
Submitted to Mathematis of Computation, August 2000.

HOW TO FIND SMALL FACTORS OF INTEGERS

DANIEL J. BERNSTEIN

Abstrat. This paper presents an algorithm that, given a set of positive

integers, �nds all the prime fators � y of eah integer. If there are y=(lg y)

O(1)

integers, eah with (lg y)

O(1)

bits, then the algorithm takes time (lg y)

O(1)

per integer. This is useful in ongruene-ombination methods to ompute

large fators, disrete logarithms, lass groups, et.; in partiular, it indiretly

speeds up the number �eld sieve. The algorithm relies on fast multipliation

of numbers with y(lg y)

O(1)

bits.

1. Introdution

Consider a positive integer n. What are all the small prime divisors of n? Is n

smooth, i.e., are all its prime divisors small? Here small means at most y; the

reader should imagine y as 10

3

or 10

6

or 10

9

, with n around 10

10

or 10

30

or 10

60

.

This paper presents an algorithm that answers these questions for many integers

n simultaneously. If there are y=(lg y)

O(1)

integers, eah with (lg y)

O(1)

bits, then

the algorithm takes total time only y(lg y)

O(1)

. The time per integer is (lg y)

O(1)

,

just as if there were a polynomial-time algorithm to handle a single n.

The algorithm manipulates integers with as many as y(lg y)

O(1)

bits. The �rst

step|see setion 4|is to multiply together all the integers n that we want to fator!

To ahieve the time bound (lg y)

O(1)

stated above, one needs to multiply integers

with b bits in time b(lg b)

O(1)

for various b.

The fat that one an quikly �nd all small prime divisors of many integers is

a speial ase of the result proved in my reent paper [21℄: given any �nite subset

S of any free ommutative monoid, one an very quikly fator S into oprimes, if

there are fast algorithms for multipliation, exat division, and gd. The algorithm

in this paper is simply a streamlined version of the algorithm in the last setion of

[21℄. The algorithm is presented in a bottom-up fashion in setions 2, 3, and 4.

Previous algorithms. See [36℄, [95℄, [97℄, and [157℄ for surveys of fatoring.

The most obvious method to �nd small prime divisors is trial division: divide n

by 2, 3, 5, et. This takes time y

1+o(1)

if n has y

o(1)

bits.

The early-abort method in [140℄ and [152℄ is a modi�ation to trial division. The

idea is to hek, after eah division, how many fators of n have been disovered,

and give up if the unfatored part of n is unomfortably large. This does not

ahieve the same result as trial division, but it ahieves a result adequate for the

appliations disussed below. Pomerane showed in [140℄ that, for uniform random

n and for a partiular de�nition of \unomfortably large," early-abort trial division
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takes average time only y

1=2+o(1)

, but still has a good hane of reognizing n if n

is smooth.

Pollard's fast-fatorial method in [136℄ ahieves the same result as trial division

in time only y

1=2+o(1)

. The o(1) an be redued by Sh�onhage's tehnique in [162℄.

Pomerane showed in [140℄ that early-abort fast fatorial takes average time only

y

1=4+o(1)

.

Pollard's � method in [137℄ seems to ahieve the same result as trial division in

time y

1=2+o(1)

, with the o(1) not quite as large as in the fast-fatorial method. See

[31℄ and [35℄ for improvements, and [14℄ for analysis of a randomized version of the

method.

Pollard's p � 1 method in [136℄ �nds ertain primes p quikly: in partiular,

it seems to �nd at least one out of every z primes in time z

1+o(1)

if n has z

o(1)

bits, where 2(log z)

2

= log y log log y, The same omment applies to Williams's

p + 1 method in [177℄ and Lenstra's ellipti-urve method in [108℄. A uniform

random hoie of z

1+o(1)

ellipti urves seems to �nd every prime � y in total

time z

2+o(1)

= exp

p

(2 + o(1)) log y log log y with negligible error probability. For

further disussion see [32℄, [119℄, [88℄, [33℄, [120℄, [10℄, [167℄, [151℄, [29℄, and [34℄.

The other �

k

(p) methods in [15℄, and the hyperellipti-urve method in [109℄,

seem slower than the p� 1 method. The hyperellipti-urve method has the virtue

of provably �nding every prime � y in subexponential time with negligible error

probability.

Many more methods are available in the funtion-�eld ase. It is already well

known that univariate polynomials over �nite �elds an be fatored into irreduible

polynomials quikly. The Kaltofen-Shoup polynomial-fatorization method in [92℄

ould be faster or slower than the algorithm desribed here; a areful omparison

would aount for the sizes of n and y and for many implementation details. I have

not yet attempted to merge the ideas into a single algorithm.

Sieving. In some appliations, the integers n are suessive values of an integer

polynomial: f(0); f(1); f(2); : : : . Sieving is a well-known method of fatoring many

suh n's simultaneously: build an array of, say, A suessive values of n; for eah

prime p, mark p at eah position in the array where n is divisible by p. The set of

these positions is a union of arithmeti progressions mod p.

One an use an early abort with sieving. Sieve all primes p up through, say, B;

throw away the n's whose unfatored part is unomfortably large; then apply some

other method to the n's that remain. The sieving time per number is B

1+o(1)

=A+

r(A)(log logB+O(1)), where r(A) is the random-aess time for an array of length

A, i.e., the time needed to make a single mark. On typial omputers, r(A) inreases

in sudden steps: it jumps by an order of magnitude as A inreases past \level-1

ahe size," then another fator of 2 or 3 as A inreases past \level-2 ahe size,"

then several orders of magnitude as A inreases past \DRAM size."

The speed of sieving is indiretly a�eted by the speed of other fatorization

methods. A faster method of handling the n's that remain after sieving means that

one an a�ord to look at more n's; so sieving an do a less preise job of identifying

the interesting n's; so one an redue B. If the overhead B

1+o(1)

=A is large then

reduing B improves sieve time; otherwise one an redue A, hopefully enough to

redue r(A), whih again improves sieve time.
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Appliations. Consider the problem of �nding all fators (not just small fators!)

of a positive integer D. The Lehmer-Powers-Brillhart-Morrison ontinued-fration

method produes many new integers n with known square roots mod D and �nds

nonempty subsets of fng with square produt. To �nd suh subsets, it looks for

smooth n's, fators eah n as a produt of powers of �1; 2; 3; 5; : : : , and then �nds

linear relations among the exponent vetors mod 2. See [101℄, [124℄, [180℄, [140℄,

[129℄, [152℄, [168℄, [181℄, [178℄, [172℄, [146℄, and [147℄. See also [149℄, [99℄, [176℄, [56℄,

[55℄, [107℄, [122℄, [67℄, and [16℄ for relevant linear-algebra algorithms.

The integers n in the ontinued-fration method are bounded in absolute value

by x for some x 2 D

1=2+o(1)

; one hooses y with (log y)

2

2 (1=2+o(1)) log x log log x.

It seems that the �rst y

2+o(1)

values of n always suÆe to produe y

1+o(1)

smooth

integers, many square produts, and the omplete fatorization of D. The total

time is y

2+o(1)

= exp

p

(1 + o(1)) logD log logD if one an reognize the smooth

n's in time y

o(1)

per number. The algorithm in this paper is a very fast way to

reognize smooth n's.

The methods of [68℄, [142℄, and [171℄ seem slower than the ontinued-fration

method, but they have the virtue of provably �nding the omplete fatorization

of every D in subexponential average time. The Shnorr-Seysen-Lenstra-Lenstra-

Pomerane lass-group method developed in [161℄, [164℄, [102℄, and [110℄ is more

ompliated but provably fators every omposite D in average time y

2+o(1)

with

y as above. Eah of these methods has the same outline as the ontinued-fration

method; it is ruial to provably reognize smooth n's quikly. One an do this with

the ellipti-urve method or the hyperellipti-urve method, but the algorithm in

this paper is faster, simpler, and muh easier to prove.

Shroeppel in 1977 introdued the idea of generating n's as suessive values of

various polynomials so that many n's ould be fatored simultaneously by sieving.

Pomerane's quadrati sieve is a simpli�ation of Shroeppel's linear sieve. Eah

method seems to always sueed in time y

2+o(1)

with y as above. See [140℄, [79℄,

[168℄, [62℄, [141℄, [65℄, [63℄, [165℄, [46℄, [150℄, [64℄, [155℄, [106℄, [13℄, [144℄, [156℄,

[166℄, [133℄, [66℄, [9℄, [11℄, [27℄, and [52℄. The algorithm in this paper an be used

to indiretly speed up sieving, as desribed above. Furthermore, a redution in the

sieve array size allows a redution in the size of n; see, e.g., [52℄.

Pollard's number �eld sieve, as generalized by Buhler, Lenstra, and Pomerane,

seems to always sueed in time exp((64=9 + o(1))

1=3

(logD)

1=3

(log logD)

2=3

). See

[138℄, [104℄, [105℄, [3℄, [44℄, [139℄, [60℄, [24℄, [41℄, [145℄, [121℄, [82℄, [19℄, [69℄, [148℄,

[72℄, [73℄, [74℄, [76℄, [61℄, [75℄, [123℄, [126℄, [130℄, and [127℄. The algorithm in this

paper an again be used to indiretly speed up sieving and redue the size of n.

Coppersmith's number-�eld-sieve variant in [54℄ seems asymptotially faster,

with 64=9 redued slightly. Coppersmith's method fators many numbers with

a sieve, and then fators not quite as many unsieveable numbers. The algorithm

in this paper diretly speeds up the handling of the unsieveable numbers; it may

make Coppersmith's variant worthwhile for urrent sizes of D.

The ideas behind these integer-fatorization methods are also used in the index-

alulus method of omputing disrete logarithms in �nite �elds. See [175℄, [117℄,

[2℄, [89℄, [26℄, [71℄, [17℄, [59℄, [100℄, [5℄, and [163℄ for the basi index-alulus method;

[158℄, [83℄, [159℄, [132℄, [160℄, [173℄, and [174℄ for an index-alulus appliation of the

number �eld sieve; and [53℄, [58℄, [131℄, [115℄, and [7℄ for a funtion-�eld analogue.
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The same ideas are also used to ompute lass groups and regulators of number

�elds. See [87℄, [38℄, [39℄, [90℄, and [40℄.

Aknowledgments. Thanks to Carl Pomerane for drawing my attention to the

unsieveable integers in [54℄. Thanks to Christine Swart for her omments.

2. Multipliation and division

The algorithms here use a multipliation box that omputes xz given nonnegative

integers x and z. The speed of the box is measured by a funtion �; time spent

inside the box is alled �-time. Eah algorithm in this paper has �-time bounded

in terms of the funtion �. The reader may hek that �-time dominates the run

time of the algorithms.

The multipliation box is assumed to ompute xz in time at most b�(b) if b is a

positive integer with xz < 2

b

. The funtion � is assumed to be nondereasing and

positive. One an ahieve �(b) 2 (lg b)

O(1)

in a realisti model of omputation; see

[20℄ for a survey of multipliation tehniques.

Algorithm 2.1. Given a positive integer b and a positive odd integer u, to print

a nonnegative integer v < 2

b

suh that 1 + uv � 0 (mod 2

b

):

1. If b = 1: Print 1. Stop.

2. Set  db=2e.

3. Find v

0

< 2



suh that 1 + uv

0

� 0 (mod 2



) by Algorithm 2.1.

4. Set u

0

 u mod 2



and u

1

 bu=2



 mod 2



. (Now u � u

0

+2



u

1

(mod 2

2

);

and 1 + u

0

v

0

� 0 (mod 2



).)

5. Set z  ((1 + u

0

v

0

)=2



+ u

1

v

0

) mod 2



. (Now 1 + uv

0

� 2



z (mod 2

2

).)

6. Set v  v

0

+2



zv

0

mod 2

b

. (Now 1+uv � 1+uv

0

+2



zuv

0

� 2



z+2



zuv

0

�

2



z2



z � 0 (mod 2

b

).)

7. Print v.

Theorem 2.2. Algorithm 2.1 uses �-time at most 6(b+ dlg be � 1)�(b+ 1).

Proof. For b = 1: Algorithm 2.1 uses no �-time, and b+ dlg be � 1 = 0.

For b � 2: By indution, step 3 uses �-time at most 6(+ dlg e � 1)�(+ 1) �

6((b+1)=2+ dlg be � 2)�(b+1). Steps 5 and 6 use �-time at most 3(b+ 1)�(b+1)

to ompute the produts u

0

v

0

, u

1

v

0

, and zv

0

, eah of whih is below 2

2

� 2

b+1

.

The total �-time is at most 6�(b + 1) times (b + 1)=2 + (b + 1)=2 + dlg be � 2 =

b+ dlg be � 1.

Algorithm 2.3. Given positive integers b and , a positive odd integer u < 2



,

and a nonnegative integer x < 2

+b

, to print a nonnegative integer r < 2

+1

suh

that 2

b

r � x (mod u):

1. Find v < 2

b

suh that 1 + uv � 0 (mod 2

b

) by Algorithm 2.1.

2. Set x

0

 x mod 2

b

and x

1

 

�

x=2

b

�

. (Now x = 2

b

x

1

+ x

0

.)

3. Set q  vx

0

mod 2

b

. (Now x

0

+ uq � x

0

+ uvx

0

� 0 (mod 2

b

).)

4. Set r  x

1

+ (x

0

+ uq)=2

b

. (Now 2

b

r = x + uq � x (mod u); and r < 2

+1

sine x+ uq < 2

+b

+ 2



2

b

= 2

+b+1

.)

5. Print r.

Theorem 2.4. Algorithm 2.3 uses �-time at most 12(b+ )�(2(b+ )).
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Proof. Step 1 uses �-time at most 6(b+dlg be�1)�(b+1) � 9b�(b+1) by Theorem

2.2. Step 3 uses �-time at most 2b�(2b) to ompute vx

0

. Step 4 uses �-time

at most (b + )�(b + ) to ompute uq. The total is at most �(2b + 2) times

9b+ 2b+ b+  < 12b+ 12. Note that these bounds are rather rude.

Notes. Algorithms 2.1 and 2.3 are standard examples of Hensel's method, i.e.,

2-adi appliations of Newton's method. They have some redundany that an be

removed; see [22℄. The tehniques of [22℄ also apply to Algorithms 3.3 and 4.1.

When b is larger than , one an save time in Algorithm 2.3 by handling x in

hunks. See [95, exerise 4.3.3{13℄ and [95, Algorithm 4.3.1{D℄.

One ould use real division instead of 2-adi division in the subsequent setions,

but 2-adi division is easier to implement.

3. Multipoint evaluation

Let P be a nonempty �nite multiset of positive integers. The produt tree of

P is a binary tree of integers de�ned as follows. The root of the tree is

Q

p2P

p.

If #P = 1, the root has no hildren. If #P � 2, the root has the produt tree of

Q as its left subtree, and the produt tree of P �Q as its right subtree; here Q is

the reader's favorite submultiset of P of size b#P=2. Observe that eah non-leaf

vertex in the produt tree of P is the produt of its two hildren.

De�ne lgP =

P

p2P

dlg(p+ 1)e. Basi properties: lgP = lgQ+ lg(P �Q); lgP

is positive; the root of the produt tree of P is less than 2

lgP

.

Algorithm 3.1. Given a nonempty �nite multiset P of positive integers, to print

the produt tree of P :

1. If #P = 1: Find p 2 P . Print p. Stop.

2. Selet Q � P with #Q = b#P=2.

3. Print the produt tree T of Q by Algorithm 3.1.

4. Print the produt tree U of P �Q by Algorithm 3.1.

5. Print the produt of the roots of T and U .

Theorem 3.2. Algorithm 3.1 uses �-time at most k(lgP )�(lgP ) if #P � 2

k

and

k � 0.

Proof. If #P � 1 then Algorithm 3.1 uses no �-time. So assume #P � 2; then k �

1. By indution on k, step 3 uses �-time at most (k�1) lgQ times �(lgQ) � �(lgP ),

and step 4 uses �-time at most (k � 1) lg(P � Q) times �(lg(P � Q)) � �(lgP ).

Step 5 uses �-time at most (lgP )�(lgP ). The total �-time is at most �(lgP ) times

(k � 1) lgQ+ (k � 1) lg(P �Q) + lgP = k lgP .

Algorithm 3.3. Given a nonnegative integer x, and given the produt tree T of a

nonempty �nite set P of positive odd integers, to print fp 2 P : x mod p = 0g:

1. Set u the root of T .

2. Set  dlg(u+ 1)e and d dlg(x+ 1)e. (Now 1 � 2

�1

� u < 2



.)

3. If d >  + 1: Apply Algorithm 2.3 to (d � ; ; u; x) to �nd a nonnegative

integer r < 2

+1

suh that 2

d�

r � x (mod u).

4. If d � + 1: Set r  x.

5. (Now 2

something

r � x (mod u) and 0 � r < 4u.) If the root of T has no

hildren: Print u if r 2 f0; u; u+ u; u+ u+ ug. Stop.

6. Apply Algorithm 3.3 to r and the left subtree of T .

7. Apply Algorithm 3.3 to r and the right subtree of T .
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Theorem 3.4. Algorithm 3.3 uses �-time at most e + 2k lgP + 2

k+1

� 2 times

12�(2max fe; lgP + 1g) if #P � 2

k

, k � 0, x < 2

e

, and e � 0.

Proof. First u < 2

lg P

so  � lgP ; also d � e. By Theorem 2.4, step 3 uses �-time

at most 12e�(2e), whether or not d > + 1.

For k = 0: There is no other �-time; and e+ 2k lgP + 2

k+1

� 2 = e.

For k � 1: By indution on k, step 6 uses �-time at most

(+ 1) + 2(k � 1) lgQ+ 2

k

� 2 � lgP + 2(k � 1) lgQ+ 2

k

� 1

times 12�(2max f+ 1; lgQ+ 1g) � 12�(2(lgP + 1)). Similarly, step 7 uses �-

time at most lgP + 2(k � 1) lg(P �Q) + 2

k

� 1 times 12�(2(lgP + 1)). The total

is at most e + 2 lgP + 2(k � 1) lgP + 2

k+1

� 2 = e + 2k lgP + 2

k+1

� 2 times

12�(2max fe; lgP + 1g).

Notes. Borodin and Moenk in [28℄ pointed out that one an redue x modulo

many p's in essentially linear time.

The produt tree for P takes substantially more memory than P does. One an

save memory by disarding portions of the produt tree and reomputing them on

demand.

Algorithm 2.1 an be sped up in the ontext of Algorithm 3.3. Say one wants to

divide by pp

0

, then by p, then by p

0

. Algorithm 2.1 �nds an approximate reiproal

of pp

0

by Newton iteration starting from 1. It is better to start from the produt

of approximate reiproals of p and p

0

.

Strassen in [170℄ suggested multiplying elements of P in a di�erent order: replae

the two smallest elements of P by their produt, then repeat. One an use a heap to

rapidly identify the smallest elements of P at eah step; see [179℄, [77℄, [96, exerise

5.2.3{18℄, and [96, exerise 5.2.3{28℄. This saves time in Algorithms 3.1 and 3.3

when the elements of P have wildly varying sizes.

4. Fatorization

Algorithm 4.1. Given a nonempty �nite multiset N of positive integers, and a

�nite set P of odd primes, to print (n; fp 2 P : n mod p = 0g) for eah n 2 N :

1. If P = fg: Print (n; fg) for eah n 2 N . Stop.

2. Compute x 

Q

n2N

n by Algorithm 3.1.

3. Compute the produt tree T of P by Algorithm 3.1.

4. Compute P

0

 fp 2 P : x mod p = 0g by Algorithm 3.3. (The elements of

P

0

are exatly the primes relevant to fatorizations of elements of N .)

5. If #N = 1: Find n 2 N . Print (n; P

0

). Stop.

6. Selet M � N with #M = b#N=2.

7. Apply Algorithm 4.1 to (M;P

0

).

8. Apply Algorithm 4.1 to (N �M;P

0

).

Theorem 4.2. Algorithm 4.1 uses �-time at most

((100jk+108j + j(j +1)=2+ 12) lgN +25k lgP +24 � 2

k

)�(2max flgN; lgP + 1g)

if #N � 2

j

, j � 0, #P � 2

k

, and k � 0.

Proof. By Theorem 3.2, step 2 uses �-time at most j(lgN)�(lgN), and step 3

uses �-time at most k(lgP )�(lgP ). By Theorem 3.4, step 4 uses �-time at most

12(lgN + 2k lgP + 2

k+1

)�(2max flgN; lgP + 1g).
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For j = 0: The total �-time is at most 12 lgN + 25k lgP + 24 � 2

k

times

�(2max flgN; lgP + 1g).

For j � 1: The point is that P

0

annot be muh larger than N . Eah element

of P

0

divides x, so

Q

p2P

0

p divides x, so

P

p2P

0

lg p � lg x < lgN . The rude

bound dlg(p+ 1)e � 2 lg p then implies lgP

0

� 2 lgN . Furthermore #P

0

< lgN ,

so 2

k

0

< 2 lgN if k

0

is the least nonnegative integer with #P

0

� 2

k

0

.

Therefore, by indution on j, step 7 uses �-time at most

(100(j � 1)k

0

+ 108(j � 1) + (j � 1)j=2 + 12) lgM + 25k

0

lgP

0

+ 24 � 2

k

0

� (100(j � 1)k + 108(j � 1) + (j � 1)j=2 + 12) lgM + (50k + 48) lgN

times �(2max flgM; lgP

0

+ 1g) � �(2max flgN; lgP + 1g). Similarly, step 8 uses

�-time at most (100(j�1)k+108(j�1)+(j�1)j=2+12) lg(N�M)+(50k+48) lgN

times �(2max flgN; lgP + 1g).

The total is �(2max flgN; lgP + 1g) times j lgN + k lgP +12 lgN +24k lgP +

12 � 2

k+1

+ (100(j � 1)k + 108(j � 1) + (j � 1)j=2 + 12) lgN + (100k + 96) lgN =

(100jk + 108j + j(j + 1)=2 + 12) lgN + 25k lgP + 12 � 2

k+1

as laimed.

Notes. Before feeding n to Algorithm 4.1, one should trial-divide n by 2, and

perhaps by a few more primes. The unfatored portion of n often takes slightly less

spae than n, speeding up Algorithm 4.1. The speedup should be balaned against

the time taken by trial division.

In step 6 of Algorithm 4.1, rather than ontinuing the reursion, one an trial-

divide eah element of N by P

0

. The best uto� for the size of N depends on the

relative speeds of trial division and Algorithm 3.3.

In step 5 of Algorithm 4.1, if one wants to know whether n is smooth, one an

simply trial-divide n by P

0

. At this point P

0

has very few elements. See [21℄ for

asymptotially faster algorithms.

One an save some time in Algorithm 4.1 by reording the produt tree for N

in step 2, then reusing the tree in steps 7 and 8.

In pratie, P

0

is rarely as large as N . One an pro�tably split N into more than

two piees at the end of Algorithm 4.1.

Implementation results. A preliminary implementation of Algorithm 4.1, using

Torbjorn Granlund's GMP 3 for multipliation, takes 7:6 � 10

5

yles per number

on a Pentium II-400 to fator the 31-digit integers (10

15

+ j)

2

+1 for 0 � j < 16384

over the odd primes up to 10

6

. This result does not inlude the improvements

desribed in [22℄ and [23℄.
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