Mathematical Background ofPairings

Tanja Lange

Department of Mathematics and Computer Science

Technische Universiteit Eindhoven

The Netherlands

tanja@hyperelliptic.org

03.05.2007

Tanja Lange Mathematical Background of Pairings – p.

Overview

Protocols

- Elliptic curves
	- **Definition and group law**
	- Divisor class group (explanation of group law, example hyperelliptic curves)
- Weil and Tate pairing on elliptic curves
- **Supersingular and ordinary elliptic curves**
- Distortion maps

Protocols

Tanja Lange Mathematical Background of Pairings – p. 3

Diffie-Hellman Key exchange

Alice

Common Key: the group element $k = [ab]P \in \langle P \rangle$ can be used in symmetric encryption.

Bob

Pairings

Let $(G_1,\oplus),(G_1',\oplus)$ and (G,\cdot) be groups and let

 $e: G_1 \times G'_1 \to G$

be ^a map satisfying

 $e(P \oplus Q, R') = e(P, R')e(Q, R')$

$$
e(P, R' \oplus S') = e(P, R')e(P, S')
$$

The map is non-degenerate in the first argument, i.e. if $e(P,R')=1$ for all $R'\in G'_{1}$ for some P then P is the identity in G_1

Then e is called a bilinear map or pairing.

In protocol papers often $G_1 = G_1^\prime$.

Consequences

Assume that $G_1=G_1^\prime$ $_1^{\prime}$ and hence

 $e(P, P) \neq 1.$

Then for all triples $(P_1, P_2, P_3) \in \langle P \rangle^3$ one can decide whether

$$
\log_P(P_3) = \log_P(P_1) \log_P(P_2)
$$

by comparing

$$
e(P_1, P_2) \stackrel{?}{=} e(P, P_3).
$$

Thus the Decision Diffie-Hellman Problem is easy.

The DL system G_1 $_1$ is at most as secure as the system G . Even if $G_1\neq G_1'$ DLP in G , provided that one can find an element $\frac{1}{1}$ one can transfer the DLP in G_1 to a $P' \in G_1'$ ℓ_1' such that the map $P \to e(P,P')$) is injective.

Positive Application of Pairings

Joux, ANTS 2000, one round tripartite key exchange

Let P,P' be generators of G_1 Users A, B and C compute joint secret from their secret
secributions of alleria (dispersective) $_1$ and G_1^\prime $_1^{\prime}$ respectively. contributions a,b,c as follows (A 's perspective)

- Compute and send $[a]P,[a]P^{\prime}.$
- Upon receipt of $[b]P$ and $[c]P^{\prime}$ put $k=(e([b]P,[c]P^{\prime}))^{a}$

The resulting element k is the same for each participant as

 $k = (e([b]P,[c]P'))^a$ $a = (e(P, P'))^{abc} = (e([a]P, [c]P'))^{b} =$ $(e([a]P,[b]P')$

- Obvious saving in first step if $G_1=G_1^\prime.$
- Only one user needs to do both computations.

Arithmetic on elliptic curves

Tanja Lange Mathematical Background of Pairings – p. 8

Elliptic curve

$$
E: y^{2} + \underbrace{(a_{1}x + a_{3})}_{h(x)} y = \underbrace{x^{3} + a_{2}x^{2} + a_{4}x + a_{6}}_{f(x)}, \ h, f \in \mathbb{F}_{q}[x].
$$

Group: $E(\mathbb{F}_q) = \{ (x, y) \in \mathbb{F}_q^2 : y^2 + h(x)y = f(x) \} \cup \{ P_{\infty} \}$

Often $q=2^r$ or $q=p$, prime. Isomorphic transformations lead to

$$
y^{2} = f(x)
$$
\n
$$
q = 0
$$
\n
$$
y^{2} + xy = x^{3} + a_{2}x^{2} + a_{6}
$$
\n
$$
y^{2} + y = x^{3} + a_{4}x + a_{6}
$$
\n
$$
q = 2^{r},
$$
\n
$$
q = 2^{r},
$$
\n
$$
q = 2^{r}
$$
\n
$$
q = 2^{
$$

This equation has 3 solutions, the x -coordinates of $P, \, R$ and S , thus

$$
(x - xP)(x - xR)(x - xS) = x3 - \lambda2x2 + (a4 - 2\lambda\mu)x + a6 - \mu2
$$

$$
xS = \lambda2 - xP - xR
$$

Tanja Lange Mathematical Background of Pairings – p. 1⁻

Point $P \oplus R$ has the same x -coordinate as S but negative
wearestinate: y-coordinate:

$$
x_{P \oplus R} = \lambda^2 - x_P - x_R, \quad y_{P \oplus R} = \lambda (x_P - x_{P \oplus R}) - y_P
$$

Group Law (^q **odd)**

⇒ Addition and Doubling need 1 I, 2M, 1S and 1 I, 2M, 2S, respectively

Weierstraß equation

$$
E: y^{2} + (a_{1}x + a_{3})y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}, \ h, f \in \mathbb{F}_{q}[x].
$$

$$
h(x) = \frac{b(x)}{f(x)}
$$

\n- Negative of
$$
P = (x_P, y_P)
$$
 is given by $-P = (x_P, -y_P - h(x_P))$.
\n- $(x_P, y_P) \oplus (x_R, y_R) = (x_3, y_3) =$ \n $= (\lambda^2 + a_1\lambda - a_2 - x_P - x_R, \lambda(x_P - x_3) - y_P - a_1x_3 - a_3),$ \n where
\n

$$
\lambda = \begin{cases} (y_R - y_P)/(x_R - x_P) & \text{if } x_P \neq x_R, \\ \frac{3x_P^2 + 2a_2x_P + a_4 - a_1y_P}{2y_P + a_Px_P + a_3} & \text{else.} \end{cases}
$$

Tanja Lange Mathematical Background of Pairings – p. 12

Number of points

In cryptography we usually consider elliptic curves overfinite fields $\mathbb{F}_q.$

Then the number of points is also finite, ^a bound is given byHasse's theorem:

$$
\#E(\mathbb{F}_q) = q + 1 - t,
$$

with

$$
|t| \le 2\sqrt{q}.
$$

 t is called the trace of E_ε

Each point has finite order dividing $\#E(\mathbb{F}_q).$ Due to the Pohlig-Hellman attack we want to work in (sub-)groups of prime order $\ell.$

Divisor class groups(Arithmetic on hyperellipticcurves)

Tanja Lange Mathematical Background of Pairings – p. 14

Example: Hyperelliptic Curves

Affine equation of hyperelliptic curve of genus g (with \mathbb{F}_q -rational Weierstraß-point at infinity)

> $C: y$ 2 $x^2 + h(x)y = f(x)$

 $h(x), f(x) \in \mathbb{F}_q[x]$, f monic, $\deg f = 2g + 1, \deg h \leq g$ non singular, i. e. not both partial derivatives $\left(2y+h(x)\text{ and }h^{\prime}\right)$ vanish in any in $(a, b) \in C/\overline{\mathbb{F}}$ $(x)y-\$ f^{\prime} $(x))$ $q \,$

Examples

Concerning the arithmetic properties one can considerelliptic curves as hyperelliptic curves, i. e.

$$
y^2 + (a_1x + a_3)y = x^3 + a_2x^2 + a_4x + a_6
$$

is considered as curve of genus one.

Curve of genus 2 over field of odd characteristic

$$
y^2 = x^5 + f_3 x^3 + f_2 x^2 + f_1 x + f_0,
$$

provided $f(x)$ has no multiple roots.

Group of Divisors

- Construct group from points on curve. Free abelian groups are in particular groups, and so associativity etc. follow immediately.
- Construction uses Divisors, i. e. finite sums of points (elements of the free abelian group),

$$
\sum_{P \in C(\overline{\mathbb{F}_q})} n_P P, \; n_P \in \mathbb{Z}
$$

with n_P $_P = 0$ for almost all P .

Addition works component-wise:

 $(P_1+2P_2$ $(P_3) + (P_1 + P_2 + P_4) = 2P_1 + 3P_2$ $P_3+P_4.$

Divisors

The <mark>degree</mark> of a divisor is

$$
\deg(D) = \sum_{P \in C(\overline{\mathbb{F}_q})} n_P.
$$

The degree is ^a homomorphism, i.e.

 $deg(D_1) + deg(D_2) = deg(D_1 + D_2),$

like

 $deg(P_1 + 2P_2 - P_3) = 1 + 2 - 1 = 2, deg(P_1 + P_2 + P_4) = 3,$ $deg(2P_1 + 3P_2 - P_3 + P_4) = 5.$

Divisors of degree zero form a group Div^0_C with component-wise addition. This is a subgroup of Div_C .

Principal divisors

- For any function $F(x, y)$ the graph $F(x, y) = 0$ intersects curve in some points of $C(\overline{\mathbb{F}_q}).$
- Let v_{P} $v_P(F) = n \geq 0$ iff F has intersection of multiplicity n with P_P be normalized valuation $P\in C(\mathbb{F}_q)$, thus \sim \sim \sim curve at P (simple intersection has $n=1$ while tangent has multiplicity $n\geq2$).
- Negative values for multiplicity of poles.
- Associate divisor

$$
\operatorname{div}(F) = \sum_{P \in C(\overline{\mathbb{F}_q})} v_P(F) P
$$

to function $F\in\mathbb{F}$ $_q(C).$

Such divisors are called principal divisors Princ $_C$. One can show that they have degree zero.

C **urve** of genus 2 over $\mathbb{R}, h = 0$

points on red line ($-6P_\infty)$ form principal divisor \blacksquare points on green line ($-2P_\infty)$ form principal divisor .f 1 Here only functions of the∱form $F(x, y) = y-k(x)$ for some polynomial $k(x)$

 $\,P_1$

 P_{2}

Tanja Lange Mathematical Background of Pairings – p. 2⁻

 $\,Q_2$

 $Q_{\rm 1}$

Divisor class group

Consider the factor group of the group of divisors of degreezero Div^0_C $\, C \,$ $_{C}^{\mathrm{o}}$ modulo the principal divisors. This way one
to the divisor close aroun of degree zero constructs the divisor class group of degree zero.

> Pic^0 $\, C \,$ $C^0 = Div_C^0$ $_{C}^{\mathrm{o}}/\mathrm{Princ}_{C}.$

Meaning will become clear soon. First example ECC.

So far working over algebraic closure.

First definition: The \mathbb{F}_q -rational group elements $\operatorname{Pic}\nolimits^0_C$ are those which remain fixed under applying the Frobenius $^0_C(\mathbb{F}_q)$ endomorphisms, i.e. computing q -th powers of all coordinates. Note that not each point needs to remain fixedfor that (sum can be rearranged).

Example: $E(\mathbb{R}), h = 0$

Example: $E(\mathbb{R}), h = 0$

Representation of group elements

General:Riemann-Roch allows to find a <mark>unique</mark> reduced representation by means of ^a divisor of degree zero with $m\leq g$

$$
\bar{D} = \sum_{\stackrel{i=1}{P_i \in C(\overline{\mathbf{F}_q}) \setminus \{P_\infty\}}}^m P_i - m P_\infty
$$

and $P_i\neq$ P_j for $i\neq j.$

If \bar{D} is defined over $\mathbb{F}_q,$ the extension degree of the field of definition of the P_i is bounded, e.g. at most 2 for $g=2.$

Representation – elliptic curves

In the introduction we computed explicitly that there isalways ^a third point on ^a non-vertical line.

By reduction modulo principal divisors (lines) one can thusreduce any divisor to just $P-\,$ P_{∞} or the neutral element.

The isomorphism

$$
\mathrm{Pic}^0_E(\mathbb{F}_{q^k}) \to E(\mathbb{F}_{q^k}), \qquad \begin{array}{ccc} P - P_{\infty} & \mapsto & P \\ 0 & \mapsto & P_{\infty} \end{array}
$$

shows that the above construction gives ^a group on thepoints of E together with the point at infinity.

Pairings

Tanja Lange Mathematical Background of Pairings – p. 27

Prerequisites I

We want to define pairings

 $G_1\times G_2\rightarrow G_T$

preserving the group structure.

- **•** Tate and the Weil pairing both use abelian varieties as the first argument. Assume that $\ell||\mathrm{Pic}^0_C$ $C^0(\mathbb{F}_q)|$ and ℓ^2 $\begin{array}{c} 2 \end{array}$ \nparallel Pic^0_C $C^{\mathsf{U}}(\mathbb{F}_q)|$.
- Let ℓ be a prime, let C be a (hyper)elliptic curve over ${\rm I}\hspace{-0.5mm}{\rm F}$ $q\hspace{-0.6mm}\cdot\hspace{0.6mm}$
- $G_{1}%$ $_1$ is the group of \mathbb{F}_q -rational ℓ -torsion points of $\operatorname{Pic}\nolimits^0_C$ C ,
- i.e. $G_1=$ $C=E$ of order ℓ $E[\ell](\mathbb{F}_q)$, \mathbb{F}_q -rational points on elliptic curve
- or $G_1 = \mathrm{Pic}^0_C$ order $\ell.$ $^{\mathtt{U}}_C[\ell](\mathbb{F}_q)$, \mathbb{F}_q -rational divisor classes of

Prerequisites II

- The pairings we use map to the multiplicative group of ^afinite extension field $\mathbb{F}_{q^k}.$
- G_T order of $\mathbb{F}_{a^k}^*$, this happens if $\ell \mid$ $_T$ has order ℓ , so by Lagrange ℓ must divide the group $_{q^{k}}^{*},$ this happens if $\ell\mid q^{k}$ $\kappa=1$.
- The embedding degree k is defined to be the minimal extension degree of \mathbb{F}_q so that the ℓ -th roots of unity are in \mathbb{F}_q^* $_{q^{k}}^{\ast}$, i.e.

 k minimal with $\ell \mid q^k$ $^{\kappa}-1.$

- Attention: if q is not prime then the group of ℓ -th roots of unity can be in ^a ^a smaller extension of the prime field!
- For $k > 1$ Tate-Lichtenbaum pairing is degenerate on linear dependent points, i.e. $T_{\ell}(P,P)=1.$

Tate-Lichtenbaum pairing I

- We now use the whole machinery of divisors anddivisor classes in the "easy" case of elliptic curves.
- Denote by $E(\mathbb{F}_{q^k})[\ell]$ the points on E of order ℓ defined over $\mathbb{F}_{q^k}.$
- Using the embedding of E into Pic^0_R $_L^{\rm o}$, i.e.

$$
P \mapsto P - P_{\infty}
$$

we have:

 $P\in E(\mathbb{F}_{q^k})[\ell]\Rightarrow \exists F_P$ such that $\ell(P-P)$ $P_\infty)$ ∼ $\sim \text{div}(F_P)$, i.e. $\ell(P-\,$ $P_{\infty})$ is a principal divisor.

Tate-Lichtenbaum pairing II

- Given $Q\in E(\mathbb{F}_{q^k})$, find $S\in E(\mathbb{F}_{q^k})$ so that $Q \oplus S, S \not\in \{\pm P, P_\infty\}$. (A random choice of S will do.)
- Note that $Q \oplus S S \sim Q$ − $P_\infty.$
- **•** Tate-Lichtenbaum pairing

$$
T_{\ell}(P,Q) = F_P(Q \oplus S - S) = \frac{F_P(Q \oplus S)}{F_P(S)}.
$$

- This map is actually bilinear easy to see for secondargument; slightly harder for first.
- The value is independent of the choices of F_P and S up to ℓ -th powers.

Tate-Lichtenbaum pairing III

This T_ℓ defines a bilinear and non-degenerate map

$$
T_{\ell}: E(\mathbb{F}_{q^k})[\ell] \times E(\mathbb{F}_{q^k})/\ell E(\mathbb{F}_{q^k}) \to \mathbb{F}_{q^k}^*/\mathbb{F}_{q^k}^{*\ell}
$$

as ℓ -folds are in the kernel of $T_{\ell}.$

To achieve unique value in \mathbb{F}_{q^k} rather than class do final exponentiation

$$
\tilde{T}_{\ell} = T_{\ell}(P, Q)^{(q^k - 1)/\ell}.
$$

Often

$$
T_{\ell}: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})/\ell E(\mathbb{F}_{q^k}) \to \mathbb{F}_{q^k}^*/\mathbb{F}_{q^k}^{*\ell}.
$$

The function F_P is built iteratively and evaluated in each
wavest. This is leasene as Miller's almosition round. This is known as <mark>Miller's algorithm</mark>.

Miller's algorithm

In:
$$
\ell = \sum_{i=0}^{n-1} \ell_i 2^i
$$
, $P, Q \oplus S, S$ **Out:** $T_{\ell}(P, Q)$

1.
$$
T \leftarrow P, F \leftarrow 1
$$

2. for
$$
i = n - 2
$$
 down to 0 do

\n- (a) Calculate lines
$$
l
$$
 and v in doubling $T \leftarrow [2]T$ \n $F \leftarrow F^2 \cdot l(Q \oplus S)v(S)/(l(S)v(Q \oplus S))$
\n- (b) if $\ell_i = 1$ then\n **Calculate lines** l **and** v **in addition** $T \oplus P$ $T \leftarrow T \oplus P$ $F \leftarrow F \cdot l(Q \oplus S)v(S)/(l(S)v(Q \oplus S))$
\n

3. return F

Weil pairing

For an elliptic curve E define

$$
W_{\ell}: E(\overline{\mathbb{F}}_q)[\ell] \times E(\overline{\mathbb{F}}_q)[\ell] \rightarrow \mu_{\ell}
$$

$$
(P,Q) \mapsto \frac{F_P(D_Q)}{F_Q(D_P)},
$$

where μ_{ℓ} is the multiplicative groups of the ℓ -th roots of unity in the algebraic closure \mathbb{F}_q of \mathbb{F}_q and D_P and D_Q are divisors isomorphic to $P-P_\infty$ or $Q-P_\infty$, respectively.
Obviously $W_e(P,P)=1$ Obviously, $W_\ell(P,P)=1.$

Weil pairings can be seen as two-fold application of theTate-Lichtenbaum pairing, note $Q\in E(\mathbb{F}_{q^k})$.

Needs full group of order ℓ in $E(\mathbb{F}_{q^k})$, if $k=1$ then the Weil pairing is trivial & one needs to use larger field.

Supersingular and ordinary

Tanja Lange Mathematical Background of Pairings – p. 36

Definition

Let E be an elliptic curve defined over $\mathbb{F}_q, q=p^r.$ E is supersingular if

$$
\bullet \quad E[p^s](\overline{\mathbb{F}}_q) = \{P_{\infty}\}.
$$

$$
\bullet \ |E(\mathbb{F}_q)| = q - t + 1 \text{ with } t \equiv 0 \bmod p.
$$

 End_E is order in quaternion algebra.

Otherwise it is ordinary and one has $E[p^s](\mathbb{F}_q) \cong \mathbb{Z}/p^s\mathbb{Z}.$

These statements hold for all s if they hold for one. End_E order in quaternion algebra means that there are mean_E maps which are linearly independent of the Frobeniusendomorphism. They are called distortion maps.

Example

Consider

$$
y^2 + y = x^3 + a_4 x + a_6 \text{ over } \mathbb{F}_{2^r},
$$

SO $q=2^r$.

Negative of $P=(a,b)$ is $-P=(a,b+1),$ ⇒ no affine point with $P = -P$ since $b \neq b + 1$,
→ even number of affine points, one point P \Rightarrow even number of affine points, one point $P_{\infty},$

$$
\Rightarrow |E(\mathbb{F}_q)| = q - t + 1 = 2^r - t + 1
$$
 is odd, so *t* is even.

This curve is supersingular (using the second criterion).

Distortion map I

For supersingular curves it is possible to find maps $\phi:E(\mathbb{F}_q)\rightarrow E(\mathbb{F}_{q^k})$ that map to a linearly independent subgroup, i.e.

$$
T'_{\ell}(P,P) \neq 1 \text{ for } T'_{\ell}(P,P) = T_{\ell}(P,\phi(P)).
$$

(This needs that there are independent endomorphisms, sono chance for ordinary curves). Examples:

\n- $$
y^2 = x^3 + a_4x
$$
, for $p \equiv 3 \pmod{4}$.
\n- Distortion map $(x, y) \mapsto (-x, iy)$ with $i^2 = -1$
\n

\n- $$
y^2 = x^3 + a_6
$$
, for $p \equiv 2 \pmod{3}$.
\n- Distortion map $(x, y) \mapsto (jx, y)$ with $j^3 = 1, j \neq 1$,
\n

In both cases, $\#E(\mathbb{F}_p)=p+1, k=2.$

Distortion maps II

Over $\mathop{\mathrm{I\mathbb{F}}}_{2^d}$ consider $y \$ and distortion map2 $y=x$ 3 $3 + x + a_6$, with $a_6 = 0$ or 1 $(x, y) \mapsto (x+s)$ 2 $, y+sx+t), s, t \in \mathbb{F}$ $2^{4d},\; \, S$ $\;\;.$ 4 $4 + s = 0, t^2$ $+t+s$ 6 $^{\circ}+s$ 2 $=$ $\#E(\mathbf{F}_{2^d}) = 2^d + 1 \pm 2^{(d+1)/2}$ Over \mathbb{F}_{3^d} consider 2 2 , $k = 4$. $\mathcal{Y}% =\left\{ \mathcal{X}_{t}\right\}$ 2 $z=x$ 3 $^3+x+a_6,$ with $a_6=\pm 1$ and distortion map $(x, y) \mapsto ($ $-x+s,iy$) with s $3 + 2s + 2a_6$ $\epsilon_6 = 0$ and i^2 $^2=-1.$ $\#E(\mathbb{F}_{3^d})=3^d+1\pm 3^{(d+1)/2}$ 2 $k^2, k = 6.$

Outlook and literature

- Efficient implementation of pairings in Mike Scott's talk
- More applications and protocols involving pairings tomorrow in the talks by Kenny Paterson and Benoit Libert.
- Chapter 6. Background on Pairings of the Handbook of Elliptic and Hyperelliptic Curve Cryptography currentlyonline as sample chapter at http://www.hyperelliptic.org/HEHCC
- Advances in Elliptic Curve Cryptography by I. F. Blake, G. Seroussi, and N. P. Smart (Eds.) has chapter onpairings by Steven D. Galbraith.
- Pairings for Cryptographers by S. D. Galbraith, K. G. Paterson, and N. P. Smart; ePrint Archive: Report 2006/165