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Let

– k be a field,

– A ∈ Kn×n an n× n square matrix over k,

– b ∈ Kn any column vector and

– u ∈ K1×n any row vector;

Denoting

– f(λ) := 1 +
∑n

i=1 fiλ
i ∈ k[λ] the minimum polynomial of A, normalized so that f(0) = 0

we remark that A` = −
∑n

i=1 fiA
i+`
i , for each ` ∈ N. As a consequence

A`b = −
n∑

i=1

fiA
i+`
i b and uA`b = −

n∑
i=1

fiuAi+`
i b, for each ` ∈ N.

Remark W.1. In particular if, for each i ∈ N we denote

Ai :=
(
a
(i)
jh

)
, Aib =

(
b
(i)
1 , . . . , (b(n)

1

)T

,

and
ci := uAib ∈ K

both each sequences a
(0)
jh , a

(1)
jh , . . . , a

(i)
jh , . . . , 1 ≤ j, h ≤ n, b

(0)
j , b

(1)
j , . . . , b

(i)
j , . . . , 1 ≤ j ≤ n, and, mainly

c0, c1, . . . , ci, . . .

are linearly recurring sequences owning a minimal polynomial. ut
It is then worthwhile to extend such notion to vectorspaces:

Definition W.2. Let V be a vector space and let a0, . . . , ai, . . . be an infinite sequence with elements ai ∈ V . The
sequence is linearly generated over K if there is polynomial f(λ) :=

∑n
i=0 fiλ

i ∈ k[λ] \ {0} s.t.
∑n

i=0 fia=0. Any such
polynomial is called a generating polynomial for the sequence.

It is then clear that the set of all generating polynomials for the sequence, together with the zero polynomial forms
an ideal.

Definition W.3. The unique polynomial generating such ideal is called the minimum polynomial of the sequence.

On the basis of this definition we will denote

– fA,b(λ) ∈ k[λ] the minimum polynomial of the sequence b, Ab,A2b, . . . , Aib, . . ., for each column vector b ∈ Kn

and

– fA,b
u (λ) ∈ k[λ] the minimum polynomial of the sequence c0 := u · b, c1 := uAb, c2 := uA2b, . . . , ci := uAib, . . .,

for each column vector b ∈ Kn and each row vector u ∈ K1×n.

remarking that fA,b
u | fA,b | f.

Remark W.4. Usually the minimal polynomial is normalized in order to have leading coefficient 1.
Inthe context of Wiedermann Algorithm (but also of Berlekamp–Massey Algorithm) it is better to normalize it in

order to have trailing coefficient 1. ut
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W.1 The nonsingular case

Let us now assume A to be nonsingular, so that for each b ∈ Kn \ {0}, there is a unique x ∈ Kn \ {0}, such that

Ax = b.

In this case, denoting

fA,b(λ) := 1 +
n∑

i=1

fiλ
i ∈ k[λ]

the minimum polynomial of the sequence b, Ab,A2b, . . . , Aib, . . . we have

fA,b(Ab) := b +
n∑

i=1

fiA
ib = 0 =⇒ b = −

n∑
i=1

fiA
ib = A

(
−

n∑
i=1

fiA
i−1b

)
so that x := −

∑n
i=1 fiA

i−1b is the required solution.

W.2 The singular case

Let us now assume A to be singular. In this case the minimum polynomial fA,b(λ) of the sequence b, Ab,A2b, . . . , Aib, . . .
is such that fA,b(0) = 0 and let

f− := fA,b(λ)/λ =
n∑

i=1

fiλ
i−1 ∈ k[λ].

Then x := f−(A)b satisfies

A · x = A ·

(
n∑

i=1

fiA
i−1b

)
=

n∑
i=1

fiA
ib = fA,b(A) · b = 0

W.3 Computing the minimal polynomnial

In order to compute the minimal polynomial, one can apply the Berlekamp–Massey Algorithm to the sequence

c0 := u · b, c1 := uAb, c2 := uA2b, . . . , ci := uAib, . . .

where u ∈ K1×n is any random row vector.
The algorithm returns the minimal polynomial fA,b

u | fA,b If b1 := fA,b
u (Ab) = fA,b

u (A) · b = 0 then fA,b
u = fA,b

and we are throu.
If instead, b1 6= 0 we have in any case found a factor of fA,b. In this case one can reapply the same procedure with

a different random row vector u′, but it is more efficient to apply the Berlekamp–Massey Algorithm to the sequence

c0 := u1 · b1, c1 := u1Ab1, c2 := u2A
2b2, . . . , ci := u2A

ib2, . . .

where u1 ∈ K1×n is any random row vector, obtaining the minimal polynomial fA,b1
u1

. If

b2 := fA,b1
u1

(Ab1) = fA,b1
u1

(A) · b1 = fA,b1
u1

(A) · fA,b
u (A) · b =

(
fA,b1

u1
fA,b

u

)
(A) · b = 0

then fA,b(λ) = fA,b1
u1

(λ)fA,b
u (λ); otherwise we repeat the same procedure with b2 and a new random row vector

u2 ∈ K1×n.
Eventually we will obtain the case in which

bk+1 := fA,bk
uk

(Abk)

= fA,bk
uk

(A) · bk

= fA,bk
uk

(A)fA,bk−1
uk−1

(A) · · · fA,b
u (A) · b

=
(
fA,bk

uk
fA,bk−1

uk−1
· · · fA,b1

u1
fA,b

u

)
(A) · b

= 0

so that fA,b(λ) = fA,bk
uk

(λ)fA,bk−1
uk−1 (λ) · · · fA,b1

u1
(λ)fA,b

u (λ).
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