
Elliptic Curves

1.1 Weierstrass Equations

Definition 1.1. An (affine) elliptic curve E over a field F is a curve which is given by an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. (1.1)

1.2. If you define on the set of the terms {xayb : (a, b) ∈ N2}, the weight function wt defined by wt(x) = 2,wt(y) = 3,
remark that in (1.1) each coefficient ai of a term τ has the value i := 6− wt(τ).

Such mnemonics is preserved throughout all the reformulations of (1.1).

1.3. If we assume that char(F) 6= 2, we can perform the linear transformation y → y− a1x−a3
2 obtaining the equation

y2 = x3 +
a2
1 + 4a2

4
x2 +

a1a3 + 2a4

2
x +

a2
3 + 4a6

4
=: x3 +

b2

4
x2 +

b4

2
x +

b6

4
. (1.2)

1.4. If moreover char(F) 6= 3, the linear transformation x → x− b2
12 produces the equation

y2 =
(

x− b2

12

)3

+
b2

4

(
x− b2

12

)2

+
b4

2

(
x− b2

12

)
+

b6

4

= x3 +
(

3 · b2
2

122
− 2

b2

4
b2

12
+

b4

2

)
x +

(
− b3

2

123
+

b2

4
b2
2

122
− b4

2
b2

12
+

b6

4

)
= x3 +

((
3

122
− 2

48

)
b2
2 +

b4

2

)
x +

((
− 1

123
+

1
4 · 122

)
b3
2 −

b2b4

24
+

b6

4

)
= x3 +

(
1− 2
48

b2
2 +

b4

2

)
x +

(
−1 + 3
2633

b3
2 +

b2b4

24
+

b6

4

)
= x3 − b2

2 − 24b4

48
x +

(
−−b3

2 + 36b2b4 − 216b6

2533

)
= x3 − b2

2 − 24b4

48
x− −b3

2 + 36b2b4 − 216b6

864
=: x3 − c4

48
x− c6

864
(1.3)

1.5. Denoting

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6,

g(x, y) = y2 − x3 +
c4

48
x +

c6

864
,

it holds

f

(
x− b2

12
, y −

a1

(
x− b2

12

)
− a3

2

)
= f

(
x− b2

12
, y − 12a1x− a1b2 − 12a3

24

)
= g(x, y).

1.6. If we assume F = Q, it is natural to compute the polynomial h(x, y) ∈ Z[x, y] such that

h(x, y) = αg(
x

β
,
y

γ
) ∈ Z[x, y].

Such condition requires that α, β, γ ∈ Z satisfy

α = gcd(β3, γ2, 48, 864) = gcd(β3, γ2, 243, 2533);
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Figure 1.1:
b2 := a2

1 + 4a2,
b4 := a1a3 + 2a4,
b6 := a2

3 + 4a6,
b8 := a2

1a6 − a1a3a4 + a2a
2
3 + 4a2a6 − a2

4;

c4 := b2
2 − 24b4,

c6 := −b3
2 + 36b2b4 − 216b6;

∆ := −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6;

j := c3
4

∆ (if ∆ is invertible)

related by the identities
4b8 = b2b6 − b2

4 and 1728∆ = c3
4 − c2

6.

the minimal solution is
α = 2636 = 66, β = 62, γ = 63

which gives

h(x, y) = y2 − x3 +
64

243
c4x +

66

2533
c6 = y2 − x3 + 27c4x + 54c6. (1.4)

1.7. We will also use, when char(F) 6= 2, 3 the equation

y2 = x3 + Ax + B (1.5)

where we have A = − c4
48 , B = − c6

864 .

1.2 Discriminant

Definition 1.8. Let f ∈ F[x, y] be a polynomial and let C be the curve over F given by the equation f(x, y) = 0.
A singular point of C is any point (x0, y0) ∈ F2

(with coordinates in the algebraic closure F of F) such that

f(x0, y0) =
∂f

∂x
(x0, y0) =

∂f

∂y
(x0, y0) = 0. (1.6)

1.9. Let us restrict ourselves to the case char(F) 6= 2 and consider an elliptic curve given by

f(x, y) = y2 − g(x);

the potential singular points (x0, y0) ∈ F2
must satisfy equation (1.6); since we have

∂f

∂x
=

∂g

∂x
and

∂f

∂y
= 2y,

and we are assuming char(F) 6= 2, we have that (x0, y0) is a singular point if and only if

(a) 0 = ∂f
∂x (x0, y0) = ∂g

∂x (x0),

(b) 0 = ∂f
∂y (x0, y0) = 2y0 =⇒ y0 = 0 and

(c) 0 = f(x0, y0) = y2
0 − g(x0), which, by (b), is equivalent to g(x0) = y2

0 = 0,

id est if and only if y0 = 0 and g(x0) = g′(x0) = 0.
In other words the elliptic curve given by f(x, y) = y2 − g(x) has a singular point P ∈ F2

if and only if g(x) has
a singular point x0 if and only if the discriminant Disc(g) of g is zero. If Disc(g) = 0 we have P = (x0, 0) where x0 is
the singular point of g.

1.10. We recall that for a polynomial g(x) = e0x
3 + e1x

2 + e2x + e3 its discriminant is

Disc(g) = e2
1e

2
2 − 4e0e

3
2 − 4e3

1e3 − 27e2
0e

2
3 + 18e0e1e2e3. (1.7)

Remark that for ḡ(x) = ag(x
b ), we have ḡg(x) = a

b3 e0x
3 + a

b2 e1x
2 + a

b e2x + ae3 so that Disc(ḡ) = a4

b6
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1.11. Therefore, if we apply this formula to equation (1.2), id est to g = 4x3 + b2x
2 + 2b4x + b6 we obtain

Disc(g)
e2
0

= e−2
0 e2

1e
2
2 − 4e−1

0 e3
2 − 4e−2

0 e3
1e3 − 27e2

3 + 18e−1
0 e1e2e3

=
1
4
b2
2b

2
4 − 23b3

4 −
1
4
b3
2b6 − 27b2

6 +
18
2

b2b4b6

=
1
4
b2
2

(
b2
4 − b2b6

)
− 8b3

4 − 27b2
6 + 9b2b4b6

= −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6

=: ∆

where we have defined

b8 :=
1
4
(
b2b6 − b2

4

)
=

1
4

((
a2
1 + 4a2

) (
a2
3 + 4a6

)
− (a1a3 + 2a4)

2
)

= a2
1a6 − a1a3a4 + a2a

2
3 + 4a2a6 − a2

4.

Definition 1.12. In case char(F) 6= 2, the discriminant ∆ of the elliptic curve given by (1.2) is defined

∆ := −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6.

Theorem 1.13. If char(F) 6= 2, an elliptic curve given by a Weierstress equation (1.1) is singular if and only if
∆ = 0.

1.14. Alternatively, in case char(F) 6= 3 too, one can compute (up to constants) Disc(g) via a direct computation of
gcd (g(x), g′(x)) using the euclidean algorithm; we do it using equation (1.3), and g = x3 − 27c4x− 54c6.

A direct application of the Euclidean algorithm computes

– r−1 := g = x3 − 27c4x− 54c6,

– r0 := g′

3 = x2 − 9c4,

– r1 := −1
18 (r−1 − xr0) = c4x + 3c6,

– c2
4r0 − (c4x− 3c6) r1 = 9(c2

6 − c3
4).

whence
gcd(g(x), g′(x) = 0 ⇐⇒ c2

6 − c3
4 = 0.

A direct computation gives

c3
4 − c2

6 =
(
b2
2 − 24b4

)3 − (−b3
2 + 36b2b4 − 216b6

)2
=

(
b6
2 − 72b4

2b4 + 1728b2
2b

2
4 − 13824b3

4

)
−

(
b6
2 − 72b4

2b4 + 432b3
2b6 + 1296b2

2b
2
4 − 15552b2b4b6 + 46656b2

6

)
= −432b3

2b6 + 432b2
2b

2
4 + 15552b2b4b6 − 13824b3

4 − 46656b2
6

= −2433b3
2b6 + 2433b2

2b
2
4 + 2635b2b4b6 − 2933b3

4 − 2636b2
6

= 2633

(
b2
4 − b2b6

4
b2
2 + 32b2b4b6 − 23b3

4 − 33b2
6

)
= 1728∆

while, for g = x3 − 27c4x− 54c6, the discriminant formula gives Disc(g) = 78732
(
c3
4 − c2

6

)
= 2239

(
c3
4 − c2

6

)
1.15. A faster evaluation is obtain, in case char(F) 6= 2, 3, by computing Disc(g) for the polynomial g = x3 + Ax + B
connected to equation (1.5); the result is

Disc(g) = −4A3 − 27B2.

If we set A = − c4
48 −

c4
243 , B = − c6

2533 we obtain

−4A3 − 27B2 =
c3
4 − c2

6

33210
=

c3
4 − c2

6

1728
1
16

=
∆
16

.

1.16. Recalling that if ḡ(x) = ag(x
b ), we have Disc(ḡ) = a4

b6 , if we compare the three cubic polynomials in F,
char(F) 6= 2, 3, related to the equations (1.2)and (1.5) namely
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g1 := 4x3 + b2x
2 + 2b4x + b6,

g2 := x3 − c4

48
x− c6

864
,

g3 := x3 − 27c4x− 54c6

we have

• g1 = 4g2 so that necessarily Disc(g1) = 44 Disc(g2) = 16∆;

• g2(x) = g3( x
62 ) so that necessarily

Disc(g3) = 612 Disc(g2) =
612

16
∆ =

612

16 · 1728
(c3

4 − c2
6) =

212312

24+633
(c3

4 − c2
6) = 2239(c3

4 − c2
6) = 78732(c3

4 − c2
6).

We submarize the relations as

c3
4 − c2

6 = 2633∆ 21833 Disc(g1) 21033 Disc(g2) 2−23−9 Disc(g3)
∆ = 2−63−3(c3

4 − c2
6) 2−2 Disc(g1) 22 Disc(g2) 24 Disc(g3)

Disc(g1) = 2−23−3(c3
4 − c2

6) 24∆ 28 Disc(g2) 2−43−12 Disc(g3)
Disc(g2) = 2−103−3(c3

4 − c2
6) 2−4∆ Disc(g1) Disc(g3)

Disc(g3) = 2239(c3
4 − c2

6) 28312∆ Disc(g1) 212312 Disc(g2)

1.17. Remark that if we define, for each field F without any restriction on characteristic, the values b2, b4, b6, b8, c4,
c6, ∆, j according Figure 1.1, the relations

4b8 = b2b6 − b2
4 and 1728∆ = c3

4 − c2
6.

still hold also when

• char(F) = 2 where
b2 = a2

1, b4 = a1a3, b6 = a2
3, c4 = b2

2, c6 = −b3
2,

so that
b2b6 − b2

4 = a2
1a

2
3 − (a1a3)2 = 0 = 4b8

and c3
4 − c2

6 = (b2
2)

3 − (−b3
2)

2 = 0 = 1728∆;

• char(F) = 3 where c4 = b2
2, c6 = −b3

2 so that, again

c3
4 − c2

6 = (b2
2)

3 − (−b3
2)

2 = 0 = 1728∆

while b2b6 − b2
4 = 4b8 was already proved in 1.10.

1.3 Singular points

1.18. Each cubic polynomial f(x, y) ∈ F can be expressed as a Taylor expansion on each point P = (x0, y0) ∈ F2:

f(x, y) = f(P ) + (x− x0)
∂f

∂x
(P ) + (y − y0)

∂f

∂y
(P ) +

+
1
2
(x− x0)2

∂2f

∂2x
(P ) +

1
2
(x− x0)(y − y0)

∂2f

∂x∂y
(P ) +

1
2
(y − y0)2

∂2f

∂2y
(P )

+
1
6
(x− x0)3

∂3f

∂3x
(P ) + r(x, y)

where the term

r(x, y) =
1
12

(x− x0)2(y − y0)
∂3f

∂2x∂y
(P ) +

1
12

(x− x0)(y − y0)2
∂3f

∂x∂2y
(P ) +

1
6
(y − y0)3

∂3f

∂3y
(P )

assume the value 0 for an elliptic curve.
In the case char(F) 6= 2, 3, for the elliptic curve E given by

f(x, y) = y2 − x3 +
c4

48
x +

c6

864

and the singular point P = (x0, y0), we have
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f(x0, y0) =
∂f

∂x
(x0, y0) =

∂f

∂y
(x0, y0) = 0;

moreover
∂2f

∂2x
(P ) = −6x,

∂2f

∂x∂y
(P ) = 0,

∂2f

∂2y
(P ) = 2,

∂3f

∂3x
= −6

therefore

f(x, y) =
1
2
(
−6x0(x− x0)2 + 2(y − y0)2

)
− (x− x0)3

=
1
2

((
(y − y0)
(x− x0)

)2

− 3x0

)
− (x− x0)3.

Let us restrict ourselves to the case F = R; in this case we have three diffierent cases;

– if x0 > 0
f(x, y) =

(
(y − y0)−

√
3x0(x− x0)

) (
(y − y0) +

√
3x0(x− x0)

)
− (x− x0)3

and we have a node;

– if x0 = 0
f(x, y) = (y − y0)2 − (x− x0)3

and we have a cusp;

– if x0 < 0
f(x, y) =

(
(y − y0)2 + 3|x0|(x− x0)2

)
− (x− x0)3

where (y − y0)2 + 3|x0|(x− x0)2 is irreducible in R[x, y] and P = (x0, y0) is its single root.

1.19. For a generic field F, char(F) 6= 2, 3, we have essentially the three diffierent cases according the factorization
structure of the polynomial d(z) := z2 − 3x0 ∈ F[z]:

– if d(z) = (z − α)(z − β), α, β ∈ F, α 6= β, has two different factors in F[z] then

f(x, y) = ((y − y0)− α(x− x0)) ((y − y0)− β(x− x0))− (x− x0)3

and we have a split-case node

– if d(z) = (z − α)2, α ∈ F has a factor with multiplicity 2 in F[z] then

f(x, y) = ((y − y0)− α(x− x0))
2 − (x− x0)3

and we have a cusp

– if d(z) is irreducible, then
f(x, y) =

(
(y − y0)2 − 3x0(x− x0)2

)
− (x− x0)3

and we have a nonsplit-case node

1.4 Discriminant (2)

1.20. Let us now consider an elliptic curve given by a Weiwerstrass equation (1.1).
If it is singular we can wlog assume that singular point P is P = (0, 0); therefore

0 = f(0, 0) = a6,

0 = ∂f
∂x (0, 0) = a4,

0 = ∂f
∂y (0, 0) = a3.

We already remarked that the values introduced in Figure 1.1 are defined without any restriction on characteristic.
Thus, for a singular curve (1.1), we have

b2 = a2
1 + 4a2, b4 = b6 = b8 = 0, c4 = (a2

1 + 4a2)2, c6 = (a2
1 + 4a2)3

so that ∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 = 0.

Lemma 1.21. If an elliptic curve given by a Weierstress equation (1.1) is singular then ∆ = 0.

5



Moreover such singular curve is given by an equation f(x, y) = x3 where we set

f(x, y) = y2 + a1xy − a2x
2

and f(x, y) factorizes in F into either

• two linear distinct factors iff a2
1 + 4a2 6= 0 (node case),

• a single linear factor with multiplicity 2 iff a2
1 + 4a2 = 0 (cusp case).

We have already proved in Theorem 1.13 the converse of Lemma 1.21iff char(F) 6= 2 and, in Corollaries 1.55
and 1.64, we will prove that also in case char(F) = 2.

Theorem 1.22. An elliptic curve given by a Weierstress equation (1.1) is singular if and only if ∆ = 0.
It has a node if and only if ∆ = 0 and c4 6= 0; it has a cusp if and only if ∆ = 0 and c4 = 0.

1.5 Elliptic curves in the Reals

1.6 Projective space

1.7 Projective elliptic curves

1.23. Recall that for a projective curve C given by a homogeneous polynomial F (X, Y, Z), a point P on C and a line
` := aX + bY + cZ:

(1) P is non singular iff at least one among ∂F
∂X (P ), ∂F

∂Y (P ), ∂F
∂Z (P ) is non zero,

(2) in which case the tangent L to the curve C at the non singular point P is

L =
∂F

∂X
(P )X +

∂F

∂Y
(P )Y +

∂F

∂Z
(P )Z.

Up to a proper translation we can wlog assume P = (0 : 0 : 1) and express F as

F (X, Y, Z) =
deg(F )∑

i=0

fi(X, Y )Zdeg(F )−i,

with f0 = 01

If moreover `(P ) = 0, so that c = 0, its projective points are {bt : −at : 10} and we have

F (bt,−at, 1) =
deg(F )∑

i=1

fi(b,−a)ti.

We define

(3) the intersection multiplicity of ` and F at P , i(P, `, F ), as

i(P, `, F ) :=

{
+∞ iff F (bt,−at, 1) = 0
min{j : fj 6= 0} iff F (bt,−at, 1) =

∑deg(F )
i=j fi(b,−a)ti 6= 0;

(4) P a flex or inflection point of F if the intersection multiplicity of the tangent line L to F at P satisfies
i(P, `, F ) ≥ 3.

1.24. We can consider the projective version of the elliptic curve E given by (1.1), namely the curve consisting of all
(projective) solutions of the polynomial

F (X, Y, Z) = Y 2Z + a1XY Z + a3Y Z2 −
(
X3 + a2X

2Z + a4XZ2 + a6Z
3
)

(1.8)

whose finite points are the set {(x : y : 1) : (x, y) ∈ E} and whose single roint at infinity is the only solution of the
equation

0 = F (X, Y, 0) = X3,

namely O := (0 : 1 : 0).
1since F (P ) = 0 ⇐⇒ fi(0, 0) = 0 for each i and f0 ∈ F.
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1.25. Since

∂F

∂X
= a1Y Z − 3X2 − 2a2XZ − a4Z

2,

∂F

∂Y
= 2Y Z + a1XZ + a3Z

2,

∂F

∂Z
= Y 2 + a1XY + 2a3Y Z − a2X

2 − 2a4XZ − 3a6Z
2,

and
∂F

∂X
(O) =

∂F

∂Y
= 0,

∂F

∂Z
(O) = 1

, we cab deduce that

(1) O is non singular,

(2) the tangent to E at O is L = Z;

Moreover, since F (X, Y, Z) =
∑3

i=1 fiY
3−i with

f1 = Z,

f2 = a1XZ + a3Z
2,

f3 = −(X3 + a2X
2Z + a4XZ2 + a6Z

3),

we have F (t, 1, 0) = t3 so that

(3) i(O,L, F ) = 3 and

(4) O is a flex.

1.26. Let G(X, Y, Z) ∈ F[X, Y, Z] be a generic cubic2

G(X, Y, Z) = c300X
3 +c210X

2Y +c120XY 2 +c030Y
3 +c201X

2Z +c111XY Z +c021Y
2Z +c102XZ2 +c012Y Z2 +c033Z

3

and the curve C defined by it; if we impose that

(1) P = (0 : 1 : 0) ∈ C,

(2) P is not singular,

(3) the tangent L to C at P is Z,

(4) P is a flex point and

(5) Z - G

we obtain

(1) 0 = G(0, 1, 0) = c030Y
3;

(2) since ∂G
∂Y (P ) = 3c030 = 0, necessarily either 0 6= ∂G

∂X (P ) = c120 or 0 6= ∂G
∂Z (P ) = c021;

(3) the tangent L = c120X + c021Z is Z ⇐⇒ c120 = 0 and c021 6= 0;

(4) Z | c210X
2Y + c111XY Z + c012Y Z2 =⇒ c210 = 0;

(5) Z - G = c300X
3 + c201X

2Z + c111XY Z + c021Y
2Z + c102XZ2 + c012Y Z2 + c033Z

3 =⇒ c300 6= 0.

If we now compute G(tx, ty, 1) we obtain

G(tx, ty, 1) = c300t
3x3 + c201t

2x2 + t2c111xy + c021t
2y2 + c102tx + c012ty + c033;

and we can further grant c300t
3 = c021t

2 = 1 setting t = c021
c300

.
The equation, thus becomes

G = c300{X3 +
c201

c300
X2Z +

c111

c300
XY Z + Y 2Z +

c201

c102
XZ2 +

c012

c300
Y Z2 +

c033

c300
Z3

namely (1.1).
2The argiment of this section does not need any restriction on characteristic.
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Lemma 1.27. If G(X, Y, Z) ∈ F[X, Y, Z] is a cubic which has a flex at (x0 : y0 : z0), then there is a projective
transformation Φ such that fΦ(X, Y, Z) = f(Φ−1

1 (X),Φ−1
1 (Y ),Φ−1

1 (Z)) has (1.8) as equation.

Proof. In fact if Φ1 is the translation such that Φ1(x0 : y0 : z0) = (0 : 1 : 0) then fΦ1 := f(Φ−1
1 (X),Φ−1

1 (Y ),Φ−1
1 (Z))

has a flax at (0 : 1 : 0).

Let L(X, Y, Z) = αX + βZ be the tangent to fΦ1 at (0 : 1 : 0) and choose a non singular matrix
(

a b
c d

)
with

L(a, b, 1) = αa + βb = 0 and define

Φ−1
2 =

a 0 b
0 1 0
c 0 d

 .

Then Φ−1
2 (α : 0 : β) = (0 : 0 : 1) and LΦ2 is the same line as Z so that (fΦ1)Φ2 = fΦ2Φ1 has a flex at (0 : 1 : 0)

with Z as tangent..
The matrix

Φ3(t)−1 =

t 0 0
0 t 0
0 0 1


is such that

fΦ3(t)Φ2Φ1 = (fΦ2Φ1)Φ3(t) = fΦ2Φ1(tX, tY, Z) = cY Y Zt3Y 2Z + · · ·+ cXXXt3X3 + · · ·

Thus for t = cY Y Z

cXXX
the coefficients of Y 2Z and X3 are the same.. ut

1.8 Bezout’s Theorem

Fact 1.28 (Bezout’s Theorem). Let C1 and C2 be two projective curve with no common component. Then, it holds∑
P∈C1∩C2

I(C1 ∩ C2, P ) = deg(C1) deg(C2).

where I(C1 ∩ C2, P ) is properly defined as multiplicity index to each point P ∈ C1 ∩ C2, in such a way that I(C1 ∩
C2, P ) := i(P, `, C1) in the particular case in which C2 = ` is a line.

1.29. Thus if C is an irreducilbe non-singular elliptic curve and ` is any line, either

• either C ∩ ` consists of three different point, or

• ` is the tangent to C at P , i(P, `, C1) = 2 and there is a thrid point Q ∈ C ∪ `, Q 6= P , or

• P ∈ C ∪ ` is a flex point.

1.30. Let us assume that C is an elliptic curve with a singular point which we can wlog assume to be P = (0 : 0; 1)
and consider the intersection C ∩ ` where ` = ax + by is any line s.t. P ∈ `:

• if C is a cusp so that F = Y 2Z −X3:

– if a = 0, F (t, 0, 1) = t3, i(P, `, C) = 3;
– if b = 0, F (0, t, 1) = t2, i(P, `, C) = 2 the third point being O = (0 : 1 : 0);

– if a 6= 0 6= b, F (bt,−at, 1) = a2t2 − b3t3 = −t2(t − a2

b3 so that i(P, `, C) = 2 the third point being
Q := (c2 : −c3 : 1), with c := a

b

• if C is a split-case node so that F = Y 2Z − d2X2Z −X3

– if a = 0, F (t, 0, 1) = −d2t2 − t3 = −t2(t + d2), i(P, `, C) = 2 the third point being O = (0 : −d2 : 1);
– if b = 0, F (0, t, 1) = t2, i(P, `, C) = 2 the third point being O = (0 : 1 : 0);

– if a 6= 0 6= b, F (bt,−at, 1) = a2t2 − d2b2t2 − b3t3 = −t2(t− a2−d2b2

b3 so that
∗ i(P, `, C) = 2 the third point being Q := (c2 − d2 : c3 − d2c : 1), with c := a

b if c 6= ±d

∗ i(P, `, C) = 3 if a2 − d2b2 = 0.

• if C is a nonsplit-case node. so that F = (Y 2Z + d2X2Z −X3

– if a = 0, F (t, 0, 1) = d2t2 − t3 = −t2(t− d2), i(P, `, C) = 2 the third point being O = (0 : d2 : 1);
– if b = 0, F (0, t, 1) = t2, i(P, `, C) = 2 the third point being O = (0 : 1 : 0);

– if a 6= 0 6= b, F (bt,−at, 1) = a2t2 + d2b2t2 − b3t3 = −t2(t − a2+d2b2

b3 so that i(P, `, C) = 2 the third point
being Q := (c2 + d2 : c(c2 +−d2) : 1), with c := a

b

8



1.9 Arithmetics of the points of an elliptic curve (1)

1.10 Admissible change of variables

1.31. Let us consider the generic change of variables Φ : P3 → P3

X = a11X
′ + a12Y

′ + a13Z
′, Y = a21X

′ + a22Y
′ + a23Z

′, Z = a31X
′ + a32Y

′ + a33Z
′; (1.9)

if we apply it to a cubic F (X, Y, Z) in Weierstrass form, in order to obtain

F ′(X ′, Y ′, Z ′) = F (a11X
′ + a12Y

′ + a13Z
′, a21X

′ + a22Y
′ + a23Z, a31X

′ + a32Y
′ + a33Z

′)

still in Weierstrass form, we must at least be granted that

• Φ(Z) = Z so that a31 = a32 = 0, a33 = 1;

• O = (0 : 1 : 0) is preserved so that a12 = a32 = 0;

• the weight wt(X) = 3,wt(Y ) = 2 is preserved

• or (what is essentially the same) that a3
11 = a2

21 6= 0.

1.32. It is then easy to realize that the most general allowable change of coordinates Φ which transform each cubic
F (X, Y, Z) in Weierstrass form into a cubic still in Weierstrass form is

X = u2X ′ + rZ ′, Y = u3Y ′ + u2sX ′ + tZ ′, Z = Z ′; (1.10)

and (in the affine case)
x = u2x′ + r, y = u3y′ + u2sx′ + t. (1.11)

1.33. Remark that there is an inverse transformation

x′ = v2x + r′, y′ = v3y′ + v2s′x + t′ (1.12)

which satisfies
uv = 1,

r = −u2r′, r′ = −v2r,
s = −us′, s′ = −vs,
t = −u3[t′ − s′r′], t′ = −v3[t− sr], .

since
x = u2(v2x + r′) + r = x,
y = u3(v3y + v2s′x + t′) + u2s(v2x + r′) + t

= u3v3y + u2v2(us′ + s)x + (u3t′ + u2sr′ + t)
= u3v3y + u2v2(us′ + s)x + (u3t′ − u3s′r′ + t) = y

x′ = v2(u2x′ + r) + r′ = x′,
y′ = v3(u3y + u2sx′ + t) + v2s′(u2x′ + r) + t′

= u3v3y′ + u2v2(vs + s′)x′ + (v3t + v2s′r + t′)
= u3v3y′ + u2v2(vs + s′)x′ + (v3t− v3sr + t′) = y′

1.34. Thus if we apply the admissible change of coordinate (1.11) to

f(x, y) = y2 + a1xy + a3y −
(
x3 + a2x

2 + a4x + a6

)
we obtain

f(u2x′ + r, u3y′ + su2x′ + t)u−6 = y′2 + a′1x
′y′ + a′3y

′ −
(
x′3 + a′2x

′2 + a′4x
′ + a′6

)
where the values a′i are defined as in Fig. 1.2

1.35. If we assume char(F) 6= 2, 3, and we apply (1.11) to an elliptic curve expressed as

f(x, y) = y2 −
(
x3 + Ax + B

)
using (1.5) we obtain

u6y′2 + 2u5sx′y′ + 2u3ty′ − u6x′3 − u4(3r − s2)x′2 − u2(A + 3r2 − 2st)x′ − (Ar + B + r3 − t2);

thus the most general allowable change of coordinates Φ which grants that also Φ(f) is expressed via (1.5) must
satisfie

0 = s = t = 3r − s2 whenee r = s = t = 0
and has the shape

x = u2x′, y = u3y′, (1.13)
so that

Φ(f(x, y)) = u6y′2 − u6x′3 − u2Ax′ −B. (1.14)

9



Figure 1.2:
a′1 := a1+2s

u

a′2 := a2−a1s+3r−s2

u2

a′3 := a3+a1r+2t
u3

a′4 := a4−sa3+2a2r−a1(rs+t)+3r2−2st
u4

a′6 := a6−a1rt+a2r2−a3t+a4r+r3−t2

u6

1.11 Invariant (1)

1.36. Thus if we apply the admissible change of coordinate (1.11) to

f(x, y) = y2 + a1xy + a3y −
(
x3 + a2x

2 + a4x + a6

)
we obtain the relations

ua′1 = a1 + 2s,
u2a′2 = a2 − a1s + 3r − s2,

u3a′3 = a3 + a1r + 2t = ∂f
∂y (r, t)

u4a′4 = a4 − sa3 + 2a2r − a1(rs + t) + 3r2 − 2st = −∂f
∂x (r, t)− s∂f

∂x (r, t)
u6a′6 = a6 − a1rt + a2r

2 − a3t + a4r + r3 − t2 = f(r, t)

1.37. If we reformulate
f ′(x′, y′) = y′

2 + a′1x
′y′ + a′3y

′ −
(
x′3 + a′2x

′2 + a′4x
′ + a′6

)
as

f ′(x′, y′) = y′
2 −

(
x′3 + b′2x

′2 + b′4x
′ + b′6

)
we obtain

u2b′2 = (ua′1)
2 + 4u2a′2 = a2

1 + 4sa1 + 4s2 + 4a2 − 4a1s + 12r − 4s2 = a2
1 + 4a2 + 12r = b2 + 12r

and, with a similar computation

u4b′4 = b4 + rb2 + 6r2,

u6b′6 = b6 + 2rb4 + r2b2 + 4r3,

u8b′8 = b8 + 3rb6 + 3r2b4 + r3b6 + 3r4.

1.38. If we further reformulate f ′(x′, y′) as

f ′(x′, y′) = y′
2 −

(
x′3 + c′4x

′ + c′6
)

we have
u4c′4 = (u′2b′2)

2 − 24u4b′4 = b2
2 + 24rb2 + 144r2 − 24b4 − 24rb2 − 144r2 = b2

2 − 24b4 = c′4

and

u6c′6 = −(u′2b′2)
3 + 36(u2b′2)(u

4b′4)− 216u6b′6

= −b3
2 − 36rb2

2 − 432r2b2 + 1728r3

+ 36b2b4 + 432b4r + 36b2
2r + 648b2r

2 + 2592r3

− 216b6 − 432rb4 − 216r2b2 − 864r3

= −b3
2 + 36b2b4 − 216b6

= c6

1.39. A more involved computation gives

u12∆′ = −(u2b2)2(u8b8)− 8(u4b3
4)− 27(u6b6)2 + 9(u2b2)(u4b4)(u6b6)

=
(
36r2 + 6b2r

) (
b2b6 − b2

4 − 4b8

)
− b2

2b8 − 8b3
4 − 27b2

6 + 9b2b4b6

= −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6

= ∆
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Figure 1.3:
ua′1 = a1 + 2s,

u2a′2 = a2 − a1s + 3r − s2,

u3a′3 = a3 + a1r + 2t = ∂f
∂y (r, t)

u4a′4 = a4 − sa3 + 2a2r − a1(rs + t) + 3r2 − 2st = −∂f
∂x (r, t)− s∂f

∂x (r, t)
u6a′6 = a6 − a1rt + a2r

2 − a3t + a4r + r3 − t2 = f(r, t)

u2b′2 = b2 + 12r
u4b′4 = b4 + rb2 + 6r2,
u6b′6 = b6 + 2rb4 + r2b2 + 4r3,
u8b′8 = b8 + 3rb6 + 3r2b4 + r3b6 + 3r4.

u4c′4 = c4

u6c′6 = c6

u12∆′ = ∆
j′ = j

1.40. As a consequence

j′ :=
c′4

3

∆′ =
(u4c4)3

u12∆
=

c4
3

∆
= j.

Definition 1.41. The j-invariant of the non-singular elliptoc curve (1.1) is the value j := c3
4

∆ .

Lemma 1.42. Two isomrphic non-singular elliptic curves have the same invariant

1.12 Invaraint (2)

1.43. Assuming char(F) 6= 2, 3 and let us consider a non singular curve f(x, y) = y2 − x3 − Ax−B expressed using
(1.5); we have

j =
c4

3

∆
=

(−48A)3

∆
=
−(243A)3

∆
=
−21233A3

∆
=
−263322A

3

∆
=
−1234A3

∆
= −1728

4A3

∆
.

1.44. Let us now consider two non singular curves

f(x, y) = y2 − x3 −Ax−B and f ′(x′, y′) = y′2 − x′3 −A′x′ −B′

expressed using (1.5).
If they are isomorphic via the transformation (1.13) we have

Φ(f) = u6y′2 − u′6x′3 − u2Ax′ −B

= u6

(
y′2 − x′3 − A

u4
x′ − B

u6

)
= u6

(
y′2 − x′3 −A′x′ −B′)

whence
u4A′ = A and u6B′ = B.

Moreover
∆ = −16

(
4A3 − 27B3

)
= −16u12

(
4A′3 − 27B′3) = u12∆′

and

j = −1728
(4A)3

∆
= −1728

(4u4A′)3

u12∆′ = −1728
4A′3

∆′ = j

as we already know.

Lemma 1.45. For two curves f, f ′ we have

j = j′ ⇐⇒ A3B′2 = A′3B2

11



Proof. Using

∆ = −16
(
4A3 − 27B3

)
and j = −1728

(4A)3

∆
we have

(4A)3

4A3 − 27B3
= −16

(4A)3

∆
=

16
1728

j =
16

1728
j′ =

(4A′)3

4A′3 − 27B′3 ⇐⇒ j = j′;

moreover we have also the trivial equivalences

(
4A′3 − 27B′3) · (4A)3 =

(
4A3 − 27B3

)
· (4A′)3 ⇐⇒ (4A)3

4A3 − 27B3
=

(4A′)3

4A′3 − 27B′3

and

44A3A′3+1728A3B′2 =
(
4A′3 − 27B′3)·(4A)3 =

(
4A3 − 27B2

)
·(4A′)3 = 44A3A′3+1728A′3B′2 ⇐⇒ A3B′2 = A3B′2.

ut

1.46. Consider the two non singular curves

f(x, y) = y2 − x3 −Ax−B and f ′(x′, y′) = y′2 − x′3 −A′x′ −B′

we intend to classify all transformations

x = u2x′, y = u3y′ : f ′(x′, y′) = f(u2x′, u3y′)

under the assumption that j = j′.
Under this assumptions we have

• u4A′ = A and u6B′ = B from f ′(x′, y′) = f(u2x′, u3y′);

• A3B′2 = A′3B2 (Lemma 1.45)

• 4A3 − 27B3 = − 1
16∆ 6= 0 (since f is non singular)

• 4A′3 − 27B′3 = − 1
16∆′ 6= 0 (since f ′ is non singular)

Moreover, we intend to describe the group structure of the automorphisms of the curve f , id est under the further
assumptions

• A = A′, B = B′.

To do so, we need to consider three cases

(1) If B = 0 , we can further deduce, from ∆ 6= 0, A 6= 0 , whence, from A3B′2 = A′3B2 = 0, B′ = 0 and, from

∆′ 6= 0, A′ 6= 0 ; this case is studied in 1.47

(2) If A = 0 , we can further deduce, from ∆ 6= 0, B 6= 0 , whence, from 0 = A3B′2 = A′3B2, A′ = 0 and, from

∆′ 6= 0, B′ 6= 0 ; this case is studied in 1.48

(3) If AB 6= 0 , from A3B′2 = A′3B2 we deduce that A′ = 0 ⇐⇒ B′ = 0 and,since ∆′ 6= 0 this implies A′B′ 6= 0 ;
this case is studied in 1.49

1.47. Since A 6= 0 6= A′ we can set u = 4

√
A
A′ and we obtain the transfiormation

y2 − x3 −Ax = f(x, y) = f(u2x′, u3y′)
= u6y′2 − u6x′3 −Au2x′

= u6

(
y′2 − x′3 − A

u4
x′
)

= u6
(
y′2 − x′3 −A′x′

)
= u6f ′(x′, y′)

Note that we have

c6 = −864B = 0, c4 = −48A 6= 0, 1728∆ = c3
4 − c2

6 = c3
4, j = c3

4
∆ = 1728 .
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1.48. Since B 6= 0 6= B′ we can set u = 6

√
B
B′ and we obtain the transfiormation

y2 − x3 −B = f(x, y) = f(u2x′, u3y′)
= u6y′2 − u6x′3 −B

= u6

(
y′2 − x′3 − B

u6

)
= u6

(
y′2 − x′3 −B′) = u6f ′(x′, y′)

Note that we have

c6 = −864B 6= 0, c4 = −48A = 0, 1728∆ = c3
4 − c2

6 = −c3
6, j = c3

4
∆ = 0 .

1.49. Since both A 6= 0 6= A′ and B 6= 0 6= B′ and A3B′2 = A′3B2 we have
(

A
A′

)3
=
(

B
B′

)2
so that

6
√

(
B

B′ ) = 4
√

(
A

A′ ) =: u

satisfies u12 =
(

A
A′

)3
=
(

B
B′

)2
We thus obtain the transfiormation

y2 − x3 −Ax−B = f(x, y) = f(u2x′, u3y′)
= u6y′2 − u6x′3 −Au2x′ −B

= u6

(
y′2 − x′3 − A

u4
x′ − B

u6

)
= u6

(
y′2 − x′3 −A′x′ −B′) = u6f ′(x′, y′)

Note that c4 = −48A 6= 0 and j = −1728 (4A)3

∆ 6= 0 .
Moreover

j = 1728 =⇒ c3
4 − c2

6 = 1728∆ = j∆ = c3
4 ⇐⇒ c2

6 = 0 ⇐⇒ c6 = 0

and conversely c6 = 0 =⇒ j = c3
4

∆ = c3
4−c2

6
∆ = 1728; thus

Thus we have c6 = −864B 6= 0 whence j 6= 1728 .

1.50. If, moreover f = f ′, id est A = A′, B = B′ we have

B = 0 : A = A′ =⇒ u4 = A
A′ = 1 and the automorphism groop is isomorphic to that of the 4th root of the unity,

namely Z4.

A = 0 : B = B′ =⇒ u6 = B
B′ = 1 and the automorphism groop is isomorphic to that of the 6th root of the unity,

namely Z6.

AB 6= 0 : Since we have both A = A′ =⇒ u4 = A
A′ = 1 and B = B′ =⇒ u6 = B

B′ = 1 we obtain u2 = 1, u = {±1}
and the automorphism groop is isomorphic to that of the 2th root of the unity, namely Z2.

1.13 Invaraint (3)

1.14 Arithmetics of the points of an elliptic curve (2)

1.15 Elliptic curve in characteristic 2

1.51. Let us consider a non singular elliptic curve

f(x, y) = y2 + a1xy + a3y + x3 + a2x
2 + a4x + a6 = 0

in a field F, char F = 2.
We thus have

b2 = a2
1, b4 = a1a3, b6 = a2

3, c4 = b2
2 = a4

1, c6 = a6
1,

and j = a12
1
∆ .

Thus there two diffierent cases; either

• a1 = 0 ⇐⇒ j = 0 or

• a1 6= 0 ⇐⇒ j 6= 0
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1.16 Elliptic curve in characteristic 2: j = 0

1.52. Since j = 0 we have
b2 = b4 = c1 = c2 = 0 and b6 = a2

3,

so that ∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 = b2

6 = a4
3.

Moreover

f(x + a2, y) = y2 + a3y + (x3 + a2x
2 + a2

2x + a3
2) + a2(x2 + a2

2) + a4(x + a2) + a6

= y2 + a3y + x3 + (a4 + a2
2)x + (a6 + a2a4 + a3

2)

As a consequence

Lemma 1.53. If a1 = 0, then

(1) ∆ = 0 ⇐⇒ a3 = 0;

(2) we can wlog assume a2 = 0.

Lemma 1.54. Let β, γ ∈ F such that β2 = a4, γ
2 = a6.

If a1 = 0, (β, γ) is a singular point if and only if a3 = 0.

Proof. We have

(1) ∂f
∂x = x2 + a4,

(2) ∂f
∂y = a1x + a3 = a3,

(3) f(x, y) = y2 + a3y + (x2 + a4)x + a6.

so that, if there is a singular point (x0, y0) then

(2) a3 = ∂f
∂y (x0, y0) = 0,

(1) 0 = ∂f
∂x (x0, y0) = x2

0 + a4 so that x0 = β,

(3) 0 = f(x0, y0) = y2
0 + a6 so that y0 = γ;

conversily, if a3 = 0, then

(1) ∂f
∂x (β, γ) = β2 + a4 = 0,

(2) ∂f
∂x (β, γ) = a3 = 0,

(3) f(β, γ) = γ2 + a3γ + (β2 + a4)β + a6 = γ2 + a6 = 0.
ut

Corollary 1.55. If char(F) = 2 and a1 = 0, an elliptic curve given by a Weierstress equation (1.1) is singular if and
only if ∆ = 0.

1.56. The admissible isomorphisms (1.11) between

f(x, y) = y2 + a3y + x3 + a4x + a6 and f ′(x′, y′) = y′2 + a′3y
′ + x′3 + a′2x

2 + a6,

since
0 = a′2 := a2−a1s+3r−s2

u2 =⇒ r = s2

a′3 := a3+a1r+2t
u3 =⇒ u3 = a3

a′
3

a′4 := a4−sa3+2a2r−a1(rs+t)+3r2−2st
u4 =⇒ a′4 = a4+sa3+s4

u4

a′6 := a6−a1rt+a2r2−a3t+a4r+r3−t2

u6 =⇒ a′6 = a6+a3t+a4s2+s6+t2

u6 ,

are
x = u2x′ + s2, y = u3y′ + u2sx′ + t

and must satisfy

u3 =
a3

a′3
, s4 + a3s + a4 − u4a′4 = 0, t2 + a3t + s6 + a4s

2 + a6 − u6a′6 = 0

Corollary 1.57. Denote
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– g1(x) := x3 + a3
a′
3
∈ F[x],

– K1 := F[x]/g1(x) which is a separable extension since g′1(x) 6= 0,

– u ∈ K1 s.t. g1(u) = 0;

– g2(x, y) := y4 + a3y + a4 − x4a′4 ∈ F[x, y],

– h2(y) := g2(u, y) = y4 + a3y + a4 − u4a′4 ∈ K1[y],

– K2 := K1[y]/h2(y) = F[x, y]/I(g1(x), g2(x, y)) which is a separable extension since h′2(y) = a3 6= 0;

– s ∈ K2 s.t. h2(s) = 0;

– g3(x, y, z) := z2 + a3z + y6 + a4y
2 + a6 − x6a′6 ∈ F[x, y, z],

– h3(x, y, z) := g2(u, s, z) = z2 + a3z + s6 + a4s
2 + a6 − u6a′6 ∈ K2[z],

– K3 := K2[y]/h3(y) = F[x, y, y]/I(g1(x), g2(x, y)g3(x, y, z)) which is a separable extension since h′3(z) = a3 6= 0;

– t ∈ K3 s.t. h3(t) = 0.

Then the two curves f, f ′ with the same invariant j = 0 are isomorphic via

x = u2x′ + s2, y = u3y′ + u2sx′ + t

Corollary 1.58. The 24 automorphisms of f(x, y) = y2 +a3y+x3 +a4x+a6 are given by the triple (u, s, t) satisfying
the equations

u3 = 1, s4 + a3s + a4(1− u) = 0, t2 + a3t + s6 + a4s
2 + a6(1− u) = 0.

Lemma 1.59. The curve
f(x, y) = y2 − y − x3

has 0 as invariant.

1.17 Elliptic curve in characteristic 2: j 6= 0

1.60. It is sufficient to properly choose r, s, t in (1.11) in order to obtain a′1 = 1, a′3 = 0, a′4 = 0. In fact (see Fig.1.2)

1 = a′1 = a1
u ⇐⇒ u = a1

0 = a′3 := a3+a1r
u3 ⇐⇒ r = a3

a1

0 = a′4 := a4−sa3+2a2r−a1(rs+t)+3r2−2st
u4

= a4−s(a3+a1r)−a1t+r2

u4

= a4−a1t+r2

u4 ⇐⇒ t = a4+r2

a1
= a2

1a4+a2
3

a3
1

1.61. For
f(x, y) = y2 + xy + x3 + a2x

2 + a6 = 0

we have
b2 = 1, b4 = b6 = 0, c4 = c6 = 1 and b8 = a6,

so that ∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 = a6 and j = a−1

6 .

Lemma 1.62. If a1 6= 0, (0, 0) is a singular point if and only if a6 = 0.

Proof. We have

(1) ∂f
∂x = y + x2,

(2) ∂f
∂y = x,

(3) f(x, y) = y2 + xy + x3 + a2x
2 + a6.

so that, if there is a singular point (x0, y0) then

(2) x0 = ∂f
∂y (x0, y0) = 0,

(1) 0 = ∂f
∂x (0, y0) = y0,

15



(3) 0 = f(0, 0) = a6;

conversily, if a6 = 0, then

(1) ∂f
∂x (0, 0) = 0,

(2) ∂f
∂x (0, 0) = 0,

(3) f(0, 0) = a6 = 0.
ut

Corollary 1.63. If char(F) = 2 and a1 6= 0, an elliptic curve given by a Weierstress equation (1.1) is singular if and
only if ∆ = 0.

1.64. The admissible isomorphisms (1.11) between

f(x, y) = y2 + xy + x3 + a2x
2 + a6 and f ′(x′, y′) = y′2 + x′y′ + x′3 + a′2x

2 + a6,

since

1 = a′1 = a1
u =⇒ u = 1

0 = a′3 := a3+a1r+2t
u3 =⇒ r = 0

0 = a′4 := a4−s(a3+a1r)−a1t+r2

u4 =⇒ t = 0
a′6 := a6−a1rt+a2r2−a3t+a4r+r3−t2

u6 =⇒ a′6 = a6

a′2 := a2−a1s+3r−s2

u2 =⇒ a′2 = a2 − s− s2,

are

x = x′, y = y′ + sx′

and must satisfy

a′2 = a2 − s− s2 and a′6 = a6.

Corollary 1.65. Denote g(x) := x2 + x + a2 + a′2 ∈ F[x] and K := F[x]/g(x) which is a separable extension since
g′(x) = 1 and let s ∈ K be s.t. g(s) = 0.

Then the two curves f, f ′ with the same invariant j = a−1
6 = a′6

−1 are isomorphic via

x = x′, y = y′ + sx′

Corollary 1.66. The two automorphisms of f(x, y) = y2 + xy + x3 + a2x
2 + a6 are obtained setting s = 0, 1, namely

x = x′, y = y′ and x = x′y = y′ + x′

Lemma 1.67. For each j ∈ F, j 6= 0, the curve

f(x, y) = y2 + xy + x3 + j−1

has j as invariant.

1.68. For

f(x, y) = y2 + xy + x3 + a2x
2 + a6 = 0

we have x ∂y
∂x + y = x2 so that for P = (x, y) the point (x3, y3) := P + P satisfies

16



x3 =
(

∂y

∂x

)2

+ a1
∂y

∂x
− a2 − 2x

=
(

x2 + y

x

)2

+
x2 + y

x
+ a2

= (
x4 + y2

x2
+

x2 + y

x
+ a2

= (
x4 + xy + x3 + a2x

2 + a6

x2
+

x2 + y

x
+ a2

= (
x4 + xy + x3 + a2x

2 + a6 + x(x2 + y) + a2x
2

x2

= (
x4 + a6

x2

y3 = −
(

∂y

∂x
+ a1

)
x3 −

∂y

∂x
x− y − a3

=
∂y

∂x
x3 +

∂y

∂x
x + x3 + y

=
x2 + y

x
x3 + x2 + y + x3 + y

=
x2 + y

x
x3 + x2 + x3+

1.18 Elliptic curve in characteristic 3

1.69. Let us consider a non singular elliptic curve

f(x, y) = y2 + a1xy + a3y + x3 + a2x
2 + a4x + a6 = 0

in a field F, char F = 3.
Since 2 = −1 and 4 = 1 in F we can perform the transformation y → y + a1y + a3 and express the curve via the

equation (1.2)
y2 = x3 + b2x

2 − b4x + b6,

with
b2 = a2, b4 = −a4, b6 = a6, b8 = a2a6 − a2

4; c4 = b2
2 = a2

2, c6 = −b3
2 = −a3

2

so that
∆ = −b2

2b8 − b3
4 = a2

2a
2
4 − a3

2a6 − a3
4

and j = a6
2

∆ .
Thus there are two diffierent cases; either

• a2 = 0 ⇐⇒ j = 0 or

• a2 6= 0 ⇐⇒ j 6= 0

1.19 Elliptic curve in characteristic 3: j 6= 0

1.70. For f(x, y) = y2 − x3 − b2x
2 + b4x− b6 we have

f(x + α, y) = y2 − (x + α)3 − b2(x + α)2 + b4(x + α)− b6

= y2 − (x3 + α3)− b2(x2 − αx + α2) + b4(x + α)− b6

= y2 − x3 − b2x
2 + (b2α + b4)x− (α3 + b2α

2 − b4α + b6)

and it is sufficient to set
α := −b4

b2
, and a6 := α3 + b2α

2 − b4α + b6

in order to present the curve as
f ′(x, y) = y2 − x3 − a2x

2 − a6

with c4 = a2
2,∆ = −a3

2a6 and j = a6
2

−a3
2a6

= −a3
2

a6
.
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1.71. The admissible isomorphism between

f(x, y) = y2 − x3 − a2x
2 − a6 and f ′(x′, y′) = y′2 − x′3 − a′2x

′2 − a′6

since
0 = a′1 = a1+2s

u =⇒ s = 0
0 = a′3 := a3+a1r+2t

u3 =⇒ t = 0
0 = a′4 := a4−sa3+2a2r−a1(rs+t)+3r2−2st

u4 =⇒ r = 0
a′2 := a2−a1s+3r−s2

u2 =⇒ a′2 = a2
u2

a′6 := a6−a1rt+a2r2−a3t+a4r+r3−t2

u6 =⇒ a′6 = a6
u2

are
x = u2x′, y = u3y′′

and must satisfy
u2a′2 = a2 and u6a′6 = a6.

1.72. If the two curves f, f ′ have the same invariant j = −a3
2

a6
= −a′

2
3

a′
6

then a′
6

a6
=
(

a2
a′
2

)3

.

Corollary 1.73. The two curves f, f ′ with the same invariant j = −a3
2

a6
= −a′3

2
a′
6

are isomorphic via

x = u2x′, y = u3y′

where u2 =
(

a2
a′
2

)
.

Corollary 1.74. The two automorphisms of f(x, y) = y2 + xy + x3 + a2x
2 + a6 are obtained setting u = ±1, namely

x = x′, y = y′ and x = x′, y = −y′′

Lemma 1.75. For each j ∈ F, j 6= 0, the curve

f(x, y) = y2 − x3 − x2 − j−1

has j as invariant.

1.20 Elliptic curve in characteristic 3: j = 0

1.76. Since a2 = 0 we have
b2 = 0, b4 = −a4, b6 = a6, b8 = −a2

4; c4 = c6 = 0

so that ∆ = b3
4 = −a3

4.

1.77. The admissible isomorphism between

f(x, y) = y2 + x3 + a4x + a6 and f ′(x′, y′) = y′2 + x′3 + a′4x
2 + a6

since
0 = a′2 := a2−a1s+3r−s2

u2 =⇒ s = 0
0 = a′3 := a3+a1r+2t

u3 =⇒ t = 0
a′4 := a4−sa3+2a2r−a1(rs+t)+3r2−2st

u4 =⇒ a′4 = a4
u4

a′6 := a6−a1rt+a2r2−a3t+a4r+r3−t2

u6 =⇒ a′6 = a6+a4r+r3

u6

are
x = u2x′ + r, y = u3y′

and must satisfy
u4 =

a4

a′4
, u6a′6 = a6 + a4r + r3.

Corollary 1.78. Denote

– g1(x) := x4 + a4
a′
4
∈ F[x],

– K1 := F[x]/g1(x) which is a separable extension since g′1(x) = 1,

– u ∈ K1 s.t. g1(u) = 0;
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– g2(x, y) := y3 + a4y + a6 − x6a′6 ∈ F[x, y],

– h2(y) := g2(u, y) = y3 + a4y + a6 − x6a′6 ∈ K1[y],

– K2 := K1[y]/h2(y) = F[x, y]/I(g1(x), g2(x, y)) which is a separable extension since h′2(y) = a4 6= 0;

– r ∈ K2 s.t. h2(r) = 0;

Then the two curves f, f ′ with the same invariant j = 0 are isomorphic via

x = u2x′ + r, y = u3y′.

Corollary 1.79. The 12 automorphisms of f(x, y) = y2 + x3 + a4x + a6 are given by the pairs (u, r) satisfying the
equations

u4 = 1, r3 + a4r + a6(1− u2) = 0.

More precisely they are the 12 pairs (u, r) such that either

r3 + a4r = 0 and u = 1, or

r3 + a4r = 0 and u = −1, or

r3 + a4r + 2a6 = 0 and u = α, or

r3 + a4r + 2a6 and u = −α,

where α ∈ Fsep is such that α2 = −1.

Lemma 1.80. The curve
f(x, y) = y2 − x3

has 0 as invariant.
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