Let us consider
an infinite, perfect field k, where, if p := char(k) # 0, it is possible to extract pth roots,
the algebraic closure k of k,
the polynomial ring P := k[X7,..., X,],
its k-basis 7 := {X7'-+- X2 : (a1,...,an,) € N"};
an ideal | := (F) :=L(F) :={>_;", hifi : hy € P} C P given by
a finite basis F:= {f1,..., fu} C P,
the algebraic affine variety Z(I) := {a € k™ : f(a) =0, for each f € F} C k™.

Each polynomial f € k[X1,...,X,,] is therefore a unique linear combination
f=>clf.t)t
teT

of the terms t € T with coefficients ¢(f,t) in k; the support

supp(f) :=={t € T : c(f,t) # 0}

of f being finite, once a term ordering < on 7 is fixed, f has a unique representation as an ordered linear combination
of terms:

f= Z (f s ) ERNOE €T by > >ty

the mazimal term of f is T(f) := t1, its leading coefficient is lc(f) := ¢(f, t1) and its mazimal monomial is M(f) :=
C(fv tl)tl .
For any set F' C P we denote

o TAF}:={T(f): f e F}
e T (F):={rT(f):7€T,feF}
o No(F)i= T\ T (F)

o k[N (F)] := Span, (N (F))

and we will usually omit the dependence on < if there is no ambiguity.
Let us fix any term-ordering < on 7 and let us compute a Grobner basis G C | of | w.r.t. <.
Then it holds

Zh=0 <= 1€l < 1€G;

Z(1) is infinite iff N(I) is an infinite dimensional k-vector space iff there exists i such that for each d € N: X ¢
T(G) =T(1);
Z(1) is finite iff N(1) is finite iff for each i there exists d; € N : X% € T{G} € T(l); moreover, in this case and
under the assumption that | is radical, we have #Z(1) = #N(I).

Definition. Let P := k[X1,...,X,] and let f C P be an ideal.
A subset {X;,,...,X;,} of d variables for which it holds

fN kX, X, = (0)

is called a set of independent variables for f.
If, for each j & {i1,...,iq} it holds
fmk[Xin" XZd7X ] # ( )

{Xiy,...,Xi,} is called a maximal set of independent variables. O

Lemma (Kredel-Weispfenning). Let
f - k[XlavXn]

be an ideal, < be any termordering and T (f) the corresponding monomial ideal.
If {Xi,,...,X;,} is a set of variables such that T(f) N k[X;,,...,X;,] =0 then fNE[X;,, ..., X;,] = (0).

Proof. If exists f € fNE[X;,,...,X,,], f #0, then To(f) € T<(f) N k[ X4y, ..., X4,]- |



Corollary (Kredel-Weispfenning). Let f C k[X1,...,X,] be an ideal, < be any termorderingand T (f) the corre-
sponding monomial ideal.
Let {X;,,...,X;,} be a mazimal set of independent variables for \/T<(f); then

e dim(f) =d,
o {X,,,...,X,,} is a mazimal set of independent variables for §.

Proof. One has dim(y/T<(f)) = dim(T<(f)) and {X;,, ..., X;,} is a maximal set of independent variables for /T «(f)
iff it is a maximal set of independent variables for T« (1/f).

Then, by the lemma above, {X;,,...,X;,} is a set of independent variables for f, and it is also maximal because
dim(T < (f)) = dim(f) since they share the same Hilbert polynomial. O

Then, we can re-enumerate and re-label the variables as
{X1,.... X} ={",..., Vo, Z1, ..., Z,}, {Xip,.., Xiy} ={V1,..., Va},

so that
INE[V, ..., V4] =(0)

and consider
the field K := k(V4, ..., Vy),
its algebraic closure K
the polynomial ring Q := K[Zy,...,Z,],
its K-basis W :={Z{*---Z% : (a1,...,a,) € N'};
the zero-dimensional ideal J := 1 := |K[Zy, ..., Z,]
and the unmixed ideal J¢:= JNP.

Then, if | = N{_,q; denotes any irredundant primary representation in P, and we wlog assume that the primaries
are ordedered so that, for a suitable value 1 <r <t,

{Xi,,...,Xi,} is a maximal set of independent variables for q; < i <r,

then ) )
Ji=1"= ;= a:Q
=1 =1

is an irredundant primary representation in Q and
,
JINP=J=1“=q CP
=1

is an irredundant primary representation.
Moreover, the (GTZ, ARGH, CCC)-schemes allow to compute unmixed ideals a; C P giving a decomposition

Vi=VEQ Ve

Thus solving the ideal | C P is reduced, via Grobner technique, to solving each unmixed (GTZ, ARGH, CCC)-
component and solving each such component is reduced to solving the related zero-dimensional extension ideal.

Trinks’ Algorithm

Thus we are reduced to consider a zero-dimensional ideal

JcQ:=K[Z,...,7Z)]

which we assume to be given via a Grobner basis G- w.r.t. the lexicographical ordering < induced on W by Z; <
Ly = < Ly
Zi 2 < Zfl...ZbT < exists j:a; < b; and a; = b; for i > j.

T

Corollary. If | C k[X1,...,X,] is an ideal and G is a Grobner basis of | w.r.t. the lexicographical ordering=< then
for eachi,1 <i<mn, G;:=GNk[Xy,...,X;] is a Grobner basis of | N E[Xq,...,X;]. O

Then, if we denote, for i,1 <i < r,



Ji=JNK[Z,..., 2,
m; : K — K¢ the canonical projection m;(a1,...,a,) = (a1,...,a;),
Gi =G NK[Z,.... 2],
we have, for each i
1. Z2(J;) =m(Z2()) ={(a1,...,a;) : (a1,...,a,) € Z(J)},
2. G; is the reduced lexicographical Grébner basis of J;.
In particular, there is a unique polynomial f(Z;) € K[Z;], such that
Ji=(f)and {f} = G NK|[Z;].
For each a := (ay,...,a;_1) € K™1 denote @, : K[Z1,...,Z;] — K[T] the projection defined by
o.(f) = flar,...,a;—1,T) for each f € K[Z1,...,Z;].

Theorem (Trinks). Let a:= (as,...,a;—1) € Z(J;—1) and let f € K[T| be a generator of the principal ideal ®,(J;) C
K[T]. Then, for each b € K
(CLl, . ,ai_l,b) S Z(Jl) <~ f(b) =0.

Proof. Let h(Zy,...,Z;) € J; be any polynomial such that
f(T) = (I)a(h) = h(al, ey ai,l,T).

Then
((11, .. .,(lifl,b) S Z(JZ) - f(b) = h(ah‘ .. ,ai,l,b) =0.

Conversely for any g(Z1,...,7Z;) € Ji, Pa(g) € Pn(J;), so that
glai,...,a;—1,b) = ®,(g)(b) = 0 for each g € J;

and (a1,...,a;-1,b) € Z(J;). O

Figure 1: Trinks’ Algorithm

Z := Solve(F,L)
where

F:=(f,....,fu) CQ:=K[Zy,...,Z,],

L D K is a field extension of K,

J C Q is the zero-dimensional ideal generated by F,
Z:={aq,...,asy =ZJ)NL".

Compute the reduced lexicographical Grébner basis G of (f1, ..., fu)-
Let p(Z1) be the unique element in G N K[Z],
Zy:={a€ L:p(a) =0}

For i =2..r do

Z; =

For each (ai,...,a;—1) € Z;_1 do
H:={g(a1,...,a;-1,Z;) 1 g € G\ Gi_1},
p = ged(H),

Z:={a€L:pla)=0}
Z,:=Z;U{(a1,...,a;—1,a) :a € Z}.




Gianni—Kalkbrener Algorithm

Remarking that each polynomial f € K[Z1,...,Z;] can be uniquely expressed as
D .
f = Zh](Zla .. '7Zi—1)nghD # 07
j=0

we recall that the degree of f in the variable Z; is denoted deg,, (f) := deg;(f) := D, and that Lp(f) := hq is named
the leading polynomial of f, while Tp(f) = ho the trailing polynomial of f. Observe that, for the lexicographical
ordering <, we have T(f) = T(Lp(f))Zfegi(f).

We also denote, for each 4,1 <i<r,d € N,

Gi:={9€G,ge K|Zi,...,Z;]}
Gis:={9€G,g € K[Z1,...,Z;],deg;(g) < 0}
and remark that each G;; is a section of both G511 and G; and that hold the obvious inclusions
Gi1CG2C...CG1C...CG1C...CGsCG541C...CG C...
For each i,1 <i<r,d € N, and each F C Q, we denote
Lp;s(F) := {Lp(g),g € FNK[Zy,..., Zi], deg;(g) < 5}

Theorem (Gianni—Kalkbrener). Let J C Q be an ideal, < be the lexicographical ordering induced by Zy < -+ < Z,.
Let G :={g1,...,9,} be a Grobner basis of J w.r.t. <, enumerated in such a way that

T(g1) < T(g2) < ... < T(gv—1) < T(gv)-
Then with the notation above:
1. for eachi,i <r, G; is a Grébner basis of J;;
2. for eachi,1 <i<r,d €N, Lp,;5(G) is a Grobner basis of Lp,5(J);
3. for each i,1 <i <7t and each a:= (by,...,bi—1) € Z(J;—1), denoting
S,: 09— K[Z;,.... 2, f(Z)— fla, Ziy. .., Zy).
o the minimal value such that ®,(Lp(gs)) # 0 and
J»0 the value such that g, € G5 so that
9o =Lp(9e)Z3t + - € K[Z1,..., Zj|\ K[Zy, ..., Zj1]
1t holds
(a) j =1,
(b) for each g € G;—1,P4,(g) =0,
(c) for each g € Gis, Po(g) =0,
(d) ®a(go) = ged (Palg) : g € Gi) € K[Zi],

(e) for each b € K,
(bl, .. .,bi_l,b) S Z(Jz) <~ (I)a(gg)(b) =0.



Figure 2: Trink’s Algorithm; Gianni—Kalkbrener improvement

Z := Solve(F, L)
where
F:=(f1,...,fu) CQ:=K[Z1,...,7Z,],
L D K is a field extension of K,
J C Q is the zero-dimensional ideal generated by F,
Z:={oq,...,ast=ZJ)NL".
Compute the reduced lexicographical Grébner basis G of (f1, ..., fu)-
Sort G :={g1,...,9,} by increasing maximal terms.
Z,:={aeL:gia) =0},
%% g1 is the unique element in G N K[Z1].

For i =2..r do
Z; =0
g :=min(g € G; \ Gi_1).
For each (a1,...,a;—1) € Z;_; do
h:=g,

While Lp(h)(ay,...,a;—1) =0 do h := Next(h, G),
p:=hla,...,a;—1,7Z;),

%% p =ged(H) for H :={g(a1,...,ai-1,2;): g € G;\ Gi—1},
Z:={a€L:p(a) =0},

Z,:=27Z;U{(a1,...,a;—1,a) :a € Z}.

Endomorphisms of an Algebra
Let Q := K[Zy,...,Z,], W its monomial K-basis and K the algebraic closure of K. In order to simplify the
notation let us wlog assume K = K to be algebraically closed.
Let J C Q be a zero-dimensional ideal, deg(J) = s, and A := Q/J the corresponding quotient algebra, which

satisfies dimg (A) = s.
For any f € Q, we will denote [f] € A its residue class modulo J and ®; the endomorphism ®; : A — A defined

by
®4([g]) = [fg] for each [g] € A.

Clearly &y = @, iff [f] = [h].
Definition.
1. A Grobner representation of J is the assignment of
o o K-basis b ={[b1],...,[bs]} C A and
e the square matrices Ay = (aE?) = M([Z}),b) for each h,1 < h < s,

2. For each g € Q the Grobner description of g in terms of a Gréobner representation (b, {A}) is the unique (row)

vector
Rep(g,b) := (7(g,b1,b),...,7(g,bs, b)) € K*

which satisfies

lg] = Zv(g,bjab)[bj]
0

If we fix any K-basis b = {[b1],..., [bs]} of A so that A = Spang (b), then for each g € Q, there is a unique (row)
vector, the Grébner description of g,



Rep(g7b) = (W(gablab)v s a')/(gvbsvb)) € K®

] :Zv(g,ba b)[b

and the endomorphism @, is naturally represented by the square matrix

M([f],b) = (7(fbi, bj, b)) : @1(bi) = [fbi] = ZV(fbiabjab)[bj]'

which satisfies

An alternative way of representing a zero-dimensional ideal J C Q and the related quotient algebra A is via its
dual space (Section 28.1)
£()):={e€ Q" :4(g)=0foreach g € J} C QF

where Q* := Homg (Q, K) is the K-vectorspace consisting of all K-linear functionals ¢ : Q — K.
Clearly we have dimg (£(J)) = s and to each K-basis L := {A1,--- , A;} of £(J) is associated a Lagrange K -basis

1 i=j

a={[q1],...,[gs]} which is biorthogonal to L id est A\;(g;) = 0;; = 0 it
i # .

In particular, since, for each i, j, h,

X (Zngi) = (Zad qz) =Y a (@) =af,
l

to each basis L := {A1, -+, As} of £(J) is associated the Grébner representation
e g={[q],...,[as]} CA: Ai(g;) = di; for each i, 7,
e Q= ()\j(thi))ij‘

Between the two bases b and q there are the basis transformations

Mbq = ('Y(bi,QjaCI)) and qu = ( (qwb b))

bz] = Z’Y(bia%v QJ and ‘h 27 qi, b
J

and

so that, for each 1,

naturally, we have My, = M, q_b ,

M([f],b) = MygM ([f], a) Mgy = MygM([f], @) My,

so that M([f],q) and M([f],b) are similar and share the same eigenvalues and Jordan normal form.

Toward Auzinger—Stetter’s Theorem
With the same notation as in the previous section let us fix

e a Grobner representation

= {{bi),- [0} € A An = (o)) = M(1Z4)b), 1 < h <7

e abasis L :={\,---, s} of £(J);
e the conjugate Grobner representation
a={lal,- g1} CA Q= (A(Zngi)),;
where q is the Lagrange basis satisfying \;(g;) = d;; for each 1, j,
and let us denote
o Mg := (v(bi,q5,q)) and Mg := (v(gi, bj, b)) the basis transformation matrices;

e J; the Jordan normal form matrix for Ap;

e foreach fe Q/J=A

Ag := M([f],b) = (v(fbi, b, b)) : @ (bi) = [fbi] = Zv(fbi,bj,b)[bj];



e J¢ the Jordan normal form matrix for Ay.

Let us also consider the set
ZJ):={a € K": f(a) =0 for each f € J}.

Lemma (Auzinger-Stetter). With the present notation it holds
Y(biyg5,9) = Aj(b;), 1 <, j <s.

Proof. For each f € A, >~ y(f, ¢, ;] = f =32, \i(f)lg;]-
The first equality follows from the definition of 7y, the second from the property of the Lagrange basis. The claim

then follows by the linear independency of q. O

Corollary. Each i row of My, is the vector (A1(b;),...,As(b;)) of the evaluation of the basis element b; at the
functional basis L.
Each j*" column of My, is the vector (A\;(by), ..., \;(bs))" of the evaluation of the basis b at the functional \;. O

Lemma (Auzinger—Stetter). For each o € Z(J) the vector
(bi(a),...,bs(a)T
is an eigenvector of the matriz Ay for the eigenvalue f(a).

Proof. For each i,1 <i < s, we have [fb;] = ®¢([b;]) = >_;v7(fbs,b;, b)[bj] so that f(a)bi(e) =3, v(fbi,bj, b)bj(c).
Thus the claim follows trivially. O

Definition. A matriz is called non-derogatory if, equivalently,
all its eigenspaces have dimension 1;
its Jordan form has a single Jordan block associated with each eigenvalue. O

Theorem (Auzinger—Stetter). The set {f(a) : a € Z(J)} is the set of eigenvalues of Ay. If Ay is non-derogatory,
each eigenspace of Ay for f(a) is spanned by (b1(c),. .., bs(a))T.

Proof. A direct consequence of the Lemmata above. O

Auzinger—Stetter: The Radical case
The relevant aspect of Auzinger—Stetter’s Theorem is that while both eigenvalues and eigenvectors of A intrinse-
cally depend on the roots of J their actual values are precise functions of the choice of the matrix Ay and of the basis
b; one can therefore expects that for a proper choice of f and b an eigenvalue computation can allow to deduce the
roots of J.
Let us assume that J is radical and see whether the remark above leads to something.
The radicality assumption implies that J has s = deg(J) different roots in K":

ZU) ={a1,...,a,} C K", a;=(a,. .. a¥)).
Thus we can wlog identify each functional \; with the evaluation at the root o;:
N Q— K, p(Zy,...,Z,) — Ni(p) = p(agj), e ,agj))

and q is the corresponding Lagrange basis.

A matrix Ay is non-derogratory if and only if f(o;) # f(cy) for each i # j. Clearly for a generic linear form
Y =3, cnZp, Ay is non-derogatory. Thus if we choose a linear form which separates Z(J) id est it satisfies the
condition

(AS.1) Y =3, cnZy, is such that §; :== )", chagf) > chag) =: 3, for each i # j

then Ay is non-derogatory and have s distinct eigenvalues

Bi=> ena) 1<j<s
h

whose associated eigenspaces are generated by

(b1(ey), -, bs(az)) "

In order to deduce the o s from these eigenvectors, the trick consists in a clever choice of the basis b. The efficient
choice is the original one proposed by Auzinger—Stetter: let us denote V' the K-vectorspace

V= Spang{[1], [Z1], ... [Z,]}

and let ¢ := dimg (V') < s; then, up to reenumerating the variables, we can wlog assume that



o V = Spang{[1],[Z1],...[Zs-1]}
o {[1],[Z1],...[Zs-1]} is a K-basis of V,
e there are ¢;; € K,0 <1 < § <i <r such that [Z;] = ¢;o + Z?:_ll culZi].

Moreover, the knowledge of the matrices Ay allows to deduce, by easy linear algebra, both § and the ¢;s.
We can therefore choose a basis b which satisfies the condition

(AS.2) b= ([b1],...,[bs]) is such that
by = 1,bi =7, 1,1 <1< 0= dlmK(V)
so that
V= Spang{[1],[Z1],...[Z:]} = Spang{[1],[Z1],...[Zs-1]}
= Spang{[b1],...,[bs]};

thus the eigenvectors corresponding to a; = (agj), .. ,a&j)) are

e G b (i) bo(a)T

(L,ay"”, ... a5 1, bs1(0), ..., bs(aj))

and the other coordinates of o; can be deduced from al(»j ) = Cio + Z?:_ll cilal(j ).
In conclusion

Theorem (Auzinger—Stetter). With the present notation and under the assumption that J is radical, then it holds
1. each j*" column (by(a),...,bs(a;))T of My, is an eigenvector of each Ay, f € Q, for the eigenvalue f(o);
2. for each f € Q, it holds

(a) the eigenvalues of Ay and A? are {f(cj) :1<j <s};
(b) the eigenspace of Ay for XA € K is

If, moreover, Y =%, c¢pZy satisfies condition (AS.1) then:
3. the j" column (bi(cj),...,bs(a;))T of My, is the eigenvector for B; =3, chagj) of Ay ;
If further b = {[1],[Z1],...[Zs-1], [bs+1], - - ,bs]} satisfies condition (AS.2) then:
4. denoting {(d;1,...,djs)T,1 < j < s} the eigenvectors of Ay and
-1 -1
aj = (dj—lldjg, cdiy s cso + Y caidy dji, o eno Y cngdj_lldjl>
=1 =1

for each j, then Z(J) = {a;,1 < j < s}.




Stetter Algorithm via Grobnerian Technology

Y = zr: ChZh
h=1

is said an allgemeine coordinate for the zero-dimensional ideal J = N$_, q; iff

A linear form

(a). there are polynomials g; € K[Y],0 <14 <n, go monic, deg(g;) < deg(go), such that
G:=(90(Y), Z1 —q1(Y), Z2 — g2(Y), ..., Zr — g-(Y))

is the reduced Grobner basis of the ideal
Jh=J+ (Y—ZchZh> CK[Y,Zy,...,2Z,]
h

w.r.t. the lex ordering induced by ¥ < 71 < ... < Z,
and that this condition implies, under the assumption that J is radical, that
(b). @/J= K[Y]/g0(Y)
(c). foreach 4,1 <i<s, 3;:=3 7 _, cha,(f) is a root of gg
(). go(Y) =ITi=i (Y = 5u);
(e). there are polynomials hy(Y),..., h.(Y) € K[Y], deg(h;) < deg(go), such that

JF=1 (QO(Y)’gé(Y)Zl - hl(Y)v ce 796(Y)Zr - hr(Y» C K[K VATRR ) Zr] (1)

(f). for each ¢,1 < <r, we have

S

) =3 TV - 5). (2)

i=1 j#i

(g). ag-i) =g;(3) = iégg’; for each 4,1 < i <'s, and each 5,1 <j <r,
(h). For each f € Q, g (Y) := Rem(f(¢1(Y),...,9-(Y)),g0(Y)) is s.t.

f =gy mod J*, deg(gy) < deg(go)-
(i). For each f € Q, hy(Y) :==Rem(f(h1(Y),...,h(Y)),90(Y)) € K[Y] is s.t.

gV f(Z1,...,Z,) = gy mod J*,deg(hy) < deg(go)-

Moreover, there is a Zarisky open set U C K™ such that Y := >, | ¢, 2y is an allgemeine coordinate for J iff
(c1,...,¢,) € UL

Since Stetter Algorithm is improved if J is radical and the matrix Ay is given wrt a linear form Y satisfying
condition (AS.1), these results can be efficiently — O(n?s3) — granted by giving an FGLM-like linear algebra
version of Gianni’s Proposition obtained merging the algorithms by Alonso—Raimondo and Traverso.



We describe here the algorithm under the (useless but simplifer) assumption that J is radical:
1. f = Zz aiZi
2. by linear algebra on the Grobner descriptions of

[, (4, (%), ... [°]

compute the minimal polynomial go[Y] € K[Y] such that
g(Y)eJt =]+ <Y - ZaiZi> ;

3. set ¢ = r and

(a) verify, by linear algebra on the Grobner descriptions of [g)(¢)Z;], [1], [€], [¢?], ..., [¢4 ], whether exists a
relation g((Y)Z; — h;(Y) € J*, deg(h;) < d;

(b) if such a relation exists and ¢ > 1, set ¢ :=4 — 1 and go to (3.a);

(c) if such relation does not exist (this necessarily happens iff’ d := deg(go) < deg(J) ‘ and in this case we have
i > 1); then
o set £:={0+ cZ; a; :=a; + cand go to (2)

4. if’deg(go) = deg(J) |, then

e (:=3.a;Z; is a separating linear form thus satisfyings condition (AS.1)
e [90(0)Z;]) =Thi(0)] fori=1...,r.



