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Preliminary Report

1. Introduction

Douglas Wiedemann'’s (1986) landmark approach to solving sparse linear systems over finite
fields provides the symbolic counterpart to non-combinatorial numerical methods for solving
sparse linear systems, such as the Lanczos or conjugate gradient method (see Golub and van
Loan (1983)). The problem is to solve a sparse linear system, when the individual entries lie in
a generic field, and the only operations possible are field arithmetic; the solution is to be exact.
Such is the situation, for instance, if one works in a finite field. Wiedemann bases his approach
on Krylov subspaces, but projects further to a sequence of individual field elements. By making
a link to the Berlekamp/Massey problem [rom coding theory — the coordinate recurrences —
and by using randomization an algorithm is obtained with the following property. On input of an
n x n coefficient matrix A given by a so-called black box, which is a program that can multiply
the matrix by a vector (see Figure 1), and of a vector b, the algorithm finds, with high probability
in case the system is solvable, a random solution vector x with Az = b. It is assumed that the
field has sufficiently many elements, say no less than 50n?log(n), otherwise one goes to a finite
algebraic extension. The complexity of the method is in the general singular case O(nlog(n))
calls to the black box for A and an additional O(n? log(r)?) field arithmetic operations.

| yEKn - AyEKﬂ
—

A g Knxn
K a field of sufficiently large cardinality

Figure 1: Black box representation of a.matrix.

Note that the black box model for matrix sparsity is a significant abstraction. For a matrix
that has an abundance of zero entries, multiplying the matrix by a vector may cost no more
than O(n) field operations, in which case the algorithm becomes almost quadratic. However,
the model also applies to structured matrices with few or no zero entries, such as Toeplitz-
and Vandermonde-like matrices, or matrices that correspond to resultants (Canny et al. 1989).

* This material is based on work supported in part by the National Science Foundation under
Grant No. CCR-90-06077 and under Grant No. CDA-88-05910 (first author).
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Most importantly, the algorithm makes no assumptions on the systems, such as symmetricity or
positive definiteness. . )

We contribute to Wiedemann's approach in several ways. For smgul.a.r systems, we show
how to randomly sample from the solution manifold by randomly perturbing the entire system
and then solving a non-singular one. Our method is a purely algebraic one, while Wiedemann
uses padding with random sparse rows fo enforce non-singularity. When computing the rank or
determinant of a matrix, one requires left and right multiplier matrices such that the product
with the coefficient matrix has a maximal non-zero minor in the left upper corner. We present an
alternate to Wiedemann's perturbation that requires asymptotically fewer field elements and is
again based on algebraic rather than combinatorical properties. As it turns out, the multipliers
can be chosen unit triangular Toeplitz matrices. We also present a new method for finding the
rank of a matrix that is asymptotically a factor log(n) faster than the previous ones. Furthermore,
we present in greater detail a method based on p-adic lifting for solving a sparse system over the
rationals.

LaMacchia and Odlyzko (1991) have explored the use of conjugate gradients for solving
sparse systems over finite fields. While that approach appears, in practice, to be competitive
with ones based on coordinate recurrences, the probability of success for their randomizations
seems difficult to analyze. Of course, for particularly structured matrices one may also proceed
by nested dissection (Lipton et al. 1979) or block elimination (Abdali and Wise 1988) and (Wise
and Franco 1990).

In his concluding remarks, Wiedemann raises the question whether it may be possible to
solve a transposed problem z**A = b from a black box for A. We wish to add that if the black
box is an algebraic circuit, it is possible to construct a black box for A" with the same asymptotic
complexity (Kaminski et al. 1988) and (Kaltofen and Pan 1991, §4).

2. Wiedemann'’s Method for Non-Singular Matrices

Wiedemann (1986) presents a randomized Las Vegas algorithm for solving a sparse linear system
over a finite field. As it turns out, his method constitutes an algorithm based on field arithmetic
alone that can solve a non-singular system given as an n-dimensional black box matrix. It
requires linear space and quadratic time, while applying the black box for the coefficient matrix
no more than 3n times. In the following we present Wiedemann'’s argument with the change in
the probabilistic analysis taken from (Kaltofen and Pan 1991), which is warranted because we
work over an abstract field. '

Let V be a vector space over the field K, and let {a;}?2, be an infinite sequence with elements
a; € V. The sequence {a;}%2, is linearly generated over K if there exist cg, ¢1,...,¢, EK,n >0,
cx # 0 for some k with 0 < k < n, such that

Vi 2 0:coaj + - + Cajpn = 0.

The polynomial ¢ + ¢;A + «+ - + ¢, A" is called a generating polynomial for {a;}?2,. The set of
all generating polynomials for {a;}52, together with the zero polynomial forms an ideal in K[A].
The unique polynomial generating that ideal, normalized to have leading coefficient 1, is called
the minimum polynomial of a linearly generated sequence {a;}{2,. Every generating polynomial
is a multiple of the minimum polynomial.

Let A € K™" be a square matrix over a field. The sequence {A7}2, € (K***)N is linearly
generated, and its minimum polynomial is the minimum polynomial of A, which will be denoted
by fA. For any column vector b € K*, the sequence {470}, € (K™)M is also linearly generated by
fA. However, its minimum polynomial, denoted by f4*, can be a proper divisor of f4. For any
row vector u € K'*", the sequence {uAb}2, € KN is linearly generated as well, and its minimum
polynomial, denoted by f4*, is again a divisor of f**. Wiedemann proves the following fact (loc.
cit., §VI).

)
Bk |
1
]
i

3

Theorem 1. Let m = deg(f4*), and let W be the linear space of polynomials of degree less
than m in K[\]. There exists a surjective linear map : Kixn — W such that

Vu € KIxm: fAd = fAb =y GCD(f**,£(u)) = 1.

Thus, the probability that fA* = f4* for a randomly selected row vector u is essenti.ally
the probability of randomly selecting a polynomial of degree less than n that is relatively prime
to fA*. For a finite field with g elements, Wiedemann (loc. cit., Proposition 3) proves that the

probability is no less than ;

6 max{[log,(deg f4)],1}’
In (Kaltofen and Pan 1991, §2) we establish the following alternate approach.

Lemma 1. Let A € K™® be K", and let S C K. Randomly and uniformly select a row vector
u € §'*™. Then the probability

1)

Ab
Prob(fA* = A =1- %.

If A is non-singular, we may compute z = A~1b from
FA0) =+ ad 4+ emad™ T AT
by m — 2 applications of A as

T — -l(A‘“"h + em1 A"+ e b), (2)
Co

since fA*(A)b = 0. The polynomial fA% is computed by picking a random row vector u and
computing fA*. That is accomplished by first construction the sequence of field elements

Ty i
{ﬂn,ﬂh...,agm_l}, a; = uA'b.

and finding its minimim degree linear generating polynomial. By Fhe theory of linearly generated
sequences, this polynomial is equal to f4% and it can be determined by the Bif:ekamp [Massey
algorithm in O(m deg(f*)) field operations. Wiedemann shows further that f4+ for an unlucky
choice of u can be used with the next trial.

Algorithm Minimum Polynomial

Input: A€ K", be K", andd 2> deg(f).

Output: fA* € K[AL

Step 1: Pick a random row vector u € §1*n S C K, and co:ppute

ag +— ub,a; — uAb,...,q; — udAb,... a5 — A2 b

Step 2: Here we determine f4 by the Berlekamp/Massey algorithm (Massey 1969). For com-
pleteness, we give the entire method. '
Ag(N) &+ 1;Zg(A) 0310 — 0;6 < 1;
Forr=1,2,...,2d Do { )

With A, (\) = coA™ + A=l 4. e, co # 0, find the r-th discrepancy

0y — Cp,@r_1 + Cap10r2 + v+ Colrop,;

If§, =0 Then {A;(A) — Area(A); Zo(A) &= AZ,a(A); b = laa3)

Else {A(}) = Aroa(X) = AT (A);
If2l, <r Then {Z.(A) — A,y (A); b =1 — l_1; 6 — 6.}

Else {Zy(A) = ABeea (V)i b = bori }})
FAR(A) = AdAqa(1/2). .
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Step 3: Now we check if f2* is a proper divisor of f4,
If d = deg(f**) Then Return fA% « fAb.
Else{ V' — fi*(A)b. Clearly, b’ can be determined by deg(fA*) — 1 applications of A to vectors,
or from the vectors A'b if they have been saved in Step 1.
If ¥ = 0 Then Return f4% «— fas
Else{ Call the algorithm recursively with A, ¥ and d — deg(f2*) to determine f4¥
Finally, Return fA4% « fAb x fA¥ 1) O

Several observations can be made about this algorithm. First, for randomly chosen b, the
probability that f4* = f4, the minimum polynomial of A, can be also shown to be bounded by (1)
and as in Lemma 1. That observation gives a Las Vegas randomized algorithm to determine that
a matrix is singular by establishing that f**(0) = 0 for a random b. For non-singular matrices,
the determinant can be found with a Las Vegas randomized method as well (Wiedemann, loc.
cit., §V), but we will not need that algorithm in this paper. Second, the probability that the
algorithm determines f4* after k invocations is much higher than if one were to try to obtain
J2¥(A)b = 0 for one of k different u's. In fact, Wiedemann (loc. cit., Equ. (12)) proves that for
k 2 2 and K a field with q elements, the probability is no less than

=t 1
1--log(q,___1_l Zl_q‘*-'~1'

Third, the algorithm can be implemented storing only O(n) many field elements, using, for a
sufficiently large field, with high probability no more than 3n applications of A to a vector, and
O(n?) additional arithmetic operations in K. Clearly, from (2) and Step 3, the same complexity
bounds hold for computing & with Az = b, provided f4%(0) # 0.

3. The Rational Non-Singular Case

Although the algorithm presented in §2 for abstract fields is applicable to the rational numbers,
the bit size of the intermediately computed rational numbers requires analysis. Alternately, one
can lift a modular solution p-adically and then convert to a rational one, Here we shall discuss
that method further (cf. Wiedemann, loc. cit., §7). We shall assume that the system to be solved
is square, non-singular, with integer entries:

Az =b, AeI™ bel"
Furthermore, we suppose that the black box for A can be supplied with both a modulus qgel
and a vector y € Z/(q), and then computes (A mod ¢)y € (Z/(g))m.
Algorithm Rational Non-Singular System Solver
Step 1: Find a prime p that does not divide Det(A) by probabilistically testing if Det(A mod

) # 0 using the method described in §2. As a by-product, we will have a polynomial fAmedre ¢
Z[(p)[A]. Initialize the estimate for fAm°dr f()) — Fhmedp()),

Step 2: Now we determine how far must be lifted in order to recover the rational solution from
the p-adic one. Let

N4l = max { V(A0 +--+ (2} 1ol o= /01 4+ 02

By Hadamard’s determinant inequality, [Det(A4)] < llAll3 =: By, and by Cramer’s rule the
numerator of (A~1b); is bounded by ||A|[2~!||4]l; =: B;. By the well-known continued fraction
recovery procedure (see, e.g., Kaltofen and Rolletschel (1989, §5)) the necessary modulus is twice
the product of the numerator and denominator bound, hence

P" 2 2] Al flbllz =: Bo.
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Fori«0,...,k Do Steps 3 and 4.
Step 3: The p-adic expansions of A, b, and x, are denoted by

A= A6 4 p A0 (mod p), A6 € (2/(p-1))*, AO) € (2/(p),
b= 4 510 (mod p*), BN € (2/(p1), 0 € (Z/(p)",
z = g0 4 pial) (mod p™1), 20 € (Z/(p1))", 2 € /@)

At this point we have (-1 and we find z from
A(zYY 4 pizl)) = b (mod p'th).

Compute over the integers

B Al s(i-1)

and set ) — B mod p.

Step 4: We have z() = (4 mod p]'gt") over Z/(p). The mod p solution is determined from the
current estimate f for f4™9? which is normalized as -

FO) =1 e = o = cma A" =A™ € Z/(p)[A], &m # 0 (mod p).

Compute _ _
2 — b ca(A mod p) B + ... 4 ¢ (A mod p)™ b,

I o (A mod p)z® # T, call algorithm Minimum Polynomial with A mod p, ¥, n —m,
over the field K = Z/(p). Set f(A) « fAmedrt*®(\)f(A) and repeat Step 4, unless f(0) = 0, in
which case the prime p divides the determinant of A and must be changed.

Step 5: We now convert z*) € (Z/(»*))" to a rational vector z. Since the least common denom-

inator of all components z; is a divisor of Det(A), we may incrementally find that denominator

from the denominators of initially converted z;. Set A « 1.

Forj+1,...,n Do {
First, we divide out the current common denominator and adjust the modulus bound. De-
termine the smallest k' such that p* > By/A (see Step 2). Set 2*) — A~1z(*) (mod p*').
If ), represented as an integer between —p* /2 and p* [2, is in absolute value no larger
than B,, then z; — #*)/A € Q. Otherwise, compute that convergent u;‘;‘u, of the con-
tinued fraction approximations (Hardy and Wright 1979, §10) of z*)/p* that satisfies
v < Bi/A < vz — (3% — pMu) /vy A — Av} O

The advantage of this algorithm lies in the fact that one only needs the minimum polynomial
of A mod p. The number of applications of the black box for A now depends also on the length of
the entries in A and b, but those multiplications are modular ones and therefore computationally
more efficient than the ones arising in the method of §2.

4. The Singular Case

The problem at hand is to solve Az = b in case where the matrix A is singular. We give
a randomized algorithm that returns a random vector in the solution manifold, provided one
exists. First, we give a pertubation scheme that makes the leading principal submatrices of
dimension up to the rank of A non-singular.
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Theorem 2. Let A € K**", and let § C K. Consider the matrix

1 uz us ... Up 1
1w ... tp w, 1
A=UAL, U:= 1 : , Li=]lwa w 1 ;
usp : e 8
1 W, Wy ... Wy 1

where the elements of the unit upper triangular Toeplitz matrix U and the elements of the unit
lower triangular Toeplitz matrix L are randomly and uniformly selected from the set S. Let r
be the ranic of A, and let A; denote the leading principal i x i submatrix of A. Then

r(r + l)
card(S) "

Prob(Det(A;) #0forall1<i<r)>1—

Proof. For an n x n matrix B, denote by B;; the determinant of the submatrix of B that is
formed by removing from B all rows not contained in the set I and all columns not contained in
the set J. First, assume that I{ is a generic unit upper triangular Toeplitz matrix whose entries

are new variables vy,...,v, replacing us,...,u,, and assume that £ is a generic unit lower
triangular Toeplitz matrix whose entries are new variables wy,...,w,. Let A = UAL € L™,
where L := K(vg,...,w,). For K = {1,...,k} the Cauchy-Binet formula yields

- XK.K = E Z U 1A1L K- . (3)

l-{il.,...it} J'-[jl,..._jt}
1€iy <-<ip<n 1<) << En

We claim that for ¥ < r the determinant ;{“, which is the ith principal minor of ;l-, is non-
zero in L. To prove this we consider the minor expansions of Uy ; and L. For a given set

I={i,...,i} with1 <4 < ... < i, <n, consider all terms in the minor expansion of Uy ;.
The matrix U restricted to rows 1,...,k and columns in I has the form, for instance,
iy i3 L8
1 vy Uiy aaa vy
2 v vpa Vip-1
1
k 0 1 vee Uikl

If we write the terms in the minor expansion in descending order of the variables, using the
variable order v, < v3 < -+: < v,, then the diagonal term,

Uk Vipy—k42 " Uiy, With vy =1, (4)

is the lexicographically smallest term of all non-zero monomials in that minor expansion. More-
over, this term uniquely identifies each minor of & under the sum (3). The latter is most easily
seen from the fact that the set I can be reconstructed from (4) by observing that v; _,.4; =1
forces i, = & and all lower indices i, = u, ¢ < %. Similarly, the diagonal terms in the minor
expansions of L,

Wik +1Wjy_y —k+2 " * * Wy with wy =1, (5}
are the lexicographically smallest among all terms of non-zero monomials in the expansions,
and uniquely correspond to an index set J. Therefore, the polynomials Uy 1Ly € Klva, ..., wa]

have unique lexicographically lowest terms, namely the product of (4) and (5) with the prescribed
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variable ordering, hence a..re linearly independent over K. Moreover, since for k < r there exist
sets Ip and Jp with Ay, 5, # 0, the linear sum (3) of the linearly independent polynomials cannot
be zero, which establishes the claim.

Set ;

0 # o(L,U) := [[ Axk € Klvs,- -, wnl-
k=1

It is clear that all those U and L, for which a(U, L) # 0, satisly the lemma. By the Schwart? .(1980]
/ Zippel (1979) lemma, that probability is no less than 1 — deg(o)/card(S). The probability es-
timate follows from deg(c) < ¥1_, 2k.

We remark that applying A to a vector costs one application of A to a vector a.nd two
polynomial multiplications, since the Toeplitz matrix times vector products can be accomplished
by polynomial multiplication. For example, for

th iy 0
V2 wa wy g
Ya | ;= | ws wz W va
Yn W, Wy ... Wy Uy Un

we have
(W + -+ w2 o+ F 02" ) S+ Yaz + oo+ Ye2" T (mod 27).

Thus applying A to a vector consumes an additional O(n log(n) loglog(n)) arithmetif: operations
in K (Cantor and Kaltofen 1987). Note that Wiedemann (1986, §V) proposes a ii:f'ferent per-
tubation scheme with the same effect, which is based on rearrangable permutation networks
(Benes 1964). That scheme requires O(n log(n)) random field elements, but only costs an addi-
tional O(n log(n)) arithmetic operations. ‘

We may determine the rank of A by performing a binary search for the largest r{on_-stngu]ar
leading principal submatrix of A. However, that strategy adds a log(n) factor to all timings, and
we have found the following alternate way to determine the rank without that problem.

Lemma 2. Let A € K™** have leading principal minors nonzero up to A, where 1 is the
(unknown) rank of A, and suppose thatr < n. Let S C K and let X = diag(zy,...,,), z; chosen
uniformily from S. Then r = deg(f4*) — 1 with probability at least 1 — n(n — 1)/(2 card(S)).

Proof. Consider the conformal partitioning
7 A, B\(Y o\ _[(AY BZ
AX=\¢ pJ\o z)~\cxr bz}

Provided the ;'s are nonzero, this matrix has the same rank as 4 and also has leading principal
minors nonzero up to the r-th. Now consider the following matrix similar to AX,

I Y-'4'BZ\ (AY BZ\ (I -—Y"A;‘BZ)
M:= |, I cy pz)\o I

AY +Y'AT'BZCY 0
= cY 0)"

Of course this matrix has the same minimal polynomial and characteristic polync‘)‘r};ial as AX.
Let c™()) denote the characteristic polynomial of matrix M. We have X = /\“"'(.: '(A}, w:here
A'Y is the upper left corner, i.e., A’ denotes A, +Y-YA7'BZC. If A  has leading principal minors
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nonsingular, then Wiedemann's lemma applies (loc. cit., Section V), and fAY = AY | It foll
I . - 5 ! Ow
that fAX{A)_:. FMA) = Aet YE/\}‘]E a polynomial of degree r + 1. To see this, note that on th:
one l}a.nd the right hfmd polynomial is clearly a factor of ™, while on the other hand there is a
relation among M*, i =1,...,r +1, given the relation among (AYY,i=1,...,r and that
A7t
(CY{A’Y]"‘ 0)"

It remains to show A’ has leading principal mj i isissoi

: : : pal minors nonsingular. Thisissoifz ... ...
e?télﬁ of Z ) are mdetenlnmates.. For then the ith leading principal minor of A’ :s+ : pol;:xnr:)r(rriha;
Of Aegzee ¢ in these variables with a constant term which is the ith leading principal minor
of A;. The product of these minors is a polynomial of degree r(r + 1)/2, hence if the entries

of Z are randomly chosen, the probability of i inci i i
: . y of a leadin al i
Sch\yartz/ Zippel lemma, bounded by r(r +1)/(2 card(Sg))?rmgp e

AX A
We may compute fAX = fAXb for random u,b as in §2. Thus we have the following result.

'I}]';o;en}} 3. Let A € K"™*, and let § C K. Using 5n — 2 random elements from S (the entries
E{A,by, x ;tz;ganddbé (wn: lma[y l)pfoblabﬂisticaﬂy determine the rank of A by O(n) multiplications
c an n”log(n)loglog(n)) arithmeti ions i 1
St s o ya) ke esgs( t}im 1ehmetic operations in K. The algorithm returns an
_3n(n+1)
. 2 card(S)
the rank of A.

; AOnie ;ve have deFermjned the rank of A, it is relatively easy to compute a random solution
ol T ; 1 (bllearly, it suffices to c!ampute a random solution to A% = Ub, since then z = LF
solves Az = b. Hence we may restrict ourselves to the case where the coefficient matrix has the

G - _{A B .
properties of A, namely A = ( C,’ D where r is the rank of A and A, is nonsingular. The

(gr g) (é _,4}—13)=(,é, D-C?A;lB)

has the same rank, hence D = CA'B.

Now for any z,,
(A,. B) (r1)= A.z) + Bz, by
C D)\z Cz:1 4+ CA'Bz, ) = \ b,
ifanclonlyifA:n:h—B:cgandb;—C/;‘b, Th ition, i
' : : = . The latter condition, independent of z. i
necessary and sufficient condition for the existence of a solution to Az = b andpthne ?:stoeqfl,atlisoz

describes the solution space. For the case z, = 0 i
; 2 = 0 we solve for z, as d b 1
show how to find a random element of the solution manifold. 1 i isar O

equivalent matrix

Lfe;nnlm 3. Lftt A € K™ be of rankr, and suppose that A,, ther xr leading principal submatrix
of A, is non-singular. For any column vector w € K", there exists a unique vector Yw € K™ such

that
Ve

0
Ax | }R_T=Aw, vi, € K.
0

= Yw
Furthermore the &K » s is Ii i
i map — K" defined by £(w) := w — y,, is linear with range the right null
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Proof. The existence of y,, with the bottom n — r entries equal to 0 easily follows from the fact
that Aw is a linear combination of the column vectors of A, which by the assumption on A can be
also expressed as a linear combination of the first r column vectors. Since y), = A A'w, where
A’ € K™*" is the matrix formed by the first r rows of A, £ is a linear map. Clearly, A x £{w) =0,
so range(£) is a subspace of the right nullspace of A. Now £(w) = 0 iff w —y,, = 0, which means
that

w]

0

w=| . } and thus y), = w'.
: n-—r
0

Hence the kernel of the map £ has dimension r, which implies that range({) has the dimension
n — r and is therefore the full right nullspace of A. ®

Theorem 4. Let A € K™ be of rank r with the leading principal r x r submatrix non-singular,
and let b € K™ be such that Az = b is solvable in z € K™. Then for a random column vector
v € K" there exists a unique vector y;, € K* such that

Yo
0
Aese b } =b+ Av.
= n-—r
0

= Ybw

Furthermore, yy, — v uniformly samples the solution manifold of Az = b.

Proof. The existence of the special vector y,, follows as in Lemma 2. Let z¢ € K" be a solution
Azq = b and let w:= v+ xo. Then Ays, = Aw, which by Lemma 2 means that y,, — w samples
the right nullspace of A. Thus y;, — v samples the solution manifold of Az = b.

Therefore, once~we know the rank r of A, a random solution can be obtained with an
additional n random field elements. Note that y; , can be obtained from a nonsingular subsystem,
which has a black box cofficient matrix by setting the bottom n — r components of the input
vector to full black box matrix to 0. Taking the randomization of Theorem 2 into account, we
need O(r) applications of A and an additional O(rnlog(n)loglog(n)) arithmetic operations.
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Abstract

If we require not a whole spectrum but only its maximal element, we may truncate well-known fast -

orthogonal transformation algorithms decreasing significantly their complexity, This approach leads to
a very simple decoding algorithms which are surveyed in the paper.

Introduction

Decoding techniques for orthogonal and related codes may be constructed on the base of fast
transformation algorithms. Such algorithms are used for decoding first order Reed-Muller (RM)
codes, the Nordstrom-Robinson (NR) code, the Golay code, orthogonal complex~-valued sequences,
etc.

Further simplification of fast transformation machinery for maximum likelihood decoding, as
well as for decoding in the limits guranteed by the minimum distance of the code, is proposed. The
idea of the improvement is to truncate intermediate results of a fast transform algorithm. The choice
of the part to trunéate depends on the value of a specially defined function. This approach allows us
to realize decoding within the Hamming or Euclidean sphere-packing radius with complexity linear in
the length of the code.

These truncated fast algorithms are applicable to a wide range of orthogonal bases, mqh as
Walsh-Hadamard, Fourier, and Vilenkin-Chrestenson. A modification of the algorithm allows con-
struction of a decoding algorithm for Reed-Muller codes with complexity proportional to the product
of the order -and the length of the code. Use of truncation in a soft coset decoding of the Nordstrom-
Robinson and the Golay codes decreases the complexity of maximum likelihood decoding in compari-
son with known methods.

Qur decoding algorithms use only real-number operations. Their complexity is the number of
additions, comparisons, and absolute value calculations. The property of the described algorithms is
that for both cases - hard and soft decoding - they need only the mentioned real-number ( for hard
decoding - integer-number) operations.

The paper is organized as follows. In Section 2 we give a description of maximum likelihood
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