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Quadratic residues

Q.1 Legendre symbol

Let

– p be an odd prime, p > 2,

– g any generator of Z?
p.

Remark Q.1. If a ∈ Z?
p is a square, id est there is b ∈ Z?

p : b2 = a then a has precisely two roots b and −b 6= b
(mod p). In fact, if we denote f : Z?

p → Z?
p the morphism defined by f(a) = a2, since its kernel ker(f) = {1,−1}

satisfies # ker(f) = 2, we know that
Im(f) =

{
b2 : b ∈ Z?

p

}
= Z?

p/ ker(f)

so that # Im(f) = p−1
2 and each coset f−1(a) = {b : b2 = a}, a ∈ Im(f) has 2 elements.

If we choose, as canonical representative of Zp the set

{a : −p

2
< a <

p

2
} ⊂ Z

then one of the roots has a positive representative, the other a negative representative.
If we instead choose as canonical representative of Zp the set

{a : 0 ≤ a ≤ p− 1} ⊂ Z

one of the roots has an odd representative, the other an even representative. ut

Definition Q.2. Let p be an odd prime, p > 2. An element a ∈ Z?
p is called a quadratic residue modulo p iff a ∈ Im(f),

a nonresidue if a /∈ Im(f).
We will denote Qp ⊂ Z?

p the set Qp := Im(f) of the quadratic residues modulo p and Q̄p ⊂ Z?
p the set Q̄p := Z?

p\Qp

of the nonquadratic residues .

The quadratic residuosity/nonresiduosity can be also characterized in terms of any generator g of Z?
p:

Lemma Q.3. a = gj is a quadratic residue if and only if j is even.

Proof. Im(f) =
{
b2 : b ∈ Z?

p

}
=

{
(gj)2 : 1 ≤ j < p

}
=

{
g2j : 1 ≤ j < p

}
. ut

Example Q.4. Let p = 11 and g = 2 Then we have

j 1 2 3 4 5 6 7 8 9 10
−p

2 < gj < p
2 2 4 −3 5 −1 −2 −4 3 −5 1

0 ≤ gj ≤ p− 1 2 4 8 5 10 9 7 3 6 1

0 ≤ a ≤ p− 1 0 1 2 3 4 5 6 7 8 9 10
−p

2 < a < p
2 −5 −4 −3 −2 −1 0 1 2 3 4 5

ind(a) 9 7 3 6 5 ∗ 10 1 8 2 4 9 7 3 6 5

±b {b, p− b} a = b2 ind(a)
±1 {1, 10} 1 10
±2 {2, 9} 4 2
±3 {3, 8} −2 6
±4 {4, 7} 5 4
±5 {5, 6} 3 8
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Thus the quadratice residues are Q11 := {4, 5,−2, 3, 1} and the nonresidue Q̄11 := {2,−3,−1,−4,−5}
Moreover we have

a ∈ Q11 1 4 −2 5 3
0 <

√
a < p

2 1 2 3 4 5
−p

2 < −
√

a < 0 −1 −2 −3 −4 −5
odd

√
a 1 9 3 7 5

even
√

a 10 2 8 4 6
ind(a) 10 2 6 4 8

ut
Example Q.5. Analogously

• for p = 5, g = 2 we have :
±b {b, p− b} a = b2 ind(a)
±1 {1, 4} 1 4
±2 {2, 3} −1 2

so that the quadratice residues are Q5 := {±1} and the nonresidue Q̄5 := {±2}.

• while for p = 7, g = 31 we obtain

j 1 2 3 4 5 6
−p

2 < gj < p
2 3 2 −1 −3 −2 1

0 ≤ gj ≤ p− 1 3 2 6 4 5 1

0 ≤ a ≤ p− 1 0 1 2 3 4 5 6
−p

2 < a < p
2 −3 −2 −1 0 1 2 3

ind(a) 4 5 3 ∗ 6 2 1 4 5 3

±b {b, p− b} a = b2 ind(a)
±1 {1, 6} 1 6
±2 {2, 5} −3 4
±3 {3, 4} 2 2

Thus the quadratice residues are Q7 := {2,−3, 1} and the nonresidue Q̄7 := {3,−1,−2}.
ut

Definition Q.6. Let p be an odd prime, p > 2 and a ∈ Z. We define the Legendre symbol

(
a

p

)
=


0 if p | a
1 if a is quadratic residue modulo p

−1 if a is nonresidue modulo p

Proposition Q.7. (Euler’s Criterion)
(

a
p

)
≡ a(p−1)/2 (mod p).

Proof. If p | a, a(p−1)/2 = 0.
If p - a and a = gj , a is a residue iff j is even, j = 2h, iff h(p−1) = j(p−1)

2 iff p−1 | j(p−1)
2 iff a(p−1)/2 = gj(p−1)/2 = 1.

ut

Corollary Q.8. If p ≡ 3 (mod 4) and a ∈ Qp its roots are ±a
(p+1)

4 .

Proof. We have
(
±a

(p+1)
4

)2

= a
(p+1)

2 = a
(p−1)

2 · a =
(

a
p

)
a = a. ut

Proposition Q.9. The Legendre symbol satisfies the following properties:

(1) a ≡ b (mod p) =⇒
(

a
p

)
=

(
b
p

)
;

(2)
(

ab
p

)
=

(
a
p

) (
b
p

)
;

(3) gcd(b, p) = 1 =⇒
(

ab2

p

)
=

(
a
p

)
;

123 = 8 ≡ 1 (mod 7) so that 2 is not a generator.
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(4)
(

1
p

)
= 1

(5)
(
−1
p

)
= (−1)(p−1)/2

Proof. (1) and (4) are trivial; (2) and (5) follow directly form Euler’s Criterion.
Ad (3):

(
ab2

p

)
=

(
a
p

) (
b2

p

)
=

(
a
p

)
. ut

Lemma Q.10. For any odd integer m = 2k + 1, m2−1
8 = k2+k

2 ∈ N

Proof. We have m2−1
8 = 4(k2+k)

8 = k2+k
2 which is an integer because k(k + 1) is necessarily even for each k. ut

Proposition Q.11. It holds:

(6)
(

2
p

)
= (−1)(p

2−1)/8 =

{
1 if p ≡ ±1 (mod 8)
−1 if p ≡ ±3 (mod 8)

Proof. Since

p2 − 1
8

=
p + 1

2
· p− 1

2
· 1
2

=

(
p−1
2 + 1

) (
p−1
2

)
2

=
(p−1

2

2

)
=

p−1
2∑

k=1

k

we have

(−1)(p
2−1)/8

p−1
2∏

k=1

k = (−1)

p−1
2P

k=1
k

p−1
2∏

k=1

k =

p−1
2∏

k=1

(−1)kk =

p−1
2∏

k=1
k even

k

p−1
2∏

k=1
k odd

−k ≡

p−1
2∏

k=1
k even

k

p−1
2∏

k=1
k odd

(p− k) =

p−1
2∏

k=1

2k = 2(p−1)/2

p−1
2∏

k=1

k

and we obtain the claim dividing out
∏ p−1

2
k=1 k. ut

Fact Q.12. For any two odd primes p, q, it holds

(7)
(

q
p

)
= (−1)(p−1)(q−1)/4

(
p
q

)
=

−
(

p
q

)
if p ≡ q ≡ 3 (mod 4)(

p
q

)
otherwise.

Q.2 Jacobi symbol

The definition of Legendre symbol was generalized to the case of any integer a and any odd integer n.

Definition Q.13. Let n be an odd integer and n =
∏r

i=1 pai
i its prime factorization. For any a ∈ Z we define the

Jacobi symbol (a

n

)
:=

r∏
i=1

(
a

pi

)ai

.

Lemma Q.14. Let s, t ∈ N be odd. Then:

s− 1
2

+
t− 1

2
≡ st− 1

2
(mod 2)

and
s2 − 1

8
+

t2 − 1
8

≡ s2t2 − 1
8

(mod 2)

Proof. For s = 2s′ + 1 and t = 2t′ + 1, we have st = 4s′t′ + 2(s′ + t′) + 1 = 2(2s′t′ + s′ + t′) + 1 whence

st− 1
2

= 2s′t′ + (s′ + t′) ≡ s′ + t′ =
s− 1

2
+

t− 1
2

(mod 2).

and

s2t2 − 1

8
=

(2s′t′ + s′ + t′)2 + (2s′t′ + s′ + t′)

2
≡ (s′ + t′)2 + (s′ + t′)

2
≡ s′2 + s′

2
+

t′2 + t′

2
=

s2 − 1

8
+

t2 − 1

8
(mod 2).

ut
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Corollary Q.15. Let n be an odd integer, n =
∏r

i=1 pai
i its prime factorization. Then

n− 1
2

≡
r∑

i=1

pi − 1
2

ai (mod 2) and
n2 − 1

8
≡

r∑
i=1

p2
i − 1
8

ai (mod 2)

ut

Proposition Q.16. The Jacobi symbol satisfies the following properties:

(1) a ≡ b (mod n) =⇒
(

a
n

)
=

(
b
n

)
;

(2)
(

ab
n

)
=

(
a
n

) (
b
n

)
;

(3) gcd(b, n) = 1 =⇒
(

ab2

n

)
=

(
a
n

)
;

(4)
(

1
n

)
= 1

(5)
(−1

n

)
= (−1)(n−1)/2

(6)
(

2
n

)
= (−1)(n

2−1)/8 =

{
1 if n ≡ ±1 (mod 8)
−1 if n ≡ ±3 (mod 8)

(7) for any two odd integers m,n, it holds
(

m
n

)
= (−1)(m−1)(n−1)/4

(
n
m

)
=

{
−

(
n
m

)
if m ≡ n ≡ 3 (mod 4)(

n
m

)
otherwise.

Proof. (1-4) are trivial.

Ad (5):
(−1

n

)
=

∏r
i=1

(
−1
pi

)ai

=
∏r

i=1(−1)
pi−1

2 ai = (−1)
Pr

i=1
pi−1

2 ai = (−1)
n−1

2 .

Ad (6):
(

2
n

)
=

∏r
i=1

(
2
pi

)ai

=
∏r

i=1(−1)
p2

i−1
8 ai = (−1)

Pr
i=1

p2
i−1
8 ai = (−1)

n2−1
8 .

Ad (7): If gcd(m,n) 6= 1 then, by definition
(

m
n

)
= 0 =

(
n
m

)
. Otherwise let m =

∏r
i=1 pai

i and n =
∏s

j=1 qbi
j be

their prime factorizations.
We have (m

n

)
=

r∏
i=1

s∏
j=1

(
pi

qj

)aibj

= ±
r∏

i=1

s∏
j=1

(
qj

pi

)aibj

= ±
( n

m

)
Denote

– I := {i : 1 ≤ i ≤ r : pi ≡ 3 (mod 4)}

– ι :=
∑

i∈I ai

– J := {j : 1 ≤ j ≤ s : qj ≡ 3 (mod 4)}

– κ :=
∑

j∈J bj

– L := {(i, j) : 1 ≤ i ≤ r, 1 ≤ j ≤ s : pi ≡ qj ≡ 3 (mod 4)} = {(i, j) : i ∈ I, j ∈ J}

– λ :=
∑

(i,j)∈L aibj =
∑
i∈I
j∈J

aibj =
(∑

i∈I ai

) (∑
j∈J bj

)
= ικ

and remark that
(

m
n

)
= (−1)λ

(
n
m

)
= (−1)ικ

(
n
m

)
so that

(
m
n

)
= −

(
n
m

)
if and only if both ι and κ are odd.

Also we have

m =
r∏

i=1

pai
i =

r∏
i=1
i∈I

pai
i

r∏
i=1
i/∈I

pai
i ≡

r∏
i=1
i∈I

(−1)ai = (−1)ι (mod 4)

and, with the same argument, n ≡ (−1)κ (mod 4). Since m ≡ n ≡ 3 (mod 4) if and only if both ι and κ are odd, we
obtain the claim. ut

Procedure Q.17. (1),(6),(7) allows to compute the Jacoby simbols in an efficient way whose complexity is comparable
with the one of the euclidean algorithm. Given m,n ∈ N \ {0}

• Set m′ := m,n′ := n, λ := 1

• While λ 6= 0 and m′ 6= 1 do
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– %%
(

m
n

)
= λ

(
m′

n′

)
– If m′ = 0 set λ := 0.

– If 2 | m′

∗ let k, r : m′ = 2kr

∗ set λ := (−1)k(n′2−1)/8λ, m′ := r

– If 2 - m′,m′ < n′ set λ := (−1)(m
′−1)(n′−1)/4, u := m′,m′ := n′, n′ := u;

– If 2 - m′,m′ ≥ n′ set m′ := Rem(m′, n′)
ut

Example Q.18. Let m := 2468, n := 13579 = 37 ? 367 We have

– 2468 = 22 ? 617, 13579 ≡ 3 (mod 8),
(

2468
13579

)
= (−1)2

(
617

13579

)
=

(
617

13579

)
– 617 6≡ 3 (mod 4),

(
617

13579

)
=

(
13579
617

)
– Rem(13579, 617) = 5,

(
13579
617

)
=

(
5

617

)
– 617 6≡ 3 (mod 4),

(
5

617

)
=

(
617
5

)
,

– Rem(617, 5) = 2,
(

617
5

)
=

(
2
5

)
– 5 ≡ −3 (mod 8)

(
2
5

)
= −1, λ := −1

so that
(

2468
13579

)
= −1.

Remark that

– 2468 = 22 ? 617, 367 ≡ −1 (mod 8),
(

2468
367

)
= 12

(
617
367

)
=

(
617
367

)
– Rem(617, 367) = 250,

(
617
367

)
=

(
250
367

)
– 250 = 2 ∗ 125, 367 ≡ −1 (mod 8),

(
250
367

)
= 1

(
125
367

)
=

(
125
367

)
,

– 125 6≡ 3 (mod 4),
(

125
367

)
=

(
367
125

)
– Rem(367, 125) = 117,

(
367
125

)
=

(
117
125

)
– 125 6≡ 3 (mod 4),

(
117
125

)
=

(
125
117

)
,

– Rem(125, 117) = 8,
(

125
117

)
=

(
8

117

)
– 117 ≡ −3 (mod 8),

(
8

117

)
= (−1)3

(
1

117

)
, λ := −1

whence
(

2468
367

)
= −1 and

– 2468 = 22 ? 617, 37 ≡ −3 (mod 8),
(

2468
37

)
= (−1)2

(
617
37

)
=

(
617
37

)
– Rem(617, 37) = 25,

(
617
37

)
=

(
25
37

)
– 37 6≡ 3 (mod 4),

(
25
37

)
=

(
37
25

)
– Rem(37, 25) = 12,

(
37
25

)
=

(
12
25

)
– 12 = 22 ? 3,25 ≡ 1 (mod 8),

(
12
25

)
= 12

(
3
25

)
=

(
3
25

)
– 25 6≡ 3 (mod 4),

(
3
25

)
=

(
25
3

)
– Rem(25, 3) = 1,

(
25
3

)
=

(
1
3

)
= 1

whence
(

2468
37

)
= 1.

Remark that we have(
2468
37

)
=

(
617
37

)
=

(
25
37

)
=

(
37
25

)
=

(
12
25

)
=

(
3
25

)
=

(
25
3

)
=

(
1
3

)
= 1

but (
1234
37

)
= −

(
617
37

)
= −

(
25
37

)
= −

(
37
25

)
= −

(
12
25

)
= −

(
3
25

)
= −

(
25
3

)
= −

(
1
3

)
= −1.

ut
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Q.3 Square root modulo p

Given

– p be an odd prime, p > 2,

– a ∈ Qp any quadratic residue Z?
p.

we want to compute a value x ∈ Z : x2 ≡ a (mod p). In order to do so let us set

– e, s : p− 1 = 2es, s odd,

– n ∈ Q̄s any non-quadratic residue modulo p2

– b := ns (mod p)

– r := a
s+1
2 (mod p)

Lemma Q.19. With the present notation b is a primitive 2e-th root of unity.

Proof. In fact b2e ≡ ns2e

= np−1 ≡ 1 (mod p)
If b were not primitive, then 1 ≡ b2ε

(mod p) for some ε < e which implies that b is an even power of a primitive

2e-th root of unity, whence b ∈ Qp contradicting
(

b
p

)
=

(
n
p

)s

= (−1)s = −1. ut

Lemma Q.20. With the present notation (a−1r2)2
e−1

= 1.

Proof. (a−1r2)2
e−1

= as2e−1
= a

p−1
2 =

(
a
p

)
= 1 ut

Algorithm Q.21 (Andleman–Manders–Miller). Since r2

a is a 2e−1-th root of unity modulo p, our aim is to modify r

via a suitable power bj , 0 ≤ j < 2e, of the primitive 2e-th root of unity in order to get x := bjr : x2

a ≡ 1 (mod p) as
required.

Remark that if j, 0 ≤ j < 2e−1 is s.t. (bjr)2 ≡ a (mod p), then, since b2e−1
= −1, the other square root is

−x = −1 · bjr = b2e−1
bjr = bj+2e−1

r.
Thus our aim is to determine the unique values j0, j1, . . . , je−2 ∈ {0, 1} under which

j :=
e−2∑
i=0

ji2i = j0 + 2j1 + 4j2 + . . . + 2e−2je−2

satisfies (bjr)2 ≡ a (mod p).
We already remarked that t := (a−1r2)2

e−2
satisfies t2 = (a−1r2)2

e−1
= 1 so that t = ±1.

Thereofore if we set j0 :=

{
0 if t = 1
1 if t = −1

we have

(a−1(bj0r)2)2
e−2

= (bj0)2
e−1

t =

{
t if t = 1
b2e−1

t = −t if t = −1

whence (bj0r)2

a is a 2e−2-th root of unity.
Assume now we have already found j0, j1, . . . , jh−1 such that

j′ :=
h−1∑
i=0

ji2i = j0 + 2j1 + 4j2 + . . . + 2h−1jh−1

satisfies (a−1(bj′r)2)2
e−h−1

= 1 so that (bj′r)2

a is a 2e−h−1-th root of unity. Let us compute t := (a−1(bj′r)2)2
e−h−2

= ±1

and set jh :=

{
0 if t = 1
1 if t = −1

so that in both case (a−1(bj′+2hjhr)2)2
e−h−2

= 1 and (bj′+2hjhr)2

a is a 2e−h−2-th root of

unity.
When finally we get h = e− 2 then

j :=
e−2∑
i=0

ji2i = j0 + 2j1 + 4j2 + . . . + 2e−2je−2

satisfies (bjr)2

a = a−1(bjr)2 = 1 and bjr and bj+2e−1
r are the two square roots of a. ut

2it is sufficient to pick up any random integer n, gcd(n, p) = 1 and test
“

n
p

”
to obtain such a number with probabily 2−1.
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Q.4 Williams and Blum integers

Let

– m ∈ N \ {0} be an odd integer;

– m =
∏r

i=1 pai
i its prime factorization.

We can extend in this setting the notion of quadratic residues; actually we can give the following

Definition Q.22. Let m ∈ N \ {0} be an odd integer. Any element a ∈ Z?
m is called a quadratic residue modulo m

iff there is b ∈ Z?
p : b2 = a.

We will denote Qm ⊂ Z?
m the set of the quadratic residues modulo m and Q̄m ⊂ Z?

m the set of the nonquadratic
residues. ut

but, unlike the Legendre symbol
(

a
p

)
, p prime, the Jacobi symbol

(
a
m

)
does not reveal whether or not a is a quadratic

residue modulo n.

Remark Q.23. More exactly, if a is a quadratic residue, then3
(

a
m

)
= 1; however,

(
a
m

)
= 1 does not imply that a is a

quadratic residue. ut

Lemma Q.24. There are 2r square roots of the unity in Zm.

Proof. ±1 are the only distinct square roots of the unity in each field Zp
ai
i

and the 2r Chinese Remainder problems

x ≡ ±1 (mod pai
i )

give all the distinct square roots of the unity in Zm. ut

Corollary Q.25. If a is a quadratic residue modulo m, then a has 2r square roots. ut

Proof. If we denote f : Z?
m → Z?

m the morphism defined by f(a) = a2, we know that

Im(f) =
{
b2 : b ∈ Z?

p

}
= Z?

p/ ker(f)

so that each coset f−1(a) = {b : b2 = a}, a ∈ Im(f), has # ker(f) = 2r elements. ut

Let us now specialize ourselve to a squarefree integer n which is the product of two distinct primes:

– p, q be distint two primes,

– n := pq.

Definition Q.26. The integer n = pq, p 6= q, is called

• a Williams integer if p ≡ 3 (mod 8) and q ≡ 7 (mod 8);

• a Blum integer if p ≡ q ≡ 3 (mod 4). ut

Remark Q.27. If n is a Blum integer then necessarily both p−1
2 and q−1

2 are odd. ut
Let

– a ∈ Qn be a quadratic residue and let

– bp,−p
2 < bp < p

2 : a ≡ b2
p (mod p)

– bq,− q
2 < bq < q

2 : a ≡ b2
q (mod q)

where, up to this moment, bp and bq have been chosen randomly among the two possible choices. Then the 4 square
roots modulo n are

– x1,−n
2 < x1 < n

2 s.t. x1 ≡ bp (mod p), x1 ≡ bq (mod q)

– x2,−n
2 < x2 < n

2 s.t. x2 ≡ −bp (mod p), x2 ≡ −bq (mod q)

3In fact

a ≡ b2 (mod m) =⇒ a ≡ b2 (mod pi) for each i =⇒
„

a

pi

«
= 1 for each i =⇒

“ a

m

”
=

Y
i

„
a

pi

«ai

= 1.
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– x3,−n
2 < x3 < n

2 s.t. x3 ≡ bp (mod p), x3 ≡ −bq (mod q)

– x4,−n
2 < x4 < n

2 s.t. x4 ≡ −bp (mod p), x4 ≡ bq (mod q);

remark that x1 = −x2 and x3 = −x4 while x1 6= ±x3.

Lemma Q.28 (Williams). If the prime p satisfies p ≡ 3 (mod 4) then

1.
(
−1
p

)
= (−1)(p−1)/2 = −1;

2.
(
−bp

p

)
=

(
−1
p

) (
bp

p

)
= −

(
bp

p

)
.

3. Among the two square roots (Corollary Q.8) ±a
(p+1)

4 of a quadratic residue a ∈ Qp, just one of them is a
quadratic residue too. ut

Let us now assume that n is a Blum integer; then we can wlog assume that bp ∈ Qp is the square roots of a which
is a quadratic residue modulo p and that bq ∈ Qq is the square roots of a which is a quadratic residue modulo q and
we can consequently rename the 4 square roots modulo n as

– x := x1 satisfying x ≡ bp (mod p), x ≡ bq (mod q),

– y := x3 satisfying y ≡ bp (mod p), y ≡ −bq (mod q, )

so that

– −x = x2 satisfies −x ≡ −bp (mod p),−x ≡ −bq (mod q),

– −y = x4 satisfies −y ≡ −bp (mod p),−y ≡ bq (mod q).

Lemma Q.29 (Williams). With the present notation we have:

•
(

x
p

)
=

(
bp

p

)
= 1,

(
x
q

)
=

(
bq

q

)
= 1,

(
x
n

)
=

(
x
p

) (
x
q

)
= 1.

•
(
−x
p

)
=

(
−bp

p

)
= −1,

(
−x
q

)
=

(
−bq

q

)
= −1,

(−x
n

)
=

(
−x
p

) (
−x
q

)
= 1.

•
(

y
p

)
=

(
bp

p

)
= 1,

(
y
q

)
=

(
−bq

q

)
= −1,

(
y
n

)
=

(
y
p

) (
y
q

)
= −1.

•
(
−y
p

)
=

(
−bp

p

)
= −1,

(
−y
q

)
=

(
bq

q

)
= 1,

(−y
n

)
=

(
−y
p

) (
−y
q

)
= −1. ut

Theorem Q.30 (Williams). If n = pq is a Blum integer and a ∈ Qn is a quadratic residue modulo n, then

1. there are x, y ∈ Z?
n, x 6= y : x2 = y2 = a;

2.
(±x

n

)
= −

(±y
n

)
.

3. Assuming wlog that
(

x
n

)
= 1 (and therefore

(
y
n

)
= −1) the following conditions are equivalent

(a)
(

x
p

)
=

(
x
q

)
= 1;

(b) x(p−1)(q−1)/4 ≡ 1 (mod n);

(c)
(
−x
p

)
=

(
−x
q

)
= −1;

(d) (−x)(p−1)(q−1)/4 ≡ −1 (mod n).

Proof. (1) and (2) just summarize the remarks above.
Ad (3):

(a) =⇒ (b) Since
(

x
p

)
=

(
x
q

)
= 1 we have, by Euler’s Criterion,

x(p−1)(q−1)/4 = (x(p−1)/2)(q−1)/2 ≡
(

x

p

)(q−1)/2

= 1(q−1)/2 = 1 (mod p)

and

x(p−1)(q−1)/4 = (x(q−1)/2)(p−1)/2 ≡
(

x

q

)(p−1)/2

= 1(p−1)/2 = 1 (mod q)

whence x(p−1)(q−1)/4 ≡ 1 (mod n).
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(b) =⇒ (a) By assumption we have x(p−1)(q−1)/4 ≡ 1 (mod p) and x(p−1)(q−1)/4 ≡ 1 (mod q). Since n = pq is a
Blum integer, both p−1

2 and q−1
2 are odd and such is also (p−1)(q−1)

4 . Therefore(
x

p

)
=

(
x

p

)(p−1)(q−1)/4

=
(

x(p−1)(q−1)/4

p

)
=

(
1
p

)
= 1

and (
x

q

)
=

(
x

q

)(p−1)(q−1)/4

=
(

x(p−1)(q−1)/4

q

)
=

(
1
q

)
= 1.

(a) ⇐⇒ (c) is a trivial consequence of
(
−1
p

)
=

(
−1
q

)
= −1

(b) ⇐⇒ (d) is a trivial consequence of the fact that (p−1)(q−1)
4 is odd.

(c) =⇒ (d) While the proof is complete, I consider helpful to develop the argument which is obtained by adapting
the one used for (a) =⇒ (b).

Since
(
−x
p

)
=

(
−x
q

)
= −1 we have, by Euler’s Criterion,

(−x)(p−1)(q−1)/4 = ((−x)(p−1)/2)(q−1)/2 ≡
(
−x

p

)(q−1)/2

= (−1)(q−1)/2 = −1 (mod p)

and

(−x)(p−1)(q−1)/4 ≡
(
−x

q

)(p−1)/2

= (−1)(p−1)/2 = −1 (mod q)

whence x(p−1)(q−1)/4 ≡ −1 (mod n).

(d) =⇒ (c) By assumption we have (−x)(p−1)(q−1)/4 ≡ −1 (mod p) and (−x)(p−1)(q−1)/4 ≡ −1 (mod q); since
(p−1)(q−1)

4 is odd,(
−x

p

)
=

(
−x

p

)(p−1)(q−1)/4

=
(

(−x)(p−1)(q−1)/4

p

)
=

(
−1
p

)
= (−1)

(p−1)
2 = −1

and (
−x

q

)
=

(
−x

q

)(p−1)(q−1)/4

=
(

(−x)(p−1)(q−1)/4

q

)
=

(
−1
q

)
= (−1)

(q−1)
2 = −1.

ut

Proposition Q.31. If n = pq is a Blum integer and a ∈ Qn is a quadratic residue modulo n, a
(p−1)(q−1)+4

8 is the
single root of a which is a quadratic residue.

Proof. The Theorem above imples that, among the four rooots of a ∈ Qn, one and only one is a quadratic residue,
namely the root x which satisfies both

(
x
n

)
= 1 and x(p−1)(q−1)/4 ≡ 1 (mod n).

Let us now verify that a
(p−1)(q−1)+4

8 satisfies these conditions and is a root of a:

• a
(p−1)(q−1)+4

8 is a quadratic residue because such is a; therefore
(

a
(p−1)(q−1)+4

8

n

)
= 1.

• Since a ∈ Qn, then a ∈ Qp and a ∈ Qq. Therefore

a
(p−1)(q−1)

4 = (a
(p−1)

2 )
(q−1)

2 ≡
(

a

p

) (q−1)
2

= 1 (mod p)

and, similarly, a
(p−1)(q−1)

4 = (a
(q−1)

2 )
(p−1)

2 ≡
(

a
q

) (p−1)
2

= 1 (mod q) whence a
(p−1)(q−1)

4 ≡ 1 (mod n). Thus

x(p−1)(q−1)/4 =
(
a

(p−1)(q−1)+4
8

)(p−1)(q−1)/4

=
(
a(p−1)(q−1)/4

) (p−1)(q−1)+4
8 ≡ 1

(p−1)(q−1)+4
8 = 1 (mod n).

• We have (
a

(p−1)(q−1)+4
8

)2

= a
(p−1)(q−1)+4

4 = aa
(p−1)(q−1)

4 = a(a
(p−1)

2 )
(q−1)

2 ≡ a

(
a

p

) (q−1)
2

= a (mod p)

and, similarly,
(
a

(p−1)(q−1)+4
8

)2

≡ a
(

a
q

) (p−1)
2

= a (mod q) whence
(
a

(p−1)(q−1)+4
8

)2

≡ a (mod n).
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ut

Corollary Q.32. If n is a Blum integer then the map

Φ : Qn → Qn, x 7→ x2

is a bijective whose inverse satsfies
Φ−1(x) = x

(p−1)(q−1)+4
8 .

ut

Definition Q.33. Let n be a Blum integer and let a ∈ Qn. The unique square root of a in Qn is called the principal
square root of a modulo n.

Proposition Q.34 (Williams). Let n = pq be a Blum integer; then the following conditions are equivalent

1. n is a William integer;

2. n ≡ −3 (mod 8);

3.
(

2
n

)
= −1;

4. for each a ∈ Zn exactly one element among a and 2a is a quadratic resuidue;

5. for each a ∈ Zn a ∈ Qn ⇐⇒ 2a /∈ Qn.

Proof. In order to prove the equivalence 1 ⇐⇒ 2 ⇐⇒ 3 it is sufficient to remark that for a Blum integer n = pq
since p ≡ q ≡ 3 (mod 4) we have four possible alternatives:

• p ≡ q ≡ 3 (mod 8) =⇒ n ≡ 1 (mod 8) =⇒
(

2
n

)
= 1;

• p ≡ q ≡ 7 (mod 8) =⇒ n ≡ 1 (mod 8) =⇒
(

2
n

)
= 1;

• p ≡ 3 (mod 8), q ≡ 7 (mod 8) =⇒ n ≡ −3 (mod 8) =⇒
(

2
n

)
= −1;

• p ≡ 7 (mod 8), q ≡ 3 (mod 8) =⇒ n ≡ −3 (mod 8) =⇒
(

2
n

)
= −1

The equivalence 3 ⇐⇒ 4 ⇐⇒ 5 is trivial. ut

Corollary Q.35 (Williams). Let n be a Williams integer; then for each a ∈ Zn either 2(2a+1) ∈ Q̄n or 4(2a+1) ∈ Q̄n.
ut

Lemma Q.36 (Williams). Let
M := {a ∈ N : 4(2a + 1) < n}

and let e, d ∈ N be s.t. gcd(e, φ(n)) = 1 and ed ≡ (p−1)(q−1)+4
8 (mod φ(n)) Consider the maps

• E1 : M→ Zn : E1(a) 7→

{
4(2a + 1) iff

(
2a+1

n

)
= 1

2(2a + 1) iff
(

2a+1
n

)
= −1

• E2 : {b : 0 ≤ b ≤ n− 1} → {b : 0 ≤ b ≤ n− 1} : E2(b) ≡ b2e (mod n)

• D2 : {b : 0 ≤ b ≤ n− 1} → {b : 0 ≤ b ≤ n− 1} : D2(b) ≡ bd (mod n)

• D1 : {c : 0 ≤ c ≤ n− 1} →M : D1(c) 7→



c
4−1

2 iff c ≡ 0 (mod 4)
n−c

4 −1

2 iff c ≡ 1 (mod 4)
c
2−1

2 iff c ≡ 2 (mod 4)
n−c

2 −1

2 iff c ≡ 3 (mod 4)

For each a ∈M,D1D2E2E1(a) = a.

Proof. The element b := E1(a) satisfies

1. b is even,

2. 0 ≤ b ≤ n− 1 and

3.
(

b
n

)
= 1
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and
c := D2E2E1(a) = D2E2(b) ≡ b2ed ≡ (b2)

(p−1)(q−1)+4
8 (mod n)

satisfies (Proposition Q.31)

4. c ∈ Qn,

5. c2 ≡ b2

6.
(

c
n

)
= 1

thus

– c ≡ ±b (mod n) and

– c = b ⇐⇒ c is even, while c = n− b ⇐⇒ c is odd.

Thus:

• if 4 | c then c = b = 4(2a + 1) and a =
c
4−1

2 .

• if c ≡ 1 (mod 4) then b = n− c ≡ pq − c ≡ 3 ? 3− 1 ≡ 0 (mod 4) and n− c = b = 4(2a + 1) whence a =
n−c

4 −1

2

• if c ≡ 2 (mod 4) then c = b = 2(2a + 1) and a =
c
2−1

2

• if c ≡ 3 (mod 4) then b = n− c ≡ pq− c ≡ 3 ? 3− 3 ≡ 2 (mod 4) and n− c = b = 2(2a + 1) whence a =
n−c

2 −1

2 .
ut

Q.5 Periodicity of quadratic residues

Definition Q.37. For each n ∈ N, n > 1

• ordn(x) denotes for each x ∈ Z∗n the least positive integer e ∈ N∗ : xe ≡ 1 (mod n);

• the Euler totient function φ(n) is the cardinality of the set

{j ∈ N : 1 ≤ j ≤ n, gcd(n, j) = 1}.

• the Carmichael function λ(n) is the minimal value e ∈ N∗ : xe ≡ 1 (mod n)∀x ∈ Z∗n.

Fact Q.38. We have



φ(1) = 1
φ(2) = 1
φ(2α) = 2α−1

φ(p) = p− 1 for any prime p

φ(pα) = pα−1(p− 1) for any prime p

φ(n) =
∏r

i=1 pαi−1
i (pi − 1) = n

∏r
i=1(1−

1
pi

) for n =
∏

i=1r pαi
i

ut

Fact Q.39. We have



λ(1) = 1
λ(2) = 1
λ(4) = 2
λ(2α) = 2α−2 α ≥ 2
λ(p) = p− 1 for any prime p

λ(pα) = pα−1(p− 1) for any prime p

λ(n) = lcm(λ(pαi
i ), . . . , λ(pαr

r ) for n =
∏r

i=1 pαi
i

ut

Notation Q.40. For each Blum number n = pq and each x ∈ Qn consider the sequence x0, x1, . . . , xi, . . . of elements
in Qn defined by xi := x2i

so that, in partciular x0 = x and remark that

• the sequence is periodic since Qn is finite and that

• since xi ≡ xj (mod n) =⇒ xi−1 = Φ(xi) ≡ Φ(xj) = xj−1 (mod n), the sequence can be naturally exteneded
to a sequence

. . . , x−i, . . . , x−1, x0, x1, . . . , xi, . . . (Q.1)

by setting xi = Φ(xi+1)∀i < 0. ut
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Definition Q.41. The period of x ∈ Qn is denoted π̄(x) and is the least period of the sequence (Q.1).

Lemma Q.42 (Blum-Blum-Shub). For a Blum number n = pq and each x ∈ Z∗n

ordn(x) =
λ(n)

2
and ordλ(n)

2
(2) = λ(λ(n)) =⇒ λ(λ(n)) | π(x).

Proof. Since x ≡ xπ̄(x) ≡ x2π̄(x)
(mod n) we have x2π̄(x)−1 ≡ 1 (mod n) and λ(n)

2 = ordn(x) | 2π̄(x) − 1.
Thus 2π̄(x) ≡ 1 mod λ(n)

2 . Also λ(λ(n)) = ordλ(n)
2

(2) is the least exponent e : 2e ≡ 1 (mod λ(n)
2 ) which implies, as

claimed, λ(λ(n)) | π̄(x). ut

Lemma Q.43 (Blum-Blum-Shub). For a Blum number n = pq and each x ∈ Z∗n π̄(x) | λ(λ(n)).

Proof. Since a ≡ b2 (mod n) =⇒ aordn(b) = b2 ordn(b) ≡ 1 (mod n) =⇒ ordn(a) | ordn(b), we have

ordn(x) = ordn(xπ̄(x)) | ordn(xπ̄(x)−1) | · · · | ordn(x1) | ordn(x) =⇒ ordn(xi) = ordn(x)∀i.

Let e ∈ N and m ∈ N odd s.t. ordn(x) = 2em; if we assume that e > 0 we have 1 ≡ x2em = x2e−1m
1 mod n which

contradicts ordn(x1) = ordn(x). Thus ordn(x) is odd.
By definition π̄(x) is the least integer e s.t. 2e ≡ 1 mod ordn(x); since gcd(2, ordn(x)) = 1, 2 ∈ Z∗ordn(x) and

π̄(x) | λ(ordn(x).
Moreover ordn(x) | λ(n) and π̄(x) | λ(ordn(x) | λ(λ(n)) by definition of Carmichael function. ut

Corollary Q.44 (Blum-Blum-Shub). For a Blum number n = pq and each x ∈ Z∗n

ordn(x) =
λ(n)

2
and ordλ(n)

2
(2) = λ(λ(n)) =⇒ π(x) = λ(λ(n)).

ut

Definition Q.45. A prime number p is a Sophie Germain prime if 2p + 1 is also prime. ut

Definition Q.46 (Blum-Blum-Shub). Let n = pq be a Blum integer. Thus there are integers p2, q2, p1 := 2p2+1, q1 :=
2q2 + 1 such that

p = 2p1 + 1 = 2(2p2 + 1) + 1 = 4p2 + 3 and q = 2q1 + 1 = 2(2q2 + 1) + 1 = 4q2 + 3.

The Blum integer n is called special if (equivalently)

• p, p1, p2, q, q1, q2 are primes;

• p1, p2, q1, q2 are Germain primes.

Theorem Q.47. Let n = pq a special Blum integer. If 2 is a quadratic residue modulo at most one of p1 = p−1
2 ,q1 =

q−1
2 then ordλ(n)

2
(2) = λ(λ(n)).

Proof. By definition of special Blum integers we have λ(n) = 2p1q1,
λ(n)

2 = p1q1, λ(λ(n)
2 ) = 2p2q2. Carmichael

Theorem implies that ordλ(n)
2

(2) | λ(λ(n)
2 ) = 2p2q2.

• Assume ordλ(n)
2

(2) | 2p2 so that 22p2 ≡ 1 mod p1q1 whence 22p2 ≡ 1 mod q1. Since we have also 22q2 = 2q1−1 ≡

1 mod q1 we have 4 = 22 = 2gcd(2p2,2q2) ≡ 1 mod q1 which contradicts the fact that q1 ≥ 5.

• If ordλ(n)
2

(2) | 2q2 a similar argument implies that 4 = 22 = 2gcd(2p2,2q2) ≡ 1 mod p1 contradicting p1 ≥ 5.

• Assume ordλ(n)
2

(2) | p2q2 and let wlog assume p2 < q2 so that 2p2q2 ≡ 1 mod p1q1 whence 2p2q2 ≡ 1 mod p1.

Since q2 is odd,
1 ≡ 2p2q2 ≡ (2p2)q2 mod p1 =⇒ 2p2 6≡ −1 mod p1

whence
(

2
p1

)
≡ 2(p1−1)/2 = 2p2 = 2p2 ≡ 1 mod p1 and 2 ∈ Qp1 .

If p2 = 2 and p = 11 this contradicts
(

2
5

)
= −1.

If p2 6= 2 then p2 is odd and the same argument allows to deduce that also 2 ∈ Qq1 . Since, for p2 6= 2, we have
proved 2 ∈ Qp1 we have a contradiction with the assumption that 2 is a quadratic residue modulo at most one
among p1 = p−1

2 ,q1 = q−1
2
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ut

Corollary Q.48. For a special Blum integer n = pq, if 2 is a quadratic residue modulo at most one of p1 = p−1
2 ,q1 =

q−1
2 , then there is x ∈ Qn : π̄(x) = λ(λ(n)). ut

Remark Q.49. In their definition of special numbers, Blum-Blum-Shub require that all the primes are odd. Since

• p2 = 2 is a Germain prime,

• such is also p1 = 5 and

• 2 ∈ Q̄5,

this restriction removes the special Blum numbers n = pq, p < q where p = 11 and 2 ∈ Qq1 . An instance of such
number is n = 517 = 11 · 47 which satifies

(
2
23

)
= 1; in fact 244 ≡ 1 mod 5 · 23 while4222 6≡ 1 mod 5 · 23. ut

425 = 32, 210 ≡ 322 = 1024 ≡ 1139 ≡ −11 mod 115, 211 ≡ 2(−11) = −22 mod 115,222 ≡ (−22)2 = 484 ≡ 24 mod 115 and
244 ≡ 242 = 576 ≡ 1 mod 115.
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