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Abstract

The problem of deducing a function on an algebraic curve having a
given divisor is important in the field of indefinite integration. Indeed,
it is the main computational step in determining whether an algebraic
function posseses an indefinite integral. It has also become important
recently in the study of discrete elliptic logarithms in cryptography, and
in the construction of the new class of error-correcting codes which exceed
the Varshamov-Gilbert bound. It can also be used to give a partial answer
to a question raised by Schoof in his paper on computing the exact number
of points on an elliptic curve over a finite field.

Heretofore, the best known algorithm for calculating such functions
was exponential in the size of the input. In this paper I give an algorithm
which is linear in the size of the input (if arithmetic in the field under
consideration takes constant time). For this algorithm it is necessary to
represent the function as a straight-line program, for representation as a
rational function may be exponential in the size of the input.

1 Introduction

I recall some standard terminology from the theory of algebraic curves. There
are many good references for this theory, for example [Ful69]. It contains all
results quoted here. For simplicity in presentation I only work with plane curves,
even though all of the results work for more general curves.

Definition 1 Projective n-space over a field K: denoted by Pn(K) is the set
of equivalence classes {(a0, . . . , an) 6= 0|aiǫK} where two vectors are equivalent
if they are non-zero scalar multiples of one another. The equivalence class con-
tataining (a0, · · · , an) is denoted by (a0 : · · · : an). The projective line is P1,
and the projective plane is P2.
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Definition 2 A plane (projective) algebraic curve is the set of solutions to a
homogeneous polynomial f(X,Y,Z) considered as points in boldP 1. The curve
is non-singular if the three partial derivatives of f never vanish simultaneously.

Definition 3 The function field of the curve, C, is the set of functions from
the curve to the projective line, which are given by rational functions of the
coordinates and is denoted by k(C).

Definition 4 A (geometric) point, P on C is a solution to the set of defining
equations.

Definition 5 At each point, P , of the curve one can define the :hp2order,
vP (f), of the function f at P : it is n > 0 if the function has a zero of order n
at P , and is −n < 0 if the function has a pole of order n at P ( 1/f has a zero
of order n).

Definition 6 A divisor on a curve, C as being a formal sum of points on the
curve with integral coefficients:

∑
P aP (P ), where only finitely many of the aP

are 6= 0. Divisors will normally be denoted by script letters such as A or B.

Definition 7 The degree of a divisor is the sum of its coefficients: degA =∑
P aP .

A function f has only a finite number of zeroes and poles. Therefore we may
define

Definition 8 The divisor of a function f 6= 0, denoted by (f) is
∑

P vP (f)(P ).

It is also true that deg(f) = 0. The set of divisors of degree 0 is denoted by D0.
A divisor of a function is also called principal.

Definition 9 Linear equivalence. If A and B are divisors we write A ∼ B if
there is a function f such that A = B + (f). Principal divisors are also called
linearly equivalent to 0. The set of all such is denoted by Dℓ. The group D0/Dℓ

is known as the Picard group of C and is denoted by Pic(C).

Definition 10 Genus. The genus g of a curve C is an integer ≥ 0, which is a
measure of the curve’s complexity.

It, for example, is the number of “donut-holes” in the Riemann-surface of the
curve if we are working over the complex numbers. See [Ful69] for an exact
definition. For our purposes, we only need to know that g ≤ (n − 1)(n − 2)/2
where n is the degree of the polynomial defining the curve. A curve whose genus
is 1 is usually called an elliptic curve.

Definition 11 Linear system. The linear system of a divisor A is L(A) =
{0} ∪ {fǫk(C)|(f) + A ≥ 0}. It is easily seen that L(A) is a vector space (in
fact finite-dimensional). We denote ℓ(A) = dimL(A).

Definition 12 Support. The support suppA of a divisor A is the set {P |AP 6=
0}.
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2 The main algorithm

One of the fundamental problems in the theory of curves is to determine when
a divisor of degree 0 is principal, and to construct a function whose divisor is
the given divisor. In [Dav79]. Davenport gives an algorithm for this problem
which does not always work for curves of genus > 1, and which is claimed to
run in O(lg A where A is the largest multiplicity of a zero or a pole at any point.
This claim seems to be unjustified. The construction below gives a straight-line
program instead of a ratio of two polynomials. This is in keeping with the spirit
of [Kal85].

Algorithm 1 Input:

1. An algebraic curve C of genus g

2. a fixed point Q on C

3. a divisor A =
∑

P aP (P ) of degree 0

Output:

1. A straight-line program for a function f on the curve

2. A divisor of the form C − g(Q) where deg C = g and C ≥ 0.

The divisor C − g(Q) will = 0 if and only if A ∼ 0. We will further have A =
(f) + C − g(Q). The length of this program is O(L) where L =

∑
P lg(|aP | + 1)

and the running time of the algorithm is O(L) arithmetic operations in the field
of definition. The program gives the value undefined on a set of points of size
≤ 2gL.

We use the following fundamental theorem:

Theorem 1 The Riemann Theorem: Given a non-singular curve C, and a
divisor A, then

ℓ(A) ≥ degA + 1 − g

with equality holding if degA > 2g − 2.

Using the above we have

Lemma 1 Any divisor A of degree 0 is equivalent to a divisor of the form
C − g(Q), where deg C = g and C ≥ 0.

Proof: Using the Riemann Theorem we find that ℓ(A+ g(Q)) ≥ 1. Thus there
is a function f 6= 0, fǫL(A + g(Q)). Now set C = (f) + A + g(Q). It is readily
seen that C has the desired properties. ✷

We use 1 to make calculations in the Picard Group, by representing each equiv-
alence class by a divisor of the form C − g(Q). The fundamental point is that
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to calculate a representative for the sum of two such divisors takes O(g3) field
operations (basically the solution of a system of linear equations). We then
write the divisor A =

∑
P aP (P ) as

∑
P aP ((P ) − (Q)). We then can calculate

a straight-line program of length ≤ 2 lg(|aP | + 1) and a divisor C − g(Q) as
above by means of the binary method of addition (or any other addition chain).
The program will be undefined at most at all points of the supports of the di-
visors occuring in the intermediate steps. We then finish off by adding up all
of the individual pieces, while multiplying the functions (this concatenates the
straight-line programs with a multiplication in between).

In actual calculation one must proceed more explicitly: First calculate a
basis for the space L(3g(Q)) in the form f1, . . . , fd where ordQ(f1) > ordQ(f2) >
· · · > ordQ(fd). When adding the two divisors A− g(Q) and B − g(Q) we first
find fǫL(3g(Q) − A − B). Define C = (f) + 3g(Q) − A − B then it is effective
of degree g. Now find hǫL(2g(Q) − C), and set D = (h) + 2g(Q) − C. This
divisor is also effective of degree g and A−g(Q)+B−g(Q) = D−g(Q)+(f/h).
We further exploit the fact that there is a one-to-one correspondence between
effective divisors and integral ideals of the ring of functions whose only poles
are at Q. We represent each ideal by means of it Grobner Basis. In this way we
avoid the necessity for root finding and factorization.

In the case of genus 1 we do not even need to do this. All zeroes and poles of
intermediate divisors must be rational. If the curve is given in Weierstrass form
y2 = x3 + ax + b then 1, x, y form a basis of L(3g(0)). Finding the function f
above amounts to finding the coefficients of the line y = cx + d passing through
the points A and B.

3 Applications

In this section I discuss some applications of the above construction. The first
is the calculation of the “Weil” eN pairing.

Andre Weil [Wei46] introduced a pairing on points of finite order on elliptic
curves in his first proof of the “Riemann Hypothesis” for curves over finite fields.
Following are its definition and properties:

Definition 13 Given an elliptic curve C and a non-negative integer N there
is a unique function eN defined on points of exponent N (P is of exponent N if
NP = 0, it is of order N if N is an exponent and no smaller integer is). It has
the following properties:

1. eN (P,Q) is an N -th root of unity.

2. Skew-symmetry: eN (P,Q) = eN (Q,P )sup − 1

3. Linearity: eN (P + R,Q) = eN (P,Q)eN (R,Q)

4. Non-degeneracy: Given a point P of order N there is a point Q of order
N such that eN (P,Q) 6= 1.
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This pairing may be defined as follows (see [Lan73, pages 243–245]): If A is a
divisor of order N in the divisor class group D0/Dℓ, then there is a function
fA such that (fA) = NA. This function is defined up to multiplication by a
constant. If f is any function, and A =

∑
P aP (P ) is a divisor of degree 0, then

we define f(A) =
∏

P f(P )aP . Note that this depends only on (f). If P and Q
are points of exponent N , define fP and fQ as above. Then

eN (P,Q) = fA(B)/fB(A)

where A ∼ (P ) − (0) and B ∼ (Q) − (0) and whose support is disjoint. This is
independent of the choice of A and B. This yields:

Algorithm 2 Calculation of eN pairing Input:

1. An Elliptic Curve E

2. A natural number N

3. Two points P,Q on C of exponent N

Output:

1. The value eN (P,Q)

Method: First fix an addition chain 1 = a1, . . . , at = N .
Now choose T,U points on C at random until T and T +P are distinct from

aiU and ai(U + Q) and U and U + Q are distinct from aiT and ai(T + P ) for
all i. This choice guarantees that the straight-line programs constructed below
are defined at input values used. Set A = (T +P )− (T ) and B = (U +Q)− (Q).
Use 1 to construct straight-line programs for the functions fA and fB. Now the
number of pairs (T,U) which do not satisfy the two conditions above is ≤ 8tNp

where Np is the total number of points on the curve in GF (p). Because there
always is an addition chain with t ≤ 2 lg N we see that when N ≥ 256 that the
probability of success is gt1/2. We then set

eN (P,Q) =
fA(U + Q)fB(T )

fB(T + P )fA(U)

If one is willing to work a little harder, a deterministic algorithm for the Weil
pairing with the same running time as above may be obtained. The main idea
is to modify the straight line program to give the value of the function at all
points. The program will no longer be straight-line, but will be allowed to have
“case” statements. One handles zeroes and poles by representing the value there
by a pair (α, n) with the property that α 6= 0 and that the Laurent series of the
function at the point P starts with αun where u is a uniformizer at P . Such
functions may be multiplied without any problems: one multiplies their α’s and
adds their n’s. If one uses this representation it is possible to dispense with the
usual restriction that the divisors A and B above have disjoint supports.
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One application of the eN pairing is to give a partial answer to a question
raised by Schoof [Sch85]. In that paper, Schoof gives a determinstic algorithm,
polynomial in lg p for calculating the exact order of the group of points on an
elliptic curve mod p. He points out that he does not determine the structure
of the underlying group. It is known that this group is always either cyclic, or
the product of two cyclic groups of orders d and e where d|e. I give a random
algorithm which runs in expected time polynomial in lg p if the factorization of
gcd(p − 1, N) is known, where N is the order computed by Schoof’s algorithm.

Algorithm 3 1. Calculate Np = N0N1 where gcd(N0, N1) = 1, and the
set of prime divisors of N0 is the same as the set of prime divisors of
gcd(p − 1, Np).

2. Using the Euclidean Algorithm find α and β such that αN0 + βN1 = 1.

3. Pick two points P ′, Q′ on the curve C, and set P = βN1P
′, Q = βN1Q

′.

4. Find the exact order of P and Q (this is where we need the factorization).
Say they are m and n.

5. Set r = lcm(m,n).

6. Set a = er(P,Q)

7. Find the exact order of a. Say it’s s.

8. If rs = N then stop, the orders of the two groups are r and s.

9. If not go to step 3.

The analysis of the algorithm depends on the non-degeneracy of eN , and its
skew-symmetry. The probability of failure in the last step is O(lg lg−1 p).
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