
Efficient Implementation of
Cryptographic pairings

Mike Scott
Dublin City University

http://www.dcu.ie/

First Steps

To do Pairing based Crypto we need
two things

Efficient algorithms
Suitable elliptic curves

We have got both! (Maybe not quite
enough suitable curves?)

What’s a Pairing?

e(P,Q) where P and Q are points on
an elliptic curve.

It has the property of bilinearity

e(aP,bQ) = e(bP,aQ) = e(P,Q)ab

Hard problems…

1. Given aP and P, its hard to find a

2. Given e(P,Q)a and e(P,Q) its hard
to find a.

3. Given {P,sP,aP,Q,sQ,bQ} its hard
to find e(P,Q)sab

Why is a pairing useful

A Trusted Authority has a secret s and
generates P and Ppub=sP. He makes P
and Ppub public.

A user approaches the TA, proffers an
identity Qid, and is issued with a secret
D=sQid

Identity Based Encryption

To encrypt a message to QID, encrypt it using
as key e(QID,Ppub)w for random w and append
U=wP to the ciphertext.
To decrypt it use as key e(D,U). This is the
same key because of bilinearity
e(QID,Ppub)w=e(QID,P)sw

=e(sQID ,wP)=e(D,U)
All possible attacks protected by a hard
problem!

Where to Find a Pairing?

First Stop - Supersingular Elliptic curves
E(Fq), q=pm

The Tate Pairing e(P,Q) has the required
properties!
If P and Q are points on E(Fqk), then
pairing evaluates as element in Fqk

If P is of order r, so is e(P,Q)
It is bilinear, and k (the embedding
degree) is of a “reasonable” size {2,4,6}

Making it secure

If r is 160-bits, then Pohlig-Hellman
attacks will take ~ 280 steps
If k.lg(q) ~ 1024 bits, Discrete Log
attacks will also take ~ 280 steps
So we can achieve appropriate
levels of cryptographic security

Modified Tate Pairing

k is smallest number such that r|(qk-1)
Supersingular curves support a distortion
map, Φ(Q) which evaluates as a point on
E(Fqk), if Q is on E(Fq),
So choose P and Q on E(Fq), then

ê(P,Q) =e(P, Φ(Q))
Is an alternative, nicer pairing, with the
extra property ê(P,Q) = ê(Q,P)

Prove ê(P,Q) = ê(Q,P) !

If P and Q are points of order r on E(Fq),
then Q=cP for some unknown c

So ê(P,Q) = ê(P,cP) = ê(P,P)c

= ê(cP,P) = ê(Q,P)

Observe the power of bilinearity!

What choices?

If q=p a prime, maximum k=2
If q=2m, maximum k=4
If q=3m, maximum k=6

We need group size r ≥ 160 bits
We need qk ~ 1024 bits
We know r | q+1-t
(t is trace of the Frobenius ≤ 2 √q)

Constrained…

These constraints are… well…
constraining!

I HATE F3m !
So what about Hyperelliptic curves…?
Not very promising in practice…
Fortunately, we have an alternative
choice – certain families of ordinary
elliptic curves over Fp

Ordinary Elliptic Curves

There are the MNT curves, with
k={3,4,6}
There are Freeman curves with
k=10
There are Barreto-Naehrig curves
with k=12

Ordinary Elliptic Curves

These curves all have r~p, which is
nice, as it means P can be over the
smallest possible field for given
level of security
If we relax this, many more families
can be found (e.g. Brezing-Weng)
If we allow lg(r) ≤ 2.lg(p) then
curves for any k are plentiful
(Cocks-Pinch)

The bad news..

No distortion map
In e(P,Q), while P can be in E(Fp), Q
cannot
The best we can do is to put Q on a
lower order “twist” E(Fpk/w), where always
w=2, (but w=4 and w=6 are possible).
For example for BN curves we can use
w=6 and put Q on E(Fp2)
e(P,Q) ≠ e(Q,P)

Implementation

For simplicity (for now)
Assume k=2d, d=1, p=3 mod 4
Elements in Fp2 can be represented
as (a+ib), where a and b are in Fp

and i=√-1 because -1 is a quadratic
non-residue (think “imaginary
number”)
Assume P is in E(Fp), Q in E(Fp2)

Basic Algorithm for e(P,Q)

m ← 1, T ← P
for i=lg(r)-1 downto 0 do

m ← m2.lT,T (Q)/v2T(Q)
T ← 2.T
if ri = 1

m ← m.lT,P(Q)/vT+P(Q)
T=T+P

end if
end for Millers Algorithm
m ← m(p-1) Final Exponentiation
return m(p+1)/r

lT,T(Q) = (yq-yj) – λj(xq-xj)

v2T(Q) =xq-xj+1

Explaining the Algorithm
Q(xq,yq)

T=(xj,yj)

xq-xj

yq-yj
Line of slope λj

xj+1,yj+1

Optimizations

Choose r to have a low Hamming weight
By cunning choice of Q as a point on the
twisted curve and using only even k=2d,
the v(.) functions become elements in Fpd

and hence get “wiped out” by the final
exponentiation, which always includes pd-1
as a factor of the exponent.
Now the algorithm simplifies to…

Improved Algorithm

m ← 1, T ← P
for i=lg(r)-1 downto 0 do

m ← m2.lT,T (Q)
T ← 2.T
if ri = 1

m ← m.lT,P(Q)
T=T+P

end if
end for
m ← m(p-1)

return m(p+1)/r

Further optimization ideas

Truncate the loop in Miller’s
algorithm, and still get a viable
pairing.
Optimize the final exponentiation
Exploit the Frobenius – an element
of any extension field Fqk can easily
be raised to any power of q. For
example in Fp2

(a+ib)p = (a-ib)

Further optimization ideas

Precomputation!
If P is fixed, all the T values can be
precomputed and stored – with
significant savings.
P may be a fixed public value or a
fixed secret key – depends on the
protocol.

The ηT pairing - 1

For the supersingular curves of low
characteristic, the basic algorithm
can be drastically simplified by
integrating the distortion map, the
point multiplication, and the action
of the Frobenius directly into the
main Miller loop. Also exploits the
simple group order.

The ηT pairing - 2

In characteristic 2, k=4.
r =2m ± 2[(m+1)]/2 + 1
Elements in F2m are represented as a
polynomial with m coefficients in F2

Elements in the extension field F24m are
represented as a polynomial with 4
coefficients in F2m

e.g. a+bX+cX2+dX3 represented as
[a,b,c,d].

The ηT pairing - 3

Let s=[0,1,1,0] and t=[0,1,0,0] (derived
from distortion map)
Then on the supersingular curve
y2+y=x3+x+b, where b=0 or 1
And m= 3 mod 8
A pairing e(P,Q), where P=(xP,yP) and
Q=(xQ,yQ), can be calculated as

The ηT pairing - 4

u←xP+1
f←u(xP+xQ+1)+yP+yQ+b+1+(u+xQ)s+t
for i=1 to (m+1)/2 do

u←xP xP←√xP yP←√yP

g←u(xP+xQ)+yP+yQ+xP+(u+xQ)s+t
f←f.g xQ←xQ2 yQ←yQ2

end for
return f(22m-1)(2m-2(m+1)/2 +1)

The ηT pairing - 5

This is very fast! <5 seconds on an
msp430 wireless sensor network
node, with m=271 (C – no asm)
Note truncated loop (m+1)/2.
Final exponentiation very fast using
Frobenius.
Idea in low power, resource
constrained environment.

Ate Pairing for ordinary curves E(Fp)

Truncated Loop pairing, related to Tate pairing.
Number of iterations in Miller loop may be much
shorter – lg(t-1) instead of lg(r), and for some
families of curves t can be much less than r
Parameters “change sides”, now P is on the
twisted curve and Q is on the curve over the
base field.
Works particularly well with curves that allow a
higher order (sextic) twist.

Extension Field Arithmetic

For non-supersingular curves over
Fpk there is a need to implement
very efficient extension field
arithmetic.
A new challenge for cryptographers
Simple generic polynomial
representation will be slow, and
misses optimization opportunities.

Towering extensions

Consider p=5 mod 8
Then a suitable representation for
Fp2 would be (a+xb), where a,b are
in Fp, x=(-2)1/2, as -2 will be a QNR.
Then a suitable representation for
Fp4 would be (a+xb), where a,b are
in Fp2, x=(-2)1/4

Etc!

Towering extensions

In practise it may be sufficient to
restrict k=2i3j for i≥1, j≥0, as this
covers most useful cases.
So only need to deal with cubic and
quadratic towering.
These need only be efficiently
developed once (using Karatsuba,
fast squaring, inversion, square
roots etc.)

The Final Exponentiation - 1

Note that the exponent is (pk-1)/r
This is a number dependent only on
fixed, system parameters
So maybe we can choose p, k and r
to make it easier (Low Hamming
Weight?)
If k=2d is even then

(pk-1)/r = (pd-1).[(pd+1)/r]

The Final Exponentiation - 2

We know that r divides (pd+1) and
not (pd-1) from the definition of k.
Exponentiation to the power of pd is
“for free” using the Frobenius, so
exponentiation to the power of pd-1
costs just a Frobenius and a single
extension field division – cheap!

The Final Exponentiation - 3

In fact we know that the
factorisation of (pk-1) always
includes Φk(p), where Φk(.) is the k-
th cyclotomic polynomial, and that
r|Φk(p).
For example

p6-1 = (p3-1)(p+1)(p2-p+1)
Where Φ6(p) = p2-p+1

The Final Exponentiation - 4

So the final exponent is general
breaks down as…

(pd-1).[(pd+1)/Φk(p)].Φk(p)/r

All except the final Φk(p)/r part can
be easily dealt with using the
Frobenius.

The Final Exponentiation - 5

However this “hard” exponent e can
always be represented to base p as

e=e0+e1p+e2p2…

fe = fe0+e1p+e2p2… = fe0 .(fp)e1.(fp2) e2…

Which can be calculated using the
Frobenius and the well known method of
multi-exponentiation.

The Final Exponentiation - 6

Another idea is to exploit the special
form of the “hard part” of the final
exponentiation for a particular curve
If k is divisible by 2 the pairing
value can be “compressed” times 2
and Lucas exponentiation used.
If k is divisible by 3 the pairing
value can be “compressed” times 3
and XTR exponentiation used.

Implementation – more complex than RSA or ECC!

There are many choices of curves,
and of embedding degrees, and of
pairings. It is not at all obvious
which is “best” for any given
application. The optimal pairing to
use depends not just on the
security level, but also on the
protocol to be implemented.

Implementation – more complex than RSA or ECC!

For example (a) p~512 bits and k=2, or
(b) p~170 bits and k=6 MNT curve?
On the face of it same security.
Smaller p size means faster base field point
multiplications – so (b) looks better
Which is important only if point multiplications are
required by the protocol.
(a) pairing is much faster if precomputation is possible
(b) must be used for short signatures
(b) requires Q on the twist E’(Fp3) which is more complicated than
(a) for which Q can be on E’(Fp)
The (b) curves are hard to find, whereas (a) types are plentiful.
(a) is much simpler to implement with the smaller extension.. Smaller code

Some timings – 80-bit security

32-bit 3GHz PIV
Tate Pairing
k=2, p~512 bits Cocks-Pinch
w/o precomp. = 6.7ms
With precomp. = 3.0ms
Point mul. = 2.9ms

Some timings – 80-bit security

32-bit 3GHz PIV
Tate Pairing
k=2, p~512 bits with Efficient
Endomorphism (Scott ’05)
w/o precomp. = 5.1ms
With precomp. = 3.0ms
Point mul. = 1.9ms

Some timings – 80-bit security

32-bit 3GHz PIV
Ate pairing
k=4, p~256 bits FST curve
w/o precomp. = 9.1ms
With precomp. = 3.1ms
Point mul. = 1.1ms

Some timings – 80-bit security

32-bit 3GHz PIV
Tate pairing
k=6, p~160 bits MNT curve
w/o precomp. = 6.2ms
With precomp. = 4.5ms
Point mul. = 0.6ms

Some timings – 80-bit security

8-bit 16MHz Atmel128
Tate pairing
k=4, p~256 bits MNT curve
With precomp. = 7.75 seconds

Some timings – 80-bit security

8-bit 16MHz Atmel128
ηT pairing
k=4, m=271 bits, supersingular
curve
w/o precomp = 4.6 seconds

Some timings – 128-bit security

3.4GHz PIV 32-bit
Tate pairing
k=12, p~256 bits BN curve
w/o precomp. = 46.1ms
Ate pairing
w/o precomp. = 39.3ms

Questions Anyone?

	Efficient Implementation of Cryptographic pairings
	First Steps
	What’s a Pairing?
	Hard problems…
	Why is a pairing useful
	Identity Based Encryption
	Where to Find a Pairing?
	Making it secure
	Modified Tate Pairing
	Prove ê(P,Q) = ê(Q,P) !
	What choices?
	Constrained…
	Ordinary Elliptic Curves
	Ordinary Elliptic Curves
	The bad news..
	Implementation
	Basic Algorithm for e(P,Q)
	Explaining the Algorithm
	Optimizations
	Improved Algorithm
	Further optimization ideas
	Further optimization ideas
	The ηT pairing - 1
	The ηT pairing - 2
	The ηT pairing - 3
	The ηT pairing - 4
	The ηT pairing - 5
	Ate Pairing for ordinary curves E(Fp)
	Extension Field Arithmetic
	Towering extensions
	Towering extensions
	The Final Exponentiation - 1
	The Final Exponentiation - 2
	The Final Exponentiation - 3
	The Final Exponentiation - 4
	The Final Exponentiation - 5
	The Final Exponentiation - 6
	Implementation – more complex than RSA or ECC!
	Implementation – more complex than RSA or ECC!
	Some timings – 80-bit security
	Some timings – 80-bit security
	Some timings – 80-bit security
	Some timings – 80-bit security
	Some timings – 80-bit security
	Some timings – 80-bit security
	Some timings – 128-bit security
	

