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1. Introduction

Douglas Wiedemann’s (1986) landmark approach to solving sparse linear systems over finite
fields provides the symbolic counterpart to non-combinatorial numerical methods for solving
sparse linear systems, such as the Lanczos or conjugate gradient method (see Golub and van
Loan (1983)). The problem is to solve a sparse linear system, when the individual entries
lie in a generic field, and the only operations possible are field arithmetic; the solution is
to be exact. Such is the situation, for instance, if one works in a finite field. Wiedemann
bases his approach on Krylov subspaces, but projects further to a sequence of individual
field elements. By making a link to the Berlekamp/Massey problem from coding theory —
the coordinate recurrences — and by using randomization an algorithm is obtained with the
following property. On input of an n×n coefficient matrix A given by a so-called black box,
which is a program that can multiply the matrix by a vector (see Figure 1), and of a vector b,
the algorithm finds, with high probability in case the system is solvable, a random solution
vector x with Ax = b. It is assumed that the field has sufficiently many elements, say no
less than 50n2 log(n), otherwise one goes to a finite algebraic extension. The complexity of
the method is in the general singular case O(n log(n)) calls to the black box for A and an
additional O(n2 log(n)2) field arithmetic operations.

Note that the black box model for matrix sparsity is a significant abstraction. For a
matrix that has an abundance of zero entries, multiplying the matrix by a vector may cost
no more than O(n) field operations, in which case the algorithm becomes almost quadratic.
However, the model also applies to structured matrices with few or no zero entries, such as
Toeplitz- and Vandermonde-like matrices, or matrices that correspond to resultants (Canny
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Figure 1: Black box representation of a matrix.

et al. 1989). Most importantly, the algorithm makes no assumptions on the systems, such
as symmetricity or positive definiteness.

We contribute to Wiedemann’s approach in several ways. For singular systems, we show
how to randomly sample from the solution manifold by randomly perturbing the entire
system and then solving a non-singular one. Our method is a purely algebraic one, while
Wiedemann uses padding with random sparse rows to enforce non-singularity. When com-
puting the rank or determinant of a matrix, one requires left and right multiplier matrices
such that the product with the coefficient matrix has a maximal non-zero minor in the left
upper corner. We present an alternate to Wiedemann’s perturbation that requires asymp-
totically fewer field elements and is again based on algebraic rather than combinatorical
properties. As it turns out, the multipliers can be chosen unit triangular Toeplitz matrices.
We also present a new method for finding the rank of a matrix that is asymptotically a factor
log(n) faster than the previous ones. Furthermore, we present in greater detail a method
based on p-adic lifting for solving a sparse system over the rationals.

LaMacchia and Odlyzko (1991) have explored the use of conjugate gradients for solving
sparse systems over finite fields. While that approach appears, in practice, to be competitive
with ones based on coordinate recurrences, the probability of success for their randomizations
seems difficult to analyze. Of course, for particularly structured matrices one may also
proceed by nested dissection (Lipton et al. 1979) or block elimination (Abdali and Wise 1988)
and (Wise and Franco 1990).

In his concluding remarks, Wiedemann raises the question whether it may be possible
to solve a transposed problem xtrA = b from a black box for A. We wish to add that if the
black box is an algebraic circuit, it is possible to construct a black box for Atr with the same
asymptotic complexity (Kaminski et al. 1988) and (Kaltofen and Pan 1991, §4).

2. Wiedemann’s Method for Non-Singular Matrices

Wiedemann (1986) presents a randomized Las Vegas algorithm for solving a sparse linear
system over a finite field. As it turns out, his method constitutes an algorithm based on
field arithmetic alone that can solve a non-singular system given as an n-dimensional black
box matrix. It requires linear space and quadratic time, while applying the black box for
the coefficient matrix no more than 3n times. In the following we present Wiedemann’s
argument with the change in the probabilistic analysis taken from (Kaltofen and Pan 1991),
which is warranted because we work over an abstract field.

Let V be a vector space over the field K, and let {ai}
∞
i=0 be an infinite sequence with ele-

ments ai ∈ V . The sequence {ai}
∞
i=0 is linearly generated over K if there exist c0, c1, . . . , cn ∈

K, n ≥ 0, ck 6= 0 for some k with 0 ≤ k ≤ n, such that

∀j ≥ 0: c0aj + · · ·+ cnaj+n = 0.
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The polynomial c0 + c1λ + · · · + cnλ
n is called a generating polynomial for {ai}

∞
i=0. The set

of all generating polynomials for {ai}
∞
i=0 together with the zero polynomial forms an ideal in

K[λ]. The unique polynomial generating that ideal, normalized to have leading coefficient 1,
is called the minimum polynomial of a linearly generated sequence {ai}

∞
i=0. Every generating

polynomial is a multiple of the minimum polynomial.
Let A ∈ K

n×n be a square matrix over a field. The sequence {Ai}∞i=0 ∈ (Kn×n)N is
linearly generated, and its minimum polynomial is the minimum polynomial of A, which
will be denoted by fA. For any column vector b ∈ K

n, the sequence {Aib}∞i=0 ∈ (Kn)N is
also linearly generated by fA. However, its minimum polynomial, denoted by fA,b, can be a
proper divisor of fA. For any row vector u ∈ K

1×n, the sequence {uAib}∞i=0 ∈ K
N is linearly

generated as well, and its minimum polynomial, denoted by fA,b
u , is again a divisor of fA,b.

Wiedemann proves the following fact (loc. cit., §VI).

Theorem 1. Let m = deg(fA,b), and let W be the linear space of polynomials of degree
less than m in K[λ]. There exists a surjective linear map `: K1×n −→ W such that

∀u ∈ K
1×n: fA,b

u = fA,b ⇐⇒ GCD(fA,b, `(u)) = 1.

Thus, the probability that fA,b
u = fA,b for a randomly selected row vector u is essentially

the probability of randomly selecting a polynomial of degree less than n that is relatively
prime to fA,b. For a finite field with q elements, Wiedemann (loc. cit., Proposition 3) proves
that the probability is no less than

1

6 max{dlogq(deg fA)e, 1}
. (1)

In (Kaltofen and Pan 1991, §2) we establish the following alternate approach.

Lemma 1. Let A ∈ K
n×n, b ∈ K

n, and let S ⊂ K. Randomly and uniformly select a row
vector u ∈ S1×n. Then the probability

Prob(fA,b
u = fA,b) ≥ 1−

deg(fA,b)

card(S)
.

If A is non-singular, we may compute x = A−1b from

fA,b(λ) =: c0 + c1λ + · · ·+ cm−1λ
m−1 + λm

by m− 2 applications of A as

x← −
1

c0

(Am−1b + cm−1A
m−2b · · ·+ c1b), (2)

since fA,b(A)b = 0. The polynomial fA,b is computed by picking a random row vector u and
computing fA,b

u . That is accomplished by first construction the sequence of field elements

{a0, a1, . . . , a2m−1}, ai := uAib.

and finding its minimum degree linear generating polynomial. By the theory of linearly
generated sequences, this polynomial is equal to fA,b

u , and it can be determined by the
Berlekamp/Massey algorithm in O(m deg(fA,b

u )) field operations. Wiedemann shows further
that fA,b

u for an unlucky choice of u can be used with the next trial.

3



Algorithm Minimum Polynomial

Input: A ∈ K
n×n, b ∈ K

n, and d ≥ deg(fA,b).

Output: fA,b ∈ K[λ].

Step 1: Pick a random row vector u ∈ S1×n, S ⊂ K, and compute

a0 ← ub, a1 ← uAb, . . . , ai ← uAib, . . . , a2d−1 ← uA2d−1b.

Step 2: Here we determine fA,b
u by the Berlekamp/Massey algorithm (Massey 1969). For

completeness, we give the entire method.
Λ0(λ)← 1; Σ0(λ)← 0; l0 ← 0; δ ← 1;
For r = 1, 2, . . . , 2d Do {

With Λr(λ) = c0λ
nr + c1λ

nr−1 + · · ·+ cnr
, c0 6= 0, find the r-th discrepancy

δr ← cnr
ar−1 + cnr−1ar−2 + · · ·+ c0ar−nr−1;

If δr = 0 Then {Λr(λ)← Λr−1(λ); Σr(λ)← λΣr−1(λ); lr ← lr−1; }
Else {Λr(λ)← Λr−1(λ)− δr

δ
λΣr−1(λ);

If 2lr < r Then {Σr(λ)← Λr−1(λ); lr ← r − lr−1; δ ← δr; }
Else {Σr(λ)← λΣr−1(λ); lr ← lr−1; }}}

fA,b
u (λ)← λl2dΛ2d(1/λ).

Step 3: Now we check if fA,b
u is a proper divisor of fA,b.

If d = deg(fA,b
u ) Then Return fA,b ← fA,b

u ;

Else {b′ ← fA,b
u (A)b. Clearly, b′ can be determined by deg(fA,b

u )− 1 multiplications of A by
vectors, or from the vectors Aib if they have been saved in Step 1.
If b′ = 0 Then Return fA,b ← fA,b

u ;

Else {Call the algorithm recursively with A, b′ and d− deg(fA,b
u ) to determine fA,b′ .

Finally, Return fA,b ← fA,b
u × fA,b′ .}} �

Several observations can be made about this algorithm. First, for randomly chosen b, the
probability that fA,b = fA, the minimum polynomial of A, can be also shown to be bounded
by (1) and as in Lemma 1. That observation gives a Las Vegas randomized algorithm to
determine that a matrix is singular by establishing that fA,b(0) = 0 for a random b. For
non-singular matrices, the determinant can be found with a Las Vegas randomized method
as well (Wiedemann, loc. cit., §V), but we will not need that algorithm in this paper. Second,
the probability that the algorithm determines fA,b after k invocations is much higher than
if one were to try to obtain fA,b

u (A)b = 0 for one of k different u’s. In fact, Wiedemann (loc.
cit., Eq. (12)) proves that for k ≥ 2 and K a field with q elements, the probability is no less
than

1− log

(
qk−1

qk−1 − 1

)
≥ 1−

1

qk−1 − 1
.

Third, the algorithm can be implemented storing only O(n) many field elements, using, for
a sufficiently large field, with high probability no more than 3n multiplications of A by a
vector, and O(n2) additional arithmetic operations in K. Clearly, from (2) and Step 3, the
same complexity bounds hold for computing x with Ax = b, provided fA,b(0) 6= 0.
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3. The Rational Non-Singular Case

Although the algorithm presented in §2 for abstract fields is applicable to the rational num-
bers, the bit size of the intermediately computed rational numbers requires analysis. Alter-
nately, one can lift a modular solution p-adically and then convert to a rational one. Here
we shall discuss that method further (cf. Wiedemann, loc. cit., §7). We shall assume that
the system to be solved is square, non-singular, with integer entries:

Ax = b, A ∈ Zn×n, b ∈ Zn.

Furthermore, we suppose that the black box for A can be supplied with both a modulus
q ∈ Z and a vector y ∈ Z/(q), and then computes (A mod q) y ∈ (Z/(q))n.

Algorithm Rational Non-Singular System Solver

Step 1: Find a prime p that does not divide Det(A) by probabilistically testing if Det(A mod
p) 6= 0 using the method described in §2. As a by-product, we will have a polynomial
fA mod p,v

u ∈ Z/(p)[λ]. Initialize the estimate for fA mod p, f(λ)← fA mod p,v
u (λ).

Step 2: Now we determine how far the p-adic solution must be lifted in order to recover
the rational solution from the p-adic one. Let

‖A‖2 := max
1≤j≤n

{√
A[1, j]2 + · · ·+ A[n, j]2

}
, ‖b‖2 :=

√
b2
1 + · · ·+ b2

n,

where A[i, j] denotes the entry in row i and column j of the matrix A. By Hadamard’s
determinant inequality, |Det(A)| ≤ ‖A‖n2 =: B1, and by Cramer’s rule the numerator of
(A−1b)j is bounded by ‖A‖n−1

2 ‖b‖2 =: B2. By the well-known continued fraction recovery
procedure (see, e.g., Kaltofen and Rolletschek (1989, §5)) the necessary modulus is twice the
product of the numerator and denominator bound, hence

pk ≥ 2‖A‖2n−1
2 ‖b‖2 =: B0.

For i← 0, . . . , k Do Steps 3 and 4.

Step 3: The p-adic expansions of A, b, and x, are denoted by

A ≡ Ā(i−1) + piA(i) (mod pi+1), Ā(i−1) ∈ (Z/(pi))n×n, A(i) ∈ (Z/(p))n×n,
b ≡ b̄(i−1) + pib(i) (mod pi+1), b̄(i−1) ∈ (Z/(pi))n, b(i) ∈ (Z/(p))n,
x ≡ x̄(i−1) + pix(i) (mod pi+1), x̄(i−1) ∈ (Z/(pi))n, x(i) ∈ (Z/(p))n.

At this point we have x̄(i−1) and we find x(i) from

A(x̄(i−1) + pix(i)) ≡ b (mod pi+1).

Compute over the integers

b̂(i) ←
b̄(i) − Ā(i)x̄(i−1)

pi
∈ Zn,

and set b̃(i) ← b̂(i) mod p.
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Step 4: We have x(i) = (A mod p)−1b̃(i) over Z/(p). The mod p solution is determined from
the current estimate f for fA mod p, which is normalized as

f(λ) =: 1− c1λ− · · · − cm−1λ
m−1 − cmλm ∈ Z/(p)[λ], cm 6≡ 0 (mod p).

Compute
x(i) ← c1b̃

(i) + c2(A mod p) b̃(i) + · · ·+ cm(A mod p)m b̃(i).

If b′(i) ← (A mod p)x(i) 6= b̃(i), call algorithm Minimum Polynomial with A mod p, b′(i),

n −m, over the field K = Z/(p). Set f(λ) ← fA mod p,b′(i)(λ)f(λ) and repeat Step 4, unless
f(0) = 0, in which case the prime p divides the determinant of A and must be changed.

Step 5: We now convert x̄(k) ∈ (Z/(pk))n to a rational vector x. Since the least common
denominator of all components xj is a divisor of Det(A), we may incrementally find that
denominator from the denominators of initially converted xj’s. Set ∆← 1.
For j ← 1, . . . , n Do {

First, we divide out the current common denominator and adjust the modulus bound.

Determine the smallest k′ such that pk′
≥ B0/∆ (see Step 2). Set x̄

(k′)
j ← ∆−1x̄

(k)
j

(mod pk′
). If x̄

(k′)
j , represented as an integer between −pk′

/2 and pk′
/2, is in absolute

value no larger than B2, then xj ← x̄
(k′)
j /∆ ∈ Q. Otherwise, compute that convergent

ul/vl of the continued fraction approximations (Hardy and Wright 1979, §10) of x̄
(k′)
j /pk′

that satisfies vl ≤ B1/∆ < vl−1; xj ← (x̄
(k′)
j vl − pk′

ul)/vl; ∆← ∆vl.} �

The advantage of this algorithm lies in the fact that one only needs the minimum poly-
nomial of A mod p. The number of applications of the black box for A now depends also on
the length of the entries in A and b, but those multiplications are modular ones and therefore
computationally more efficient than the ones arising in the method of §2.

4. The Singular Case

The problem at hand is to solve Ax = b in case where the matrix A is singular. We give a
randomized algorithm that returns a random vector in the solution manifold, provided one
exists. First, we give a perturbation scheme that makes the leading principal submatrices of
dimension up to the rank of A non-singular.

Theorem 2. Let A ∈ K
n×n, and let S ⊂ K. Consider the matrix

Ã := UAL, U :=




1 u2 u3 . . . un

1 u2 . . . un−1

1
. . .

...
. . . u2

1




, L :=




1
w2 1
w3 w2 1
...

. . . . . .

wn wn−1 . . . w2 1




,

where the elements of the unit upper triangular Toeplitz matrix U and the elements of the
unit lower triangular Toeplitz matrix L are randomly and uniformly selected from the set S.
Let r be the rank of A, and let Ãi denote the leading principal i× i submatrix of Ã. Then

Prob(Det(Ãi) 6= 0 for all 1 ≤ i ≤ r) ≥ 1−
r(r + 1)

card(S)
.
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Proof. For an n × n matrix B, denote by BI,J the determinant of the submatrix of B
that is formed by removing from B all rows not contained in the set I and all columns not
contained in the set J . First, assume that U is a generic unit upper triangular Toeplitz
matrix whose entries are new variables υ2, . . . , υn replacing u2, . . . , un, and assume that L is
a generic unit lower triangular Toeplitz matrix whose entries are new variables ω2, . . . , ωn.
Let Ã = UAL ∈ L

n×n, where L := K(υ2, . . . , ωn). For K = {1, . . . , k} the Cauchy-Binet
formula yields

ÃK,K =
∑

I={i1,...,ik}

1≤i1<···<ik≤n

∑

J={j1,...,jk}

1≤j1<···<jk≤n

UK,IAI,JLJ,K . (3)

We claim that for k ≤ r the determinant ÃK,K , which is the kth principal minor of Ã, is
non-zero in L. To prove this we consider the minor expansions of UK,I and LJ,K . For a given
set I = {i1, . . . , ik} with 1 ≤ i1 < · · · < ik ≤ n, consider all terms in the minor expansion of
UK,I . The matrix U restricted to rows 1, . . . , k and columns in I has the form, for instance,




i1 i2 ik
1 υi1 υi2 . . . υik

2 υi1−1 υi2−1 υik−1
...

...
...

1
k 0 1 . . . υik−k+1




.

If we write the terms in the minor expansion in descending order of the variables, using the
variable order υ2 < υ3 < · · · < υn, then the diagonal term,

υik−k+1υik−1−k+2 · · · υi1 , with υ1 = 1, (4)

is the lexicographically smallest term of all non-zero monomials in that minor expansion.
Moreover, this term uniquely identifies each minor of U under the sum (3). The latter is
most easily seen from the fact that the set I can be reconstructed from (4) by observing that
υiκ−κ+1 = 1 forces iκ = κ and all lower indices iµ = µ, µ < κ. Similarly, the diagonal terms
in the minor expansions of LJ,K ,

ωjk−k+1ωjk−1−k+2 · · ·ωj1 , with ω1 = 1, (5)

are the lexicographically smallest among all terms of non-zero monomials in the expan-
sions, and uniquely correspond to an index set J . Therefore, the polynomials UK,ILJ,K ∈
K[υ2, . . . , ωn] have unique lexicographically lowest terms, namely the product of (4) and (5)
with the prescribed variable ordering, hence are linearly independent over K. Moreover,
since for k ≤ r there exist sets I0 and J0 with AI0,J0 6= 0, the linear sum (3) of the linearly
independent polynomials cannot be zero, which establishes the claim.

Set

0 6= σ(U ,L) :=
r∏

k=1

ÃK,K ∈ K[υ2, . . . , ωn].

It is clear that all those U and L, for which σ(U,L) 6= 0, satisfy the lemma. By the
Schwartz (1980) / Zippel (1979) lemma, that probability is no less than 1−deg(σ)/card(S).
The probability estimate follows from deg(σ) ≤

∑r

k=1 2k. �
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We remark that applying Ã to a vector costs one application of A to a vector and
two polynomial multiplications, since the Toeplitz matrix times vector products can be
accomplished by polynomial multiplication. For example, for




y1

y2

y3
...

yn




:=




w1

w2 w1

w3 w2 w1
...

. . . . . .

wn wn−1 . . . w2 w1







v1

v2

v3
...

vn




we have

(w1 + · · ·+ wnzn−1)(v1 + · · ·+ vnzn−1) ≡ y1 + y2z + · · ·+ ynz
n−1 (mod zn).

Thus applying Ã to a vector consumes an additional O(n log(n) loglog(n)) arithmetic op-
erations in K (Cantor and Kaltofen 1987). Note that Wiedemann (1986, §V) proposes a
different perturbation scheme with the same effect, which is based on rearrangable permu-
tation networks (Beneš 1964). That scheme requires O(n log(n)) random field elements, but
only costs an additional O(n log(n)) arithmetic operations.

We may determine the rank of A by performing a binary search for the largest non-
singular leading principal submatrix of Ã. However, that strategy adds a log(n) factor to all
timings, and we have found the following alternate way to determine the rank without that
problem.

Lemma 2. Let A ∈ K
n×n have leading principal minors nonzero up to Ar, where r is the

(unknown) rank of A, and suppose that r < n. Let S ⊂ K and let X = diag(x1, . . . , xn), xi

chosen uniformly from S. Then r = deg(fAX)− 1 with probability at least

1− n(n− 1)/(2 card(S)).

Proof. Consider the conformal partitioning

AX =

(
Ar B
C D

)(
Y 0
0 Z

)
=

(
ArY BZ
CY DZ

)
.

Provided the xi’s are nonzero, this matrix has the same rank as A and also has leading
principal minors nonzero up to the r-th. Now consider the following matrix similar to AX,

M :=

(
I Y −1A−1

r BZ
0 I

)(
ArY BZ
CY DZ

)(
I −Y −1A−1

r BZ
0 I

)

=

(
ArY + Y −1A−1

r BZCY 0
CY 0

)
.

Of course this matrix has the same minimal polynomial and characteristic polynomial as AX.
Let cM(λ) denote the characteristic polynomial of matrix M . We have cAX(λ) = λn−rcA′Y (λ),
where A′Y is the upper left corner, i.e., A′ denotes Ar + Y −1A−1

r BZC. If A′ has leading
principal minors nonsingular, then Wiedemann’s lemma applies (loc. cit., Section V), and
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fA′Y (λ) = cA′Y (λ). It follows that fAX(λ) = fM(λ) = λcA′Y (λ) is a polynomial of degree
r + 1. To see this, note that on the one hand the right hand polynomial is clearly a factor
of fM(λ), while on the other hand there is a relation among M i, i = 1, . . . , r + 1, given the
relation among (A′Y )i, i = 1, . . . , r and that

M i =

(
(A′Y )i 0

CY (A′Y )i−1 0

)
.

It remains to show A′ has leading principal minors nonsingular. This is so if xr+1, . . . , xn

(the entries of Z) are indeterminates. For then the ith leading principal minor of A′ is a
polynomial of degree no more than i in these variables with a constant term which is the
ith leading principal minor of Ar. The product of these minors is a polynomial of degree
r(r+1)/2, hence if the entries of Z are randomly chosen, the probability of a leading principal
minor being zero is, by the Schwartz/Zippel lemma, bounded by r(r + 1)/(2 card(S)). �

We may compute f ÃX = f ÃX,b
u , for random u, b as in §2. Thus we have the following

result.

Theorem 3. Let A ∈ K
n×n, and let S ⊂ K. Using 5n − 2 random elements from S (the

entries of U , L, X, u, and b), we may probabilistically determine the rank of A by O(n)
multiplications of A by vectors and O(n2 log(n) loglog(n)) arithmetic operations in K. The
algorithm returns an integer that is with probability no less than

1−
3

2

n(n + 1)

card(S)

the rank of A.

Once we have determined the rank of A, it is relatively easy to compute a random
solution to Ax = b. Clearly, it suffices to compute a random solution to Ã x̃ = Ub, since
then x = Lx̃ solves Ax = b. Hence we may restrict ourselves to the case where the coefficient

matrix has the properties of Ã, namely A =

(
Ar B
C D

)
where r is the rank of A and Ar is

nonsingular. The equivalent matrix

(
Ar B
C D

)(
I −A−1

r B
0 I

)
=

(
Ar 0
C D − CA−1

r B

)

has the same rank, hence D = CA−1
r B.

Now for any x2,

(
Ar B
C D

)(
x1

x2

)
=

(
Arx1 + Bx2

Cx1 + CA−1
r Bx2

)
=

(
b1

b2

)

if and only if Arx1 = b1 −Bx2 and b2 = CA−1
r b1. The latter condition, independent of x2 is

a necessary and sufficient condition for the existence of a solution to Ax = b and the first
equation describes the solution space. For the case x2 = 0 we solve for x1 as described above.
Finally, we show how to find a random element of the solution manifold.

9



Lemma 3. Let A ∈ K
n×n be of rank r, and suppose that Ar, the r × r leading principal

submatrix of A, is non-singular. For any column vector w ∈ K
n, there exists a unique vector

yw ∈ K
n such that

A×




y′
w

0
...
0




︸ ︷︷ ︸
=: yw

}
n− r

= Aw, y′
w ∈ K

r.

Furthermore the map `: Kn −→ K
n defined by `(w) := w − yw is linear with range the right

null space of A.

Proof. The existence of yw with the bottom n− r entries equal to 0 easily follows from the
fact that Aw is a linear combination of the column vectors of A, which by the assumption
on A can be also expressed as a linear combination of the first r column vectors. Since
y′

w = A−1
r A′w, where A′ ∈ K

r×n is the matrix formed by the first r rows of A, ` is a linear
map. Clearly, A × `(w) = 0, so range(`) is a subspace of the right nullspace of A. Now
`(w) = 0 iff w − yw = 0, which means that

w =




w′

0
...
0



}

n− r
and thus y′

w = w′.

Hence the kernel of the map ` has dimension r, which implies that range(`) has the dimension
n− r and is therefore the full right nullspace of A. �

Theorem 4. Let A ∈ K
n×n be of rank r with the leading principal r × r submatrix non-

singular, and let b ∈ K
n be such that Ax = b is solvable in x ∈ K

n. Then for a random
column vector v ∈ K

n there exists a unique vector yb,v ∈ K
n such that

A×




y′
b,v

0
...
0




︸ ︷︷ ︸
=: yb,v

}
n− r

= b + Av.

Furthermore, yb,v − v uniformly samples the solution manifold of Ax = b.

Proof. The existence of the special vector yb,v follows as in Lemma 3. Let x0 ∈ K
n be a

solution Ax0 = b and let w := v + x0. Then Ayb,v = Aw, which by Lemma 2 means that
yb,v − w samples the right nullspace of A. Thus yb,v − v samples the solution manifold of
Ax = b. �

Therefore, once we know the rank r of A, a random solution can be obtained with an
additional n random field elements. Note that y′

b,v can be obtained from a nonsingular
subsystem, which has a black box coefficient matrix by setting the bottom n−r components
of the input vector to full black box matrix to 0. Taking the randomization of Theorem 2 into
account, we need O(r) applications of A and an additional O(rn log(n) loglog(n)) arithmetic
operations.
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