
CIRCUITS FOR INTEGER FACTORIZATION: A PROPOSAL
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Abstrat. The number �eld sieve takes time L

1:901���+o(1)

on a general-

purpose omputer with L

0:950���+o(1)

bits of memory; here L is a partiular

subexponential funtion of the input size. It takes the same time on a parallel

trial-division mahine, suh as Craker or TWINKLE, of size L

0:950���+o(1)

.

It takes time only L

1:185���+o(1)

on a mahine of size L

0:790���+o(1)

explained

in this paper. This redution of total ost from L

2:852���+o(1)

to L

1:976���+o(1)

means that a ((3:009 � � �+o(1))d)-digit fatorization with the new mahine has

the same ost as a d-digit fatorization with previous mahines.

0. Prefae

This paper is an exerpt from a grant proposal that I submitted to NSF DMS

at the beginning of Otober 2001.

The same tehniques an be applied to other ongruene-ombination algorithms

for fatoring, disrete logarithms, lass groups, et. See [3℄ for a bibliography.

Priority dates. I realized on 13 September 2000 that speial-purpose hardware

would hange the exponent in the ost of integer fatorization. I announed the

exponent redution from 3+o(1) to 2:5+o(1) for real (two-dimensional) iruits in

a seminar at Butler University on 23 Marh 2001, a rump-session presentation at

Eurorypt 2001 on 7 May 2001, and a talk at the Algorithms and Number Theory

onferene at Dagstuhl on 14 May 2001. I realized on 9 August 2001 that the

sieving exponent ould easily be redued from 2:5 + o(1) to 2 + o(1).

1. Introdution

It is onjetured that one an �nd the prime fators of an integer n in time L

O(1)

,

where L = exp((logn)

1=3

(log logn)

2=3

).

More preisely: Write  = (92+26

p

13)

1=3

. The number �eld sieve, with sensibly

hosen parameters, takes time L

=3+o(1)

= L

1:9018836118���+o(1)

on a general-purpose

omputer with L

=6+o(1)

= L

0:9509418059���+o(1)

bits of memory, and is onjetured

to �nd the prime fators of n.

I realized reently that the same omputation an be arried out in time only

L

=4+o(1)

= L

1:4264127088���+o(1)

on a di�erent mahine of size L

=6+o(1)

. Another

parameter hoie takes time L

d+o(1)

= L

1:1856311014���+o(1)

on a mahine of size

L

2d=3+o(1)

= L

0:7904207343���+o(1)

, and is still onjetured to �nd the prime fators

of n. Here d = (5=3)

1=3

.

Date: 20011109.

1991 Mathematis Subjet Classi�ation. Primary 11Y05. Seondary 68W10.

The author was supported by the National Siene Foundation under grant DMS-9970409.

1



2 DANIEL J. BERNSTEIN

The ost of fatorization|the produt of the time and the ost of the mahine|

has thus dropped from L

=2+o(1)

= L

2:8528254177���+o(1)

to

L

5d=3+o(1)

= L

1:9760518358���+o(1)

:

In other words, for a given ost, the number of digits of n has grown by a fator of

(3=10d+ o(1))

3

= 3:0090581972 � � �+ o(1).

This is a tremendously exiting observation; it demands further investigation.

What do all the o(1)'s look like in pratie? Are these mahines more ost-e�etive

than general-purpose omputers for urrent ranges of n? See setions 2 through 6

of this proposal.

A team led by Herman te Riele used the number �eld sieve on general-purpose

omputers to fator a diÆult 512-bit integer in August 1999. Is it now possible to

fator 1536-bit integers at reasonable ost?

2. Odd-even transposition sorting

Odd-even transposition sorting is a straightforward algorithm that sorts m num-

bers in m steps on a one-dimensional mahine of size m. Readers familiar with the

algorithm may skip to the next setion; this setion is purely expository.

The mahine has m ells, eah ell holding one number, eah ell onneted

to the adjaent ells. In the �rst step, the �rst and seond ells sort their two

numbers; the third and fourth ells sort their two numbers; et. In the seond step,

the seond and third ells sort their two numbers; the fourth and �fth ells sort

their two numbers; et. The third step is just like the �rst step; the fourth step is

just like the seond step; and so on.

There are several ways to prove that m steps suÆe to sort the entire list of

numbers. See, e.g., [7, exerise 5.3.4{37℄.

The following table is an example of odd-even transposition sorting, with m = 8:

Time 0: 8 9 7 9 3 2 3 4

Time 1: 8 9 7 9 2 3 3 4

Time 2: 8 7 9 2 9 3 3 4

Time 3: 7 8 2 9 3 9 3 4

Time 4: 7 2 8 3 9 3 9 4

Time 5: 2 7 3 8 3 9 4 9

Time 6: 2 3 7 3 8 4 9 9

Time 7: 2 3 3 7 4 8 9 9

Time 8: 2 3 3 4 7 8 9 9

The notation

a b

 d

means  = min fa; bg and d = max fa; bg.

3. Shimmler sorting

Shimmler's algorithm sorts m

2

numbers in 8m� 8 steps on a two-dimensional

mahine of size m

2

, when m is a power of 2.

The mahine onsists ofm

2

ells in anm�m mesh, eah ell holding one number,

eah ell onneted to the adjaent ells. There are several natural orderings of ells

in an m�m mesh. Shimmler's algorithm an sort using the left-to-right order

(1; 1); (1; 2); : : : ; (1;m); (2; 1); (2; 2); : : : ; (2;m); (3; 1); (3; 2); : : : ; (3;m); : : : ;
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the right-to-left order

(1;m); (1;m� 1); : : : ; (1; 1); (2;m); (2;m� 1); : : : ; (2; 1);

(3;m); (3;m� 1); : : : ; (3; 1); : : : ;

or the snakelike order

(1; 1); (1; 2); : : : ; (1;m); (2;m); (2;m� 1); : : : ; (2; 1); (3; 1); (3; 2); : : : ; (3;m); : : : :

Shimmler's algorithm works as follows. Reursively sort the top-left quadrant

of the mesh, left to right; the top-right quadrant of the mesh, left to right; the

bottom-left quadrant of the mesh, right to left; and the bottom-right quadrant

of the mesh, right to left. Sort eah olumn independently, top to bottom, with

odd-even transposition sort. Sort eah row independently, snakelike. Sort eah

olumn independently, top to bottom. Finally, sort eah row independently, using

the desired order, left to right or right to left or snakelike.

For example, take the following array:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

Sort the quadrants:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

Sort the olumns, top to bottom:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9
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Sort the rows, snakelike:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

Sort the olumns, top to bottom:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

Sort the rows, left to right:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

The array is now sorted, left to right.

To prove the orretness of an algorithm of this type, selet a uto� value v,

and onsider the positions of numbers larger than v. After the reursive sorting,

all that matters is how many suh numbers are in eah quadrant. It is then easy

to analyze where those numbers appear in subsequent steps.

History. Thompson and Kung in [21℄ showed that an m �m mesh an sort m

2

numbers in O(m) steps. Shnorr and Shamir in [18℄ showed that anm�mmesh an

sort m

2

numbers in snakelike order in (3 + o(1))m steps. Shimmler's algorithm

appeared in [17℄; it is onsiderably simpler than the Shnorr-Shamir algorithm,

although it is not as fast.

Similar omments apply to higher-dimensional meshes. Unfortunately, it is dif-

�ult in pratie to build an m�m�m mesh for large m.

A philosophial note. I always thought that ommon general-purpose omputers

were the pinnale of realisti omputational power. Speial-purpose omputer arhi-

tetures, suh as Lehmer's biyle hain sieve or Pomerane's Craker or Shamir's

TWINKLE, were at best a onstant fator faster. Quantum omputers are asymp-

totially faster for many omputations, but it is unlear whether they an atually

be built.
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I also thought that parallel omputing redued the time, not the ost, of om-

putations. Ten proessors might perform a omputation in one tenth the time of a

single proessor, but they are ten times as expensive, so the ost of the omputation

remains the same.

I was wrong. Shimmler's mahine, with m

2

proessors, an be built for m

2+o(1)

dollars, just like a single-proessor omputer with m

2+o(1)

bits of memory. It an

sort m

2

numbers in time m

1+o(1)

, while the single-proessor mahine needs time

m

2+o(1)

. The ost of the omputation has dropped from m

4+o(1)

to m

3+o(1)

.

4. Ciruits for linear algebra

Let A be a square matrix over F

2

with y

1+o(1)

olumns and with y

o(1)

nonzero

entries in eah olumn. The obvious method of omputing Av, given a vetor v over

F

2

, takes time y

1+o(1)

on a general-purpose omputer with y

1+o(1)

bits of memory.

One an do better with Shimmler sorting: time y

0:5+o(1)

on another mahine

of size y

1+o(1)

. In partiular, this mahine an ompute a dot produt in time

y

0:5+o(1)

. Here are the details.

Selet m 2 y

0:5+o(1)

as a power of 2 large enough that m

2

exeeds the number

of nonzero entries of A plus twie the number of rows of A. Build an m�m mesh

of ells, eah ell having O(log y) bits of storage.

Store the nonzero entries of v|the integers j suh that v

j

= 1|in these ells in

any order. Also store the nonzero entries ofM|the pairs (i; j) suh thatM

i;j

= 1|

in ells in any order; note that there are only y

o(1)

pairs for eah j. Store 0 in all

remaining ells.

Sort all the integers j and pairs (i; j) in order of j, with the ells in snakelike

order. For example:

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(3; 3) (2; 3) (3; 2) (2; 1) (1; 1) 1 0 0

(8; 3) 5 (1; 5) (4; 5) 6 7 (6; 7) (15; 7)

(1; 12) 12 (13; 11) (1; 10) (1; 9) (8; 8) (2; 8) 8

(10; 12) 13 (1; 13) (2; 13) 14 (1; 14) (3; 14) (4; 14)

(11; 16) (3; 16) (2; 16) 16 (5; 15) (4; 15) (2; 15) (1; 15)

This takes m

1+o(1)

= y

0:5+o(1)

steps, and brings eah j within distane y

o(1)

of all

the ells with pairs (i; j). Communiate eah j to those ells; this takes y

o(1)

steps.

Then replae the j's by new numbers: i in a ell that has both j and (i; j); 0 in all

other ells. For example:

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(3; 3) (2; 3) (3; 2) 2; (2; 1) 1; (1; 1) 0 0 0

(8; 3) 0 1; (1; 5) 4; (4; 5) 0 0 6; (6; 7) 15; (15; 7)

1; (1; 12) 0 (13; 11) (1; 10) (1; 9) 8; (8; 8) 2; (2; 8) 0

10; (10; 12) 0 1; (1; 13) 2; (2; 13) 0 1; (1; 14) 3; (3; 14) 4; (4; 14)

11; (11; 16) 3; (3; 16) 2; (2; 16) 0 (5; 15) (4; 15) (2; 15) (1; 15)
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Sort (snakelike) these new numbers; this takes y

0:5+o(1)

steps. For example:

1 1 1 1 1 2 2 2

10 8 6 4 4 3 3 2

11 15 0 0 0 0 0 0

(3; 3) (2; 3) (3; 2) (2; 1) (1; 1) 0 0 0

(8; 3) 0 (1; 5) (4; 5) 0 0 (6; 7) (15; 7)

(1; 12) 0 (13; 11) (1; 10) (1; 9) (8; 8) (2; 8) 0

(10; 12) 0 (1; 13) (2; 13) 0 (1; 14) (3; 14) (4; 14)

(11; 16) (3; 16) (2; 16) 0 (5; 15) (4; 15) (2; 15) (1; 15)

Compare eah ell to one of its two (snakelike) neighbors, as in the �rst step of an

odd-even transposition sort; if the two ells have the same number i, replae that

number by 0 in both ells. Then sort one more. For example:

1 2 2 3 3 4 4 6

0 0 0 0 15 11 10 8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 (1; 1) (2; 1) (3; 2) (2; 3) (3; 3)

(1; 9) (8; 8) (2; 8) (15; 7) (6; 7) (4; 5) (1; 5) (8; 3)

(1; 10) (13; 11) (1; 12) (10; 12) (1; 13) (2; 13) (1; 14) (3; 14)

(11; 16) (3; 16) (2; 16) (5; 15) (4; 15) (2; 15) (1; 15) (4; 14)

At this point there are at most two ourrenes of eah i. Compare eah ell to

both of its neighbors, and anel any remaining dupliates. That's it. The nonzero

entries of v and M have been replaed by the nonzero entries of Mv and M .

Computing kernels. Wiedemann's algorithm in [22℄ omputes the minimal poly-

nomial f of A as follows.

Selet uniform random vetors u and v. The minimal polynomial g of the bit

sequene uv; uAv; uA

2

v; : : : is a divisor of f . The least ommon multiple of a few

suh divisors is, with high probability, f .

One an ompute g very quikly from the �rst y

1+o(1)

bits in the sequene. The

algorithms in [19℄, [13℄, [4℄, and [14℄, with the help of fast multipliation, do this in

time y

1+o(1)

on a general-purpose omputer with y

1+o(1)

bits of memory.

The obvious method of omputing these y

1+o(1)

bits, multiplying v by A repeat-

edly and multiplying eah result by u, takes time y

2+o(1)

on the same omputer. It

takes time only y

1:5+o(1)

on the mahine desribed above.

Given the minimal polynomial of A, one an easily onstrut random elements of

the kernel of A. The obvious method again takes time y

2+o(1)

on a general-purpose

omputer with y

1+o(1)

bits of memory; the mahine desribed above takes time

y

1:5+o(1)

.

Plans. I will investigate the ost of these omputations in detail. Exatly how ex-

pensive are linear-algebra iruits of various sizes? Computer programs are available

to help onstrut and simulate dediated iruits and FPGAs, produing preise

measurements of size and speed.

Are there better representations of matries and vetors? For example, should

j and (i; j) be assigned permanently to ells? Should the third sorting step be

eliminated? Can repeated i's be pro�tably removed in the middle of Shimmler's
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algorithm? Is it pratial to use the Shnorr-Shamir algorithm instead of Shimm-

ler's algorithm? There is a huge literature on mesh routing and mesh sorting, with

dozens of potentially useful tehniques.

There are many more ways to save onstant fators. Wiedemann's algorithm

an handle additional pairs (u; v) muh more quikly one a large divisor of f is

known. One an use Lanzos-type algorithms instead of Wiedemann's algorithm;

see [8℄ for a survey. I will explore all of these possibilities.

A blok version of Wiedemann's algorithm allows further parallelization, al-

though it does not hange the ost of the omputation. See [6℄. It should be

possible to ombine y

0:1+o(1)

of these mahines, for example, to onstrut random

elements of the kernel of A in time y

1:4+o(1)

.

5. Ciruits to find smooth numbers

Consider a set of y

2+o(1)

numbers, eah with (log y)

O(1)

digits. How long does it

take to �nd all the y-smooth numbers?

RAM sieving. Common pratie is to partition the set into y

1+o(1)

piees, eah

of size y

1+o(1)

, and sieve eah piee. See [3℄ for a method that ahieves similar

performane even if the numbers are not sieveable.

Sieving seems very eÆient. It handles y

2+o(1)

numbers in y

2+o(1)

steps. How-

ever, it requires y

1+o(1)

bits of memory, only a few of whih are performing pro-

dutive work at any moment. Most of the bits are simply sitting around, twiddling

their thumbs. The ost of sieving is y

3+o(1)

.

Parallel trial division. Another approah is to divide eah of the y

2+o(1)

numbers

by eah of the y

1+o(1)

primes.

This may seem slower than sieving: it takes y

3+o(1)

steps. However, it uses only

y

o(1)

bits of memory, so it an easily be parallelized. One an handle separate

numbers in parallel, or handle separate primes in parallel, or both. One an also

speed up the trial division by a fator of y

o(1)

when the numbers are sieveable.

The ost of any of these approahes is y

3+o(1)

: in other words, within a fator

y

o(1)

of the ost of sieving. This applies, in partiular, to Pomerane's Craker, and

Shamir's TWINKLE.

Parallel ECM. Trial division is not the state of the art in low-memory smoothness-

testing methods. ECM, Lenstra's ellipti-urve method in [10℄, has onjeturally

negligible hane of error, and takes time at most exp

p

(2 + o(1)) log y log log y per

integer. HECM, the Lenstra-Pila-Pomerane hyperellipti-urve method in [11℄,

has provably negligible hane of error, and takes time at most exp((log y)

2=3+o(1)

)

per integer. Both methods use y

o(1)

bits of memory.

Consequently a parallel ECM or HECM mahine, handling y

1+o(1)

numbers in

parallel, has size y

1+o(1)

, and tests smoothness of y

2+o(1)

numbers in time y

1+o(1)

.

The ost of this omputation is only y

2+o(1)

.

Note that numbers are handled by this mahine muh more quikly than they

ould be ommuniated through a serial link. This mahine is not useful unless it

reeives inputs in parallel. If there are many outputs then the outputs also need to

be handled in parallel.
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Plans. As in setion 4, I will investigate the ost of these omputations in detail.

There are several ways to ahieve ost y

2:5+o(1)

: parallel Pollard rho, for example,

or sieving via Shimmler's algorithm. These methods may be faster than ECM for

urrent values of y, and an be pro�tably used as a �rst step in any ase.

There are many more options to explore. For example, as shown by Pomerane

in [15℄, early aborts disard a sizable fration of useful inputs, but redue the time

by a larger fration, when the abort parameters are hosen properly.

6. Ciruits for integer fatorization

The number �eld sieve tries to fator an integer n � 15 as follows, when n is odd

and not a prime power. The spei� parameter hoies here are due to Coppersmith

in [5℄.

De�ne � = (log n)

1=3

(log logn)

�1=3

and

L = n

1=�

2

= exp((logn)

1=3

(log logn)

2=3

):

Note that (1 + o(1))� log� = (1=3 + o(1)) logL.

Selet an integer degree d 2 (1:4017532352 � � �+o(1))� with d � 2. The onstant

here is (92 + 26

p

13)

1=3

(�5 + 2

p

13)=9.

Selet an integer m lose to n

1=d

. Write n as m

d

+ f

d�1

m

d�1

+ � � �+ f

1

m+ f

0

with eah f

i

bounded by n

(1+o(1))=d

. There are some bad hoies of f

i

's that will

make the rest of the algorithm fail, but a random hoie is onjetured to sueed

with high probability.

Consider all pairs (a; b) of oprime positive integers bounded by

L

0:9509418059���+o(1)

:

There are L

1:9018836118���+o(1)

suh pairs. Sieve the integers a � bm, using all

primes up to L

0:9509418059���+o(1)

, to see whih integers are smooth. This takes time

L

1:9018836118���+o(1)

on a general-purpose omputer with L

0:9509418059���+o(1)

bits of

memory.

Both a and b are bounded by L

o(1)�

, and m is bounded by L

(0:7133923253���+o(1))�

,

so eah a � bm is bounded by L

(0:7133923253���+o(1))�

. It is onjetured that the

fration of smooth integers is exp(�(1 + o(1))u logu), where

u =

(0:7133923253 � � �+ o(1))�

0:9509418059 � � �+ o(1)

= (0:7501955649 � � �+ o(1))�;

this means that there are L

1:9018836118����0:7501955649:::=3+o(1)

= L

1:6518184235���+o(1)

pairs (a; b) for whih a� bm is smooth.

Now, for eah integer k up to L

0:1250325942���+o(1)

, and for eah of the

L

1:6518184235���+o(1)

pairs (a; b) where a� bm is smooth, hek smoothness of

N

k

(a; b) = a

d

+ f

d�1

a

d�1

b+ � � �+ (f

1

+ k)ab

d�1

+ (f

0

� km)b

d

;

using all primes up to L

0:9509418059����0:1250325942���+o(1)

= L

0:8259092117���+o(1)

. The

onstant in the k bound is 9=(92 + 26

p

13)

2=3

(�5 + 2

p

13).

Coppersmith heks smoothness here with the ellipti-urve method, whih takes

time L

o(1)

per integer, totalling

L

1:6518184235���+0:1250325942���+o(1)

= L

1:7768510177���+o(1)

:
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See [3℄ for another method.

It is ommonly believed that this use of ECM makes Coppersmith's variant

impratial. Standard pratie is to instead sieveN

k

(a; b) over all (a; b; k). However,

there are relatively few pairs (a; b) for whih a � bm is smooth; for large n, this

outweighs any speed advantages of sieving.

The quantity N

k

(a; b) is bounded by

L

(0:7133923253���+0:9509418059����1:4017532352���+o(1))�

= L

(2:0463780783���+o(1))�

:

Consequently it is onjetured that there are

L

1:7768510177����(2:0463780783:::=0:8259092117::: )=3+o(1)

= L

0:9509418059���+o(1)

pairs (a; b) for whih both a� bm and N

k

(a; b) are smooth.

Every suh pair is a \relation mod n" among L

0:9509418059���+o(1)

primes of various

number �elds. It is onjetured that there will be more relations than primes, if the

o(1) in the bound on a and b is hosen large enough, so there will be a nontrivial

dependeny modulo 2 among those relations. One an disover suh a dependeny

in time L

1:9018836118���+o(1)

on a general-purpose omputer with L

0:9509418059���+o(1)

bits of memory: apply Wiedemann's algorithm to the relation matrix.

Finally, perform a square-root omputation to �nd a divisor of n. This takes time

just L

0:9509418059���+o(1)

on a general-purpose omputer with L

0:9509418059���+o(1)

bits

of memory. The divisor is onjetured to be a nontrivial fator of n with probability

bounded away from 0.

Ciruits. One an use, instead of a general-purpose omputer, the mahine de-

sribed in setion 5 to �nd pairs (a; b) for whih a � bm and N

k

(a; b) are smooth,

and the mahine desribed in setion 4 to �nd a dependeny in the relation matrix.

However, sine the mahine in setion 5 is relatively fast, it is better to onsider

more pairs (a; b), so as to redue the time spent on linear algebra, when n is

suÆiently large. One an balane the time taken by the two mahines as follows.

De�ne � and L as before. Selet an integer degree d 2 (1:4227573217 � � �+o(1))�

with d � 2, and seletm; f

d�1

; : : : ; f

0

as before. The onstant here is (5=3)

1=3

(6=5).

Consider all pairs (a; b) of oprime positive integers bounded by

L

0:9880259179���+o(1)

;

and selet y 2 L

0:7904207343���+o(1)

. The onstants here are (5=3)

1=3

(5=6) and

(5=3)

1=3

(2=3).

Find all pairs (a; b) for whih a� bm and N

0

(a; b) are both y-smooth. This takes

time

L

2�0:9880259179����0:7904207343���+o(1)

= L

1:1856311014���+o(1)

on a mahine of size L

0:7904207343���+o(1)

, as explained in setion 5. The produt of

a� bm and N

0

(a; b) is bounded by

L

2=1:4227573217���+0:9880259179����1:4227573217���+o(1)

= L

2:8114422176+o(1)

so the number of relations is onjetured to be

L

2�0:9880259179����(2:8114422176:::=0:7904207343::: )=3+o(1)

= L

0:7904207343���+o(1)

whih, as before, should exeed the number of relevant primes. Finding a depen-

deny takes time L

1:5�0:7904207343���+o(1)

= L

1:1856311014���+o(1)

on a mahine of size

L

0:7904207343���+o(1)

, as explained in setion 4. The �nal square root takes time

L

0:7904207343���+o(1)

on a general-purpose omputer of size L

0:7904207343���+o(1)

.



10 DANIEL J. BERNSTEIN

Plans. I already have tools that aurately predit the yield of the number �eld

sieve for various parameter hoies. It should be straightforward to optimize these

hoies, given the exat osts of the omputations desribed in setions 4 and 5.

Credits. I started thinking about the ost of fatorization|rather than simply the

time taken on ommon general-purpose omputers|after I heard a talk by Arjen

Lenstra on TWINKLE. See [9℄.

Silverman in [20℄ pointed out that many previous analyses of the diÆulty of

fatorization were wildly underestimating the ost of sieving and linear algebra. I

agree. Silverman's estimates were muh more aurate. However, they are now

obsolete.
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