∈ {0, . . . ,2α−βi}, is in charge of the
j-th group of 2βi bus lines. The advantage of this choice is the following.

Lemma 1. For any fixed progression with pi > 2, the emissions destined to any

fixed group occur at regular time intervals of Ti = b2−βipic, up to an occasional

delay of one clock cycle due to modulo s effects.

Proof. Emissions into the j-th group correspond to sieve locations a ∈ Pi that
fulfill brev(a mod s)/2βic = j, which is equivalent to a ≡ cj (mod 2α−βi) for
some cj . Since a ∈ Pi means a ≡ ri (mod pi) and pi is coprime to 2α−βi , by
the Chinese Remainder Theorem we get that the set of such sieve locations
is exactly Pi,j ≡ {a : a ≡ ci,j (mod 2α−βipi)} for some ci,j . Thus, a pair of
consecutive a1,a2 ∈ Pi,j fulfill a2−a1 = 2α−βipi. The time difference between the
corresponding emissions is ∆ = ba2/sc−ba1/sc. If (a2 mod s) > (a1 mod s) then
∆ = b(a2 − a1)/sc = b2α−βipi/sc = Ti. Otherwise, ∆ = d(a2 − a1)/se = Ti + 1.
�

Note that Ti ≈
√

pi , by the choice of βi.

Emitter structure. In the smallish stations, each emitter consists of two coun-
ters, as follows.

– Counter A operates modulo Ti = b2−βipic (typically 〈〈7〉〉R〈〈5〉〉A bits), and
keeps track of the time until the next emission of this emitter. It is decre-
mented by 1 (nearly) every clock cycle.

– Counter B operates modulo 2βi (typically 〈〈10〉〉R〈〈15〉〉A bits). It keeps track of
the βi most significant bits of the residue class modulo s of the sieve location
corresponding to the next emission. It is incremented by 2α−βipi mod 2βi

whenever Counter A wraps around. Whenever Counter B wraps around,
Counter A is suspended for one clock cycle (this corrects for the modulo s
effect).

A delivery pair (blog pie, `) is emitted when Counter A wraps around, where
blog pie is fixed for each emitter. The target bus line ` gets βi of its bits from
Counter B. The α − βi least significant bits of ` are fixed for this emitter, and
they are also fixed throughout the relevant segment of the delivery line so there
is no need to transmit them explicitly.

The physical location of the emitter is near (or underneath) the group of
bus lines to which it is attached. The counters and constants need to be set
appropriately during device initialization. Note that if the device is custom-built
for a specific factorization task then the circuit size can be reduced by hard-
wiring many of these values19. The combined length of the counters is roughly

19 For sieving the rational side of NFS, it suffices to fix the smoothness bounds. Simi-
larly for the preprocessing stage of Coppersmith’s Factorization Factory [6] .

17

log2 pi bits, and with appropriate adjustments they can be implemented using
compact ripple adders20 as in [15].

Emitters for tiny progressions. For tiny stations, we use a very similar
design. The bus lines are again assigned to residues modulo s in bit-reversed
order (indeed, it would be quite expensive to reorder them). This time we choose
βi such that |G| = 2βi is the largest power of 2 that is smaller than pi. This
fixes Ti = 1, i.e., an emission occurs every one or two clock cycles. The emitter
circuitry is identical to the above; note that Counter A has become zero-sized
(i.e., a wire), which leaves a single counter of size βi ≈ log2pi bits.

A.3 Implementation of Funnels

The smallish stations use funnels to compact the sparse outputs of emitters
before they are passed to delivery lines (cf. 3.3). We implement these funnels as
follows.

An n-to-m funnel (n�m) consists of a matrix of n columns and m rows,
where each cell contains registers for storing a single progression triplet. At
every clock cycle inputs are fed directly into the top row, one input per column,
scheduled such that the i-th element of the t-th input array is inserted into the
i-th column at time t + i. At each clock cycle, all values are shifted horizontally
one column to the right. Also, each value is shifted one row down if this would
not overwrite another value. The t-th output array is read off the rightmost
column at time t + n.

For any m < n there is some probability of “overflow” (i.e., insertion of
input value into a full column). Assuming that each input is non-empty with
probability ν independently of the others (ν ≈ 1/

√
pi ; cf. 3.3), the probability

that a non-empty input will be lost due to overflow is:
n

∑

k=m+1

(

n

k

)

νk(1− ν)n−k(k −m)/k

We use funnels with 〈〈m = 5〉〉R rows and 〈〈n ≈ 1/ν〉〉R columns. For this choice
and within the range of smallish progressions, the above failure probability is
less than 0.00011. This certainly suffices for our application.

The above funnels have a suboptimal compression ratio n/m 〈〈≈ 1/5ν〉〉R, i.e.,
the probability ν′ 〈〈≈ 1/5〉〉R of a funnel output value being non-empty is still
rather low. We thus feed these output into a second-level funnel 〈〈with m′ = 35,
n′ = 14〉〉R, whose overflow probability is less than 0.00016, and whose cost is
amortized over many progressions. The output of the second-level funnel is fed
into the delivery lines. The combined compression ratio of the two funnel levels
is suboptimal by a factor of 5 ·14/34 = 2, so the number of delivery lines is twice
the naive optimum. We do not interleave the adders in the delivery lines as done
for largish stations (cf. A.1), in order to avoid the overhead of directing delivery
pairs to an appropriate delivery line.21

20 This requires insertion of small delays and tweaking the constant values.
21 Still, the number of adders can be reduced by attaching a single adder to several bus

lines using multiplexers. This may impact the clock rate.

18

A.4 Initialization

The device initialization consists of loading the progression states and initial
counter values into all stations, and loading instructions into the bus bypass
re-routing switches (after mapping out the defects).

The progressions differ between sieving runs, but reloading the device would
require significant time (in [19] this became a bottleneck). We can avoid this by
noting, as in [7], that the instances of sieving problem that occur in the NFS
are strongly related, and all that is needed is to increase each ri value by some
constant value r̃i after each run. The r̃i values can be stored compactly in DRAM
using log2pi bits per progression (this is included in our cost estimates) and
the addition can be done efficiently using on-wafer special-purpose processors.
Since the interval R/s between updates is very large, we don’t need to dedicate
significant resources to performing the update quickly. For lattice sieving the
situation is somewhat different (cf. A.8).

A.5 Eliminating Sieve Locations

In the NFS relation collection, we are only interesting in sieve locations a on the
b-th sieve line for which gcd(a′,b) = 1 where a′ = a − R/2, as other locations
yield duplicate relations. The latter are eliminated by the candidate testing, but
the sieving work can be reduced by avoiding sieve locations with c |a′,b for very
small c. All software-based sievers consider the case 2 |a′,b — this eliminates
25% of the sieve locations. In TWIRL we do the same: first we sieve normally
over all the odd lines, b ≡ 1(mod 2). Then we sieve over the even lines, and
consider only odd a′ values; since a progression with pi > 2 hits every pi-th odd
sieve location, the only change required is in the initial values loaded into the
memories and counters. Sieving of these odd lines takes half the time compared
to even lines.

We also consider the case 3 |a′,b, similarly to the above. Combining the two,
we get four types of sieve runs: full-, half-, third- and sixth-length runs, for
b mod 6 in {1,5}, {2,4}, {3} and {0} respectively. Overall, we get a 33% time
reduction, essentially for free. It is not worthwhile to consider c |a′,b for c > 3.

A.6 Cascading the Sieves

Recall that the instances of the sieving problem come in pairs of rational and
algebraic sieves, and we are interested in the a values that passed both sieves
(cf. 2.1). However, the situation is not symmetric: BR 〈〈2.6 · 1010〉〉

A is much larger
than BR 〈〈= 3.5 · 109〉〉

R.22 Therefore the cost of the algebraic sieves would dom-
inate the total cost when s is chosen optimally for each sieve type. Moreover,
for 1024-bit composites and the parameters we consider (cf. Appendix B), we
cannot make the algebraic-side s as large as we wish because this would exceed
the capacity of a single silicon wafer. The following shows a way to address this.

22 BA and BR are chosen as to produce a sufficient probability of semi-smoothness for
the values over which we are (implicitly) sieving: circa 〈〈10101〉〉A vs. circa 〈〈1064〉〉R.

19

Let sR and sA denote the s values of the rational and algebraic sieves re-
spectively. The reason we cannot increase sA and gain further “free” parallelism
is that the bus becomes unmanageably wide and the delivery lines become nu-
merous and long (their cost is Θ̃(s2)). However, the bus is designed to sieve
sA sieve locations per pipeline stage. If we first execute the rational sieve then
most of these sieve locations can be ruled out in advance: all but a small fraction
〈〈1.7·10−4〉〉 of the sieve locations do not pass the threshold in the rational sieve,23

and thus cannot form candidates regardless of their algebraic-side quality.
Accordingly, we make the following change in the design of algebraic sieves.

Instead of a wide bus consisting of sA lines that are permanently assigned to
residues modulo sA, we use a much narrower bus consisting of only u 〈〈= 32〉〉A
lines, where each line contains a pair (C,L). L = (a mod sA) identifies the sieve
location, and C is the sum of blog pie contributions to a so far. The sieve locations
are still scanned in a pipelined manner at a rate of sA locations per clock cycle,
and all delivery pairs are generated as before at the respective units.

The delivery lines are different: instead of being long and “dumb”, they
are now short and “smart”. When a delivery pair (blog pie, `) is generated, ` is
compared to L for each of the u lines (at the respective pipeline stage) in a single
clock cycle. If a match is found, blog pie is added to the C of that line. Otherwise
(i.e., in the overwhelming majority of cases), the delivery pair is discarded.

At the head of the bus, we input pairs (0, a mod sA) for the sieve locations
a that passed the rational sieve. To achieve this we wire the outputs of rational
sieves to inputs of algebraic sieves, and operate them in a synchronized manner
(with the necessary phase shift). Due to the mismatch in s values, we connect
sA/sB rational sieves to each algebraic sieves. Each such cluster of sA/sB+1 siev-
ing devices is jointly applied to one single sieve line at a time, in a synchronized
manner. To divide the work between the multiple rational sieves, we use inter-
leaving of sieve locations (similarly to the bit-reversal technique of A.2). Each
rational-to-algebraic connection transmits at most one value of size log2sR 〈〈12〉〉
bits per clock cycle (appropriate buffering is used to average away congestions).

This change greatly reduces the circuit area occupied by the bus wiring and
delivery lines; for our choice of parameters, it becomes insignificant. Also, there is
no longer need to duplicate emitters for smallish progressions (except when pi <
s). This allows us to use a large s 〈〈= 32,768〉〉A for the algebraic sieves, thereby
reducing their cost to less than that of the rational sieve (cf. 4.1). Moreover, it
lets us further increase BA with little effect on cost, which (due to tradeoffs in
the NFS parameter choice) reduces H and R.

A.7 Testing Candidates

Having computed approximations of the sum of logarithms g(a) for each sieve
location a, we need to identify the resulting candidates, compute the corre-
sponding sets {i : a ∈ Pi}, and perform some additional tests (cf. 2.1). These
are implemented as follows.

23 Before the cofactor factorization. Slightly more when blog pie rounding is considered.

20

Identifying candidates. In each TWIRL device, at the end of the bus (i.e.,
downstream for all stations) we place an array of comparators, one per bus line,
that identify a values for which g(a) > T . In the basic TWIRL design, we operate
a pair of sieves (one rational and one algebraic) in unison: at each clock cycle, the
sets of bus lines that passed the comparator threshold are communicated between
the two devices, and their intersection (i.e., the candidates) are identified. In the
cascaded sieves variant, only sieve locations that passed the threshold on the
rational TWIRL are further processed by the algebraic TWIRL, and thus the
candidates are exactly those sieve locations that passed the threshold in the
algebraic TWIRL. The fraction of sieve locations that constitute candidates is
very small 〈〈2 · 10−11〉〉.
Finding the corresponding progressions. For each candidate we need to
compute the set {i : a ∈ Pi}, separately for the rational and algebraic sieves.
From the context in the NFS algorithm it follows that the elements of this set
for which pi is relatively small can be found easily.24 It thus appears sufficient
to find the subset {i : a ∈ Pi , pi is largish}, which is accomplished by having
largish stations remember the pi values of recent progressions and report them
upon request.

To implement this, we add two dedicated pipelined channels passing through
all the processors in the largish stations. The lines channel, of width log2s bits,
goes upstream (i.e., opposite to the flow of values in the bus) from the threshold
comparators. The divisors channel, of width log2B bits, goes downstream. Both
have a pipeline register after each processor, and both end up as outputs of the
TWIRL device. To each largish processor we attach a diary, which is a cyclic
list of log2B-bit values. Every clock cycle, the processor writes a value to its
diary: if the processor inserted an emission triplet (blog pie, `i, τi) into the buffer
at this clock cycle, it writes the triple (pi, `i, τi) to the diary; otherwise it writes
a designated null value. When a candidate is identified at some bus line `, the
value ` is sent upstream through the lines channel. Whenever a processor sees
an ` value on the lines channel, it inspects its diaries to see whether it made an
emission that was added to bus line ` exactly z clock cycles ago, where z is the
distance (in pipeline stages) from the processor’s output into the buffer, through
the bus and threshold comparators and back to the processor through the lines
channel. This inspection is done by searching the 〈〈64〉〉 diary entries preceeding
the one written z clock cycles ago for a non-null value (pi, `i) with `i = `. If such
a diary entry is found, the processor transmits pi downstream via the divisors
channel (with retry in case of collision). The probability of intermingling data
belonging to different candidates is negligible, and even then we can recover (by
appropriate divisibility tests).

In the cascaded sieves variant, the algebraic sieve records to diaries only
those contributions that were not discarded at the delivery lines. The rational
diaries are rather large (〈〈13,530〉〉R entries) since they need to keep their entries
a long time — the latency z includes passing through (at worst) all rational

24 Namely, by finding the small factors of Fj(a − R,b) where Fj is the relevant NFS
polynomial and b is the line being sieved.

21

bus pipeline stages, all algebraic bus pipeline stages and then going upstream
through all rational stations. However, these diaries can be implemented very
efficiently as DRAM banks of a degenerate form with a fixed cyclic access order
(similarly to the memory banks of the largish stations).

Testing candidates. Given the above information, the candidates have to be
further processed to account for the various approximations and errors in sieving,
and to account for the NFS “large primes” (cf. 2.1). The first steps (computing
the values of the polynomials, dividing out small factors and the diary reports,
and testing size and primality of remaining cofactors) can be effectively handled
by special-purpose processors and pipelines, which are similar to the division
pipeline of [7, Section 4] except that here we have far fewer candidates (cf. C).

Cofactor factorization. The candidates that survived the above steps (and
whose cofactors were not prime or sufficiently small) undergo cofactor factor-
ization. This involves factorization of one (and seldom two) integers of size at
most 〈〈1 · 1024〉〉. Less than 〈〈2 · 10−11〉〉 of the sieve locations reach this stage (this
takes blog pie rounding errors into consideration), and a modern general-purpose
processor can handle each in less than 0.05 seconds. Thus, using dedicated hard-
ware this can be performed at a small fraction of the cost of sieving. Also, certain
algorithmic improvements may be applicable [2].

A.8 Lattice Sieving

The above is motivated by NFS line sieving, which has very large sieve line length
R. Lattice sieving (i.e., ”special-q”) involves fewer sieving locations. However,
lattice sieving has very short sieving lines (8192 in [5]), so the natural mapping
to the lattice problem as defined here (i.e., lattice sieving by lines) leads to values
of R that are too small.

We can adapt TWIRL to efficient lattice sieving as follows. Choose s equal
to the width of the lattice sieving region (they are of comparable magnitude);
a full lattice line is handled at each clock cycle, and R is the total number
of points in the sieved lattice block. The definition (pi,ri) is different in this
case — they are now related to the vectors used in lattice sieving by vectors
(before they are lattice-reduced). The handling of modulo s wrap-around of
progressions is now somewhat more complicated, and the emission calculation
logic in all station types needs to be adapted. Note that the largish processors are
essentially performing lattice sieving by vectors, as they are “throwing” values
far into the “future”, not to be seen again until their next emission event.

Re-initialization is needed only when the special-q lattices are changed (every
8192 · 5000 sieve locations in [5]), but is more expensive. Given the benefits of
lattice sieving, it may be advantageous to use faster (but larger) re-initialization
circuits and to increase the sieving regions (despite the lower yield); this requires
further exploration.

22

A.9 Fault Tolerance

Due to its size, each TWIRL device is likely to have multiple local defects caused
by imperfections in the VLSI process. To increase the yield of good devices, we
make the following adaptations.

If any component of a station is defective, we simply avoid using this station.
Using a small number of spare stations of each type (with their constants stored
in reloadable latches), we can handle the corresponding progressions.

Since our device uses an addition pipeline, it is highly sensitive to faults in
the bus lines or associated adders. To handle these, we can add a small num-
ber of spare line segments along the bus, and logically re-route portions of bus
lines through the spare segments in order to bypass local faults. In this case,
the special-purpose processors in largish stations can easily change the bus des-
tination addresses (i.e., ` value of emission triplets) to account for re-routing.
For smallish and tiny stations it appears harder to account for re-routing, so
we just give up adding the corresponding blog pie values; we may partially com-
pensate by adding a small constant value to the re-routed bus lines. Since the
sieving step is intended only as a fairly crude (though highly effective) filter, a
few false-positives or false-negatives are acceptable.

B Parameters for Cost Estimates

B.1 Hardware

The hardware parameters used are those given in [16] (which are consistent
with [9]): standard 30cm silicon wafers with 0.13µm process technology, at an
assumed cost of $5,000 per wafer. For 1024-bit and 768-bit composites we will
use DRAM-type wafers, which we assume to have a transistor density of 2.8 µm2

per transistor (averaged over the logic area) and DRAM density of 0.2µm2 per
bit (averaged over the area of DRAM banks). For 512-bit composites we will use
logic-type wafers, with transistor density of 2.38µm2 per transistor and DRAM
density of 0.7µm2 per bit. The clock rate is 1GHz clock rate, which appears
realistic with judicious pipelining of the processors.

We have derived rough estimates for all major components of the design;
this required additional analysis, assumptions and simulation of the algorithms.
Here are some highlights, for 1024-bit composites with the choice of parameters
specified throughout Section 3. A typical largish special-purpose processor is
assumed to require the area of 〈〈96,400〉〉R logic-density transistors (including the
amortized buffer area and the small amount of cache memory, about 〈〈14Kbit〉〉R,
that is independent of pi). A typical emitter is assumed to require 〈〈2,037〉〉R
transistors in a smallish station (including the amortized costs of funnels), and
〈〈522〉〉R in a tiny station. Delivery cells are assumed to require 〈〈530〉〉R transistors
with interleaving (i.e., in largish stations) and 〈〈1220〉〉R without interleaving (i.e.,
in smallish and tiny stations). We assume that the memory system of Section 3.2
requires 〈〈2.5〉〉 times more area per useful bit than standard DRAM, due to the
required slack and and area of the cache. We assume that bus wires don’t require

23

Table 1: Sieving parameters.

Parameter Meaning 1024-bit 768-bit 512-bit

R Width of sieve line 1.1 · 1015 3.4 · 1013 1.8 · 1010

H Number of sieve lines 2.7 · 108 8.9 · 106 9.0 · 105

BR Rational smoothness bound 3.5 · 109 1 · 108 1.7 · 107

BA Algebraic smoothness bound 2.6 · 1010 1 · 109 1.7 · 107

wafer area apart from their pipelining registers, due to the availability of multiple
metal layers. We take the cross-bus density of bus wires to be 〈〈0.5〉〉 bits per µm,
possibly achieved by using multiple metal layers.

Note that since the device contains many interconnected units of non-uniform
size, designing an efficient layout (which we have not done) is a non-trivial task.
However, the number of different unit types is very small compared to designs
that are commonly handled by the VLSI industry, and there is considerable room
for variations. The mostly systolic design also enables the creation devices larger
than the reticle size, using multiple steps of a single (or very few) mask set.

Using a fault-tolerant design (cf. A.9), the yield can made very high and
functional testing can be done at a low cost after assembly. Also, the acceptable
probability of undetected errors is much higher than that of most VLSI designs.

B.2 Sieving Parameters

To predict the cost of sieving, we need to estimate the relevant NFS parameters
(R, H , BR, BA). The values we used are summarized in Table 1. The parameters
for 512-bit composites are the same as those postulated for TWINKLE [15] and
appear conservative compared to actual experiments [5].

To obtain reasonably accurate predictions for larger composites, we followed
the approach of [14]; namely, we generated concrete pairs of NFS polynomials
for the RSA-1024 and RSA-768 challenge composites [20] and estimated their
relations yield. The search for NFS polynomials was done using programs written
by Jens Franke and Thorsten Kleinjung (with minor adaptations). For our 1024-
bit estimates we picked the following pair of polynomials, which have a common
integer root modulo the RSA-1024 composite:

f(x) = 1719304894236345143401011418080x5

− 6991973488866605861074074186043634471x4

+ 27086030483569532894050974257851346649521314x3

+ 46937584052668574502886791835536552277410242359042x2

− 101070294842572111371781458850696845877706899545394501384x

− 22666915939490940578617524677045371189128909899716560398434136

g(x) = 93877230837026306984571367477027x

− 37934895496425027513691045755639637174211483324451628365

24

Subsequent analysis of relations yield was done by integrating the relevant
smoothness probability functions [11] over the sieving region. Successful factor-
ization requires finding sufficiently many cycles among the relations, and for two
large primes per side (as we assumed) it is currently unknown how to predict the
number of cycles from the number of relations, but we verified that the numbers
appear “reasonable” compared to current experience with smaller composites.
The 768-bit parameters were derived similarly. More details are available in a
dedicated web page [22] and in [14].

Note that finding better polynomials will reduce the cost of sieving. Indeed,
our algebraic-side polynomial is of degree 5 (due to a limitation of the programs
we used), while there are theoretical and empirical reasons to believe that poly-
nomials of somewhat higher degree can have significantly higher yield.

C Relation to Previous Works

TWINKLE. As is evident from the presentation, the new device shares with
TWINKLE the property of time-space reversal compared to traditional sieving.
TWIRL is obviously faster than TWINKLE, as two have comparable clock rates
but the latter checks one sieve location per clock cycle whereas the former checks
thousands. None the less, TWIRL is smaller than TWINKLE — this is due to
the efficient parallelization and the use of compact DRAM storage for the largish
progressions (it so happens that DRAM cannot be efficiently implemented on
GaAs wafers, which are used by TWINKLE). We may consider using TWINKLE-
like optical analog adders instead of electronic adder pipelines, but constructing
a separate optical adder for each residue class modulo s would entail practical
difficulties, and does not appear worthwhile as there are far fewer values to sum.

FPGA-based serial sieving. Kim and Mangione-Smith [10] describe a siev-
ing device using off-the-shelf parts that may be only 6 times slower than TWIN-
KLE. It uses classical sieving, without time-memory reversal. The speedup fol-
lows from increased memory bandwidth – there are several FPGA chips and
each is connected to multiple SRAM chips. As presented this implementation
does not rival the speed or cost of TWIRL. Moreover, since it is tied to a specific
hardware platform, it is unclear how it scales to larger parallelism and larger
sieving problems.

Low-memory sieving circuits. Bernstein [3] proposes to completely replace
sieving by memory-efficient smoothness testing methods, such as the Elliptic
Curve Method of factorization. This reduces the asymptotic time× space cost of
the matrix step from y3+o(1) to y2+o(1), where y is subexponential in the length
of the integer being factored and depends on the choice of NFS parameters. By
comparison, TWIRL has a throughput cost of y2.5+o(1), because the speedup
factor grows as the square root of the number of progressions (cf. 4.5). However,
these asymptotic figures hide significant factors; based on current experience,
for 1024-bit composites it appears unlikely that memory-efficient smoothness
testing would rival the practical performance of traditional sieving, let alone
that of TWIRL, in spite of its superior asymptotic complexity.

25

Mesh-based sieving. While [3] deals primarily with the NFS matrix step, it
does mention “sieving via Schimmler’s algorithm” and notes that its cost would
be L2.5+o(1) (like TWIRL’s). Geiselmann and Steinwandt [7] follow this approach
and give a detailed design for a mesh-based sieving circuit. Compared to previ-
ous sieving devices, both [7] and TWIRL achieve a speedup factor of Θ̃(

√
B).25

However, there are significant differences in scalability and cost: TWIRL is 1,600
times more efficient for 512-bit composites, and ever more so for bigger compos-
ites or when using the cascaded sieves variant (cf. 4.3, A.6).

One reason is as follows. The mesh-based sorting of [7] is effective in terms of
latency, which is why it was appropriate for the Bernstein’s matrix-step device [3]
where the input to each invocation depended on the output of the previous one.
However, for sieving we care only about throughput. Disregarding latency leads
to smaller circuits and higher clock rates. For example, TWIRL’s delivery lines
perform trivial one-dimensional unidirectional routing of values of size 〈〈12+10〉〉R
bits, as opposed to complicated two-dimensional mesh sorting of progression
states of size 〈〈2 · 31.7〉〉R.26 For the algebraic sieves the situation is even more
extreme (cf. A.6).

In the design of [7], the state of each progression is duplicated dΘ̃(B/pi)e
times (compared to dΘ̃(

√

B/pi)e in TWIRL) or handled by other means; this
greatly increases the cost. For the primary set of design parameters suggested
in [7] for factoring 512-bit numbers, 75% of the mesh is occupied by duplicated
values even though all primes smaller than 217 are handled by other means: a
separate division pipeline that tests potential candidates identified by the mesh,
using over 12,000 expensive integer division units. Moreover, this assumes that
the sums of blog pie contributions from the progressions with pi > 217 are suffi-
ciently correlated with smoothness under all progressions; it is unclear whether
this assumption scales.

TWIRL’s handling of largish primes using DRAM storage greatly reduces the
size of the circuit when implemented using current VLSI technology (90 DRAM
bits vs. about 2500 transistors in [7]).

If the device must span multiple wafers, the inter-wafer bandwidth require-
ments of our design are much lower than that of [7] (as long as the bus is narrower
than a wafer), and there is no algorithmic difficulty in handling the long latency
of cross-wafer lines. Moreover, connecting wafers in a chain may be easier than
connecting them in a 2D mesh, especially in regard to cooling and faults.

25 Possibly less for [7] — an asymptotic analysis is lacking, especially in regard to the
handling of small primes.

26 The authors of [7] have suggested (in private communication) a variant of their
device that routes emissions instead of sorting states, analogously to [16]. Still, mesh
routing is more expensive than pipelined delivery lines.

26

	Factoring Large Numbers with the TWIRL Device
	Adi Shamir and Eran Tromer

