Elliptic Curves

1.1 Weierstrass Equations

Definition 1.1. An (affine) elliptic curve E over a field I is a curve which is given by an equation of the form

y2 + a1y + asy = x> + a2$2 + asx + ag.

(1.1)

1.2. If you define on the set of the terms {z%y" : (a,b) € N2}, the weight function wt defined by wt(z) = 2, wt(y) = 3,

remark that in (1.1) each coefficient a; of a term 7 has the value 7 := 6 — wt(7).
Such mnemonics is preserved throughout all the reformulations of (1.1).

1.3. If we assume that char(FF) # 2, we can perform the linear transformation y — y — -2 obtaining the equation

2 3, 0 +4ag 5  ai1a3 +2a4 a3 + 4ag by 5 by be

Y- =x° + x° + x + =23+ =22+ =+ —.

4 2 4 4 2 4

1.4. If moreover char(F) # 3, the linear transformation z — x — % produces the equation
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1.5. Denoting

flz,y) = y2+a1xy+a3y—x3—a2x2—a4x—a6,
_ .2_.3,% G
gl@y) = ¥ -r+ gr e

it holds
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1.6. If we assume F = Q, it is natural to compute the polynomial h(z,y) € Z[x, y] such that

h(z,y) = ag(% %) € Zlz,y).

Such condition requires that «, 3, € Z satisfy

o = ged(B%,72,48,864) = ged(8°,+2,2"3,2°3%);



Figure 1.1:

by = a% + 4as,
by = aiaz+ 2ay,
bg = a% + 4ag,
bg = a%a(g —aiasay + agag + dasag — ai;
ca = b2 —24by,
cg = —b3+ 36byby — 216bg;
A = —b%bg - SbZ - 27[)(23 + 9b2b4b6;
3
j = Z (if Ais invertible)
related by the identities
4bg = bobg — b3 and 1728A = ¢ — c2.
the minimal solution is
a=203°=6%3=06%~=6"
which gives
2 5, 6 6° 2 3
hz,y) =y~ —x +2TSC4:E+ Fpee =y — + 27cax + Hdcg. (1.4)
1.7. We will also use, when char(FF) # 2,3 the equation
v =13+ Az + B (1.5)
where we have A = -4, B = — &

1.2 Discriminant

Definition 1.8. Let f € F[z,y] be a polynomial and let C' be the curve over F given by the equation f(z,y) = 0.
A singular point of C' is any point (z,yo) € F (with coordinates in the algebraic closure F of F) such that

f(zo,y0) = %(xo,yo) = %(mo,yo) =0. (1.6)

1.9. Let us restrict ourselves to the case char(F) # 2 and consider an elliptic curve given by
fla,y) =y — g(x);

the potential singular points (2o, yo) € T must satisfy equation (1.6); since we have

of _ 09 491 _
or Oz and Ay =2,

and we are assuming char(F) # 2, we have that (x,yo) is a singular point if and only if

(a) 0= %L (20, 90) = 3¢ (z0),

(b) 0= 5L(z0,90) = 250 = yo =0 and
(c) 0= f(xo,v0) = y& — g(wo), which, by (b), is equivalent to g(zg) = y2 = 0,

id est if and only if yo = 0 and g(zg) = ¢'(zo) = 0.

In other words the elliptic curve given by f(x,y) = y? — g(z) has a singular point P € T if and only if g(z) has
a singular point z if and only if the discriminant Disc(g) of g is zero. If Disc(g) = 0 we have P = (x¢,0) where z is
the singular point of g.

1.10. We recall that for a polynomial g(z) = eox® + 122 + eox + eg its discriminant is

Disc(g) = efe3 — deges — 4eles — 2Telel + 18epe; ezes. (1.7)

a4

Remark that for g(z) = ag(¥), we have gg(z) = eox® + Fe1a” + $eax + aes so that Disc(g) = 45



1.11. Therefore, if we apply this formula to equation (1.2), id est to g = 43 + byx? + 2byx + bg we obtain

Disc(g)
—2,2 2 -1.3 23 2 —1
2 = ey eje; —4ey ey —4dey“ejes — 27e3 + 18¢e; “ereaes
0

1 1 1
= b3 — 2303 — ~b3bg — 27bE + —8b2b4b6
4 4 2
1
= Zbg (b3 — babe) — 8b3 — 27b7 + 9bababs

—babg — 8b3 — 27b2 + babybg
= A

where we have defined

((a% + 4a2) (ag + 4a6) — (ar1a3 + 2a4)2) = a%aﬁ —ajazay + agag + dasag — ai.

= =

1
bg = 1 (bgb@ - bi) =
Definition 1.12. In case char(FF) # 2, the discriminant A of the elliptic curve given by (1.2) is defined
A = —b3bg — 8b] — 27bZ + 9bababe.

Theorem 1.13. If char(F) # 2, an elliptic curve given by a Weierstress equation (1.1) is singular if and only if
A =0.

1.14. Alternatively, in case char(F) # 3 too, one can compute (up to constants) Disc(g) via a direct computation of
ged (9(z), ¢'(x)) using the euclidean algorithm; we do it using equation (1.3), and g = 2% — 27c4x — 54dcg.
A direct application of the Euclidean algorithm computes

—r_i1:=g= 23 — 27c x — 5dcg,
’
-7 I:%:I27904,
| —
— 1= 15 (r—1 —xro) = caw + 3ce,
— c3rg — (cax — 3cg) r1 = 9(c2 — c3).
4 6

whence
ged(g(z),g'(z) =0 <= 2 —c3 =0.

A direct computation gives

S —c2 = (b2 —24by)° — (—b} + 36byby — 216bg)”
= (b — T2b3by + 1728b3b7 — 13824b3)
— (S — 72b3by + 432b3bg + 1296b3b3 — 15552b2b4bg + 46656b7)
= —43203bg + 432b3b7 + 15552bobybg — 13824b7 — 46656b2
—2%33b3b6 + 21330307 + 2035bobybs — 293303 — 263002
b3 — bab,
= 2033 (4 ; 2202 + 32bababs — 290 — 336%)
= 1728A
while, for g = 2® — 27cyx — 54cg, the discriminant formula gives Disc(g) = 78732 (¢ — ¢&) = 223° (¢} — )

1.15. A faster evaluation is obtain, in case char(FF) # 2,3, by computing Disc(g) for the polynomial g = 23 + Az + B
connected to equation (1.5); the result is
Disc(g) = —4A% — 2782
If we set A= —7¢ — 535, B = —5555 we obtain
cd—c2 -1 A

—4A% —27B? = = —=_
7 33210 1728 16 16

1.16. Recalling that if g(xz) = ag(§), we have Disc(g) = Z—Z, if we compare the three cubic polynomials in F,
char(F) # 2,3, related to the equations (1.2)and (1.5) namely



a1 = 41‘3 —+ bQIL‘Q —+ 2b4$ + b6,

S . P N
g2 - FERET YR
gs = % — 2Teqx — Bdeg

we have
e g1 = 4go so that necessarily Disc(g;) = 4* Disc(g2) = 164;
e g2(w) = g3(5z) so that necessarily

612 612 912312

i — 612 Dia — _ 3 2
leC(g3) =6 leC(gg) = EA = m(04 - CG) W(

c2) =223%(c} — c3) = 78732(c} — ).

We submarize the relations as

3

-z = 2633A [ 21833 Disc(g1) | 2'°3% Disc(g2) | 272377 Disc(g3)

A = 275373(c} — @) 272 Disc(g1) 22 Disc(g2) 24 Disc(g3)
Disc(g1) = 272373(c - 2) 24A 28 Disc(ga) | 273712 Disc(g3)
Disc(ga) = 2719373(ci—c3) | 274A Disc(g1) Disc(gs)
Disc(gs) = 2239(c3 — c2) | 28312A Disc(g;) | 2'23'2 Disc(go)

1.17. Remark that if we define, for each field F without any restriction on characteristic, the values ba, by, bg, bs, c4,
ce, A, j according Figure 1.1, the relations

4bg = bobg — b3 and 1728A = ¢ — c2.
still hold also when

e char(F) = 2 where , ) , ,
by = ay,by = ayaz,bg = a3, cy = b3, cg = —by,

so that
b2b6 — b4 = alag (a1a3)2 =0= 4b8

and c§ — c2 = (b3)® — (=b3)? = 0 = 1728A;
e char(F) = 3 where ¢y = b3, cs = —b3 so that, again
cy —ca = (b3)> — (—=b3)? =0 =1728A

while bybg — b2 = 4bg was already proved in 1.10.

1.3 Singular points

1.18. Each cubic polynomial f(x,y) € F can be expressed as a Taylor expansion on each point P = (z,%0) € F2:

fa) = J(P)+e— )3 P)+ -G (P)+

2 2 2

gl —aP G )+ S = )y - w05 (P + 5 - g ()

1 N
+ 6(33—330) @( ) +r(z,y)
where the term
3 3 3
r(e.9) = 350 — 20— 00) o (P)+ 350 — a0) = ) e (P)+ 50— o) 552 (P)

assume the value 0 for an elliptic curve.
In the case char(F) # 2,3, for the elliptic curve E given by

flxy) =y* — o +@ +@

and the singular point P = (¢, yo), we have



0 0
f(zo,v0) = 8%:(330,?/0) = aijc(xmyo) = 0;

moreover 82 f 82 f 83 f

therefore

(—6z0(z — 20)* + 2(y — y0)?) — (z — 20)?

<<((i:9yﬂoo)>)2 B 39@0) ~ (& = 20)*.

Let us restrict ourselves to the case F = R; in this case we have three diffierent cases;

N~ N

—ifxg>0

flz,y) = ((CU —Y0) — \/%(33 - Io)) ((Z/ —yo) + \/%(33 - xo)) —(z - l‘o)g

and we have a node;

- lfl‘():()
flz,y) = (y—y0)2 - (x—x0)3

and we have a cusp;

—if o < 0
f@,y) = ((y = y0)® + 3lao|(z — 20)?) — (x — 0)?
where (y — yo)? + 3|zo|(z — 20)? is irreducible in R[z,y] and P = (z0, yo) is its single root.

1.19. For a generic field F, char(F) # 2,3, we have essentially the three diffierent cases according the factorization
structure of the polynomial d(z) := 2% — 3z € F[z]:

—ifd(z) = (z —a)(z — 8),a, 8 € F,a # 3, has two different factors in F[z] then
fla,y) = ((y = wo) — alz — 20)) ((y — yo) — Bz — 20)) — (v — 20)°
and we have a split-case node
— if d(2) = (2 — )2, € F has a factor with multiplicity 2 in F[z] then
fl@y) =y —yo) — a(z - fﬂo))Q — (z — o)
and we have a cusp

— if d(2) is irreducible, then
flz,y) = ((y — v0)* — 3zo(z — 20)%) — (z — m0)*

and we have a nonsplit-case node

1.4 Discriminant (2)

1.20. Let us now consider an elliptic curve given by a Weiwerstrass equation (1.1).
If it is singular we can wlog assume that singular point P is P = (0, 0); therefore

0 = ];(0,0) = ag,
0 = 200,00 = a4,
0 = %—f(o,o) = a3

We already remarked that the values introduced in Figure 1.1 are defined without any restriction on characteristic.
Thus, for a singular curve (1.1), we have

by = a% + 4ag,by = bg =bg =0,c4 = (a% + 4a2)2, Ccg = (CL? + 4&2)3
so that A = —b3bg — 8b3 — 27b% + 9bobsbg = 0.

Lemma 1.21. If an elliptic curve given by a Weierstress equation (1.1) is singular then A = 0.



Moreover such singular curve is given by an equation f(z,y) = 2 where we set

fla,y) = y* + a1zy — aza®
and f(z,y) factorizes in F into either
e two linear distinct factors iff af + 4as # 0 (node case),
e a single linear factor with multiplicity 2 iff a? + 4az = 0 (cusp case).

We have already proved in Theorem 1.13 the converse of Lemma 1.21iff char(F) # 2 and, in Corollaries 1.55
and 1.64, we will prove that also in case char(F) = 2.

Theorem 1.22. An elliptic curve given by a Weierstress equation (1.1) is singular if and only if A = 0.
It has a node if and only if A =0 and c4 # 0; it has a cusp if and only if A =0 and cqy = 0.

1.5 Elliptic curves in the Reals
1.6 Projective space

1.7 Projective elliptic curves

1.23. Recall that for a projective curve C given by a homogeneous polynomial F(X,Y, Z), a point P on C and a line
{:=aX +bY +cZ:

(1) P is non singular iff at least one among g—f((P), g—f;(P), g—g(P) is non zero,

(2) in which case the tangent L to the curve C' at the non singular point P is

oF OF OF
L= o2 (P)X+ oo (P)Y + o

0X oy (P)Z.

Up to a proper translation we can wlog assume P = (0:0: 1) and express F' as

deg(F)
F(X,Y,Z)= Y fi(X,Y)z9s~
1=0

with fo = 01
If moreover ¢(P) = 0, so that ¢ = 0, its projective points are {bt : —at : 10} and we have

deg(F)

F(bt, —at,1) Zfl

We define
(3) the intersection multiplicity of ¢ and F at P, i(P, ¢, F), as

+0o0 ifft F(bt,—at,1) =0

e = {min{j A0} E(b —at, 1) = S5O (b, —a)t £ 0,

(4) P a flex or inflection point of F' if the intersection multiplicity of the tangent line L to F at P satisfies
i(P,¢,F) > 3.

1.24. We can consider the projective version of the elliptic curve E given by (1.1), namely the curve consisting of all
(projective) solutions of the polynomial

FX,Y,2)=Y?Z+aXYZ+a3sYZ* — (X + a2 X?Z + as X 2% + a6 Z°) (1.8)

whose finite points are the set {(z : y : 1) : (z,y) € F} and whose single roint at infinity is the only solution of the
equation

0= F(X,Y,0) = X*,
namely O := (0:1:0).

lsince F(P) =0 <= f;(0,0) = 0 for each i and fo € F.



1.25. Since

OF

X = a1YZ —3X? —2a,X7Z — a, 7%,

oF

v~ Y Z + a1 XZ + a3 72,

8F 2 2 2
87 =Y +a1XY—|—2a3YZ—a2X —2a4XZ—3a6Z 5

and oF OF  OF
O — J—

ax\ 9 =gy =09z @) =1
, we cab deduce that

(1) O is non singular,
(2) the tangent to E at O is L = Z;
Moreover, since F(X,Y,Z) = 2?21 f;Y371 with

fl = Z7
fo = aXZ+a3Z%,
fa = —(X3+axX?Z +asXZ?+ a2,

we have F(t,1,0) = t3 so that
(3) i(O,L,F) =3 and
(4) O is a flex.
1.26. Let G(X,Y, Z) € F[X,Y, Z] be a generic cubic?
G(X,Y,Z) = c300X> + 210X %Y + 120 XY +co30Y > + 0001 X? Z + 111 XY Z + con Y2 Z + 102X Z% + c12Y Z° + co33.2°
and the curve C defined by it; if we impose that
=(0:1:0)€eC,

P is not singular,

we obtain

(1) 0=G(0,1,0) = co30Y>;

(2) since 8—Y(P) = 3cp30 = 0, necessarily either 0 # %(P) = cy90 or 0 # g—g(P) = Cp21;

(3) the tangent L = ¢190X + cp21Z is Z <= c120 = 0 and ¢ga1 # 0;

(4) Z | c210X2%Y + 111 XY Z + c012Y Z? = ¢210 = 0;

(5) Z1G = c300X3 + 201 X2 Z + 111 XY Z + c021Y2Z + 102 X Z2 + co12Y Z2 + 03323 = c300 # 0.

If we now compute G(tx,ty, 1) we obtain
G(tz, ty, 1) = c300t’2® + coo1t°2® + tPcr112y + coo1t>y” + 102t + co12ty + Coss;

and we can further grant csgot® = cpo1t? = 1 setting ¢ = igzé
The equation, thus becomes

G = cooof XP+ 22 x27 4 Xy 7 4 Y27 4+ 2 x g2 D2y g2 W38 g
€300 €300 €102 €300 €300

namely (1.1).

2The argiment of this section does not need any restriction on characteristic.



Lemma 1.27. If G(X,Y,Z) € F[X,Y,Z] is a cubic which has a flex at (xo : yo : 20), then there is a projective
transformation ® such that f®(X,Y,Z) = f(®71(X), 27 (Y),®;1(2)) has (1.8) as equation.

Proof. Tn fact if ®; is the translation such that ®;(zg : yo : 20) = (0: 1:0) then f®1 := f(®;1(X), 71 (Y), ®;*(2))
has a flax at (0:1:0).

Let L(X,Y,Z) = aX + 3Z be the tangent to f® at (0:1:0) and choose a non singular matrix (c Z ) with
L(a,b,1) = aa + b = 0 and define

S

oyt =

o O

0 b
1 0
0 d

Then ®;'(a:0:6) = (0:0:1) and L®? is the same line as Z so that (f®1)®2 = f®2%1 has a flex at (0: 1: 0)
with Z as tangent..
The matrix

t
ds3(t)"t= 1|0
0

S+ O
— O O

is such that
FroOP = (fPPN (1) = fPPN(EX Y, Z) = eyy 2PV PZ 4 oxxxtP X+

Thus for ¢t = C‘;)’;i the coefficients of Y2Z and X2 are the same.. |

1.8 Bezout’s Theorem

Fact 1.28 (Bezout’s Theorem). Let Cy and Co be two projective curve with no common component. Then, it holds
> I(C1 N Cy, P) = deg(Ch) deg(C).
PeCi1NC>

where I(Cy N Co, P) is properly defined as multiplicity index to each point P € Cy N Cy, in such a way that I1(C1 N
Cy, P) :=i(P,¢,C1) in the particular case in which Co = is a line.

1.29. Thus if C' is an irreducilbe non-singular elliptic curve and £ is any line, either
e either C'N /¢ consists of three different point, or
e / is the tangent to C at P, i(P,¢,Cy) = 2 and there is a thrid point Q € C U/, Q # P, or
e Pc CU/is aflex point.

1.30. Let us assume that C' is an elliptic curve with a singular point which we can wlog assume to be P = (0: 0;1)
and consider the intersection C' N ¢ where ¢ = ax + by is any line s.t. P € ¢:

e if C is a cusp so that F = Y?2Z — X3:
—ifa=0, F(t,0,1) = t2, i(Pt,C) =3;
—if b=0, F(0,t,1) = t2, i(P,¢,C) = 2 the third point being O = (0: 1 : 0);
—ifa # 0 # b, F(bt,—at,1) = a?? — b3 = —3(t — ‘;—2 so that i(P,¢,C") = 2 the third point being
Q= (c?:—c®:1), with ¢:= ¢
e if C is a split-case node so that F = Y?Z — d?X?Z — X3
—ifa=0, F(t,0,1) = —d*t? — t3 = —t(t + d?), i(P,¢,C) = 2 the third point being O = (0 : —d? : 1);
—ifb=0, F(0,t,1) = t2, i(P,¢,C) = 2 the third point being O = (0 : 1 : 0);
—if a # 0 # b, F(bt,—at, 1) = a2 — d2b*> — b33 = —12(t — C5E0 50 that
* i(P,£,C) = 2 the third point being Q := (¢* — d* : ¢* — d?c: 1), with c:= ¢ if ¢ # +d
x i(P,(,C) = 3 if a® — d*b® = 0.
e if C is a nonsplit-case node. so that F = (Y2Z + d*°X?Z — X3
—ifa=0, F(t,0,1) = d?t> — t3 = —t*(t — d?), i(P,¢,C) = 2 the third point being O = (0: d* : 1);
— if b=0, F(0,t,1) = t?, i(P,{,C) = 2 the third point being O = (0:1:0);

—ifa#0#b, F(bt, —at, 1) = a2 + d2b*> — b33 = —2(t — 20 g6 that §(P,¢,C) = 2 the third point
being Q := (¢ + d* : ¢(? + —d?) : 1), with ¢ := ¢



1.9 Arithmetics of the points of an elliptic curve (1)

1.10 Admissible change of variables

1.31. Let us consider the generic change of variables ® : P3 — P3
X=anX'+aY +a3Z', Y =anX"+anY +aiZ, Z=a3nX +a3Y +a3Z'; (1.9)
if we apply it to a cubic F(X,Y, Z) in Weierstrass form, in order to obtain
F(X')Y',Z')= Flan X'+ a1Y' + a132',a01 X' + a22Y' + a23Z,a31 X' + az2Y' + az37’)
still in Weierstrass form, we must at least be granted that
e O(Z) = Z so that az; = azga = 0,a33 = 1;
e O=(0:1:0) is preserved so that aj3 = a3z = 0;
e the weight wt(X) = 3, wt(Y) = 2 is preserved
e or (what is essentially the same) that a$;, = a3; # 0.
1.32. It is then easy to realize that the most general allowable change of coordinates ® which transform each cubic
F(X,Y, Z) in Weierstrass form into a cubic still in Weierstrass form is
X=uX'"+rZ", Y=Y +*sX'"+t7', Z=27 (1.10)

and (in the affine case)

z=u’r" +r, y=u>y +usz' +t. (1.11)

1.33. Remark that there is an inverse transformation
=0z, Y =0y i+t (1.12)
which satisfies

r o= —u’r, v = —vr,

= —us’, s’ = —ws,
t = —ut' - s, t = —v3t—sr],.
since
r = urlz+r)+r =z,
ud(Vdy +v2s'w + ') +uls(v?x + ') +t
udvdy + u?v?(us’ + s)x + (Ut + usr’ +t)
udvdy + u?v?(us’ + s)x + (U3t —uds'r’' +t) = y
/ v2(u2x’ +r) 41 = o,
y v3(udy + ulsa’ +t) + 2 (uPz' + 1)+t
= W3y +uPv?(vs + 8)a’ + (V3L +v3s'r + 1)
= W3y +utvP(vs + 8)a’ + (V3 —vdsr+t) =

<
Il

8
I

1.34. Thus if we apply the admissible change of coordinate (1.11) to
f(z,y) =y° + arwy + asy — (2° + aa® + asx + ag)
we obtain
f(uzx’—i—r,u?’y’ —l—su2x’ +t)u_6 _ y/2 +a’1x'y' +a§y’ _ (;L‘lg +a/2$/2 +aﬁ1x’+ag)
where the values a) are defined as in Fig. 1.2

1.35. If we assume char(FF) # 2,3, and we apply (1.11) to an elliptic curve expressed as
flz,y) = y? — (1‘3 +A93+B)
using (1.5) we obtain
uSy'? 4+ 2uP s’y + 2uty’ — ula’® —ut (3r — s?)a’? — uP(A+ 3r? — 2st)a’ — (Ar + B +1r® — 1?);
thus the most general allowable change of coordinates ® which grants that also ®(f) is expressed via (1.5) must

satisfie
0=s=t=3r—s?wheneer=s=t=0
and has the shape
r=u?2, y=uy, (1.13)
so that
®(f(z,y)) = uSy? —ub2" —u?Az’ — B. (1.14)



Figure 1.2:

/ . a1+2s
ay = )
/ o ax—ai18+3r—s
a2 D 72
u
/ . astai1r+2t
I
a = as—saz+2asr—ay (rs+t)+3r2—2st
4 ul
/ . ag—alrt—i-agrz—a3t+a4r+r3—t2
ag = 5

1.11 Invariant (1)
1.36. Thus if we apply the admissible change of coordinate (1.11) to
fl@y) =v* + a1y + azy — (2° + a22® + asz + ag)

we obtain the relations

uay = ay+2s,
u?ahy = ag—ays+3r—s°
wlay = az+air+2t - %J?;(T’ t
u4aﬁL — a4—5a3+2a2r—a1(7“8+t)+37“2—25t = —%(r,t)—s%(?“,t)
way = ag—arrt +ar? —agt +agr +1° -t = f(rt)

1.37. If we reformulate
Fa ) =y +da'y +ayy — (2 + aha”® + a2’ + ag)

as
Pty =y = (o 4 Ve 4 by’ + b)

we obtain
u?bly = (ua))? + 4ualy = a? + 4say + 4s% + 4ay — days + 12r — 4s* = a? + dag + 12r = by + 12r

and, with a similar computation

u'dy = by +rby+ 607,
uSbfy = bg + 2rby + r2by + 413,
ugbé = bg + 3rbg + 3r2by + r3bg + 3rt.

1.38. If we further reformulate f'(z’,y’) as
Py =y"* = (@ + ' + ¢f)
we have
utc) = (u?by)? — 24utb) = b3 + 24rby + 14477 — 24by — 24rby — 144r® = b — 24by = ¢
and
uSc —(u"*by)® + 36(u?bh) (u'bly) — 216usby
= b3 — 36rb3 — 432r%by + 172813
4+ 36bgby + 432by7 + 36b37 + 648byr? + 259213
216bg — 432rby — 21612by — 86473
= b3 4 36byby — 216D

= 06

1.39. A more involved computation gives
u?A = —(uPby)? (uBbg) — 8(utb3) — 27(ubbg)? + 9(u?by) (utby) (ulbs)
= (367% + 6bar) (bobg — b — 4bs) — b3bs — 8bi — 27b3 + Ibobabs
—b2bg — 8b3 — 27b2 + babybe
A
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Figure 1.3:

uay = ay+ 2s,
ulay = as—aps+3r— s
uwday = az+air+2t - %(T’ t)
ulay = as—saz+2ar —ai(rs+1t) +3r° - 2st = — 5t (r,t) = 55 (r,1)
ulag = ag— a1t +agr® —ast +agr +0° -2 = f(r,1)
U2b/2 = b2 + 12r
uty = by+rby+ 657
uSb, = bg + 2rby + r2by + 43,
ugbé = bg + 3rbg + 3r2by + r3bs + 3r4.
uldy = «
ubcf = ¢
ulQA/ = A
i =7

1.40. As a consequence

g Q (utcs)®  cu

PEN T A T A T
Definition 1.41. The j-invariant of the non-singular elliptoc curve (1.1) is the value j := %.

Lemma 1.42. Two isomrphic non-singular elliptic curves have the same invariant

1.12 Invaraint (2)

1.43. Assuming char(F) # 2,3 and let us consider a non singular curve f(x,y) = y* — 2% — Ar — B expressed using
(1.5); we have

Co® (484 —(234)° 2123343 20392247 —12%44% gl
ITATTA T A T T A TTTA T AT TTA

1.44. Let us now consider two non singular curves
flx,y)=9y* — 2% — Az — Band f'(z/,y) =y? — 2 — A2’ — B

expressed using (1.5).
If they are isomorphic via the transformation (1.13) we have

(I)(f) — U6y12 _ u/6$/3 _ u2Aa:’ - B
A B
_ .6 2 3
- (y/ 7 _Exl u@)
— u6 (y/2 _ 33/3 — Ay B/)
whence
u*A' = A and 5B’ = B.
Moreover
A =-16 (44% - 27B%) = —16u'? (44" — 27B") = u'?A’
and . 5
_ (44)3 (4utA")3 44

as we already know.

Lemma 1.45. For two curves f, f' we have

j _ j/ A3B/2 — A’332
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Proof. Using

A = —16 (4A* —27B%) and j = —1728 (42)3
we have (4A)3 (4A)3 16 16 (4A’)3 ' .
o~ A T T imes! T aas g T
moreover we have also the trivial equivalences
(4A)3 _ (4A/)3

4A" —27TB") - (4A)° = (44% — 27B%) - (44")® =
( 7TB"7) - (44)° = ( 7B%) - (44) 7 4A3 _9o7B® _ 1A _97B"

and
4'APAP41728A° B = (4A” — 27B")-(4A)® = (44° — 27B?)-(44")® = 4" A’ A® 417284 B”? <= A®B"” = A*B"”.
O
1.46. Consider the two non singular curves
flx,y)=9y*— 23— Az —Band f'(z/,y) =y? — 2 — A2’ — B’
we intend to classify all transformations
2

T = u2x',y — u3y/ . f’(m’,y') _ f(u x/7u3y/)

under the assumption that j = j’.
Under this assumptions we have

e u*A' = Aand uB’ = B from f'(2',y') = f(u?2’,u3y');
o A3B"? = A B? (Lemma 1.45)

o 4A% —27B% = — LA + 0 (since f is non singular)

o 4A”% —27B" = — LA’ £ 0 (since f’ is non singular)

Moreover, we intend to describe the group structure of the automorphisms of the curve f, id est under the further
assumptions

e A=A B=D.
To do so, we need to consider three cases
(1) If , we can further deduce, from A # 0, 7 whence, from A3B? = A®B? =0, and, from
A £0, ; this case is studied in 1.47
(2) If , we can further deduce, from A # 0, , whence, from 0 = A3B"? = A3 B2, and, from
A" #£0, ; this case is studied in 1.48

(3) If| AB # 0|, from A3B"? = A3 B? we deduce that A’ =0 <= B’ = 0 and,since A’ # 0 this implies | A’B’ # 0 ;
this case is studied in 1.49

1.47. Since A # 0 # A’ we can set u = 4/ % and we obtain the transfiormation

-2 —Ar = f(z,y) = f(u?2 uPy)

— uSy? — ub2 — Aula

— u6 <y/2 7:E/3 o fim/>
u

— u6 (y/z _ x/3 _ AI{E/) _ uﬁf/(xl,yl)

Note that we have

= 1728 |

B

c6 = —864B =0,cq4 = —48A £ 0,1728A =c3 —c2 =c},|j =

12



1.48. Since B # 0 # B’ we can set u = {/ g and we obtain the transfiormation

y2 - IB -B = f(x7y) = f(uz‘r/augy/)
— u6y/2 _ u6x/3 —_ B

B
— u6 (y/2 _ 1‘/3 _ UG)
— u6 (y/2 _ l‘/3 _ B/) — u6fl($/7y/)

Note that we have

c6 = —864B #0,c4 = —48A =0,1728A =3 —ci = - |j =% =0]|

03

%

A

1.49. Since both A # 0 # A’ and B # 0 # B’ and A3B"? = A’3B? we have (%)3 = (5)2 so that

B A
\(ﬂg) = %E) = u
satisfies u!? = (%)3 = (5)2
We thus obtain the transfiormation
-2 —Ax—B = f(z,y) = f(u’d u’y)

— uSy? — 0 — Aud’ — B

Note that ¢4 = —48A4 # 0 and | j = —1728 (42)3 40|

Moreover
j=1728 = ¢} 2 =1T28A=jA=¢c} <= 2 =0 < ¢ =0
3 3 2
and conversely ¢g = 0 = j = F = 43 = 1728; thus

Thus we have ¢g = —864B # 0 whence | j # 1728 |.

1.50. If, moreover f = f’, id est A= A’, B = B’ we have

B=0: A=A — u*= % = 1 and the automorphism groop is isomorphic to that of the 4** root of the unity,
namely Zj,.

A=0:B=B = uS= g = 1 and the automorphism groop is isomorphic to that of the 6" root of the unity,
namely Zg.

AB # 0 : Since we have both A = A" = u* =4 =1 and B=B = uf= L =1 we obtain v? = 1, u = {£1}

2th

and the automorphism groop is isomorphic to that of the root of the unity, namely Zs.

1.13 Invaraint (3)
1.14 Arithmetics of the points of an elliptic curve (2)

1.15 Elliptic curve in characteristic 2

1.51. Let us consider a non singular elliptic curve
f(z,y) =y° + arwy + asy + 2° + asa® + asx + ag = 0

in a field F, charF = 2.
We thus have
by = a?,b4 = aiaz, bg = ag,czl = b% = a‘ll,% = a?,

a12

and j = —A-.
Thus there two diffierent cases; either
e a; =0<«= j=0or

e a1 #0 <= j#0

13



1.16 Elliptic curve in characteristic 2: j =0

1.52. Since j = 0 we have
b2:b4201202:0andb6:a§,

so that A = —b%bg — Sbi - 27()% + 9bobsbg = b% = a%.
Moreover

fle+az,y) = v +asy+ (2 + aox® + a3z + a3) + az(2” + a3) + as(x + a2) + ag
= y2+a3y+x3+(a4+a§)m+(a6+a2a4+a§)

As a consequence
Lemma 1.53. Ifa; =0, then
(1) A=0 < a3=0;
(2) we can wlog assume as = 0.

Lemma 1.54. Let 3,7 € F such that % = a4, v?> = ag.
If a1 =0, (B,7) is a singular point if and only if as = 0.

Proof. We have
(1) g =2 +a4,
(2) % = a17 + a3 = as,
(3) flx,y) = y* + azy + (2 + aq)z + ag.
so that, if there is a singular point (g, yo) then
(2) as = 5L (z0,90) = 0,
(1) 0= %(Jco,yo) = 22 + a4 so that xg = (3,
(3) 0= f(wo,y0) = Y& + ag so that yo = ;
conversily, if a3 = 0, then
(1) g By =0 +a =0,
(2) %(57’7) = a3z =0,

(3) f(B,7) =7 +azy + (6% +as)B +as = 7> + as = 0.

Corollary 1.55. If char(F) = 2 and a; = 0, an elliptic curve given by a Weierstress equation (1.1) is singular if and

only if A = 0.
1.56. The admissible isomorphisms (1.11) between

flz,y) =y* +azy + 2° + asx + ag and f'(2',y) =y + ahy’ + 2 + ahz® + ae,

since )
0= a’Q = % — r = g2
ag — a3+<z13r+2t S u3 _ Zi;’
3
’ L a4fsa3+2a2r7a1(7‘5+t)+37‘2725t / _ astsaz+s?
ay = uA = ay = “R
! e agfalrt+a2r27a3t+a47‘+r37t2 ! _ a6+a3t+a452+56+t2
a6 = w6 =4 a6 = w6 s
are

z=u?r"+ 5%, y=udy +ulsa’ +1t
and must satisfy
s* fazs +ag—ula, =0, t*+ast+ s +ays® +ag—ulal =0

as
u> = —=

/7
as

Corollary 1.57. Denote
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~ g1(a) == a® + % € Fla,

— Ky :=Fx]/g1(x) which is a separable extension since gi(x) # 0,
—u €Ky st gi(u) =0;

— g2(z,y) = y* + azy + as — 2'a) € Flz, ],

ha(y) == g2(u,y) = y* + agy + as — u'ay € Kq[y],

— Ko :=Ky[y]/h2(y) = Flz,y]/1(g1(z), g2(x,y)) which is a separable extension since hh(y) = a3 # 0;

s € Ky s.t. ha(s) =0;
- g3($ﬁ',y72) = ZQ + asz + y6 + a4y2 + as — x6a’% € F[x7y’z]7

— ha(x,y,2) == ga(u, 8,2) = 22 + a3z + s® + ays® + ag — ulaf € Ka[z],

Ks := Kaly]/hs(y) = Flz,y,y]/I(91(x), g2 (z, v) g3 (2, y, 2)) which is a separable extension since hy(z) = ag # 0;
— t €Ky s.t. hs(t) =0.

Then the two curves f, f’ with the same invariant j = 0 are isomorphic via

r=u’r + 5%, y=udy +ulsa’ +t

Corollary 1.58. The 2/ automorphisms of f(z,y) = y%+azy+z3+asx+ag are given by the triple (u, s,t) satisfying
the equations
wd =1, s'+azstas(l—u)=0, t*+ast+s®+ass® +ag(l—u)=0.

Lemma 1.59. The curve

flay) =y —y—2a°
has 0 as invariant.
1.17 Elliptic curve in characteristic 2: 7 # 0

1.60. It is sufficient to properly choose r,s,t in (1.11) in order to obtain aj = 1,a5 = 0,a}, = 0. In fact (see Fig.1.2)

l=a) = % = U = m
0=aqaf := atur = r = &
3 u3 ay
al L a4fsa3+2a2r7a1(rs+t)+3r2725t
=a), = o
_ as—s(aztair)—ait+r?
N wt 2 2 2
. as—aittr _ ag+r® _ ajastag
= o <~ t = as = a3
1.61. For
2 3 2
flx,y) =y" + oy +2° +agax” +as =0
we have

by =1,by =bg =0,c4 =cg =1 and bg = ag,

so that A = —b3bg — 8b3 — 27b% + 9bababs = ag and j = ag .
Lemma 1.62. Ifa; # 0, (0,0) is a singular point if and only if ag = 0.
Proof. We have

(1) 5 =y+a

® %o

(3) flx,y) = v+ zy + 2% + asx® + ag.
so that, if there is a singular point (zg,yo) then

(2) @o = %(zo,yo) =0,

(1) 0= %(ano) = Yo,

15



(3) 0= f(0,0) = as;
conversily, if ag = 0, then

(1) 3£(0,0)=0,

(2) %(0,0) =0,

(3) £(0,0) = ag = 0.

Corollary 1.63. If char(F) =2 and a; # 0, an elliptic curve given by a Weierstress equation (1.1) is singular if and
only if A = 0.

1.64. The admissible isomorphisms (1.11) between

f(z,y) =y* + 2y +2° + asa® + ag and f'(2',y) =y + 2’y + 2" + ay2® + as,

since
— 4/ — ai
l=ay = % , = u = 1
0= aé = 7@3-"-(;137'—&- t — r = 0
—s(a- —ait+r?
0=q, := wu=slatan-atir — t =0
_ 2_ 3_ 42
a% = ag—airtt+asr ug3t+a4r+r t E— a% = ag
_ 2
a’2 — % — a’2 — a2—3—52,
are

=21, y=1vy +sa’

and must satisfy

ay = ag — s — 52 and af = ag.

Corollary 1.65. Denote g(z) := 2% + x + as + ay € Fla] and K := F[z]/g(x) which is a separable extension since
g () =1 and let s € K be s.t. g(s) = 0.
1

Then the two curves f, f’ with the same invariant j = ag~ = agfl are isomorphic via
m:r’, y:y'+5z’
Corollary 1.66. The two automorphisms of f(x,y) = y*> + zy + 23 + a2 + ag are obtained setting s = 0,1, namely
z=2y=9y andv =2'y=19 +2
Lemma 1.67. For each j € F,j # 0, the curve
floy)=y* +ay+a’+57"
has j as invariant.

1.68. For

f(@,y) =y* +ay+2° +a2® + ag =0

we have x% +y = 2% so that for P = (z,y) the point (z3,y3) := P + P satisfies
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2
= = = —ap —2
3 (3:10) +a18x a2 o

x4+xy+x3+agx2+a6+x2+

= ( y+a2
xT

-

2

x

2t +zy + 23 + axx? + ag + x(2? + y) + axx?
2
x

0 0
y* = —(£+a1)$3—£$—y—a3

W ot Pty t
= T3+ T+7T
9r " ox sy
z? +
= xya:3+x2+y+$3+y

z? +
= - yx3+x2+x3+

1.18 Elliptic curve in characteristic 3
1.69. Let us consider a non singular elliptic curve
fa,y) = y* + a1y + azy + 2° + aza® + ayz +ag =0

in a field F, charF = 3.
Since 2 = —1 and 4 = 1 in F we can perform the transformation y — y + a1y + a3 and express the curve via the
equation (1.2)
y? = 23 + byx® — byx + bg,

with
2. _2_ 2 .3 _ 3
by = az,by = —ay4,bs = ag,bs = azas — ay;cy = by = a3, c6 = —by = —aj
so that
A = —b2bg — b3 = a2a? — adag — ai
6
and j = 2.

Thus there are two diffierent cases; either
e a3=0 <<= j=0o0r

e 4y #0 < j#0

1.19 Elliptic curve in characteristic 3: j # 0
1.70. For f(z,y) = y? — 23 — boa® + byx — bg we have

fa+ay) = v —(z+a) bz + ) +ba(x+a) — b
y? — (2® 4+ a®) — ba(z? — ax + a?) + by(x + ) — bg
= 9% — 2% — boa? + (boar + by)x — (0 + boa® — byar + bg)

and it is sufficient to set

by
o= 5 and ag := o + bea® — by + bg
2
in order to present the curve as
1 2 3 2
f@y) =y — 2 — asx” — ag
- 2 3 ; ag a3
with ¢4 = a3, A = —a3a6 and j = e T "o

17



1.71. The admissible isomorphism between

.2 3 2 1o oI 12 13 12 /
f(r,y) =y~ —2° —ar” —ag and f'(2',y") =y~ — 2" — az2™ — ag
since )
0=a) = wi2 = s =0
0=af = %atoytt = t =0
0= ai; — a4—sa3+2a2r—(;14(rs+t)+3r2—25t r = 0
/ _ as—ai1s+3r—s> / __ az
a2 o w 2 3 2 a2 - 'U/2
/ ag—airt+asr®—aszt+asr+r-—t / ag
ag =6 = ag o3
are
x:u2x', y:u3y//
and must satisfy
u?aly = ap and ulay = ag.
3 73 ’ 3
1.72. If the two curves " have the same invariant j = — 22 = —22_ then 26 = (22 .
) J
ag a6 ae CL2
3 13
Corollary 1.73. The two curves f, f' with the same invariant j = 72—2 = —=2 are isomorphic via

where u? = (%)

2

Corollary 1.74. The two automorphisms of f(x,y) = y* + xy + 2> + as2? + ag are obtained setting u = £1, namely

r=ay=9y andx =12,y = —y"

Lemma 1.75. For each j € F,j # 0, the curve

3 2

flay)=y* —a2® -2 — 5!

has j as invariant.

1.20 Elliptic curve in characteristic 3: 7 =0

1.76. Since as = 0 we have
bg :O,b4 = 7&4,[)6 :CLG,bg = 7@;21;04 = Cg :0

so that A = b3 = —aj.

1.77. The admissible isomorphism between

flz,y) =y +2® + ayr + ag and f'(2',y") = y* + 2" + ajz* + ag

since ,
0=af = %@-uspir=s = s =0
0=af = dwtort = & =0
’ L ags—saz+2asr—aq (rs+t +3r2—2st / _ a
ay = 4( ) = ay = i
’ a67a1rt+a2'r2fa3t+a4r+r37t2 / a5+a4r+7‘3
ag e == G T
are

z=uv’r"+r, y=uy

and must satisfy
4 _ Q4 6,1

U = a—i, U Qg :a6—|—a47"+r3.
Corollary 1.78. Denote
- g1(z) =2t + Z—i € Flz],
— Ky :=Fx]/g1(x) which is a separable extension since g} (z) =1,

—u €Ky st gi(u) =0;
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— ga(7,y) == y> + aay + ag — 25af € Flz, ],
= ha(y) = g2(u,y) = y* + asy + ag — 2%ag € Ki[y],
— Ky :=Kyly]/h2(y) = Flz,y]/1(91(z), g2(z,y)) which is a separable extension since hh(y) = aq # 0;
— r € Ky s.t. hao(r) = 0;
Then the two curves f, f’ with the same invariant j = 0 are isomorphic via
r=ur"+r, y=uy.

Corollary 1.79. The 12 automorphisms of f(x,y) = y* + 2> + asx + ag are given by the pairs (u,r) satisfying the
equations
ut =1, 4 ayr+ag(l —u?) =0.

More precisely they are the 12 pairs (u,r) such that either
rP4+ayr=0andu=1, or
r34+asr =0 and u=—1, or
3 +ayr +2a6 =0 and u = «, or
r3 4 agr + 206 and u = —a,
where o € Fyep 15 such that a?=-1.

Lemma 1.80. The curve
fla,y) =y —a®

has 0 as invariant.
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