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Overview

Protocols

Elliptic curves

Definition and group law

Divisor class group (explanation of group law,
example hyperelliptic curves)

Weil and Tate pairing on elliptic curves

Supersingular and ordinary elliptic curves

Distortion maps
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Protocols
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Diffie-Hellman Key exchange

Alice Bob

1. secretly generates 1. secretly generates

a < |〈P 〉| b < |〈P 〉|
2. computes Q1 = [a]P 2. computes Q2 = [b]P

3. transmits Q1 3. transmits Q2
P

P
P

P
P

P
P

P
Pq

✏
✏

✏
✏

✏
✏

✏
✏

✏✮

4. computes 4. computes

[a]Q2 = [ab]P = [b] ·Q1

Common Key: the group element k = [ab]P ∈ 〈P 〉
can be used in symmetric encryption.
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Pairings

Let (G1,⊕), (G′
1,⊕) and (G, ·) be groups and let

e : G1 ×G′
1 → G

be a map satisfying

e(P ⊕Q,R′) = e(P, R′)e(Q,R′)

e(P, R′ ⊕ S′) = e(P, R′)e(P, S′)

The map is non-degenerate in the first argument, i.e. if
e(P, R′) = 1 for all R′ ∈ G′

1 for some P then P is the
identity in G1

Then e is called a bilinear map or pairing.

In protocol papers often G1 = G′
1.
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Consequences

Assume that G1 = G′
1 and hence

e(P, P ) 6= 1.

Then for all triples (P1, P2, P3) ∈ 〈P 〉3 one can decide
whether

logP (P3) = logP (P1) logP (P2)
by comparing

e(P1, P2)
?
= e(P, P3).

Thus the Decision Diffie-Hellman Problem is easy.

The DL system G1 is at most as secure as the system
G. Even if G1 6= G′

1 one can transfer the DLP in G1 to a

DLP in G, provided that one can find an element
P ′ ∈ G′

1 such that the map P → e(P, P ′) is injective.
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Positive Application of Pairings

Joux, ANTS 2000, one round tripartite key exchange

Let P, P ′ be generators of G1 and G′
1 respectively.

Users A,B and C compute joint secret from their secret
contributions a, b, c as follows (A’s perspective)

Compute and send [a]P, [a]P ′.

Upon receipt of [b]P and [c]P ′ put k = (e([b]P, [c]P ′))a

The resulting element k is the same for each participant as

k = (e([b]P, [c]P ′))a = (e(P, P ′))abc = (e([a]P, [c]P ′))b = (e([a]P, [b]P ′))

Obvious saving in first step if G1 = G′
1.

Only one user needs to do both computations.
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Arithmetic on elliptic curves
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Elliptic curve

E : y2 + (a1x + a3)
︸ ︷︷ ︸

h(x)

y = x3 + a2x
2 + a4x + a6

︸ ︷︷ ︸

f(x)

, h, f ∈ IFq[x].

Group: E(IFq) = { (x, y) ∈ IF2
q : y2 + h(x)y = f(x) } ∪ {P∞ }

Often q = 2r or q = p, prime. Isomorphic transformations
lead to

y2 = f(x) q odd,

for

y2 + xy = x3 + a2x
2 + a6

y2 + y = x3 + a4x + a6
q = 2r,

curve non-supersingular

curve supersingular
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Group Law in E(IR), h = 0

y2 = x3 − x

P

R
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Group Law in E(IR), h = 0

y2 = x3 − x

P

R

S
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Group Law in E(IR), h = 0

y2 = x3 − x

P

R

S

P ⊕R
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Group Law (q odd)

E : y2 = x3 + a4x + a6, ai ∈ IFq

P

R

S

Line y = λx + µ has slope

λ = yR−yP

xR−xP
.

Equating gives

(λx + µ)2 = x3 + a4x + a6.

This equation has 3 solutions, the x-coordinates of P , R
and S, thus

(x− xP )(x− xR)(x− xS) = x3 − λ2x2 + (a4 − 2λµ)x + a6 − µ2

xS = λ2 − xP − xR
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Group Law (q odd)

E : y2 = x3 + a4x + a6, ai ∈ IFq

P

R

S

P + R

Point P is on line, thus

yP = λxP + µ, i.e.
µ = yP − λxP ,

and
yS = λxS + µ

= λxS + yP − λxP

= λ(xS − xP ) + yP

Point P ⊕R has the same x-coordinate as S but negative
y-coordinate:

xP⊕R = λ2 − xP − xR, yP⊕R = λ(xP − xP⊕R)− yP
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Group Law (q odd)

E : y2 = x3 + a4x + a6, ai ∈ IFq

P

R

S

P + R

2P

−2P

In general, for (xP , yP ) 6= (xR,−yR):

(xP , yP )⊕ (xR, yR) =
= (xP⊕R, yP⊕R) =

= (λ2 − xP − xR, λ(xP − xP⊕R)− yP ),
where

λ =

{

(yR − yP )/(xR − xP ) if xP 6= xR,

(3x2
P + a4)/(2yP ) else.

⇒ Addition and Doubling need
1 I, 2M, 1S and 1 I, 2M, 2S, respectively
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Weierstraß equation

E : y2 + (a1x + a3)
︸ ︷︷ ︸

h(x)

y = x3 + a2x
2 + a4x + a6

︸ ︷︷ ︸

f(x)

, h, f ∈ IFq[x].

Negative of P = (xP , yP ) is given by
−P = (xP ,−yP − h(xP )).

(xP , yP )⊕ (xR, yR) = (x3, y3) =

= (λ2 + a1λ− a2 − xP − xR, λ(xP − x3)− yP − a1x3 − a3),
where

λ =

{

(yR − yP )/(xR − xP ) if xP 6= xR,
3x2

P +2a2xP +a4−a1yP

2yP +aP xP +a3
else.
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Number of points

In cryptography we usually consider elliptic curves over
finite fields IFq.

Then the number of points is also finite, a bound is given by
Hasse’s theorem:

#E(IFq) = q + 1− t,

with

|t| ≤ 2
√

q.

t is called the trace of E.

Each point has finite order dividing #E(IFq). Due to the

Pohlig-Hellman attack we want to work in (sub-)groups of
prime order ℓ.
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Divisor class groups

(Arithmetic on hyperelliptic
curves)
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Example: Hyperelliptic Curves

Affine equation of hyperelliptic curve of genus g (with
IFq-rational Weierstraß-point at infinity)

C : y2 + h(x)y = f(x)

h(x), f(x) ∈ IFq[x], f monic, deg f = 2g + 1, deg h ≤ g
non singular, i. e. not both partial derivatives

(2y + h(x) and h′(x)y − f ′(x))

vanish in any in (a, b) ∈ C/IFq
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Examples

Concerning the arithmetic properties one can consider
elliptic curves as hyperelliptic curves, i. e.

y2 + (a1x + a3)y = x3 + a2x
2 + a4x + a6

is considered as curve of genus one.

Curve of genus 2 over field of odd characteristic

y2 = x5 + f3x
3 + f2x

2 + f1x + f0,

provided f(x) has no multiple roots.
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Curve of genus 2 over IR, h = 0
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Curve of genus 2 over IR, h = 0
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Curve of genus 2 over IR, h = 0

points do not form a group!
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Group of Divisors

Construct group from points on curve. Free abelian
groups are in particular groups, and so associativity etc.
follow immediately.

Construction uses Divisors, i. e. finite sums of points
(elements of the free abelian group),

∑

P∈C(IFq)

nP P, nP ∈ ZZ

with nP = 0 for almost all P .

Addition works component-wise:

(P1 + 2P2 − P3) + (P1 + P2 + P4) = 2P1 + 3P2 − P3 + P4.
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Divisors

The degree of a divisor is

deg(D) =
∑

P∈C(IFq)

nP .

The degree is a homomorphism, i.e.

deg(D1) + deg(D2) = deg(D1 + D2),

like
deg(P1 + 2P2 − P3) = 1 + 2− 1 = 2, deg(P1 + P2 + P4) = 3,
deg(2P1 + 3P2 − P3 + P4) = 5.

Divisors of degree zero form a group Div0
C with

component-wise addition. This is a subgroup of DivC .
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Principal divisors

For any function F (x, y) the graph F (x, y) = 0 intersects

curve in some points of C(IFq).

Let vP be normalized valuation P ∈ C(IFq), thus

vP (F ) = n ≥ 0 iff F has intersection of multiplicity n with
curve at P (simple intersection has n = 1 while tangent
has multiplicity n ≥ 2).

Negative values for multiplicity of poles.

Associate divisor

div(F ) =
∑

P∈C(IFq)

vP (F )P

to function F ∈ IFq(C).
Such divisors are called principal divisors PrincC . One
can show that they have degree zero.
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Curve of genus 2 over IR, h = 0

P1

P2

Q1

Q2

points on red line (−6P∞) form principal divisor
points on green line (−2P∞) form principal divisor
Here only functions of the form F (x, y) = y − k(x)
for some polynomial k(x)
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Divisor class group

Consider the factor group of the group of divisors of degree

zero Div0
C modulo the principal divisors. This way one

constructs the divisor class group of degree zero.

Pic0
C = Div0

C/PrincC .

Meaning will become clear soon. First example ECC.

So far working over algebraic closure.

First definition: The IFq-rational group elements Pic0
C(IFq)

are those which remain fixed under applying the Frobenius
endomorphisms, i.e. computing q-th powers of all
coordinates. Note that not each point needs to remain fixed
for that (sum can be rearranged).
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Example: E(IR), h = 0

y2 = x3 − x

P

R

S

F

div(F (x, y)) = P + S + R− 3P∞
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Example: E(IR), h = 0

y2 = x3 − x

P

R

S

F

div(F (x, y)) = P + S + R− 3P∞

F

div(F (x, y)) = P + S + R− 3P∞

G

div(G(x, y)) = S + (−S)− 2P∞

−S = P ⊕R
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Representation of group elements

General:
Riemann-Roch allows to find a unique reduced
representation by means of a divisor of degree zero with
m ≤ g

D̄ =
m∑

i=1

Pi∈C(IFq)\{P∞}

Pi −mP∞

and Pi 6= −Pj for i 6= j.

If D̄ is defined over IFq, the extension degree of the field of

definition of the Pi is bounded, e. g. at most 2 for g = 2.
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Curve of genus 2 over IR, h = 0

P1

P2

Q1

Q2
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Curve of genus 2 over IR, h = 0

P1

P2

Q1

Q2

points on red line (−6P∞) form principal divisor F
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Curve of genus 2 over IR, h = 0

P1

P2

Q1

Q2

FP1 + P2 + (−R1) + (−R2) + Q1 + Q2 − 6P∞ = div(F ) F

−R1

−R2
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Curve of genus 2 over IR, h = 0

P1

P2

Q1

Q2

FF

−R1

−R2

−R1

−R2

R1

R2

(P1 + P2 − 2P∞)⊕ (Q1 + Q2 − 2P∞) = R1 + R2 − 2P∞
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Representation – elliptic curves

In the introduction we computed explicitly that there is
always a third point on a non-vertical line.

By reduction modulo principal divisors (lines) one can thus
reduce any divisor to just P − P∞ or the neutral element.

The isomorphism

Pic0
E(IFqk)→ E(IFqk),

P − P∞ 7→ P

0 7→ P∞

shows that the above construction gives a group on the
points of E together with the point at infinity.
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Pairings
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Prerequisites I

We want to define pairings

G1 ×G2 → GT

preserving the group structure.

Tate and the Weil pairing both use abelian varieties as

the first argument. Assume that ℓ
∣
∣|Pic0

C(IFq)| and

ℓ2 6
∣
∣ |Pic0

C(IFq)|.
Let ℓ be a prime, let C be a (hyper)elliptic curve over IFq.

G1 is the group of IFq-rational ℓ-torsion points of Pic0
C ,

i.e. G1 = E[ℓ](IFq), IFq-rational points on elliptic curve

C = E of order ℓ

or G1 = Pic0
C [ℓ](IFq), IFq-rational divisor classes of

order ℓ.
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Prerequisites II

The pairings we use map to the multiplicative group of a
finite extension field IFqk .

GT has order ℓ, so by Lagrange ℓ must divide the group

order of IF∗
qk , this happens if ℓ | qk − 1.

The embedding degree k is defined to be the minimal
extension degree of IFq so that the ℓ-th roots of unity are
in IF∗

qk , i.e.

k minimal with ℓ | qk − 1.

Attention: if q is not prime then the group of ℓ-th roots of
unity can be in a a smaller extension of the prime field!

For k > 1 Tate-Lichtenbaum pairing is degenerate on
linear dependent points, i.e. Tℓ(P, P ) = 1.
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Tate-Lichtenbaum pairing I

We now use the whole machinery of divisors and
divisor classes in the “easy” case of elliptic curves.

Denote by E(IFqk)[ℓ] the points on E of order ℓ defined

over IFqk .

Using the embedding of E into Pic0
E, i.e.

P 7→ P − P∞

we have:

P ∈ E(IFqk)[ℓ]⇒ ∃FP such that ℓ(P − P∞) ∼ div(FP ),

i.e. ℓ(P − P∞) is a principal divisor.
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Tate-Lichtenbaum pairing II

Given Q ∈ E(IFqk), find S ∈ E(IFqk) so that

Q⊕ S, S 6∈ {±P, P∞}. (A random choice of S will do.)

Note that Q⊕ S − S ∼ Q− P∞.

Tate-Lichtenbaum pairing

Tℓ(P, Q) = FP (Q⊕ S − S) =
FP (Q⊕ S)

FP (S)
.

This map is actually bilinear – easy to see for second
argument; slightly harder for first.

The value is independent of the choices of FP and S –
up to ℓ-th powers.
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Tate-Lichtenbaum pairing III

This Tℓ defines a bilinear and non-degenerate map

Tℓ : E(IFqk)[ℓ]× E(IFqk)/ℓE(IFqk)→ IF∗
qk/IF∗ℓ

qk

as ℓ-folds are in the kernel of Tℓ.
To achieve unique value in IFqk rather than class do final

exponentiation

T̃ℓ = Tℓ(P, Q)(q
k−1)/ℓ.

Often

Tℓ : E(IFq)[ℓ]× E(IFqk)/ℓE(IFqk)→ IF∗
qk/IF∗ℓ

qk .

The function FP is built iteratively and evaluated in each
round. This is known as Miller’s algorithm.
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Miller’s algorithm

In: ℓ =
∑n−1

i=0 ℓi2
i, P, Q⊕ S, S

Out: Tℓ(P, Q)

1. T ← P , F ← 1

2. for i = n− 2 downto 0 do

(a) Calculate lines l and v in doubling
T ← [2]T

F ← F 2 · l(Q⊕ S)v(S)/(l(S)v(Q⊕ S))

(b) if ℓi = 1 then
Calculate lines l and v in addition T ⊕ P
T ← T ⊕ P
F ← F · l(Q⊕ S)v(S)/(l(S)v(Q⊕ S))

3. return F
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Group Law in E(IR), h = 0

y2 = x3 − x

P

R
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Group Law in E(IR), h = 0

y2 = x3 − x

P

R

l : y − λx− µ = 0
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Group Law in E(IR), h = 0

y2 = x3 − x

P

R

l : y − λx− µ = 0 P ⊕R

v : x− c = 0

Tanja Lange Mathematical Background of Pairings – p. 34



Weil pairing

For an elliptic curve E define

Wℓ : E(IFq)[ℓ]× E(IFq)[ℓ] → µℓ

(P, Q) 7→ FP (DQ)

FQ(DP )
,

where µℓ is the multiplicative groups of the ℓ-th roots of unity

in the algebraic closure IFq of IFq and DP and DQ are

divisors isomorphic to P − P∞ or Q− P∞, respectively.
Obviously, Wℓ(P, P ) = 1.

Weil pairings can be seen as two-fold application of the
Tate-Lichtenbaum pairing, note Q ∈ E(IFqk).

Needs full group of order ℓ in E(IFqk), if k = 1 then the Weil

pairing is trivial & one needs to use larger field.
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Supersingular and ordinary
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Definition

Let E be an elliptic curve defined over IFq, q = pr.

E is supersingular if

E[ps](IFq) = {P∞}.
|E(IFq)| = q − t + 1 with t ≡ 0 mod p.

EndE is order in quaternion algebra.

Otherwise it is ordinary and one has E[ps](IFq) ∼= ZZ/ps
ZZ.

These statements hold for all s if they hold for one.
EndE order in quaternion algebra means that there are
maps which are linearly independent of the Frobenius
endomorphism. They are called distortion maps.
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Example

Consider

y2 + y = x3 + a4x + a6 over IF2r ,

so q = 2r.

Negative of P = (a, b) is −P = (a, b + 1),
⇒ no affine point with P = −P since b 6= b + 1,
⇒ even number of affine points, one point P∞,

⇒ |E(IFq)| = q − t + 1 = 2r − t + 1 is odd, so t is even.

This curve is supersingular (using the second criterion).
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Distortion map I

For supersingular curves it is possible to find maps
φ : E(IFq)→ E(IFqk) that map to a linearly independent

subgroup, i.e.

T ′
ℓ(P, P ) 6= 1 for T ′

ℓ(P, P ) = Tℓ(P, φ(P )).

(This needs that there are independent endomorphisms, so
no chance for ordinary curves).
Examples:

y2 = x3 + a4x, for p ≡ 3 (mod 4).

Distortion map (x, y) 7→ (−x, iy) with i2 = −1

y2 = x3 + a6, for p ≡ 2 (mod 3).

Distortion map (x, y) 7→ (jx, y) with j3 = 1, j 6= 1,

In both cases, #E(IFp) = p + 1, k = 2.
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Distortion maps II

Over IF2d consider

y2 + y = x3 + x + a6, with a6 = 0 or 1
and distortion map

(x, y) 7→ (x+s2, y+sx+t), s, t ∈ IF24d, s4+s = 0, t2+t+s6+s2 =

#E(IF2d) = 2d + 1± 2(d+1)/2, k = 4.

Over IF3d consider

y2 = x3 + x + a6, with a6 = ±1
and distortion map

(x, y) 7→ (−x+ s, iy) with s3 +2s+2a6 = 0 and i2 = −1.

#E(IF3d) = 3d + 1± 3(d+1)/2, k = 6.
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Outlook and literature

Efficient implementation of pairings in Mike Scott’s talk

More applications and protocols involving pairings
tomorrow in the talks by Kenny Paterson and Benoit
Libert.

Chapter 6. Background on Pairings of the Handbook of
Elliptic and Hyperelliptic Curve Cryptography currently
online as sample chapter at
http://www.hyperelliptic.org/HEHCC

Advances in Elliptic Curve Cryptography by I. F. Blake,
G. Seroussi, and N. P. Smart (Eds.) has chapter on
pairings by Steven D. Galbraith.

Pairings for Cryptographers by S. D. Galbraith,
K. G. Paterson, and N. P. Smart; ePrint Archive: Report
2006/165
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