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Abstra
t. The number �eld sieve takes time L

1:901���+o(1)

on a general-

purpose 
omputer with L

0:950���+o(1)

bits of memory; here L is a parti
ular

subexponential fun
tion of the input size. It takes the same time on a parallel

trial-division ma
hine, su
h as Cra
ker or TWINKLE, of size L

0:950���+o(1)

.

It takes time only L

1:185���+o(1)

on a ma
hine of size L

0:790���+o(1)

explained

in this paper. This redu
tion of total 
ost from L

2:852���+o(1)

to L

1:976���+o(1)

means that a ((3:009 � � �+o(1))d)-digit fa
torization with the new ma
hine has

the same 
ost as a d-digit fa
torization with previous ma
hines.

0. Prefa
e

This paper is an ex
erpt from a grant proposal that I submitted to NSF DMS

at the beginning of O
tober 2001.

The same te
hniques 
an be applied to other 
ongruen
e-
ombination algorithms

for fa
toring, dis
rete logarithms, 
lass groups, et
. See [3℄ for a bibliography.

Priority dates. I realized on 13 September 2000 that spe
ial-purpose hardware

would 
hange the exponent in the 
ost of integer fa
torization. I announ
ed the

exponent redu
tion from 3+o(1) to 2:5+o(1) for real (two-dimensional) 
ir
uits in

a seminar at Butler University on 23 Mar
h 2001, a rump-session presentation at

Euro
rypt 2001 on 7 May 2001, and a talk at the Algorithms and Number Theory


onferen
e at Dagstuhl on 14 May 2001. I realized on 9 August 2001 that the

sieving exponent 
ould easily be redu
ed from 2:5 + o(1) to 2 + o(1).

1. Introdu
tion

It is 
onje
tured that one 
an �nd the prime fa
tors of an integer n in time L

O(1)

,

where L = exp((logn)

1=3

(log logn)

2=3

).

More pre
isely: Write 
 = (92+26

p

13)

1=3

. The number �eld sieve, with sensibly


hosen parameters, takes time L


=3+o(1)

= L

1:9018836118���+o(1)

on a general-purpose


omputer with L


=6+o(1)

= L

0:9509418059���+o(1)

bits of memory, and is 
onje
tured

to �nd the prime fa
tors of n.

I realized re
ently that the same 
omputation 
an be 
arried out in time only

L


=4+o(1)

= L

1:4264127088���+o(1)

on a di�erent ma
hine of size L


=6+o(1)

. Another

parameter 
hoi
e takes time L

d+o(1)

= L

1:1856311014���+o(1)

on a ma
hine of size

L

2d=3+o(1)

= L

0:7904207343���+o(1)

, and is still 
onje
tured to �nd the prime fa
tors

of n. Here d = (5=3)

1=3

.
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The 
ost of fa
torization|the produ
t of the time and the 
ost of the ma
hine|

has thus dropped from L


=2+o(1)

= L

2:8528254177���+o(1)

to

L

5d=3+o(1)

= L

1:9760518358���+o(1)

:

In other words, for a given 
ost, the number of digits of n has grown by a fa
tor of

(3
=10d+ o(1))

3

= 3:0090581972 � � �+ o(1).

This is a tremendously ex
iting observation; it demands further investigation.

What do all the o(1)'s look like in pra
ti
e? Are these ma
hines more 
ost-e�e
tive

than general-purpose 
omputers for 
urrent ranges of n? See se
tions 2 through 6

of this proposal.

A team led by Herman te Riele used the number �eld sieve on general-purpose


omputers to fa
tor a diÆ
ult 512-bit integer in August 1999. Is it now possible to

fa
tor 1536-bit integers at reasonable 
ost?

2. Odd-even transposition sorting

Odd-even transposition sorting is a straightforward algorithm that sorts m num-

bers in m steps on a one-dimensional ma
hine of size m. Readers familiar with the

algorithm may skip to the next se
tion; this se
tion is purely expository.

The ma
hine has m 
ells, ea
h 
ell holding one number, ea
h 
ell 
onne
ted

to the adja
ent 
ells. In the �rst step, the �rst and se
ond 
ells sort their two

numbers; the third and fourth 
ells sort their two numbers; et
. In the se
ond step,

the se
ond and third 
ells sort their two numbers; the fourth and �fth 
ells sort

their two numbers; et
. The third step is just like the �rst step; the fourth step is

just like the se
ond step; and so on.

There are several ways to prove that m steps suÆ
e to sort the entire list of

numbers. See, e.g., [7, exer
ise 5.3.4{37℄.

The following table is an example of odd-even transposition sorting, with m = 8:

Time 0: 8 9 7 9 3 2 3 4

Time 1: 8 9 7 9 2 3 3 4

Time 2: 8 7 9 2 9 3 3 4

Time 3: 7 8 2 9 3 9 3 4

Time 4: 7 2 8 3 9 3 9 4

Time 5: 2 7 3 8 3 9 4 9

Time 6: 2 3 7 3 8 4 9 9

Time 7: 2 3 3 7 4 8 9 9

Time 8: 2 3 3 4 7 8 9 9

The notation

a b


 d

means 
 = min fa; bg and d = max fa; bg.

3. S
himmler sorting

S
himmler's algorithm sorts m

2

numbers in 8m� 8 steps on a two-dimensional

ma
hine of size m

2

, when m is a power of 2.

The ma
hine 
onsists ofm

2


ells in anm�m mesh, ea
h 
ell holding one number,

ea
h 
ell 
onne
ted to the adja
ent 
ells. There are several natural orderings of 
ells

in an m�m mesh. S
himmler's algorithm 
an sort using the left-to-right order

(1; 1); (1; 2); : : : ; (1;m); (2; 1); (2; 2); : : : ; (2;m); (3; 1); (3; 2); : : : ; (3;m); : : : ;
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the right-to-left order

(1;m); (1;m� 1); : : : ; (1; 1); (2;m); (2;m� 1); : : : ; (2; 1);

(3;m); (3;m� 1); : : : ; (3; 1); : : : ;

or the snakelike order

(1; 1); (1; 2); : : : ; (1;m); (2;m); (2;m� 1); : : : ; (2; 1); (3; 1); (3; 2); : : : ; (3;m); : : : :

S
himmler's algorithm works as follows. Re
ursively sort the top-left quadrant

of the mesh, left to right; the top-right quadrant of the mesh, left to right; the

bottom-left quadrant of the mesh, right to left; and the bottom-right quadrant

of the mesh, right to left. Sort ea
h 
olumn independently, top to bottom, with

odd-even transposition sort. Sort ea
h row independently, snakelike. Sort ea
h


olumn independently, top to bottom. Finally, sort ea
h row independently, using

the desired order, left to right or right to left or snakelike.

For example, take the following array:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

Sort the quadrants:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

Sort the 
olumns, top to bottom:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9
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Sort the rows, snakelike:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

Sort the 
olumns, top to bottom:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

Sort the rows, left to right:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

The array is now sorted, left to right.

To prove the 
orre
tness of an algorithm of this type, sele
t a 
uto� value v,

and 
onsider the positions of numbers larger than v. After the re
ursive sorting,

all that matters is how many su
h numbers are in ea
h quadrant. It is then easy

to analyze where those numbers appear in subsequent steps.

History. Thompson and Kung in [21℄ showed that an m �m mesh 
an sort m

2

numbers in O(m) steps. S
hnorr and Shamir in [18℄ showed that anm�mmesh 
an

sort m

2

numbers in snakelike order in (3 + o(1))m steps. S
himmler's algorithm

appeared in [17℄; it is 
onsiderably simpler than the S
hnorr-Shamir algorithm,

although it is not as fast.

Similar 
omments apply to higher-dimensional meshes. Unfortunately, it is dif-

�
ult in pra
ti
e to build an m�m�m mesh for large m.

A philosophi
al note. I always thought that 
ommon general-purpose 
omputers

were the pinna
le of realisti
 
omputational power. Spe
ial-purpose 
omputer ar
hi-

te
tures, su
h as Lehmer's bi
y
le 
hain sieve or Pomeran
e's Cra
ker or Shamir's

TWINKLE, were at best a 
onstant fa
tor faster. Quantum 
omputers are asymp-

toti
ally faster for many 
omputations, but it is un
lear whether they 
an a
tually

be built.
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I also thought that parallel 
omputing redu
ed the time, not the 
ost, of 
om-

putations. Ten pro
essors might perform a 
omputation in one tenth the time of a

single pro
essor, but they are ten times as expensive, so the 
ost of the 
omputation

remains the same.

I was wrong. S
himmler's ma
hine, with m

2

pro
essors, 
an be built for m

2+o(1)

dollars, just like a single-pro
essor 
omputer with m

2+o(1)

bits of memory. It 
an

sort m

2

numbers in time m

1+o(1)

, while the single-pro
essor ma
hine needs time

m

2+o(1)

. The 
ost of the 
omputation has dropped from m

4+o(1)

to m

3+o(1)

.

4. Cir
uits for linear algebra

Let A be a square matrix over F

2

with y

1+o(1)


olumns and with y

o(1)

nonzero

entries in ea
h 
olumn. The obvious method of 
omputing Av, given a ve
tor v over

F

2

, takes time y

1+o(1)

on a general-purpose 
omputer with y

1+o(1)

bits of memory.

One 
an do better with S
himmler sorting: time y

0:5+o(1)

on another ma
hine

of size y

1+o(1)

. In parti
ular, this ma
hine 
an 
ompute a dot produ
t in time

y

0:5+o(1)

. Here are the details.

Sele
t m 2 y

0:5+o(1)

as a power of 2 large enough that m

2

ex
eeds the number

of nonzero entries of A plus twi
e the number of rows of A. Build an m�m mesh

of 
ells, ea
h 
ell having O(log y) bits of storage.

Store the nonzero entries of v|the integers j su
h that v

j

= 1|in these 
ells in

any order. Also store the nonzero entries ofM|the pairs (i; j) su
h thatM

i;j

= 1|

in 
ells in any order; note that there are only y

o(1)

pairs for ea
h j. Store 0 in all

remaining 
ells.

Sort all the integers j and pairs (i; j) in order of j, with the 
ells in snakelike

order. For example:

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(3; 3) (2; 3) (3; 2) (2; 1) (1; 1) 1 0 0

(8; 3) 5 (1; 5) (4; 5) 6 7 (6; 7) (15; 7)

(1; 12) 12 (13; 11) (1; 10) (1; 9) (8; 8) (2; 8) 8

(10; 12) 13 (1; 13) (2; 13) 14 (1; 14) (3; 14) (4; 14)

(11; 16) (3; 16) (2; 16) 16 (5; 15) (4; 15) (2; 15) (1; 15)

This takes m

1+o(1)

= y

0:5+o(1)

steps, and brings ea
h j within distan
e y

o(1)

of all

the 
ells with pairs (i; j). Communi
ate ea
h j to those 
ells; this takes y

o(1)

steps.

Then repla
e the j's by new numbers: i in a 
ell that has both j and (i; j); 0 in all

other 
ells. For example:

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(3; 3) (2; 3) (3; 2) 2; (2; 1) 1; (1; 1) 0 0 0

(8; 3) 0 1; (1; 5) 4; (4; 5) 0 0 6; (6; 7) 15; (15; 7)

1; (1; 12) 0 (13; 11) (1; 10) (1; 9) 8; (8; 8) 2; (2; 8) 0

10; (10; 12) 0 1; (1; 13) 2; (2; 13) 0 1; (1; 14) 3; (3; 14) 4; (4; 14)

11; (11; 16) 3; (3; 16) 2; (2; 16) 0 (5; 15) (4; 15) (2; 15) (1; 15)



6 DANIEL J. BERNSTEIN

Sort (snakelike) these new numbers; this takes y

0:5+o(1)

steps. For example:

1 1 1 1 1 2 2 2

10 8 6 4 4 3 3 2

11 15 0 0 0 0 0 0

(3; 3) (2; 3) (3; 2) (2; 1) (1; 1) 0 0 0

(8; 3) 0 (1; 5) (4; 5) 0 0 (6; 7) (15; 7)

(1; 12) 0 (13; 11) (1; 10) (1; 9) (8; 8) (2; 8) 0

(10; 12) 0 (1; 13) (2; 13) 0 (1; 14) (3; 14) (4; 14)

(11; 16) (3; 16) (2; 16) 0 (5; 15) (4; 15) (2; 15) (1; 15)

Compare ea
h 
ell to one of its two (snakelike) neighbors, as in the �rst step of an

odd-even transposition sort; if the two 
ells have the same number i, repla
e that

number by 0 in both 
ells. Then sort on
e more. For example:

1 2 2 3 3 4 4 6

0 0 0 0 15 11 10 8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 (1; 1) (2; 1) (3; 2) (2; 3) (3; 3)

(1; 9) (8; 8) (2; 8) (15; 7) (6; 7) (4; 5) (1; 5) (8; 3)

(1; 10) (13; 11) (1; 12) (10; 12) (1; 13) (2; 13) (1; 14) (3; 14)

(11; 16) (3; 16) (2; 16) (5; 15) (4; 15) (2; 15) (1; 15) (4; 14)

At this point there are at most two o

urren
es of ea
h i. Compare ea
h 
ell to

both of its neighbors, and 
an
el any remaining dupli
ates. That's it. The nonzero

entries of v and M have been repla
ed by the nonzero entries of Mv and M .

Computing kernels. Wiedemann's algorithm in [22℄ 
omputes the minimal poly-

nomial f of A as follows.

Sele
t uniform random ve
tors u and v. The minimal polynomial g of the bit

sequen
e uv; uAv; uA

2

v; : : : is a divisor of f . The least 
ommon multiple of a few

su
h divisors is, with high probability, f .

One 
an 
ompute g very qui
kly from the �rst y

1+o(1)

bits in the sequen
e. The

algorithms in [19℄, [13℄, [4℄, and [14℄, with the help of fast multipli
ation, do this in

time y

1+o(1)

on a general-purpose 
omputer with y

1+o(1)

bits of memory.

The obvious method of 
omputing these y

1+o(1)

bits, multiplying v by A repeat-

edly and multiplying ea
h result by u, takes time y

2+o(1)

on the same 
omputer. It

takes time only y

1:5+o(1)

on the ma
hine des
ribed above.

Given the minimal polynomial of A, one 
an easily 
onstru
t random elements of

the kernel of A. The obvious method again takes time y

2+o(1)

on a general-purpose


omputer with y

1+o(1)

bits of memory; the ma
hine des
ribed above takes time

y

1:5+o(1)

.

Plans. I will investigate the 
ost of these 
omputations in detail. Exa
tly how ex-

pensive are linear-algebra 
ir
uits of various sizes? Computer programs are available

to help 
onstru
t and simulate dedi
ated 
ir
uits and FPGAs, produ
ing pre
ise

measurements of size and speed.

Are there better representations of matri
es and ve
tors? For example, should

j and (i; j) be assigned permanently to 
ells? Should the third sorting step be

eliminated? Can repeated i's be pro�tably removed in the middle of S
himmler's
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algorithm? Is it pra
ti
al to use the S
hnorr-Shamir algorithm instead of S
himm-

ler's algorithm? There is a huge literature on mesh routing and mesh sorting, with

dozens of potentially useful te
hniques.

There are many more ways to save 
onstant fa
tors. Wiedemann's algorithm


an handle additional pairs (u; v) mu
h more qui
kly on
e a large divisor of f is

known. One 
an use Lan
zos-type algorithms instead of Wiedemann's algorithm;

see [8℄ for a survey. I will explore all of these possibilities.

A blo
k version of Wiedemann's algorithm allows further parallelization, al-

though it does not 
hange the 
ost of the 
omputation. See [6℄. It should be

possible to 
ombine y

0:1+o(1)

of these ma
hines, for example, to 
onstru
t random

elements of the kernel of A in time y

1:4+o(1)

.

5. Cir
uits to find smooth numbers

Consider a set of y

2+o(1)

numbers, ea
h with (log y)

O(1)

digits. How long does it

take to �nd all the y-smooth numbers?

RAM sieving. Common pra
ti
e is to partition the set into y

1+o(1)

pie
es, ea
h

of size y

1+o(1)

, and sieve ea
h pie
e. See [3℄ for a method that a
hieves similar

performan
e even if the numbers are not sieveable.

Sieving seems very eÆ
ient. It handles y

2+o(1)

numbers in y

2+o(1)

steps. How-

ever, it requires y

1+o(1)

bits of memory, only a few of whi
h are performing pro-

du
tive work at any moment. Most of the bits are simply sitting around, twiddling

their thumbs. The 
ost of sieving is y

3+o(1)

.

Parallel trial division. Another approa
h is to divide ea
h of the y

2+o(1)

numbers

by ea
h of the y

1+o(1)

primes.

This may seem slower than sieving: it takes y

3+o(1)

steps. However, it uses only

y

o(1)

bits of memory, so it 
an easily be parallelized. One 
an handle separate

numbers in parallel, or handle separate primes in parallel, or both. One 
an also

speed up the trial division by a fa
tor of y

o(1)

when the numbers are sieveable.

The 
ost of any of these approa
hes is y

3+o(1)

: in other words, within a fa
tor

y

o(1)

of the 
ost of sieving. This applies, in parti
ular, to Pomeran
e's Cra
ker, and

Shamir's TWINKLE.

Parallel ECM. Trial division is not the state of the art in low-memory smoothness-

testing methods. ECM, Lenstra's ellipti
-
urve method in [10℄, has 
onje
turally

negligible 
han
e of error, and takes time at most exp

p

(2 + o(1)) log y log log y per

integer. HECM, the Lenstra-Pila-Pomeran
e hyperellipti
-
urve method in [11℄,

has provably negligible 
han
e of error, and takes time at most exp((log y)

2=3+o(1)

)

per integer. Both methods use y

o(1)

bits of memory.

Consequently a parallel ECM or HECM ma
hine, handling y

1+o(1)

numbers in

parallel, has size y

1+o(1)

, and tests smoothness of y

2+o(1)

numbers in time y

1+o(1)

.

The 
ost of this 
omputation is only y

2+o(1)

.

Note that numbers are handled by this ma
hine mu
h more qui
kly than they


ould be 
ommuni
ated through a serial link. This ma
hine is not useful unless it

re
eives inputs in parallel. If there are many outputs then the outputs also need to

be handled in parallel.
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Plans. As in se
tion 4, I will investigate the 
ost of these 
omputations in detail.

There are several ways to a
hieve 
ost y

2:5+o(1)

: parallel Pollard rho, for example,

or sieving via S
himmler's algorithm. These methods may be faster than ECM for


urrent values of y, and 
an be pro�tably used as a �rst step in any 
ase.

There are many more options to explore. For example, as shown by Pomeran
e

in [15℄, early aborts dis
ard a sizable fra
tion of useful inputs, but redu
e the time

by a larger fra
tion, when the abort parameters are 
hosen properly.

6. Cir
uits for integer fa
torization

The number �eld sieve tries to fa
tor an integer n � 15 as follows, when n is odd

and not a prime power. The spe
i�
 parameter 
hoi
es here are due to Coppersmith

in [5℄.

De�ne � = (log n)

1=3

(log logn)

�1=3

and

L = n

1=�

2

= exp((logn)

1=3

(log logn)

2=3

):

Note that (1 + o(1))� log� = (1=3 + o(1)) logL.

Sele
t an integer degree d 2 (1:4017532352 � � �+o(1))� with d � 2. The 
onstant

here is (92 + 26

p

13)

1=3

(�5 + 2

p

13)=9.

Sele
t an integer m 
lose to n

1=d

. Write n as m

d

+ f

d�1

m

d�1

+ � � �+ f

1

m+ f

0

with ea
h f

i

bounded by n

(1+o(1))=d

. There are some bad 
hoi
es of f

i

's that will

make the rest of the algorithm fail, but a random 
hoi
e is 
onje
tured to su

eed

with high probability.

Consider all pairs (a; b) of 
oprime positive integers bounded by

L

0:9509418059���+o(1)

:

There are L

1:9018836118���+o(1)

su
h pairs. Sieve the integers a � bm, using all

primes up to L

0:9509418059���+o(1)

, to see whi
h integers are smooth. This takes time

L

1:9018836118���+o(1)

on a general-purpose 
omputer with L

0:9509418059���+o(1)

bits of

memory.

Both a and b are bounded by L

o(1)�

, and m is bounded by L

(0:7133923253���+o(1))�

,

so ea
h a � bm is bounded by L

(0:7133923253���+o(1))�

. It is 
onje
tured that the

fra
tion of smooth integers is exp(�(1 + o(1))u logu), where

u =

(0:7133923253 � � �+ o(1))�

0:9509418059 � � �+ o(1)

= (0:7501955649 � � �+ o(1))�;

this means that there are L

1:9018836118����0:7501955649:::=3+o(1)

= L

1:6518184235���+o(1)

pairs (a; b) for whi
h a� bm is smooth.

Now, for ea
h integer k up to L

0:1250325942���+o(1)

, and for ea
h of the

L

1:6518184235���+o(1)

pairs (a; b) where a� bm is smooth, 
he
k smoothness of

N

k

(a; b) = a

d

+ f

d�1

a

d�1

b+ � � �+ (f

1

+ k)ab

d�1

+ (f

0

� km)b

d

;

using all primes up to L

0:9509418059����0:1250325942���+o(1)

= L

0:8259092117���+o(1)

. The


onstant in the k bound is 9=(92 + 26

p

13)

2=3

(�5 + 2

p

13).

Coppersmith 
he
ks smoothness here with the ellipti
-
urve method, whi
h takes

time L

o(1)

per integer, totalling

L

1:6518184235���+0:1250325942���+o(1)

= L

1:7768510177���+o(1)

:
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See [3℄ for another method.

It is 
ommonly believed that this use of ECM makes Coppersmith's variant

impra
ti
al. Standard pra
ti
e is to instead sieveN

k

(a; b) over all (a; b; k). However,

there are relatively few pairs (a; b) for whi
h a � bm is smooth; for large n, this

outweighs any speed advantages of sieving.

The quantity N

k

(a; b) is bounded by

L

(0:7133923253���+0:9509418059����1:4017532352���+o(1))�

= L

(2:0463780783���+o(1))�

:

Consequently it is 
onje
tured that there are

L

1:7768510177����(2:0463780783:::=0:8259092117::: )=3+o(1)

= L

0:9509418059���+o(1)

pairs (a; b) for whi
h both a� bm and N

k

(a; b) are smooth.

Every su
h pair is a \relation mod n" among L

0:9509418059���+o(1)

primes of various

number �elds. It is 
onje
tured that there will be more relations than primes, if the

o(1) in the bound on a and b is 
hosen large enough, so there will be a nontrivial

dependen
y modulo 2 among those relations. One 
an dis
over su
h a dependen
y

in time L

1:9018836118���+o(1)

on a general-purpose 
omputer with L

0:9509418059���+o(1)

bits of memory: apply Wiedemann's algorithm to the relation matrix.

Finally, perform a square-root 
omputation to �nd a divisor of n. This takes time

just L

0:9509418059���+o(1)

on a general-purpose 
omputer with L

0:9509418059���+o(1)

bits

of memory. The divisor is 
onje
tured to be a nontrivial fa
tor of n with probability

bounded away from 0.

Cir
uits. One 
an use, instead of a general-purpose 
omputer, the ma
hine de-

s
ribed in se
tion 5 to �nd pairs (a; b) for whi
h a � bm and N

k

(a; b) are smooth,

and the ma
hine des
ribed in se
tion 4 to �nd a dependen
y in the relation matrix.

However, sin
e the ma
hine in se
tion 5 is relatively fast, it is better to 
onsider

more pairs (a; b), so as to redu
e the time spent on linear algebra, when n is

suÆ
iently large. One 
an balan
e the time taken by the two ma
hines as follows.

De�ne � and L as before. Sele
t an integer degree d 2 (1:4227573217 � � �+o(1))�

with d � 2, and sele
tm; f

d�1

; : : : ; f

0

as before. The 
onstant here is (5=3)

1=3

(6=5).

Consider all pairs (a; b) of 
oprime positive integers bounded by

L

0:9880259179���+o(1)

;

and sele
t y 2 L

0:7904207343���+o(1)

. The 
onstants here are (5=3)

1=3

(5=6) and

(5=3)

1=3

(2=3).

Find all pairs (a; b) for whi
h a� bm and N

0

(a; b) are both y-smooth. This takes

time

L

2�0:9880259179����0:7904207343���+o(1)

= L

1:1856311014���+o(1)

on a ma
hine of size L

0:7904207343���+o(1)

, as explained in se
tion 5. The produ
t of

a� bm and N

0

(a; b) is bounded by

L

2=1:4227573217���+0:9880259179����1:4227573217���+o(1)

= L

2:8114422176+o(1)

so the number of relations is 
onje
tured to be

L

2�0:9880259179����(2:8114422176:::=0:7904207343::: )=3+o(1)

= L

0:7904207343���+o(1)

whi
h, as before, should ex
eed the number of relevant primes. Finding a depen-

den
y takes time L

1:5�0:7904207343���+o(1)

= L

1:1856311014���+o(1)

on a ma
hine of size

L

0:7904207343���+o(1)

, as explained in se
tion 4. The �nal square root takes time

L

0:7904207343���+o(1)

on a general-purpose 
omputer of size L

0:7904207343���+o(1)

.



10 DANIEL J. BERNSTEIN

Plans. I already have tools that a

urately predi
t the yield of the number �eld

sieve for various parameter 
hoi
es. It should be straightforward to optimize these


hoi
es, given the exa
t 
osts of the 
omputations des
ribed in se
tions 4 and 5.

Credits. I started thinking about the 
ost of fa
torization|rather than simply the

time taken on 
ommon general-purpose 
omputers|after I heard a talk by Arjen

Lenstra on TWINKLE. See [9℄.

Silverman in [20℄ pointed out that many previous analyses of the diÆ
ulty of

fa
torization were wildly underestimating the 
ost of sieving and linear algebra. I

agree. Silverman's estimates were mu
h more a

urate. However, they are now

obsolete.
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