
Factoring Large Numbers
with the TWINKLE Device

(Extended Abstract)

Adi Shamir

Computer Science Dept.
The Weizmann Institute
Rehovot 76100, Israel

shamir@wisdom.weizmann.ac.il

Abstract. The current record in factoring large RSA keys is the fac-
torization of a 465 bit (140 digit) number achieved in February 1999
by running the Number Field Sieve on hundreds of workstations for se-
veral months. This paper describes a novel factoring apparatus which
can accelerate known sieve-based factoring algorithms by several orders
of magnitude. It is based on a very simple handheld optoelectronic device
which can analyse 100,000,000 large integers, and determine in less than
10 milliseconds which ones factor completely over a prime base consisting
of the first 200,000 prime numbers. The proposed apparatus can increase
the size of factorable numbers by 100 to 200 bits, and in particular can
make 512 bit RSA keys (which protect 95% of today’s E-commerce on
the Internet) very vulnerable.

Keywords: Cryptanalysis, Factoring, Sieving, Quadratic Sieve, Number
Field Sieve, optical computing.

Ç.K. Koç and C. Paar (Eds.): CHES’99, LNCS 1717, pp. 2–12, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Factoring Large Numbers with the TWINKLE Device 3

1 Introduction

The security of the RSA public key cryptosystem depends on the difficulty of
factoring a large number n which is the product of two equal size primes p
and q. This problem had been thoroughly investigated (especially over the last
25 years), and the last two breakthroughs were the invention of the Quadratic
Sieve (QS) algorithm [P] in the early 1980’s and the invention of the Number
Field Sieve (NFS) algorithm [LLMP] in the early 1990’s. The asymptotic time

complexity of the QS algorithm is O(eln(n)1/2ln(ln(n))1/2

), and the asymptotic

time complexity of the NFS algorithm is O(e1.92 ln(n)1/3ln(ln(n))2/3

). For numbers
with up to about 350 bits the QS algorithm is faster due to its simplicity, but
for larger numbers the NFS algorithm is faster due to its better asymptotic
complexity.

The complexity of the NFS algorithm grows fairly slowly with the binary
size of n. Denote the complexity of factoring a 465 bit number (which is the
current record - see [R]) by X. Then the complexity of factoring numbers which
are 100 bits longer is about 40X, the complexity of factoring numbers which
are 150 bits longer is about 220X, and the complexity of factoring numbers
which are 200 bits longer is about 1100X. Since the technique described in this
paper can increase the efficiency of the NFS algorithm by two to three orders of
magnitude, we expect it to increase the size of factorable numbers by 100 to 200
bits, or alternatively to make it possible to factor with a budget of one million
dollars numbers which previously required hundreds of millions of dollars. The
main practical significance of such an improvement is that it can make 512 bit
numbers (which are the default setting of most Internet browsers in e-commerce
applications, and the maximum size deemed exportable by the US government)
easy to crack.

The new factoring technique is based on a novel optoelectronic device called
TWINKLE. 1 Designing and constructing the first prototype of this device can
cost hundreds of thousands of dollars, but the manufacturing cost of each addi-
tional device is about $5,000. It can be combined with any sieve-based factoring
algorithm, and in particular it can be used in both the QS and the NFS algo-
ritms. It uses their basic mathematical structure and inherits their asymptotic
complexity, but improves the practical efficiency of their sieving stage by a large
constant factor. Since this is the most time consuming part of these algorithms,
we get a major improvement in their total running time.

For the sake of simplicity, we describe in this extended abstract only the new
implementation of the sieving stage in the simplest variant of the QS algorithm.
Most of the new ideas apply equally well to improved variants of the QS algo-
rithm and to the general NFS algorithm, but the details are more complicated,
and will be described only in the full version of this paper.

1 TWINKLE stands for “The Weizmann INstitute Key Locating Engine”.

4 A. Shamir

2 The QS Factoring Algorithm

Given the RSA number n = pq, the QS algorithm tries to construct two numbers
y and z such that y 6= ±z (mod n) and y2 = z2 (mod n). Knowledge of such
a pair makes it easy to factor n since gcd(y − z, n) is either p or q. To find
such y and z, we generate a large number of values y1, y2, . . . , ym, compute
each y2

i (mod n), and try to factor it into a product of primes pj from a prime
base B consisting of the k smallest primes p1 = 2, p2 = 3, . . . , pk. Numbers
y2

i (mod n) which have such factorizations into
∏k

j=1 p
ej

j are called smooth. If
the number of smooth modular squares found in such a way exceeds k, we can
use Gauss elimination to find a subset of the vectors (e1, e2, . . . , ek) of the prime
multiplicities which is linearly dependent modulo 2. When the corresponding
y2

i (mod n) and their factorizations are multiplied, we get an equation of the

form
∏m

i=1(y
2
i)bi =

∏k
j=1 p

cj

j (mod n) where all the bi’s (which define the subset)
are 0’s and 1’s and all the cj ’s (which are the sums of the prime multiplicities)
are even numbers. We can now get the desired equation y2 = z2(mod n) by

defining y =
∏m

i=1 ybi
i (mod n) and z =

∏k
j=1 p

cj/2
j (mod n).

The key to the efficiency of the QS algorithm is the generation of many
small modular squares whose smoothness is easy to test. Consider the simplest
case in which we use the quadratic polynomial f(x) = (a + x)2 (mod n) where
a = ⌊

√

(n)⌋, and choose yi = a+ i for i = 1, 2, . . . , m. Then it is easy to see that
for small m the corresponding y2

i = f(i) (mod n) are half size modular squares
which are much more likely to be smooth numbers than random modular squares.

The simplest way of testing the smoothness of the values in such a sequence
is to perform trial division of each value in the sequence by each prime in the
basis. Since the f(i)’s are hundreds of bits long, this is very slow.

The QS algorithm expresses all the generated f(1), . . . , f(m) in the non mo-
dular form f(i) = (a + i)2 − n (since m is small), and determines which of these
values are divisible by pj from the basis B by solving the quadratic modular
equation (a + i)2 − n = 0 (mod pj). This is easy, since the modulus pj is quite
small. 2

The quadratic equation mod pj will have either zero or two solutions d′
i and

di”. In the first case we can deduce that none of the f(i)’s will be divisible by
pj , and in the second case we can deduce that f(i) will be divisible by pj if and
only if i belongs to the union of the two arithmetic progressions pj ∗ r + d′

j and
pj ∗ r + dj” for r ≥ 0.

The smoothness test in the QS algorithm is based on an array A of m coun-
ters, where the i− th entry is associated with f(i). The sieving algorithm zeroes
all these counters, and then loops over the primes in the basis. For each prime pj ,
and for each one of its two arithmetic progressions (if they exist), the algorithm
scans the counter array, and adds the constant log2(pj) to all the counters A(i)

2 We ignore the issue of the divisibility of f(i) by higher powers of pj , since except
for the smallest primes in the basis this is extremely unlikely, and we can explicitly
add the powers of the first few primes to the basis without substantially increasing
its size.

Factoring Large Numbers with the TWINKLE Device 5

whose indices i belong to the arithmetic progression (there are about m/pj such
indices). At the end of this loop, the value of A(i) describes the (approximate)
binary length of the largest divisor of f(i) which factors completely over the
prime base B. The algorithm then scans the array, finds all the entries i for
which A(i) is close to the binary length of f(i), tests that these f(i)’s are indeed
smooth by trial division, and uses them in order to factor n.

Typical large scale factoring attacks with networks of PC’s may use m =
100, 000, 000 and k = 200, 000. The array requires 100 megabytes of RAM, and
its counters can be accessed at the standard bus speed of 100 megahertz. 3 Just
scanning such a huge array requires about one second. Well optimized implemen-
tations of the QS algorithm perform the sieving in 5 to 10 seconds, and find very
few smooth numbers. They then choose a different quadratic polynomial f ′(x),
and repeat the sieving run (on the same machine, or on a different machine wor-
king in parallel). This phase stops when a total of k+1 smooth modular squares
are collected in all the sieving runs, and a single powerful computer performs
the Gauss elimination algorithm and the actual factorization in a small fraction
of the time which was devoted to the sieving.

In the next section we describe the new TWINKLE device, which is an ul-
trafast optical siever. It costs about the same as a powerful PC or a workstation,
but can test the smoothness of 100,000,000 modular squares over a prime base
of 200,000 primes in less than 0.01 seconds. This is 500 to 1000 times faster than
the conventional sieving approach described above.

3 The TWINKLE Device

The TWINKLE device is a simple optoelectronic device which is housed in an
opaque blackened cylinder whose diameter is about 6 inches and whose height
is about 10 inches. The bottom of the cylinder consists of a large collection of
LEDs (light emitting diodes) which twinkle at various frequencies, and the top
of the cylinder contains a photodetector which measures the total amount of
light emitted at any given moment by all the LEDs. The photodetector alerts a
connected PC whenever this total exceeds a certain threshold. Such events are
related to the detection of possibly smooth numbers, and their precise timing is
the only output of the TWINKLE device. Since these events are extremely rare,
the PC can leisurely translate the timing of each reported event to a candidate
modular square, verify its smoothness via trial division, and use it in a conven-
tional implementation of the QS or NFS algorithms in order to factor the input
n.

The standard PC implementation of the sieving technique assigns modular
squares to array elements (using space) and loops over the primes (using time).
The TWINKLE device assigns primes to LEDs (using space) and loops over the

3 Note that the faster cache memory is of little use, since the sieving process accesses
arithmetic progressions of addresses with huge jumps, which create continuous cache
misses.

6 A. Shamir

modular squares (using time), which reverses their roles. This is schematically
described in Fig. 1.

PRIMES PRIMES

SQUARES SQUARES

(LEDs)

(TIME SLICES)

(TIME

SLICES)

(MEMORY LOCATIONS)

+U +U +U +U

+V +V

+W +W

+X +X

+U +U +U

+V

+V

+V

+W +W

+X +X

CONVENTIONAL SIEVING OPTICAL SIEVING

Fig. 1. Conventional vs. optical sieving: the boxed operations are carried out at the
same time slice

Each LED is associated with some period pj and delay dj , and its only role is
to light up for one clock cycle at times described by the arithmetic progression pj∗
r + dj for r ≥ 0. To mimic the QS sieving procedure, we have to use nonuniform
LED intensities. In particular, we want the LED associated with prime pj to
generate light intensity proportional to log2(pj) whenever it flashes, so that the
total intensity measured by the photodetector at time i will correspond to the
binary size of the largest smooth divisor of the f(i) 4 We can achieve this by
using an array of LEDs of different sizes or with different resistances. However,
a simpler and more elegant solution to the problem is to construct a uniform
array of identical LEDs, to assign similar sized primes to neighbouring LEDs,
and to cover the LED array with a transparent filter with smoothly changing
grey levels. 5 Note that the dynamic range of grey levels we have to use is quite
limited, since the ratio of the logs of the largest and the smallest primes in a
typical basis does not exceed 24:1.

To increase the sensitivity of the photodetector, we can place it behind a large
lense which concentrates all the incoming light on its small surface area. The light

4 Again, we ignore the issue of the divisibility of f(i) by higher powers of the primes.
5 For example, we can assign primes to LEDs in row major order and use a filter which

is dark grey at the top and completely transparent at the bottom, or assign primes
to LEDS in spiral order and use a filter which is darkest at its center.

Factoring Large Numbers with the TWINKLE Device 7

intensity measurement is likely to be influenced by many sources of errors. For
example, the grey levels of the filter are only approximations of the logs, and
even uniformly designed LEDs may have actual intensities varying by 20% or
more. We can improve the accuracy of the TWINKLE device by measuring the
actual filtered intensity of each LED in the manufactured array, and assigning
the sequence of primes to the various LEDs based on their sorted list of measured
intensities. However, the QS and NFS factoring algorithms are very forgiving to
such measurement errors, and in PC implementations they use crude integer
approximations to the logs in order to speed up the computation. There are two
possible types of errors: missed events and false alarms. To minimize the number
of missed events we can set a slightly lower reporting threshold, and to eliminate
the resultant false alarms we can later test all the reported events on a PC, in
order to find the extremely rare real events among the rare false alarms. For
typical values of the parameters, the average binary size of the smooth part of
candidate values is about one tenth of their size, and only a tiny fraction of all
candidate values have ratios exceeding one half. As a result, the desired events
stand out very clearly as isolated narrow peaks which are about ten times higher
than the background noise.

We claim that optical sieving is much better than conventional counter array
sieving for the following reasons:

1. We can perform optical sieving at an extremely fast clock rate. Typical si-
licon RAM chips in standard PC’s operate at about 100 megahertz. LEDs,
on the other hand, are manufactured with a much faster Gallium Arsenide
(GaAs) technology, and can be clocked at rates exceeding 10 gigahertz with-
out difficulty. Commercially available LEDs and photodetectors are used to
send 10 gigabits per second along fiber optic cables, and GaAs devices are
widely used at similar clock rates as routers in high speed networks.

2. We can instantaneously add hundreds of thousands of optical contributions,
if we do not need perfect accuracy. Building a digital adder with 200,000
inputs which computes their sum in a single clock cycle is completely unrea-
listic.

3. The optical technique does not need huge arrays of counters. Instead of using
one memory cell per sieved value, we use one time slice per sieved value. Even
with the declining cost of fast memories, time is cheaper than space.

4. In the optical technique do not have to scan the array at the beginning in
order to zero it, and do not have to scan the array again at the end in order
to find its high entries - both operations are done at no extra cost during
the actual sieving.

In the remaining sections we flesh out the design of each cell and the archi-
tecture of the whole device. We based this design on many conversations with
experienced GaAs chip designers, and used only commercially available tech-
nologies. We may be off by a small factor in some of our size speed and cost
estimates, but we believe that the design is realistic, and that someone will try
it out in the near future.

8 A. Shamir

4 Cell Design

The LED array is implemented on a single wafer of GaAs. Each cell on this
wafer contains one LED plus some circuitry which makes it flash for exactly one
clock cycle every exactly pj clock cycles with an initial delay of exactly dj clock
cycles. The high clock rate and extremely accurate timing requirements rule out
analog control methods, and the unavoidable existence of bad cells in the wafer
rules out a prewired assignment of primes to cells. Instead, we use identical cells
throughout the wafer, and include in each cell two registers, A and B, which are
loaded before the beginning of the sieving process with values corresponding to
pj and dj , respectively. For a typical sieving run over m = 100, 000, 000 values,
we need only log2(m) ≈ 27 bits in each one of these registers.

The structure of each cell (described in Fig. 2) is very simple. Instead of using
counters (with their more complicated designs and additional carry-induced de-
lays), we use register B as a maximal length shift register based on a single XOR
of two of its bits. It is driven by the clock, and runs until it enters the special
state in which all its bits are ”1”. When this is recognized by the AND of all the
bits of register B, the LED flashes, and register B is reloaded with the contents of
register A (which remains unchanged throughout the computation). The initial
values loaded into registers A and B are not the binary representations of pj and
dj , but the (easily computed) states of the shift register which are that many
steps before the special state of all ”1”. That’s the whole cell design!

REGISTER A

REGISTER B

CLOCK
LOAD

FEEDBACK

ANDLEDSENSOR

XOR

Fig. 2. A single cell in the array

Factoring Large Numbers with the TWINKLE Device 9

An important issue in such a high speed device is clock synchronization.
Each clock cycle lasts only 100 picoseconds, and all the light pulses must be
synchronized to within a fraction of this interval in order to correctly sum their
contributions. Distributing electrical clock pulses (which travel slowly over long,
high capacity wires) at 10 gigahertz to thousands of cells all over the wafer
without skewing their arrival times by more than 10-20 picoseconds seems to
be a very difficult problem. We solve it by using another optical trick. Since
it is easy to construct in GaAs technology a small photodetector in each cell,
we use optical rather than electrical clock distribution: a strong LED placed
opposite the wafer, which flashes at a fixed rate of 10 gigahertz, and its pulses
are almost simultaneously picked up by the photodetectors in all the cells, and
used to drive the shift registers in a synchronized way. Since light passes about
3 centimeters in 100 picoseconds, we just have to place the clocking LED and
the summing photodetector sufficiently far away from the wafer to guarantee
sufficiently similar optical delays to and from all the cells on the flat wafer. To
avoid possible confusion between clock and data light pulses, we can use two
different wavelengths for the two purposes.

Computing the AND of 27 inputs requires a tree of depth 3 of 3-input AND
gates, which may be the slowest cell operation. To speed it up, we can use
a systolic design which carries out the tree computation in 3 consecutive clock
cycles. This delays the detection of the special state by 3 clock cycles but keeps all
the flashing LEDs perfectly synchronized. To compensate for the late reloading
of register B, we simply store a modified value of pj in register A.

An improved cell design is based on the observation that about half the
primes do not yield arithmetic progressions, whereas each prime in the other
half yields two arithmetic progressions with the same period pj . In standard PC
implementations this has little effect, since we still have to scan on average one
arithmetic progression per prime in the basis. However, in the TWINKLE design
the two cells assigned to the same pj can share the same A register (which never
changes) to reload their separate B shift registers. In addition, the two cells can
share the same LED and flash it with the OR of the two AND gates, since the
two arithmetic progressions are always disjoint. We call such a combination a
double cell, and use it to reduce the average number of registers per prime in
the basis from 2 to 1.5. Since these registers occupy most of the area of the cell,
this observation can increase the number of primes we can handle with a single
wafer by almost 33%.

5 Wafer Design

We would like to justify our claim that a single wafer can handle a prime base of
200,000 primes (which is the actual size used in recent PC-based factorizations).
A standard 6 inch wafer has a total usable area of about 16∗109 square microns.
Commercially available LED arrays (such as the arrays sold by Oki Semiconduc-
tors to manufacturers of laser printers - see http://www.oki.co.jp/OKI/home/En
glish/New/OKI-News/1998/z9819e.html for further details) have a linear den-

10 A. Shamir

sity of 1200 LEDs per inch. At this density, each LED occupies a 20µ × 20µ
square with an area of 400µ2, and we can fit about 40,000,000 LEDs on a single
wafer. However, most of area of each double cell will be devoted to the three 27
bit registers. Crude conservative estimates indicate that we can very comfortably
fit each one of these 81 bits into an area of 1, 600µ2 using commercially available
GaAs technology. We can thus fit the whole double cell into an area of less than
160, 000µ2, and pack 100,000 double cells into a single wafer. Such a wafer will
be able to sieve numbers over a prime base of 200,000 primes.

A simple reality check is based on the computation of the total amount
of memory on the wafer. The 100,000 double cells contain 81 × 100, 000 bits,
or about one megabyte of memory. The other gates (XOR, AND) and diodes
(LEDs, photodetectors) occupy a small additional area. This is a very modest
goal for wafer scale designs.

The cost of manufacturing silicon wafers in a commercial FAB is about $1,500
per wafer, and the cost of manufacturing the more expensive GaAs wafers is
about $5,000 per wafer (excluding design costs and assuming a reasonably large
order of wafers). This is comparable to the cost of a strong workstation, but
provides a sieving efficiency which is several hundred times higher.

The TWINKLE device does not have a yield problem, which plagues many
other wafer-scale designs: During the sieving process each cell works completely
independently, without receiving any inputs or sending any outputs to neighbou-
ring cells. Even if 20% of the cells are found to be defective in postproduction
inspection, we can use the remaining 80% of the cells. If necessary, we can place
two or more wafers at the same distance opposite the same summing detector,
in order to compensate for defective cells or to sieve over larger prime bases.

After determining the number of cells, we can consider the issue (which was
ignored so far) of loading registers A and B in each cell with some precomputed
data from a connected storage device. Silicon memory cannot operate at 10 giga-
hertz, and thus we have to slow down the clocking LEDs facing the GaAs wafer
during the loading phase. The A registers which contain the primes assigned to
each LED can be loaded only once after each powerup, but the B registers which
contain the initial delays have to be loaded for each sieving run. The total size
of the 200,000 B registers is about 675 kilobytes. Such a small amount of data
can be kept in a standard type of silicon memory, and transfered to the wafer in
0.002 seconds on a 27 bit bus operating at 100 megahertz. This is one fifth the
time required to carry out the actual sieving at the full 10 gigahertz clock rate,
and thus it does not create a new speed bottleneck.

The proposed wafer design has just 31 external connections: Two for power,
two for control, and 27 for the input bus. The four modes of operation indu-
ced by the two control wires consist of a test mode (in which the various LEDs
are sequentially flashed to test their functionality and measure their light inten-
sity), LOAD-A mode (in which the various A registers are sequentially loaded
from the bus), LOAD-B mode (in which the various B registers are sequenti-
ally loaded from the bus), and sieving mode (in which all the shift registers
are simultaneously clocked at 10 gigahertz). We can briefly freeze the optical

Factoring Large Numbers with the TWINKLE Device 11

clocking during mode changes in order to enable the slow electric control signals
to propagate to all the cells on the wafer before we start operating in the new
mode.

Another important factor in the wafer design is its total power consumption.
Strong LEDs consume considerable amounts of power, and if a large number of
LEDs on the wafer flash simultaneously, the excessive power consumption can
skew the intensity of the flashes. However, each tested number can be divisible
by at most several hundred primes fron the basis, and thus we have a small
upper bound on the total power which can be consumed by all the LEDs at any
given moment in the sieving process.

6 The Geometry of the TWINKLE Device

The TWINKLE device is housed in an opaque cylinder with the wafer at the
bottom and the summing photodetector and clocking LED at the top. Its dia-
meter is determined by the size of the wafer, which is about 6 inches. Its height
is determined by the uniformity requirements of the length of the various optical
paths.

To determine this height, we recall that light travels about 3 centimeters in a
single clock cycle which lasts 100 picoseconds. To make sure that all the received
light pulses are synchronized to within 15% of this duration, we want the length
of the optical paths from the clocking LED to any point in the wafer and from
there to the summing photodetector to vary by at most 0.5 centimeter. The
simplest arrangement places both elements at the center of the top face of the
cylinder, but this penalizes twice LEDs located at the rim compared to LEDs
located at the center, and requires a cylinder whose length is about 110 centi-
meters. A better arrangement uses several clocking LEDs placed symmetrically
around the rim of the top face, and a single photodetector at the center of this
face. A simple geometric calculation shows that the required uniformity will be
attained in a cylinder which is just 25 centimeters (10 inches) long.

7 Concluding Remarks

The idea of using physical devices in number theoretic computations is not new.
D. H. Lehmer managed to factor (relatively small) numbers and solve other
diophantine equations by pedalling on a device based on toothed wheels and
bicycle chains of various lengths (a replica of this ingenious contraption from the
1920’s is located at the Boston Computer Museum). His device even included
a photodetector to alert the rider when the solution was found, but its mode
of operation was of course completely different from our implementation of the
quadratic sieve.

The TWINKLE device proposed in this paper demonstrates the incredible
speed and almost unbounded parallelism which is offered by today’s optoelec-
tronic techniques. We believe that they will find many additional applications
in cryptography and cryptanalysis.

12 A. Shamir

Acknowledgements: I would like to thank Moty Heiblum and Vladimir
Umanski for many useful discussions of GaAs technology.

References

[LLMP] A. K. Lenstra, H. W. Lenstra, M. S. Manasse, and J. M. Pollard, The number

field sieve, Vol. 1554 of Lecture Notes in Mathematics, 11-42, Springer Verlag,
1993.

[P] C. Pomerance, The quadratic sieve factoring algorithm, Proceedings of EU-
ROCRYPT 84 (LNCS 209), 169-182, 1985.

[R] Hermann J. J. te Riele, email announcement, February 4 1999, available at
http://jya.com/rsa140.htm.

