Q

Quadratic residues

Q.1 Legendre symbol

Let
— p be an odd prime, p > 2,
— g any generator of Zy.

Remark Q.1. If a € Zj is a square, id est there is b € Z : b?> = a then a has precisely two roots b and —b # b
(mod p). In fact, if we denote f : Z* — Z% the morphism defined by f(a) = a?, since its kernel ker(f) = {1, -1}
satisfies # ker(f) = 2, we know that

Im(f) = {b*: b€ Z}} = 7}/ ker(f)

so that #Im(f) = %1 and each coset f~1(a) = {b: b = a}, a € Im(f) has 2 elements.

If we choose, as canonical representative of Z, the set

{a:—§<a<§}CZ

then one of the roots has a positive representative, the other a negative representative.
If we instead choose as canonical representative of Z, the set

{a:0<a<p-1}CZ
one of the roots has an odd representative, the other an even representative. a

Definition Q.2. Let p be an odd prime, p > 2. An element a € Zj is called a quadratic residue modulo p iff a € Im(f),
a nonresidue if a ¢ Im(f).

We will denote @, C Zj the set @, := Im(f) of the quadratic residues modulo p and Qp C Zy, the set Qp = Zy\Qp
of the nonquadratic residues .

The quadratic residuosity /nonresiduosity can be also characterized in terms of any generator g of Z:
Lemma Q.3. a = ¢’ is a quadratic residue if and only if 7 is even.
Proof. Im(f) = {b*:beZs} ={(¢’)?:1<j<p}={g% :1<j<p}. O

Example Q.4. Let p =11 and g = 2 Then we have

jIT 2 34 5 6 7 8 9 10
T<g<l|2 4 35 -1 2 43 5 1
0<g¢’<p-1|2 4 85 10 9 73 6 1

0<a<p—1 0 1 23 456 7 8 9 10
—P<a<?|-5 -4 -3 2 -1 0 1 2 3 45
indl@)| 9 7 3 6 5 % 10 1 8 2 4 9 7 3 6 5

+b | {b,p— b} | a=b%| ind(a)
1] {110} 1 10
2| {2,9) 4 2
3| (3,8} -2 6
+4 | {47 5 4
+5 {5,6} 3 8
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Thus the quadratice residues are Q1 := {4,5,—2,3,1} and the nonresidue Q1; := {2, -3, -1, —4, —5}
Moreover we have

a € Q1 1 4 -2 5 3
0<va<f| 1 2 3 4 5
-5<—Va<0|-1 -2 -3 -4 -5
oddya| 1 9 3 7 5
evenya| 10 2 8 4 6
ind(a) | 10 2 6 4 8
O
Ezxample Q.5. Analogously
e for p=15,9 =2 we have :
+b | {b,p—0b} | a =02 | ind(a)
1 1,4} I 1
+2 (2,3} | -1 2
so that the quadratice residues are Q5 := {£1} and the nonresidue Q5 := {£2}.
e while for p = 7,9 = 3' we obtain
jl1 2 3 4 5 6
IT<g<E[3 2 1 3 2 1
0<¢g’<p-—-1|3 2 6 4 5 1
0<a<p-1 01 2 3 45 6
—Z<a<?|-3 -2 -1 01 2 3
indla)| 4 5 3 % 6 2 1 4 5 3
+b | {b,p—b} | a =07 | ind(a)
I1 {1,6} I 6
+2 (2,5} | -3 4
+3 (3,4} 2 2
Thus the quadratice residues are Q7 := {2, —3,1} and the nonresidue Q7 := {3, —1, —2}.
O

Definition Q.6. Let p be an odd prime, p > 2 and a € Z. We define the Legendre symbol

0 ifpla

<a> =41 if @ is quadratic residue modulo p

P —1 if a is nonresidue modulo p

Proposition Q.7. (Euler’s Criterion) ( ) =aP~1/2 (mod p).

a
p

Proof. If p | a, aP=1/2 = 0.
If pfaanda = g/, ais aresidueiff j is even, j = 2h, iff h(p—1) = 7;(;;271) iff p—1 | 73(;)2—1) iff a(P=1/2 = gip=1)/2 = 1

O
Corollary Q.8. If p=3 (mod 4) and a € Q, its roots are a5
) 2 _
Proof. We have (ia(pID) e (%) a = a. O

Proposition Q.9. The Legendre symbol satisfies the following properties:
(1) a=b (mod p) = (%) _ (%)}.
@ (£)-()¢)
(3) ged(b,p) =1 = (‘%) = (%);

123 =8 =1 (mod 7) so that 2 is not a generator.
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(5) (5) = (~n@-vr2
Proof. (1) and (4) are trivial; (2) and (5) follow directly form Euler’s Criterion.
. ab’\ _ (a ¥\ _ (a
A () = (2) (5) = (3)

Lemma Q.10. For any odd integer m = 2k + 1, m28*1 = k22+k eN

2
Proof. We have m28_1 = 4k 8+k) = kzz“' k which is an integer because k(k + 1) is necessarily even for each k.

Proposition Q.11. [t holds:

o n@rons 1 ifp==+1 (mod 8)
© (3) = ! >/8_{_1 A

Proof. Since

RS B S S R G N
8 2 2 2 2 2 )~
we have
. = g e oot oot =
DDA k= (-1)= H H V=TI &I k=] * (p—k)zH?k 2(P— WQHk
k=1 h=1 h=1 kk: Ifzdld kk: Ifzdld =1

p=1
and we obtain the claim dividing out [],2; k&

Fact Q.12. For any two odd primes p,q, it holds

(%) if p=¢q=3 (mod 4)

(7) (%) — (—1)®P-Dla- 1)/4( ) g”)

otherwise.

Q.2 Jacobi symbol

The definition of Legendre symbol was generalized to the case of any integer a and any odd integer n.

a

Definition Q.13. Let n be an odd integer and n = []._; p{* its prime factorization. For any a € Z we define the

Jacobi symbol
s a;
()=11(;)
K =1 \Pi
Lemma Q.14. Let s,t € N be odd. Then:

s—1 t—1 st—1
2 2 2

+
I

(mod 2)

and 2 2 2,2
sc—1 t°—-1 st —1
= d 2
3 + 3 5 (mod 2)

Proof. For s =2s'+ 1 and t = 2t/ + 1, we have st = 45t/ + 2(s' +t') + 1 = 2(2s't' + s’ +t') + 1 whence

st—1 , s—1 t-1

=25t + (s’ +t)=5 +t = +——  (mod 2).
2 2 2
and
22_ 147 / N2 14! ’ ’ ’ 2 ’ ’ 12 / /2 / 2_ 2_
t8 1:(25t+s+t);—(23t+s+t)£(s+t);—(s+t)zs ;—ert ;—t:381+t81 (mod 2).
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Corollary Q.15. Let n be an odd integer, n = H:zl pit its prime factorization. Then

-1 Gpi—1 1 Gp?—1
_;pZ a; (mod 2) —;pZS a; (mod 2)

Proposition Q.16. The Jacobi symbol satisfies the following properties:
(1) a=b (modn) = (&)= (9);

@ () =) @)

(3) ged(b,n) =1 = (%) = (4);

() (5) = (~pinv/2

(—1)(n*=D/8 = 1 ifn==1 (mod 8)
—1 ifn =43 (mod 8)

—~
=2}
SN~—
—
S
~
I

— (&) ifm=n=3 (mod 4)

(7) for any two odd integers m,n, it holds (%) = (=1)(m=D(n-1)/4 (%) = { n) therwi
n otherwise.

Pmof 1-4) are trivial.

(
“><>—m¢¢; = [T, (1) = ()
d (6

b n—1

Pirta; (-1 =.

n2-1

ai pZ-1 ro opi-1
#(2) =TT (2) =Tyt = s Ao — oy
Ad (7): If ged(m, n) # 1 then, by definition (2) = 0 = (£). Otherwise let m = []'_, p{* and n = | q?i be
their prime factorizations.
We have

() =TTTL (%)™ =TT (%) == (%)

i=1j=1 i=1j=1
Denote

—I:={i:1<i<r:p;=3 (mod 4)}

— L= ) s G

—Ji={j:1<j<s:q¢; =3 (mod 4)}

- "f::Zjerj

—L:={(t,)):1<i<r1<j<s:p,=¢; =3 (mod 4)} ={(i,j):iel,jeJ}
- A :Z(i,j)ELaibj = Z aibj = (Zie]a’i) (Zje,]bj) =LK

i€l
jeJ

and remark that (2) = (=1)* (2) = (=1)"" (£) so that () = — (£) if and only if both ¢ and x are odd.

Also we have
m = Hp Hp Hp‘“ = H ‘=(-1)" (mod4)
=t Vet zgzl ‘et

and, with the same argument, n = (—1)" (mod 4). Since m = n = 3 (mod 4) if and only if both ¢ and  are odd, we
obtain the claim. 0

Procedure Q.17. (1),(6),(7) allows to compute the Jacoby simbols in an efficient way whose complexity is comparable
with the one of the euclidean algorithm. Given m,n € N\ {0}

e Set m' :=m,n’ :=n,\:=1

e While A 20 and m' # 1 do
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% () =2 ()

If m" =0set A:=0.

—If2|m

x let k,r:m’ =2Fr

% set A= (=R =D/BN =

If 2¢tm/,m' > n' set m’ := Rem(m’,n’)
Example Q.18. Let m := 2468, n := 13579 = 37 % 367 We have

— 2468 = 22 x 617, 13579 = 3 (mod 8), (F8) = (—1)? (iL;) = (525)
617 # 3 (mod 4), (33575) = (517")

Rem(13579, 617) (13579) (57)
— 617 # 3 (mod 4), (5

~ Rem(617,5) = 2, (87) = (%
—5=-3 (mod8) (3) =-L,A:=~1

so that (123456789) =—1.

Remark that

— 2468 = 22 %617, 367 = —1 (mod 8), (2408 = 12 (817} = (817)
— Rem(617,367) = 250, (817) = (239)
~ 250 = 2% 125, 367 = —1 (mod 8), (239) =1 (1) = (123)
~ 125 # 3 (mod 4), (128) = (307)
— Rem(367,125) = 117, (281) = (L1
— 125 # 3 (mod 4), (135) = (132) ,
— Rem(125,117) = 8, (1) = (5;)
— 117 = -3 (mod 8), (%) = (~1)% (=) . A = 1
whence (322) = —1 and
— 2468 = 225617, 37 = —3 (mod 8), (2488) = (—1)2 (81) = (817)
~ Rem(617,37) = 25, (87) = ()
— 37 #3 (mod 4), (32) = (31)
— Rem(37,25) = 12, (31) = (&2
—12=224325=1 (mod 8), (22) =12 (2) = (2)
— 25#3 (mod 4), (%) = (%)
- Rem(25,3) =1, (3) = (3) =1
whence (2%8) = 1.

Remark that we have

G )= (5) - (3) = (3) - (5) = () =
(5)--()--(5)--G)--()

but

1234\
37 )

If2+m/,m/ <n set \:= (=1)"' =D =D/ 4 .— i/ m! =/, 0 = u;



Q.3 Square root modulo p

Given
— p be an odd prime, p > 2,
— a € (p any quadratic residue Zj.

we want to compute a value € Z : 22 = a (mod p). In order to do so let us set
—e,s:p—1=2%,5 odd,

— n € @, any non-quadratic residue modulo p?

b:=n® (mod p)

s41

—r:=a2 (modp)

Lemma Q.19. With the present notation b is a primitive 2¢-th root of unity.

Proof. In fact b** =n*2" =nP~1 =1 (mod p)
If b were not primitive, then 1 = b*" (mod p) for some € < e which implies that b is an even power of a primitive

2°-th root of unity, whence b € @, contradicting (%) = (%) =(-1)*=-1. O

Lemma Q.20. With the present notation (a~'r?)2" " = 1.

Proof. (a=1r2)2 " =27 = g7 = (%) =1 0

Algorithm Q.21 (Andleman—Manders—Miller). Since % is a 2¢7!-th root of unity modulo p, our aim is to modify r

via a suitable power b7,0 < j < 2°, of the primitive 2°-th root of unity in order to get = := bir : %2 =1 (mod p) as
required.
Remark that if j,0 < j < 2°7!is s.t. (B/r)2 = a (mod p), then, since b2 = —1, the other square root is
—r=—1-Wr =0 "bip=b+2 "y
Thus our aim is to determine the unique values jo, j1,-..,je—2 € {0,1} under which
e—2
jo=>_ 52 =jo+ 21 +4ja+ ... +2 ey
i=0
satisfies (b’r)? = a (mod p).
We already remarked that ¢ := (a=172)2" " satisfies t2 = (a=21%)2" =1 so that ¢ = +1.
0 ift=1

Thereofore if we set jg := ) we have
1 ift=-1

t ift=1
=t ift=—1

(= (Bor)2)> " = () e = {

whence (bj[;r)2 is a 2°72-th root of unity.
Assume now we have already found jg, j1,...,jn_1 such that
h—1
§= g2 =jo+ 21 +4j2+ ...+ 2"
i=0
satisfies (a=1(b'r)2)2"" = 1 s0 that % is a 2¢="=1-th root of unity. Let us compute t := (a=1(b/'r)2)2" """ = +1
0 ift=1 y . e—h— i +2" g, .
and set jj, := {1 ?ft L% that in both case (a=*(b/'+2"91)2)2"* = 1 and W h)? o e 29=h=2 ¢} root of
ift =—

unity.
When finally we get h = e — 2 then

e—2
Ji= G2t =jo+ 21 + 442+ .+ 2 e
i=0
satisfies @ =a '(b'r)2 =1 and bir and b2 1 are the two square roots of a. 0

2it is sufficient to pick up any random integer n, ged(n, p) = 1 and test (%) to obtain such a number with probabily 2~1.
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Q.4 Williams and Blum integers

Let
— m € N\ {0} be an odd integer;
— m = [[;_, p{" its prime factorization.
We can extend in this setting the notion of quadratic residues; actually we can give the following

Definition Q.22. Let m € N\ {0} be an odd integer. Any element a € Z}, is called a quadratic residue modulo m
iff there is b € Z3 : b* = a.

We will denote @Q,,, C Z7, the set of the quadratic residues modulo m and Q,, C Z}, the set of the nonquadratic
residues. 0
but, unlike the Legendre symbol (%), p prime, the Jacobi symbol ( %) does not reveal whether or not a is a quadratic
residue modulo n.

Remark Q.23. More exactly, if a is a quadratic residue, then® (%) = 1; however, (%) = 1 does not imply that a is a
quadratic residue. a

Lemma Q.24. There are 2" square roots of the unity in Z,,.
Proof. £1 are the only distinct square roots of the unity in each field Zp?"’ and the 2" Chinese Remainder problems
r=41 (mod p;*)
give all the distinct square roots of the unity in Z,,. a
Corollary Q.25. If a is a quadratic residue modulo m, then a has 2" square Toots. g
Proof. If we denote f : Z* — Z%, the morphism defined by f(a) = a?, we know that
Im(f) = {b*: b€ Z}} = Z}/ ker(f)
so that each coset f~1(a) = {b: b? = a}, a € Im(f), has # ker(f) = 2" elements. O
Let us now specialize ourselve to a squarefree integer n which is the product of two distinct primes:
— p, q be distint two primes,
- n:=pq.
Definition Q.26. The integer n = pq, p # q, is called

o a Williams integer if p =3 (mod 8) and ¢ =7 (mod 8);

e a Blum integer if p=¢q =3 (mod 4). O
Remark Q.27. If n is a Blum integer then necessarily both %_1 and % are odd. a
Let

— a € ,, be a quadratic residue and let

— by, —5 <b, <5:a=0b2 (mod p)
— by, —% <by < %:a=02 (mod q)

where, up to this moment, b, and b, have been chosen randomly among the two possible choices. Then the 4 square
roots modulo n are

-z, -4 <z < § stz =by (mod p),z; = by (mod q)

— X3, —% <3 < § s.t. 13 = —b, (mod p),xs = —b, (mod q)

a=0b? (modm) => a=0b2 (mod p;) for each i —> (i> =1 for each i = (g) = H (i> = 1.
pi
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— x3,—% <3< § s.t. x3 = b, (mod p),x3 = —b,; (mod q)
— x4, —5 <4 < § s.t. w4 = —by, (mod p), x4 = by (mod q);
remark that 21 = —z9 and 3 = —x4 while z; # ta3.

Lemma Q.28 (Williams). If the prime p satisfies p =3 (mod 4) then

1. (—71) _(—1)eD/2 = g,

L (3)-(3)()--()

3. Among the two square roots (Corollary Q.8) £a™+  of a quadratic residue a € Q,, just one of them is a
quadratic residue too. a

Let us now assume that n is a Blum integer; then we can wlog assume that b, € @), is the square roots of a which
is a quadratic residue modulo p and that b, € @, is the square roots of a which is a quadratic residue modulo ¢ and
we can consequently rename the 4 square roots modulo n as

— x:= 7 satisfying z = b, (mod p),z = b, (mod q),
— y = x3 satisfying y = b, (mod p),y = —b, (mod q,)
so that
— —x = x9 satisfies —z = —b, (mod p), —z = —b, (mod q),
— —y = x4 satisfies —y = —b, (mod p),—y = b, (mod q).
Lemma Q.29 (Williams). With the present notation we have:

L3 ()1 () () @
P P RN q > \n
Theorem Q.30 (Williams). If n = pq is a Blum integer and a € Q,, is a quadratic residue modulo n, then

1. there are v,y € ZX,x #y:2°> =y? = a;
2 (5) = - ()

3. Assuming wlog that ( ) =1 (and therefore (%) = —1) the following conditions are equivalent

z
n

@ (3)=(3) -1

(b) xP=D=D/4 =1 (mod n);

© (5) = (%) =

(d) (—x)P=D=D/4 = _1 (mod n).

Proof. (1) and (2) just summarize the remarks above.

Ad (3):

(a) = (b) Since (%) = (%) = 1 we have, by Euler’s Criterion,

o\ @ D)/2
H-D@D/4 _ ((r-1)/2)(a-1)/2 = (> 1@ D2 21 (mod p)
p

and

N
HP-D@D/4 _ (4(a-1)/2)(p-1)/2 = () Z10-D/2 21 (mod g)
q

whence z(~1@=D/4 =1 (mod n).
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(b)) = (a) By assumption we have z(~D@=1/4 = 1 (mod p) and z®~D@=D/* = 1 (mod q). Since n = pq is a
Blum integer, both prl and %1 are odd and such is also (7['_1)4&. Therefore

(x> B ($>(P1)(q1)/4 B (x(pl)(ql)/4> B (1> .

p) \p B p “\r)

(x) B <x>(p1)(ql)/4 B <.,L,(p—1)(q—1)/4> B (1) .
q) \4q a q \e¢)

(a) <= (c) is a trivial consequence of (’71) = (*71) =1

and

(b) < (d) is a trivial consequence of the fact that W is odd.

(¢) = (d) While the proof is complete, I consider helpful to develop the argument which is obtained by adapting
the one used for (a) = (b).

Since (%) = (‘Tﬂc) = —1 we have, by Euler’s Criterion,

(a-1)/2
(=) =D/ () (r-D/2)(a-D/2 = (“f)

p

=(-1)Y2=_1 (mod p)

and
o\ (-2
(—a)P-Da-D/4 = (> ~(=1)® V2= _1 (mod g)
q
whence z(P~1D@=1/4 = _1 (mod n).
(d) = (¢) By assumption we have (—z)®~D@=1/4 = _1 (mod p) and (—z)®~D@=D/4 = _1 (mod q); since

7(”_1)4(’1_1) is odd,

3)-G) () - () o
3)-() () - (@)

(P—D(g-1)+4 |
8 2

and

a

Proposition Q.31. If n = pq is a Blum integer and a € Q,, is a quadratic residue modulo n, a s the

single root of a which is a quadratic residue.

Proof. The Theorem above imples that, among the four rooots of a € @,,, one and only one is a quadratic residue,
namely the root = which satisfies both (£) =1 and z»~D@=1/4 =1 (mod n).

. (p=1)(a=1)+4 . - .
Let us now verify that a 8 satisfies these conditions and is a root of a:

(p=1)(a=1)+4 (e=1)(g=1)+4
a 8 is a quadratic residue because such is a; therefore | *———— | = 1.

e Since a € Qp, then a € @, and a € Q). Therefore
(g=1)
2

G EERE=D (am;l))@ = (a) =1 (mod p)
p

(p—1)
.. (p=1)(g=1) (a—1) | (p—1) 2 (p=1)(g=1)
and, similarly, a= 2 =(az )z = %) = 1 (mod ¢) whence a~ 3 = 1 (mod n). Thus

(p=1)(g=1)+4
B

—1)(g—1)/4
2 (P—1(a=1)/4 _ (awy” Jaor _ (aP=Da=1/4) =12 2 1 (mod n).
o We have
(a—1)
(p=1)(g=1)+4 2 (p=1)(g=1)+4 (p=1)(a=1) (=1 (a=1 a\ ?
(a 8 ) =a 4 =aa 4 =ala 2z ) 2 =al- =a (mod p)
p

(p—1)

2 2
(p—1)(g=1)+4 (p=1)(g=1)+4
8 ) = a (mod ¢) whence (a B ) = a (mod n).

1l

Q
N
SR
N———

and, similarly, (a
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Corollary Q.32. Ifn is a Blum integer then the map
Q:Qn—Qn, z?

is a bijective whose inverse satsfies
(p=1)(a=1)+4
8

o Hz) =2
O

Definition Q.33. Let n be a Blum integer and let a € @,,. The unique square root of a in @, is called the principal
square root of a modulo n.

Proposition Q.34 (Williams). Let n = pq be a Blum integer; then the following conditions are equivalent
1. n is a William integer;
2. n= -3 (mod 8);
5 (2) = -1,
4. for each a € Z,, exactly one element among a and 2a is a quadratic resuidue;
5. foreach a € Zy a € @, < 2a ¢ Q.

Proof. In order to prove the equivalence 1 <= 2 <= 3 it is sufficient to remark that for a Blum integer n = pq
since p = ¢ = 3 (mod 4) we have four possible alternatives:

ep=qg=3 (mod8) = n=1 (mod8) = (%):1;
e p=q=7(mod8) = n=1 (mod8) = (%):1;
e p=3 (mod8),¢g=7 (mod 8) = n=-3 (mod 8) = (%) =-1;

)=-1

S 3o

e p=7 (mod 8),¢g=3 (mod 8) = n=-3 (mod 8) = (
The equivalence 3 <= 4 <= 5 is trivial. a

Corollary Q.35 (Williams). Let n be a Williams integer; then for each a € Z,, either 2(2a+1) € Q,, or4(2a+1) € Q,,.
O

Lemma Q.36 (Williams). Let
M:={aeN:4(2a+1) <n}

and let e,d € N be s.t. ged(e, p(n)) =1 and ed = W (mod ¢(n)) Consider the maps

42a+1) iff (24H) =1
22a+1) iff (2¢) =-1

e & :{b:0<b<n—1} = {b:0<b<n—1}:&(b) =b* (mod n)

S

+

ogleﬂZn:&(a)»—»{

e Dy:{b:0<b<n—-1}—{b:0<b<n—1}:Dy(b) =b¢ (mod n)

2 iff c=0 (mod 4)
ey

e Dy ifei0<c<n1} o M:Dy(e) {7 We=1(modd)
5 iff c=2 (mod 4)
L;_l iff c=3 (mod 4)

For each a € M, D1D3E3E1(a) = a.
Proof. The element b := & (a) satisfies
1. bis even,
2.0<b<n-1and

3. (&) =1

n
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and
(p=1)(g=1)+4
8

¢ 1= DaE61(a) = Dp&s(b) = b*°4 = (b?) (mod n)

satisfies (Proposition Q.31)

4. c€ Qy,

5. ¢ = b

6. (2) =1
thus

— ¢=+b (mod n) and

—c=0b < ciseven, whilec=n—5b <= cis odd.
Thus:

1

o if 4| cthen c=b=4(2a+1) anda:%; .

n—c_q

e ifc=1 (mod4)thenb=n—-c=pg—c=3%x3—-1=0 (mod 4) and n —c=b = 4(2a + 1) whence a = —*5

o if c=2 (mod 4) thenc=b=2(2a+1) and a = %2_1

n—c_q

e ifc=3 (mod 4)thenb=n—-c=pg—c=3x3-3=2 (mod 4) and n —c=b = 2(2a + 1) whence a = 25

|
Q.5 Periodicity of quadratic residues
Definition Q.37. For each n € Nyn > 1
e ord,(z) denotes for each x € Z} the least positive integer e € N* : z° =1 (mod n);
e the Fuler totient function ¢(n) is the cardinality of the set
{jEN:1<j <nged(n,j) =1},
e the Carmichael function A(n) is the minimal value e € N* : 2 =1 (mod n)Vx € Z7,.
o(1) =1
$(2) =1
20 — 2&71
Fact Q.38. We have $(2%) . O
p(p) =p—1 for any prime p
o(p*) =p*p—1) for any prime p
¢(n) =TT, v (i — 1) =n [, (1 - p%) forn =TIy, pi"
A1) =1
A(2) =1
A4) =2
Fact Q.39. We have ¢ \(2%) = 2972 a>2 a
AMp)=p-—-1 for any prime p
AP*) = p*H(p—1) for any prime p
A(n) =lem(A(pS7), ..., A(p27)  for n=[i_, p3"
Notation Q.40. For each Blum number n = pq and each z € @Q),, consider the sequence zg,x1,...,2;, ... of elements

in Q,, defined by x; := 22" so that, in partciular 2o = = and remark that
e the sequence is periodic since @, is finite and that

e since z; = z; (mod n) = z,-1 = ®(z;) = ®(x;) = z;_1 (mod n), the sequence can be naturally exteneded
to a sequence
oy Ly e ey X1 Ly Ly e ooy Ly e v (Ql)

by setting x; = ®(x;4+1)Vi < 0. |
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Definition Q.41. The period of x € @, is denoted 7(x) and is the least period of the sequence (Q.1).
Lemma Q.42 (Blum-Blum-Shub). For a Blum number n = pq and each x € Z},

ord,(z) = /\(2n)

and ordam (2) = A(A(n)) = A(A(n)) | m(x).

2

Proof. Since v = x5z(,) = 22" (mod n) we have 2277 -1=1 (mod n) and @ = ord,(z) | 27®) — 1.
Thus 27*) = 1 mod @ Also A(A(n)) = ordam (2) is the least exponent e : 2° =1 (mod @) which implies, as

claimed, A\(A(n)) | 7(z). O
Lemma Q.43 (Blum-Blum-Shub). For a Blum number n = pq and each x € Z;, 7(z) | M(A(n)).
Proof. Since a = b* (mod n) = a°dn®) = p2ordn®) =1 (mod n) = ord,(a) | ord,(b), we have

ord, (z) = ordy, (Tz(5)) | ord, (Tx(z)—1) | -+ | ordp(21) | ord,(z) = ord,(z;) = ord, (z)Vi.

Let e € N and m € N odd s.t. ord,(z) = 2°m; if we assume that e > 0 we have 1 = 22" = x%eilm mod n which
contradicts ord,,(z1) = ord, (z). Thus ord, (z) is odd.

By definition 7(z) is the least integer e s.t. 2¢ = 1 mod ord, (z); since ged(2,ord,(z)) = 1, 2 € Lgyq, () and
w(x) | AMord,(z).

Moreover ord, (z) | A(n) and 7(z) | A(ord, (z) | A(A(n)) by definition of Carmichael function. O

Corollary Q.44 (Blum-Blum-Shub). For a Blum number n = pq and each x € Z,

ord,(z) = )\(2”) and ord¥(2) =AA(n)) = w(x) = A(A(n)).

O
Definition Q.45. A prime number p is a Sophie Germain prime if 2p + 1 is also prime. O
Definition Q.46 (Blum-Blum-Shub). Let n = pg be a Blum integer. Thus there are integers ps, g2, p1 := 2pa+1,q1 :=
2¢2 4 1 such that
p=2p1+1=22p2+1)+1=4dps+3and ¢g=2¢1 +1 =2(2¢2 + 1) + 1 = 4¢y + 3.

The Blum integer n is called special if (equivalently)

® p,P1,P2,4, 41,2 are primes;

® D1,D2,q1,q2 are Germain primes.
Theorem Q.47. Let n = pq a special Blum integer. If 2 is a quadratic residue modulo at most one of p1 = %1,111 =
L then ord%n) (2) = AM(A(n)).
Proof. By definition of special Blum integers we have A\(n) = 2piqi, @ = p1q1, A(@) = 2p2q2. Carmichael

Theorem implies that ord am) (2) | A(@) = 2paga.
2

e Assume |ord awm) (2) | 2p2 [so that 2272 = 1 mod p;q; whence 2272 = 1 mod ¢;. Since we have also 2292 = 201—1 =
2

1 mod ¢; we have 4 = 22 = 28cd(2p2,2¢2) = 1 mod ¢q1 which contradicts the fact that ¢; > 5.

o If |ord am) (2) | 2¢2 | a similar argument implies that 4 = 22 = 28°d(2P2,242) = | mod p; contradicting p; > 5.
2

A d ) (2 d 1 1 hat 2P292 = 1 h 2P2q2 = ] .
e Assume | or ¥( ) | p2g2 | and let wlog assume so that mod p;¢q; whence mod p;
Since g is odd,

1=2P2% = (2P2)® mod p; = 2> # —1 mod p;
whence (p%) =2W1—1)/2 — 9p2 — 92 = 1 mod p; and 2 € Qp, -

If po = 2 and p = 11 this contradicts (%) =—1.

If po # 2 then ps is odd and the same argument allows to deduce that also 2 € ), . Since, for ps # 2, we have
proved 2 € (), we have a contradiction with the assumption that 2 is a quadratic residue modulo at most one

—1 -1
among py = p2 q1 = q2
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O

Corollary Q.48. For a special Blum integer n = pq, if 2 is a quadratic residue modulo at most one of p; = p%l,ql =
L then there is x € Qy : w(x) = M(A(n)). O

Remark Q.49. In their definition of special numbers, Blum-Blum-Shub require that all the primes are odd. Since
e py = 2 is a Germain prime,

e such is also p; =5 and

e 2¢ Qf)v
this restriction removes the special Blum numbers n = pg,p < ¢ where p = 11 and 2 € ();,. An instance of such
number is n = 517 = 11 - 47 which satifies (&) = 1; in fact 2** =1 mod 5 - 23 while2?2 # 1 mod 5 - 23. 0
425 = 32, 210 = 322 = 1024 = 1139 = —11 mod 115, 21 = 2(—11) = —22mod 115,222 = (—22)2 = 484 = 24 mod 115 and

244 =242 = 576 = 1 mod 115.
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