Appendix 1
by J. Tate

Algebraic Formulas in
Arbitrary Characteristic

§1. GENERALIZED WEIERSTRASS FORM

Let K be a field. An elliptic curve over K is a connected algebraic curve A
smooth and proper over K, of genus 1. An abelian variety of dimension 1 over
K is the same thing as an elliptic curve 4 over K furnished with a K-rational
point, O. Given such an A, there exist functions x and y on A defined over K
such that x (resp. y) has a double (resp. triple) pole at O and no other poles.
Moreover, if @ # 0 is a given differential of first kind on A andw =dt + - - -
is its expansion in terms of a uniformizing parameter at 0, one can arrange (by
multiplying xand y by constants) that x = 24 ---andy=—12+ -
Then in the projective imbedding defined by 3(0) the equation for 4 is of the
form
(1.1) ¥ + ayxy + azy = x> + a;x* + a,x + a
with a; € K. Homogeneity: y is of weight 3, x of weight 2, and the a; of weight 7,
meaning that if we replace » by uw, then x is replaced by u~2x, y by u3y, etc.

If we are given an equation of the form (1.1), we define associated quantities
by, bas bes bs, Cas €6, A, and j by the following formulas:

(1.2) b, = a} + 4a,, by = aja; + 2a,, b = aj + 4as
by = alas — a,a;as + 4a,a + a,a} — ai
(1.3) co = b} —24b, ¢ = —b3 + 36b,b, — 216b,
(1.4) A = —blby — 8b3 — 27b% + 9byb,bs
3
(1.5) j= %“ (if A is invertible).
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These quantities are related by the identities
(1.6) 4bg = b)bs — b3, and  1728A = ¢} — cZ.

If the characteristic is # 2 or 3 and we put

(1.7) N s e
n=y 3 : and E=x+ o’
then equation (1.1) becomes
(1.8) Pty g b S s
. 4 2 4 48 864
The relation to the classical Weierstrass theory is given by
(1.9) C=pW) co=12, A=g}-21g}

2 =p'W) cs=216g; j=1728J,
d¢
and w = 5 = du (see below).

Some of the first facts to be proved are summarized by the following
theorems:

Theorem 1. The plane cubic curve (1.1) is smooth (and hence defines an
abelian variety A of dimension one over K with the point O at infinity as origin)

if and only if A # 0, in which case the differential of first kind w we started
with is given by

110) o= 9  _dx_ _dy dy
2y +a;x + ay - F, F, 3x*+2ax +a, —ayy’

where
(1.11) F,Y)=Y*+a, XY + a;Y — X> — a,X* — a,X — ag
is the equation of the curve,

Theorem 2. Let A and A" be two abelian varieties of dimension one over
K, given by equations of the form (1.1), and let j and j' be their “invariants”.
Then A and A’ are isomorphic over some extension field of K if and onl ly if
J =1J's in which case they are isomorphic over a separable extension of degree
dividing 24, and indeed of degree 2, if j # 0 or 1728.

Theorem 3. For each je K, there exists an abelian variety A of dimension

one over K with invariant j. Indeed if j # 0 or 1728, such as A is given by
the equation

(1.12) ¥4+ xy =x¥ — - 26 x — 1 ,
Jj— 1728 j— 1728
JSor which
. 2
Oy =Cg = sl and J

j—1728 s G — 1728
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Theorem 4. The group of automorphisms of an abelian variety of dimension

one is finite, or order dividing 24, and if j # 0 or 1728, it is of order 2, .

generated by x+—x and y+» —y — a;x — as (ie, by P> —P). =

These theorems, and indeed more precise versions of them than we ha.vc
bothered to state, can be proved by straightforward computations, once one’
analyzes the most general allowable coordinate change in (1.1). This is done as._ ™

follows. Suppose 4 and A’ are abelian varieties of dimension one over K,
given by equations y? + a,xy + -+ - and y'* + ajx’y’ + -+ -, and suppose

f: A"~ A is an isomorphism defined over K. Then there are elements u € K* ... 5

and r, s, t € K such that o
(1.13) xof=u’x"+r yof=uy +su®>x +t wof=u'w.
The coefficients a} are related to the a; as follows:
uay =a, +2s
uay = a, —sa; + 3r—s*
(1.14) wlay =ay +ra, +2t=F(r,1)
u*al = a, — sa; + 2ra, — (t + rs)a; + 3r* — 2st = —F (r, 1) — sF(r, 1)
uSal = ag + ray + ria, +r’ —tay — t* — ria, = —F(r,1).
For the b} we have
u?by = b, + 12r
u*by = by + rb, + 6r*
ubby =bg + 2rb, + r*by + 4r°
uPbyy = bg + 3rbg + 3r2b, + 1°b, + 3rt.
For the ¢} and A one then finds
(1.16) utch=c, ui=cq ”A’ A.

Hence j* = j is indeed invariant; j(4) depends only on the isomorphism class o
A, not on the particular choice of an equation (1.1) defining A".

(1.15)

§2. CANONICAL FORMS

Let p be the characteristic of our ground field K. The easy case is p # 2, 3:
Then we can always choose coordinates so that A4 is given by the equation
dx

2.1) yP=x+ax+a, with o= Tk
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and
3
(2.2) ¢y = —48a,, cs = —864dag, = —16(4a, + 27a}).

Since any curve of the form (1.1) is smooth at the infinite point 0, such a curve
is smooth everywhere if and only if the polynomials F, F,, and F, have no
common zero. In the case of an equation of the form (2.1) with p # 2, this
condition amounts to the non-existence of a common root of the polynomials
G(X) = x* + a,x + agand G'(X) = 3x> + a,, and since A = 16 - discr. G(X),
the condition in this case is just A # 0, as claimed in Theorem 1.

Let 4 and A’ be given by equations of the form (2.1) with the same invariant
J = Jj'. The isomorphisms f: A’ % A are given simply by

(2.3) xof=ux’ yof=udy,

where u is such that u*a), = a, and u®a; = a,.

Suppose j # 0, 1728 (i.e. a; # 0, ag # 0). Then A4 and A’ are isomorphic
if and only if ajat/alas is a square; the smallest field over which 4 and A’
become isomorphic is the field obtained by adjoining the square root of that
quantity to K. The automorphisms of 4 are given by u = +1.

Suppose j = 1728 (i.e., ag = 0). Then 4 and A’ are isomorphic over K
if and only if a,/a} € (K*)*. The automorphisms of A are given by u* = 1.
A typical curve of this type is given by y? = x* — x.

Suppose j = 0(i.e.,a, = 0). Then 4 = A’ over K if and only if ag/a; e (K*)®,
the automorphisms are given by u® = 1, and a typical curve is y* = x* — 1.

Now suppose p = 3. In this case (and more generally if p # 2) we can always
write 4 in the form

(2.4) ¥ =x3 4+ a,x* + ayx + ag = G(x), say,
. dx
St
Using the fact that p = 3, we find
(2.5) b; = a,, by = —ay, bs = as, by = —ai + aya;
¢, = aj, ce = —a3, A = ala} — adag — aj.

Here again A is the discriminant of G(X), up to an invertible factor, so A # 0
is the condition for smoothness.

Suppose 4 and A’ of form (2.4) withj = j".

Suppose j # 0 (i.e., a, # 0). Then we can make the term in x disappear,
getting the reduced form

(2.6) y:i=x*+ax®+ta, A= —ada;, j= —allas.
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An isomorphism f: A" & A is given by
2.7 xof=u?x, yof=uy

where u?a), = a,. Hence A’ ~ A if and only if a,/a; € (K*)?, and the auto-
morphisms of A correspond to u = +1.

Suppose j = 0 (i.e., a, = 0). Reduced form:

2 _ .3 3 )
(2.8) y=x+ax+a;, A= -—ai iy
4
Isomorphisms:
2.9 xof=wlx'+r, yof=uwy
with
utay = a,, ulal =ag+ ra, +r’.

Hence A and A’ are isomorphic if and only if (a,/a;) € (K*)* and (agfafytay — ag
is of the form r? + ra,. This is always so over a separable extension of degree
dividing 12. The automorphisms of 4 are given by the pairs (4, r) such that:

either r3® +aur=0 and w= %I,

2.10 .
210 or r3+ ayu + 2a5 =0 and u= *i,

where i? = —1. Over the separable closure of K, they form a group of irder 12,
the twisted product of C, (cyclic group of order 4) and C; with C; the normal
subgroup acted on by elements of C, in the unique non-trivial way--conjugation
of C; by a generator of C, is the map carrying elements of C; into their jnverses.
A typical curve of this type is y* = x*® — x, the automorphisms heing given
by u* = 1,r%— r = 0 (i.e,, r € F5) in this case.
Last case, p = 2. Here we have ua} = a, (see 1.14) and ¢, = b} = uf (see (1.2)
and (1.3)). Hence we have j = 0<> a, = 0, and separate cases accordingly.
Suppose a, # 0 (i.e., j # 0). Then choosing suitably r, s, and 1, we ¢usy achieve
a, = 1,a; = 0,a, = 0. Hence A is given by an equation of the form

. dx
(2.11) Y +xy=x*+ayx" +a, With o=—,

and
by=1, by=bs=0, bg=as, co=1, A=4as j=
s

. =¥ + x?, and F, = x have their only common zero at x =y = {, znd this
is on the curve if and only if as = A = 0. Hence A # 0 is condition for smooth-
ness.

Isomorphisms: , ,
xof=x', yof=)y +sx
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with
(2.12) ay=a, +s*—s, a;=a,

Two curves 4 and A" with the same j are isomorphic if and only if a;, — a,
is of the form 52 — s, which is true over a separable extension of K of degree < 2.
The group of automorphisms of 4 has two elements, corresponding to s = 0, 1.
A typical curve is y* + xy = x® + (1/)).
Suppose a, = 0 (i.e., j = 0). Choosing r suitably we can arrange that a, = 0,
so A is given by

2 3 . dx
(2.13) Y-+ ay =x + ax + ag, with @ = o

3
and
b,=by=0, bs=a}, bg=a} A=a} j=0.

Since F, = x*> 4+ a, and F, = as, the curve is smooth if and only if a3 # 0,
i.e., A # 0. Two curves 4 and A’ with the same j are isomorphic if and only if
the following equations are soluble in u, 5, and ¢:

u3

) ay = a,
(2.149) u*al = a, + sa; + s*
ubal = ag + s2a, + tay + s + %

This is always so over a separable extension of K of degree < 24. A typical
curve of this type is
(2.15) y:—y=x.
Its group of automorphisms (over the separable closure of X) is of order 24,
the elements corresponding to triples (u, s, t) such that

w=1, s*+s5=0, and 2+t +s3+s52=0
It is isomorphic to the twisted direct product of a cyclic group of order 3 with
a quaternion group. The quaternion group is the normal subgroup, and is acted
on by the group of order 3 in the obvious way.

§3. EXPANSIONS NEAR O; THE FORMAL GROUP.
Let A4 be defined by a Weierstrass equation (I.1). Let

(3.1) z=—J—C, w=-1, S0 o=

v s
¥ y

sin
=
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The equation for A in the affine (z, w)-plane is
(3.2 W= z3 + a,zw + az?w + a;w? + agzw? + aew’.
The point O is given by (z, w) = (0,0), and z is a local parameter at O. From
(3.2) we get the formal expansion
(33)  w=2+ a;z* + (a] + a)z° + (a] + 2a4a; + ay)zé+
(a* + 3a%a, + 3a,a; + a + a2’ + ...
=21 + Az + A28 + .. ),
where A, is a polynomial of weight n in the a; with positive integral coefficients.
From (3.3) and (3.1) we get
x=2z2—a;zl —a; — asz — (@, + a,a3)2* + -,
B y=—zlx=—z%+az?+""

as the formal expansion of x and y. Clearly, the coefficients of these expansions
have coefficients in Z[a,, @3, @3, da, ). The same is true for the expansion of the
invariant differential w: '
(3.5 w = H(z)dz
where H(z) is given by
H(z) =1 + a;z + (af + ay)z* + (ai + 2a,a; + 2a3)z*

- + (a* + 3a2a, + 6a,a; + a3 + 2a)z + ...
because S
@ dx/dz =Xt
4z Zy+axta; —2z°+...

dyldz B -3z +...
T3 t2axt+a,—ay —3z 4.

has coefficients in Z[4, ay, . . ., @g), but also in Z[}, ay, . . ael.

Finally, if Py = P, + P,and P; = (z;, w;), then we can express z; = F(z,, z;)
as a formal power series in z, and z,, with coefficients in Zla,, . .., as). The
expansion begins
(3.6)  Flzy, z2) = 2, + 23 — a,2,2; — ax(ziz; + z,23)

— 2a4(23z, + z,23) + (a,a, — 3a3)zizi + ...
This is the “formal group on one parameter” associated with A.
For each integer n = 1 we have, formally,

Gn z(nP) = Y, (z(P)),
where the series i, are defined inductively by

(3‘8) 'Pl(z) =2z ‘bn-?'l(z) B F{Za IP"(Z)}.
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For example, we have
(B9 Vi(2) =2z — a2 — 24,23 + (aa; — Taz)z* + - - -
and
(3.10) ¥3(2) = 3z — 3a,22 + (a, — 8ay)z® + 3(4aya, — 13a)z* + - - -
In characteristic p > 0, the series V, is of the form
V(@) = ¢,z + €,2%" + ¢, 237" + ...
with ¢, # 0, where & is an integer equal to 1 or 2, because the isogeny
pé:A— A

is of degree p?, and is not separable. This means that zop$ lies in the inseparable
subfield of degree p or p? of the function field of A, whence our assertion follows.

EXERCISE

Let p = char (K) be arbitrary, let j € K with J # 0or 1728, and let 4; denote

the abelian variety of dimension 1 over K given by the equation (1.12), i.e.,
36 1

T TmRak T T

j—1728  j—1728

Show that for each separable quadratic extension L of K there exists an abelian

variety 4;; of dimension one over K such that A j.L 18 isomorphic to 4 ;

over L, but not over K, and A4 j.L is uniquely determined up to isomorphism

by j and L. Show also that (denoting by A(K) the group of points on 4

rational over K) we have

A (K) = {Pe A(L)|oP = —P},

Y+ xy=x°—

Appendix 2

The Trace of Frobenius and
the Differential of First Kind

§1. THE TRACE OF FROBENIUS

Theorem 1. Let A be an elliptic curve defined over the prime field ¥, of
characteristic p, let t be a local parameter at the origin in the function field
F,(A). Let  be a differential of first kind in ¥ (A), with expansion

o=y c,,!"—l—

- v=1

normalized such that ¢ y = 1. Let © = m, be the Frobenius endomorphism of
A. Then
won’ = ¢,w, and to(pd) = c,t? (mod 1*7).

Proof. We lift an equation for the elliptic curve to the integers. Thus it is

where o is the non-trivial automorphism of L/K, (and where
—-P = (x, =y —ax — ﬂ;) if P= (xl y))'

useful to write 4 for the curve in characteristic p, and A4 for its lifting. We do
this in a naive way, by lifting the coefficients in a Weierstrass equation if p # 2, 3,
or in a normalized equation otherwise. We let 7 be the parameter at the origin O,
and let # be a parameter at the origin O of 4, reducing to 7. Then

i di
=3 &=,
v=1

and the differential form @ on A has the expansion

oo

w=3 .f:,,t“"étf = h(r)dt

v=1

with¢; = 1 (mod p).
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