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First Steps

To do Pairing based Crypto we need 
two things

Efficient algorithms
Suitable elliptic curves

We have got both! (Maybe not quite 
enough suitable curves?)



What’s a Pairing?

e(P,Q) where P and Q are points on 
an elliptic curve.

It has the property of bilinearity

e(aP,bQ) = e(bP,aQ) = e(P,Q)ab



Hard problems…

1. Given aP and P, its hard to find a 

2. Given e(P,Q)a and e(P,Q) its hard 
to find a.

3. Given {P,sP,aP,Q,sQ,bQ} its hard 
to find e(P,Q)sab



Why is a pairing useful

A Trusted Authority has a secret s and 
generates P and Ppub=sP. He makes P
and Ppub public.

A user approaches the TA, proffers an 
identity Qid, and is issued with a secret 
D=sQid



Identity Based Encryption

To encrypt a message to QID, encrypt it using 
as key e(QID,Ppub)w for random w and append 
U=wP to the ciphertext. 
To decrypt it use as key e(D,U). This is the 
same key because of bilinearity
e(QID,Ppub)w=e(QID,P)sw

=e(sQID ,wP)=e(D,U)
All possible attacks protected by a hard 
problem!



Where to Find a Pairing? 

First Stop - Supersingular Elliptic curves 
E(Fq), q=pm

The Tate Pairing e(P,Q) has the required 
properties!
If P and Q are points on E(Fqk), then 
pairing evaluates as element in Fqk

If P is of order r, so is e(P,Q)
It is bilinear, and k (the embedding 
degree) is of a “reasonable” size {2,4,6}



Making it secure

If r is 160-bits, then Pohlig-Hellman 
attacks will take ~ 280 steps
If k.lg(q) ~ 1024 bits, Discrete Log 
attacks will also take ~ 280 steps
So we can achieve appropriate 
levels of cryptographic security 



Modified Tate Pairing

k is smallest number such that r|(qk-1)
Supersingular curves support a distortion 
map, Φ(Q) which evaluates as a point on 
E(Fqk), if Q is on E(Fq),
So choose P and Q on E(Fq), then 

ê(P,Q) =e(P, Φ(Q))
Is an alternative, nicer pairing, with the 
extra property ê(P,Q) = ê(Q,P)



Prove ê(P,Q) = ê(Q,P) !

If P and Q are points of order r on E(Fq),
then Q=cP for some unknown c

So ê(P,Q) = ê(P,cP) = ê(P,P)c

= ê(cP,P) = ê(Q,P)

Observe the power of bilinearity!



What choices?

If q=p a prime, maximum k=2
If q=2m, maximum k=4
If q=3m, maximum k=6

We need group size r ≥ 160 bits
We need qk ~ 1024 bits
We know r | q+1-t
(t is trace of the Frobenius ≤ 2 √q)



Constrained…

These constraints are… well…
constraining!

I HATE F3m !
So what about Hyperelliptic curves…?
Not very promising in practice…
Fortunately, we have an alternative 
choice – certain families of ordinary 
elliptic curves over Fp



Ordinary Elliptic Curves

There are the MNT curves, with 
k={3,4,6}
There are Freeman curves with 
k=10
There are Barreto-Naehrig curves 
with k=12



Ordinary Elliptic Curves

These curves all have r~p, which is 
nice, as it means P can be over the 
smallest possible field for given 
level of security
If we relax this, many more families 
can be found (e.g. Brezing-Weng)
If we allow lg(r) ≤ 2.lg(p) then 
curves for any k are plentiful 
(Cocks-Pinch)



The bad news..

No distortion map 
In e(P,Q), while P can be in E(Fp), Q 
cannot
The best we can do is to put Q on a 
lower order “twist” E(Fpk/w), where always 
w=2, (but w=4 and w=6 are possible).
For example for BN curves we can use 
w=6 and put Q on E(Fp2) 
e(P,Q) ≠ e(Q,P)



Implementation

For simplicity (for now)
Assume k=2d, d=1, p=3 mod 4
Elements in Fp2 can be represented 
as (a+ib), where a and b are in Fp

and i=√-1 because -1 is a quadratic 
non-residue (think “imaginary 
number”)
Assume P is in E(Fp), Q in E(Fp2) 



Basic Algorithm for e(P,Q)

m ← 1, T ← P
for i=lg(r)-1 downto 0 do 

m ← m2.lT,T (Q)/v2T(Q)
T ← 2.T
if ri = 1

m ← m.lT,P(Q)/vT+P(Q)
T=T+P

end if
end for Millers Algorithm
m ← m(p-1) Final Exponentiation
return m(p+1)/r



lT,T(Q) = (yq-yj) – λj(xq-xj)

v2T(Q) =xq-xj+1

Explaining the Algorithm
Q(xq,yq)

T=(xj,yj)

xq-xj

yq-yj
Line of slope λj

xj+1,yj+1



Optimizations

Choose r to have a low Hamming weight
By cunning choice of Q as a point on the 
twisted curve and using only even k=2d, 
the v(.) functions become elements in Fpd

and hence get “wiped out” by the final 
exponentiation, which always includes pd-1
as a factor of the exponent.
Now the algorithm simplifies to…



Improved Algorithm

m ← 1, T ← P
for i=lg(r)-1 downto 0 do 

m ← m2.lT,T (Q)
T ← 2.T
if ri = 1

m ← m.lT,P(Q)
T=T+P

end if
end for
m ← m(p-1)

return m(p+1)/r



Further optimization ideas

Truncate the loop in Miller’s 
algorithm, and still get a viable 
pairing.
Optimize the final exponentiation
Exploit the Frobenius – an element 
of any extension field Fqk can easily 
be raised to any power of q. For 
example in Fp2

(a+ib)p = (a-ib)



Further optimization ideas

Precomputation!
If P is fixed, all the T values can be 
precomputed and stored – with 
significant savings.
P may be a fixed public value or a 
fixed secret key – depends on the 
protocol.



The ηT pairing - 1

For the supersingular curves of low 
characteristic, the basic algorithm 
can be drastically simplified by 
integrating the distortion map, the 
point multiplication, and the action 
of the Frobenius directly into the 
main Miller loop. Also exploits the 
simple group order.



The ηT pairing - 2

In characteristic 2, k=4.
r =2m ± 2[(m+1)]/2 + 1
Elements in F2m are represented as a 
polynomial with m coefficients in F2

Elements in the extension field F24m are 
represented as a polynomial with 4 
coefficients in F2m

e.g. a+bX+cX2+dX3  represented as 
[a,b,c,d]. 



The ηT pairing - 3

Let s=[0,1,1,0] and t=[0,1,0,0] (derived 
from distortion map)
Then on the supersingular curve 
y2+y=x3+x+b, where b=0 or 1
And m= 3 mod 8
A pairing e(P,Q), where P=(xP,yP) and 
Q=(xQ,yQ), can be calculated as



The ηT pairing - 4

u←xP+1
f←u(xP+xQ+1)+yP+yQ+b+1+(u+xQ)s+t
for i=1 to (m+1)/2 do

u←xP xP←√xP yP←√yP

g←u(xP+xQ)+yP+yQ+xP+(u+xQ)s+t
f←f.g xQ←xQ2 yQ←yQ2

end for
return f(22m-1)(2m-2(m+1)/2 +1)



The ηT pairing - 5

This is very fast! <5 seconds on an 
msp430 wireless sensor network 
node, with m=271 (C – no asm)
Note truncated loop (m+1)/2.
Final exponentiation very fast using 
Frobenius.
Idea in low power, resource 
constrained environment.



Ate Pairing for ordinary curves E(Fp)

Truncated Loop pairing, related to Tate pairing.
Number of iterations in Miller loop may be much 
shorter – lg(t-1) instead of lg(r), and for some 
families of curves t can be much less than r
Parameters “change sides”, now P is on the 
twisted curve and Q is on the curve over the 
base field.
Works particularly well with curves that allow a 
higher order (sextic) twist.



Extension Field Arithmetic

For non-supersingular curves over 
Fpk there is a need to implement 
very efficient extension field 
arithmetic.
A new challenge for cryptographers
Simple generic polynomial 
representation will be slow, and 
misses optimization opportunities.



Towering extensions

Consider p=5 mod 8
Then a suitable representation for 
Fp2 would be (a+xb), where a,b are 
in Fp, x=(-2)1/2, as -2 will be a QNR.
Then a suitable representation for 
Fp4 would be (a+xb), where a,b are 
in Fp2, x=(-2)1/4

Etc!



Towering extensions

In practise it may be sufficient to 
restrict k=2i3j for i≥1, j≥0, as this 
covers most useful cases.
So only need to deal with cubic and 
quadratic towering.
These need only be efficiently 
developed once (using Karatsuba, 
fast squaring, inversion, square 
roots etc.)



The Final Exponentiation - 1

Note that the exponent is (pk-1)/r
This is a number dependent only on 
fixed, system parameters
So maybe we can choose p, k and r
to make it easier (Low Hamming 
Weight?)
If k=2d is even then 

(pk-1)/r = (pd-1).[(pd+1)/r]



The Final Exponentiation - 2

We know that r divides (pd+1) and 
not (pd-1) from the definition of k.
Exponentiation to the power of pd is 
“for free” using the Frobenius, so 
exponentiation to the power of pd-1 
costs just a Frobenius and a single 
extension field division – cheap!



The Final Exponentiation - 3

In fact we know that the 
factorisation of (pk-1) always 
includes Φk(p), where Φk(.) is the k-
th cyclotomic polynomial, and that 
r|Φk(p). 
For example 

p6-1 = (p3-1)(p+1)(p2-p+1)
Where Φ6(p) = p2-p+1



The Final Exponentiation - 4

So the final exponent is general 
breaks down as…

(pd-1).[(pd+1)/Φk(p)].Φk(p)/r 

All except the final Φk(p)/r part can 
be easily dealt with using the 
Frobenius.



The Final Exponentiation - 5

However this “hard” exponent e can 
always be represented to base p as

e=e0+e1p+e2p2…

fe = fe0+e1p+e2p2… = fe0 .(fp)e1.(fp2) e2…

Which can be calculated using the 
Frobenius and the well known method of 
multi-exponentiation.



The Final Exponentiation - 6

Another idea is to exploit the special 
form of the “hard part” of the final 
exponentiation for a particular curve
If k is divisible by 2 the pairing 
value can be “compressed” times 2 
and Lucas exponentiation used.
If k is divisible by 3 the pairing 
value can be “compressed” times 3 
and XTR exponentiation used.



Implementation – more complex than RSA or ECC!

There are many choices of curves, 
and of embedding degrees, and of 
pairings. It is not at all obvious 
which is “best” for any given 
application. The optimal pairing to 
use depends not just on the 
security level, but also on the 
protocol to be implemented.



Implementation – more complex than RSA or ECC!

For example (a) p~512 bits and k=2, or 
(b) p~170 bits and k=6 MNT curve?
On the face of it same security.
Smaller p size means faster base field point 
multiplications – so (b) looks better
Which is important only if point multiplications are 
required by the protocol.
(a) pairing is much faster if precomputation is possible
(b) must be used for short signatures
(b) requires Q on the twist E’(Fp3) which is more complicated than 
(a) for which Q can be on E’(Fp) 
The (b) curves are hard to find, whereas (a) types are plentiful.
(a) is much simpler to implement with the smaller extension.. Smaller code



Some timings – 80-bit security

32-bit 3GHz PIV 
Tate Pairing
k=2, p~512 bits Cocks-Pinch
w/o precomp.   = 6.7ms
With precomp.  = 3.0ms
Point mul.         = 2.9ms



Some timings – 80-bit security

32-bit 3GHz PIV 
Tate Pairing
k=2, p~512 bits with Efficient 
Endomorphism (Scott ’05)
w/o precomp.   = 5.1ms
With precomp.  = 3.0ms
Point mul.         = 1.9ms



Some timings – 80-bit security

32-bit 3GHz PIV 
Ate pairing
k=4, p~256 bits FST curve
w/o precomp.   = 9.1ms
With precomp.  = 3.1ms
Point mul.         = 1.1ms



Some timings – 80-bit security

32-bit 3GHz PIV 
Tate pairing
k=6, p~160 bits MNT curve
w/o precomp.   = 6.2ms
With precomp.  = 4.5ms
Point mul.         = 0.6ms



Some timings – 80-bit security

8-bit 16MHz Atmel128 
Tate pairing
k=4, p~256 bits MNT curve
With precomp.  = 7.75 seconds



Some timings – 80-bit security

8-bit 16MHz Atmel128 
ηT pairing
k=4, m=271 bits, supersingular 
curve
w/o precomp  = 4.6 seconds



Some timings – 128-bit security

3.4GHz PIV 32-bit 
Tate pairing
k=12, p~256 bits BN curve
w/o precomp.   = 46.1ms
Ate pairing
w/o precomp.   = 39.3ms



Questions Anyone?
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